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This work solves the problem governing the simultaneous motion of two viscous liquids of different
kinds: compressible and incompressible. The boundary between the fluids is considered as an
unknown (free) interface where the surface tension is taken into account. Although the fluids occupy
the whole space R

3, one of them should have a finite volume.
Local (in time) unique solvability of this problem is obtained in the Sobolev–Slobodetskiı̌ spaces

of functions. Estimates of the solution of a model problem for the Stokes equations are considered in
detail, the interface between the fluids being a plane. The Schauder method is used to study a linear
problem with a compact boundary. The passage to the nonlinear problem is made by successive
approximations.
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1. Introduction

This paper considers the unsteady motion of a bubble in an incompressible fluid, or that of a drop in a
compressible one. On one hand, the study of a simultaneous motion of two viscous capillary liquids
of different kinds (compressible and incompressible) is interesting from the pure mathematical point
of view. The present work can be considered as a continuation of [2–5] where the evolution of two
viscous capillary fluids of single type, two compressible [4], or two incompressible [2, 3, 5] have
been considered. On the other hand, this problem arises in many important physical phenomena.
The evolution of a bubble in an incompressible fluid appears, for example, in the case of an ejection
of gas into water, for example, after an explosion in the ocean or after a volcanic eruption at the
ocean bed. Another example of the physical interpretation of our problem may be the presence of
many small bubbles in a big volume of liquid with large distances between them. Then we can also
consider the motion of a single bubble in an infinite liquid medium. A similar situation arises for
drops in a volume of gas.

Here, we study the problem governing the motion of two different liquids in full generality. The
local unique solvability of this free boundary problem is the main result of the present work. An
essential difference in the proof of the existence of a unique solution to the problem is contained in
the analysis of a linear model problem with a plane interface between the fluids, so we examine this
model problem in detail. Section 2 is devoted to the homogeneous problem and Section 3 deals with
the non-homogeneous one. We describe briefly the scheme of the nonlinear problem in Section 4.
Its key features are the same as in the case of a single type fluid. The detailed proofs can be found in
articles [7–9] where the motion of a finite volume of a single viscous capillary fluid was analysed.

We obtain our results under some restrictions (the relations (1.9)) for the coefficients of the liquid
viscosities. These inequalities are imposed for mathematical reasons but are physically reasonable
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in certain cases. They are satisfied, for instance, for the pairs air–water, air–alcohol, air–mercury,
etc. but not for air– glycerin, air–lubricating oil. More generally, they are valid for fluids with low
viscosity. Incompressible liquids with large viscosity at ordinary temperatures may also satisfy (1.9)
when the temperature increases above certain values, lowering the viscosity. This is because for
capillary liquids, both viscosities µ and ν decrease quickly with temperature raising whereas for
gases, conversely, µ and ν increase with the rise of temperature (see for example [6]). For instance,
inequalities (1.9) become true for the pair lubricating oil and air at temperature ≈ 80◦C.

We consider, for definiteness, the case when at the initial moment t = 0 a compressible fluid
is situated in an interior, bounded, domain Ω+

0 ⊂ R
3. Let µ+ > 0, λ+ > 0 be its kinematic

viscosities. Let the ‘exterior’ domain Ω−
0 ≡ R

3 \ Ω+
0 be occupied by an incompressible fluid

with the kinematic viscosity ν− > 0 and density ρ− > 0. We assume that the compressible
fluid is barotropic. We note that we could also assume the compressible fluid to be exterior to the
incompressible one.

The problem consists in determining, for each t > 0, the free interface Γt between the liquids
evolving in the domains Ω−

t and Ω+
t . In addition, it is necessary to find the density function

ρ+(x, t) > 0 of the compressible fluid, the pressure function p−(x, t) of the incompressible fluid, as
well as the velocity vector field of both liquids v(x, t) = (v1, v2, v3) satisfying the initial-boundary
value problem for the Navier–Stokes system:

ρ+(Dt v + (v · ∇)v) − ∇T = ρ+ f ,

Dtρ
+ + ∇ · (ρ+v) = 0 in Ω+

t , t > 0, (1.1)

ρ+|t=0 = ρ+
0 , v|t=0 = v0 in Ω+

0 ,

Dt v − ν−∇2v + (v · ∇)v + 1

ρ−∇ p− = f , ∇ · v = 0 in Ω−
t , t > 0,

v|t=0 = v0 in Ω−
0 ; v −−−→|x |→∞ 0, p− −−−→|x |→∞ 0; (1.2)

[v]
∣∣∣∣
Γt

≡ lim
x→x0∈Γt ,

x∈Ω+
t

v(x) − lim
x→x0∈Γt ,

x∈Ω−
t

v(x) = 0,

[Tn]
∣∣∣∣
Γt

= σ Hn on Γt , t > 0. (1.3)

Here Dt = ∂/∂t, ∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3), ∇2 = ∇ · ∇, and the stress tensor is given by

T =
{(−p+(ρ+) + λ∇ · v

)
I + µ+

S(v) in Ω+
t ,

−p−I + µ−
S(v) in Ω−

t ,

(S(v))ik = ∂vi/∂xk + ∂vk/∂xi , i, k = 1, 2, 3; I is the unit matrix; µ− = ν−ρ−; p+(ρ+)

is the pressure of the compressible fluid given by a smooth function of its density; f is the given
vector field of mass forces; v0 is the initial value of the velocity vector field; ρ+

0 is the initial density
distribution of the compressible fluid; σ � 0 is the surface tension coefficient, n is the outward
normal vector to Ω+

t , H(x, t) is twice the mean curvature of Γt (H < 0 at the points where Γt is
convex towards Ω−

t ); ∇T means the vector with the components

(∇T) j = ∂Ti j

∂xi
, Ti j = (T)i j , j = 1, 2, 3.
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We use the standard convention on the summation from 1 to 3 with respect to repeated indices. A
Cartesian coordinate system {x} is introduced in R

3.
Since we suppose the liquids to be immiscible, it is natural to impose on Γt a condition excluding

the mass transportation through this surface. Mathematically, this condition means that Γt consists
of the points x(ξ, t) whose radius vector x(ξ, t) is a solution of the Cauchy problem

Dt x = v(x(ξ, t), t), x(ξ, 0) = ξ, ξ ∈ Γ , t > 0, (1.4)

where Γ ≡ Γ0 = ∂Ω+
0 is a surface given at the initial moment. Hence, Ω±

t = {x = x(ξ, t)|ξ ∈
Ω±

0 }.
The condition (1.4) completes the system (1.1)–(1.3).
As usual, we transform the Eulerian coordinates {x} into the Lagrangian ones {ξ} by the formula

x(ξ, t) = ξ +
∫ t

0
u(ξ, τ ) dτ ≡ Xu(ξ, t). (1.5)

Here u(ξ, t) is the velocity vector field in the Lagrangian coordinates.
The Jacobian of the transformation (1.5)

Ju(ξ, t) = det{ai j }3
i, j=1,

ai j (ξ, t) = δi
j +

∫ t

0

∂ui

∂ξ j
dτ,

being a solution of the Cauchy problem

DtJu(ξ, t) = Ai j
∂ui

∂ξ j
≡ Ju(ξ, t)(∇ · v|x=Xv ),

Ju(ξ, 0) = 1,

may be expressed by the formula

Ju(ξ, t) = exp

(∫ t

0
∇ · v|x=Xu dτ

)
≡ exp

(∫ t

0
∇u · u dτ

)
. (1.6)

Here {δi
j }3

i, j=1 denotes the Kronecker symbol,

∇u ≡
{

∂ξi

∂xk

∂

∂ξi

}3

k=1
= J −1

u A∇,

and A ≡ {Ai j }3
i, j=1 is the cofactor matrix for the Jacobi matrix {ai j } of (1.5). We remark that

Ju(ξ, t) ≡ 1 in the domain Ω−
t .

After the tranformation (1.5) of the system (1.1)–(1.3), the second equation in (1.1) in
Lagrangean coordinates takes the form

Dt ρ̂+ + ρ̂+∇u · u = 0

from where, in virtue of (1.6), we obtain the following expression for the density ρ̂+

ρ̂+(ξ, t) = ρ+
0 (ξ) exp

(
−

∫ t

0
∇u · u dτ

)
= ρ+

0 (ξ)J −1
u (ξ, t). (1.7)
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We substitute (1.7) in the first equation of (1.1) and apply the well-known formula

Hn = ∆(t)x = ∆(t)Xu

where ∆(t) is the Beltrami–Laplace operator on Γt . Moreover, we separate the last vector boundary
condition in (1.3) in the tangential and in the normal components. To this end, we project it first
onto the tangent plane of Γt and then onto that of Γ by means of projectors Π and Π0, respectively.

Next, let n0 be the outward normal to Γ . It is connected with n by the relation

n = J −1
u An0

|J −1
u An0|

= An0

|An0| .

For n · n0 > 0, problem (1.1)–(1.4), as a result of the above transformation, is changed into an
equivalent system:

Dt u − 1

ρ+
0 (ξ)

A∇T
′
u(u) = f (Xu, t) − 1

ρ+
0 (ξ)

A∇ p+(ρ+
0 J −1

u )

in Q+
T ≡ Ω+

0 × (0, T ),

Dt u − ν−∇2
uu + 1

ρ−∇uq = f (Xu, t),

∇u · u = 0 in Q−
T ≡ Ω−

0 × (0, T ), (1.8)

u
∣∣
t=0 = v0 in Ω−

0 ∪ Ω+
0 , u−−−→|ξ |→∞ 0, q −−−→|ξ |→∞ 0,

[u]∣∣GT
= 0, [µ±Π0ΠSu(u)n]∣∣GT

= 0 (GT ≡ Γ × (0, T )),

[n0 · T′
u(u, q)n]∣∣GT

− σn0 · ∆(t)Xu
∣∣
GT

= (n0 · n)p+(ρ+
0 J −1

u )
∣∣
GT

.

In (1.8) q(ξ, t) was the pressure function in the Lagrangean coordinates, and we used the following
notation:

(T′
u(w, q))i, j =

{
(λ+∇u · w)δi

j + µ+(Su(w))i j in Q+
T ,

−δi
j q + µ−(Su(w))i j in Q−

T ;

(Su(w))i j = J −1
u

(
Aik

∂w j

∂ξk
+ A jk

∂wi

∂ξk

)
;

Π0ω = ω − (n0 · ω)n0, Πω = ω − (n · ω)n.

The main result of this paper is a theorem on the unique solvability of problem (1.8) in the
Sobolev–Slobodetskiı̌ spaces. We now recall the definition of these spaces.

Let Ω be a domain in R
n , n ∈ N, and let α = (α1, . . . , αn) be the multi-index of order

|α| = α1 + · · · + αn with integer non-negative components αi , i = 1, . . . , n. We denote the

generalized derivative of a function u by Dα
x u = ∂ |α|u

∂x
α1
1 ···∂xαn

n
.

We determine the Sobolev–Slobodetskiı̌ space W m
2 (Ω) for m > 0 as the space of functions u

with finite norm

‖u‖W m
2 (Ω) =

( ∑
|α|<m

‖Dα
x u‖2

Ω + ‖u‖2
Ẇ m

2 (Ω)

)1/2
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where ‖ · ‖Ω is the norm of L2(Ω) and

‖u‖2
Ẇ m

2 (Ω)
=


∑
|α|=m

‖Dα
x u‖2

Ω for m ∈ N,

∑
|α|=[m]

∫
Ω

∫
Ω

|Dα
x u(x) −Dα

y u(y)|2
|x − y|n+2(m−[m]) dx dy for m �∈ N,

[m] being the integer part of m.
The anisotropic space W m,m/2

2 (QT ) consists of functions defined in the cylinder QT = Ω ×
(0, T ), 0 < T � ∞, and having finite norm

‖u‖
W m,m/2

2 (QT )
=

(∫ T

0
‖u‖2

W m
2 (Ω)dt +

∫
Ω
‖u‖2

W m/2
2 (0,T )

dx

)1/2

.

To formulate intermediate results, we need the Sobolev–Slobodetskiı̌ spaces with exponential
weight introduced by M. Agranovich and M. Vishik in [1] and also considered by V. Solonnikov
in [7].

Let γ � 0. The weighted space Hm,m/2
γ (QT ) is the space of functions admitting zero

continuation to the domain t < 0 without loss of regularity. This space is equipped with the norm

‖u‖
Hm,m/2

γ (QT )
=

(
‖u‖2

Hm,0
γ (QT )

+ ‖u‖2
H0,m/2

γ (QT )

)1/2

.

Here

‖u‖2
Hm,0

γ (QT )
=

∫ T

0
e−2γ t

(
‖u‖2

Ẇ m
2 (Ω)

+ γ m‖u‖2
Ω

)
dt,

‖u‖2
H0,m/2

γ (QT )
=

∫ T

0
e−2γ t

∥∥∥∥∥∂m/2u

∂tm/2

∥∥∥∥∥
2

Ω

dt for m/2 ∈ N

and

‖u‖2
H0,m/2

γ (QT )
=

∫ T

0
e−2γ t

∫ ∞

0

∥∥∥∥∂ku0(·, t)

∂tk
− ∂ku0(·, t − τ)

∂tk

∥∥∥∥2

Ω

dτ

τ 1+m−2k
dt

for k ≡ [m/2] < m/2 where u0 is the extension of u by zero in the domain t < 0. In addition, in
the case m > 1,

∂ i u

∂t i

∣∣∣∣
t=0

= 0, i = 0, . . . ,

[
m − 1

2

]
.

On the cylinder boundary GT = ∂Ω × (0, T ) of the domain QT , we define the space
Hm+1/2,1/2,m/2

γ (GT ) with the norm whose square is determined by the formula

‖u‖2
Hm+1/2,1/2,m/2

γ (GT )
=

∫ T

0
e−2γ t

(
‖u‖2

W m+1/2
2 (∂Ω)

+ γ m‖u‖2
W 1/2

2 (∂Ω)

+
∫ ∞

0

∥∥∥∥∂ku0(·, t)

∂tk
− ∂ku0(·, t − τ)

∂tk

∥∥∥∥2

W 1/2
2 (∂Ω)

dτ

τ 1+m−2k

)
dt,
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k ≡ [m/2] < m/2; if k = m/2 the last term under the first integral sign should be changed

into
∥∥∥ ∂m/2u

∂tm/2

∥∥∥2

W 1/2
2 (∂Ω)

. (Here u0 is again the extension of u by zero and ∂ i u
∂t i

∣∣∣
t=0

= 0, i =
0, . . . ,

[
m−1

2

]
.)

All these norms can be introduced on any smooth manifold by means of local maps and
partitions of unity.

As usual, for a function defined in two domains Q−
T and Q+

T , we set

‖u‖⋃
i=−,+ Hm,m/2

γ (Qi
T )

= ‖u‖
Hm,m/2

γ (Q−
T )

+ ‖u‖
Hm,m/2

γ (Q+
T )

.

We say that a vector field belongs to a certain space if each of its components belongs to this
space and we define its norm as the sum of the norms of its components. The numeration of constants
is individual for each section.

Now we define three norms necessary for formulating the main result of this paper. The first of
them is

‖u‖(m,m/2)

Q−
T ∪Q+

T
=

(
‖u‖2⋃

i=−,+ W m,m/2
2 (Qi

T )
+ T−m‖u‖2

R
3
T

)1/2

.

It is equivalent to ‖u‖2⋃
i Hm,m/2

γ (Qi
T )

if m < 1 and to ‖u‖2⋃
i W m,m/2

2 (Qi
T )

for ∀T < ∞. The square of

the second norm is determined by the formula(
‖u‖(2+l,1+l/2)

Q−
T ∪Q+

T

)2

= ‖u‖2⋃
i=−,+ W 2+l,1+l/2

2 (Qi
T )
+ T−l

{
‖Dt u‖2

Q−
T ∪Q+

T

+
∑
|α|=2

‖Dα
x u‖2

Q−
T ∪Q+

T

}
+ sup

t�T
‖u(·, t)‖2⋃

i W 1+l
2 (Ω i

0)
.

For β ∈ (0, 1) we will consider the following Hölder norm of u ∈ R
3
T ≡ R

3 × (0, T ):

‖|u|‖
R

3
T
= sup

R
3
T

|u| + max
k

sup
(x,t)∈R

3
T

|Dxk u(x, t)| + sup
(x,t),τ�T

|u(x, t) − u(x, τ )|
|τ − t |β .

Let Bd be the ball {x : |x | < d}. We choose a coordinate system {x} so that Ω+
0 is contained in

the ball Bd , d < ∞, and we set B−
dT ≡ (Bd \ Ω+

0 ) × (0, T ).

THEOREM 1.1 Assume that for some l ∈ (1/2, 1) we have Γ ∈ W 5/2+l
2 , ρ+

0 ∈ W 1+l
2 (Ω+

0 ), 0 <

R0 � ρ+
0 (ξ) � R∞ < ∞, ξ ∈ Ω+

0 , p+ ∈ C3(R+), f ∈ Wl,l/2
2 (R3

T ), 0 < T < ∞, f (·, t)
∈ C2(R3) for ∀t ∈ [0, T ], f (ξ, ·), ∇ f (ξ, ·) ∈ Cβ(0, T ) for ∀ξ ∈ R

3 with some β ∈ (1/2, 1). In
addition, let the initial velocity vector v0 ∈ ⋃

i=−,+ W1+l
2 (Ω i

0) satisfy the compatibility conditions

∇ · v0 = 0 in Ω−
0 ,

[v0]
∣∣∣∣
Γ
= 0, [Π0S(v0)n0]

∣∣∣∣
Γ
= 0,

and let the viscosities of the liquids satisfy the inequalities

µ− > µ+, ν− < µ+/R∞ . (1.9)
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Under these hypotheses, there exists a constant T0 ∈ (0, T ] such that problem (1.8)
is uniquely solvable on the interval (0, T0), and its solution (u, q) has the properties: u ∈⋃

i=−,+ W2+l,1+l/2
2 (Qi

T0
), q ∈ W l,l/2

2,loc(Q−
T0

), ∇q ∈ Wl,l/2
2 (Q−

T0
), q|GT0

∈ W l+1/2,l/2+1/4
2 (GT0)

and

‖u‖(2+l,1+l/2)

Q−
T0
∪Q+

T0

+ ‖∇q‖(l,l/2)

Q−
T0

+ ‖q‖(l,l/2)

B−
dT0

+ ‖q‖
Wl+1/2,l/2+1/4

2 (GT0 )

� c1

(
c2 + c3T

1−l
2

0 ‖v0‖⋃
i W1+l

2 (Ω i
0)

){
‖| f |‖

R
3
T0
+ ‖v0‖⋃

i W1+l
2 (Ω i

0)

+ σ‖H0‖Wl+1/2
2 (Γ )

+
∥∥∥∥ 1

ρ+
0

∇ p+(ρ+
0 )

∥∥∥∥
Wl

2(Ω
+
0 )

+ ‖p+(ρ+
0 )‖W 1+l

2 (Ω+
0 )

}
.

The value of T0 depends on the norms of f , v0, ρ0, p+ and on the curvature magnitude of Γ .

This theorem is proved by successive approximations in the same way as the analogous theorems
for the case of a single incompressible fluid [8] or for the case of a single compressible one [9]. We
will consider the main steps of the proof in Section 4. The role of the successive approximations
will be played by the solutions of the following linearized problems:

Dt w − 1

ρ+
0 (ξ)

A∇T
′
u(w) = f in Q+

T ,

Dt w − ν−∇2
uw + 1

ρ−
0

∇us = f , ∇u · w = r in Q−
T ,

w

∣∣∣∣
t=0

= w0 in Ω−
0 ∪ Ω+

0 , w −−−→|ξ |→∞ 0, s −−−→|ξ |→∞ 0, (1.10)

[w]
∣∣∣∣
GT

= 0, [µ±Π0ΠSu(w)n]
∣∣∣∣
GT

= Π0a,

[n0 · T′
u(w, s)n]

∣∣∣∣
Γ
− σn0 · ∆(t)

∫ t

0
w

∣∣∣∣
Γ

dτ = b + σ

∫ t

0
B dτ, t ∈ (0, T ).

THEOREM 1.2 Let Γ ∈ W 3/2+l
2 , ρ+

0 ∈ W 1+l
2 (Ω+

0 ), for some l ∈ (1/2, 1) and let 0 < R0 �
ρ+

0 (ξ) � R∞ < ∞, ξ ∈ Ω+
0 . In addition, assume that the vector field u is continuous across the

boundary Γ and that for some T < ∞ it satisfies the inequality

T 1/2‖u‖(2+l,1+l/2)

Q−
T ∪Q+

T
� δ (1.11)

with a small number δ. We suppose also that inequalities (1.9) hold for the viscosities µ±, ν−.
Then for any f ∈ ⋃

i=−,+ Wl,l/2
2 (Qi

T ), r ∈ W 1+l,1/2+l/2
2 (Q−

T ), r = ∇ · R, R ∈ W0,1+l/2
2 (Q−

T ),

w0 ∈ ⋃
i=−,+ W1+l

2 (Ω i
0), a ∈ Wl+1/2,l/2+1/4

2 (GT ), b ∈ W l+1/2,l/2+1/4
2 (GT ), and B ∈

W l−1/2,l/2−1/4
2 (GT ) for which the compatibility conditions

[w0]
∣∣∣∣
Γ
= 0, [µ±Π0S(w0)n0]

∣∣∣∣
Γ
= Π0a

∣∣∣∣
t=0

,
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∇ · w0 = r

∣∣∣∣
t=0

on Ω−
0

hold, there exists a unique solution (w, s) of problem (1.10) such that w ∈⋃
i=−,+ W2+l,1+l/2

2 (Qi
T ), s ∈ W l,l/2

2,loc(Q−
T ), ∇s ∈ Wl,l/2

2 (Q−
T ), s

∣∣
GT

∈ W l+1/2,l/2+1/4
2 (GT ),

and

‖w‖(2+l,1+l/2)

Q−
T ∪Q+

T
+ ‖∇s‖(l,l/2)

Q−
T

+ ‖s‖(l,l/2)

B−
dT

+ ‖s‖
Wl+1/2,l/2+1/4

2 (GT )

� c1(T )

{
‖ f ‖(l,l/2)

Q−
T ∪Q+

T
+ ‖w0‖⋃

i W1+l
2 (Ω i

0)
+ ‖r‖W 1+l,0

2 (Q−
T )

+ ‖R‖
W0,1+l/2

2 (Q−
T )

+ T−l/2‖Dt R‖Q−
T
+ ‖a‖

Wl+1/2,l/2+1/4
2 (GT )

+ ‖b‖
Wl+1/2,l/2+1/4

2 (GT )
+ T−l/2‖b‖

W 1/2,0
2 (GT )

+ σ‖B‖
Wl−1/2,l/2−1/4

2 (GT )

}
, (1.12)

c1(T ) being a non-decreasing function of T .

The existence of a unique smooth solution of problem (1.10) is based on the analysis of the
model problem when u ≡ 0 and when the interface Γ is a plane.

2. The homogeneous model problem

In this section, we consider the problem

Dt v − ν+∇2v + 1

ρ+
0

∇ p = 0, ∇ · v = 0, in D+∞ = R
3+ × (0,∞),

Dt v − ν−∇2v − (ν− + κ−)∇(∇ · v) = 0 in D−∞ = R
3− × (0,∞),

v

∣∣∣∣
t=0

= 0 on R
3− ∪ R

3+, v −−−→|x |→∞ 0, p −−−→|x |→∞ 0, (2.1)

[v]
∣∣∣∣
x3=0

= 0, −
[
µ±

(
∂vα

∂x3
+ ∂v3

∂xα

)]∣∣∣∣
x3=0

= bα(x ′, t), α = 1, 2;

−(p + λ−∇ · v)

∣∣∣∣
x3=0

+
[

2µ± ∂v3

∂x3

]∣∣∣∣
x3=0

+ σ∆′
∫ t

0
v3

∣∣∣∣
x3=0

dτ

= b3 + σ

∫ t

0
B dτ ≡ b′3 on R

2∞.

Here we have used the notation R
3± = {±x3 > 0}, R

2∞ = R
2 × (0,∞), κ− = λ−/ρ−

0 , ρ−
0 =

constant > 0, ν− = µ−/ρ−
0 , ∆′ = ∂2/∂x2

1 + ∂2/∂x2
2 , x ′ = (x1, x2).

We take the Fourier transform on the tangent space variables (x1, x2) = x ′ and the Laplace
transform with respect to t given by the formula

f̃ (ξ, x3, s) =
∫ ∞

0
e−st

∫
R2

f (x, t)e−ix ′·ξ dx ′ dt, Re s � 0, ξ = (ξ1, ξ2). (2.2)
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For a function f ∈ Hl,l/2
γ (D±∞), transfomation (2.2) defines an analytic function f̃ in the half-plane

{Re s > γ }.
The problem (2.1) is then transformed into the system of ordinary differential equations

d2ṽα

dx2
3

−
(

s

ν+
+ ξ2

)
ṽα − iξα

µ+ p̃ = 0, α = 1, 2,

d2ṽ3

dx2
3

−
(

s

ν+
+ ξ2

)
ṽ3 − 1

µ+
p̃

dx3
= 0,

d̃v3

dx3
+ iξαṽα = 0, x3 > 0, (2.3)

d2ṽα

dx2
3

−
(

s

ν−
+ ξ2

)
ṽα + (1 + β−)iξα

(
iξ1ṽ1 + iξ2ṽ2 + d̃v3

dx3

)
= 0, α=1, 2,

(2 + β−)
d2ṽ3

dx2
3

−
(

s

ν−
+ ξ2

)
ṽ3 + (1 + β−)

d

dx3
(iξ1ṽ1 + iξ2ṽ2) = 0, x3 < 0,

with the boundary conditions

ṽ −−−−→|x3|→∞ 0, p̃ −−−−→|x3|→∞ 0, [̃v]
∣∣∣∣
x3=0

= 0,

−
[
µ±

(
d̃vα

dx3
+ iξαṽ3

)]∣∣∣∣
x3=0

= b̃α, α = 1, 2, (2.4)

s

(
− p̃+ +

[
2µ± d̃v3

dx3

]∣∣∣∣
x3=0

− λ−
(

2∑
β=1

iξβ ṽ−β + d̃v−3
dx3

))
− σξ2ṽ+3 = sb̃′3

where ξ2 = ξ2
1 + ξ2

2 , β− ≡ κ−/ν− ≡ λ−/µ−, ṽ± = limx3→0± ṽ, p̃+ = limx3→0+ p̃.
As in the case of two one-type liquids (see [2, 4]), we write the general solution of (2.3) in the

two half-spaces:

ṽ = C+
1

r+
0

iξ1

 e−r+x3 + C+
2

 0
r+
iξ2

 e−r+x3 + C+
3

 iξ1
iξ2
−|ξ |

 e−|ξ |x3 ,

p̃ = −C+
3 ρ+

0 se−|ξ |x3 for x3 > 0, (2.5)

ṽ = C−
1

−r−
0

iξ1

 er−x3 + C−
2

 0
−r−
iξ2

 er−x3 + C−
3

iξ1
iξ2

r−1

 er−1 x3

for x3 < 0.

Here C±
i , i = 1, 2, 3, are arbitrary constants, r± =

√
s

ν± + ξ2, r−1 =
√

s
(2+β−)ν− + ξ2, |ξ | =√

ξ2
1 + ξ2

2 and we assume | arg
√

z| < π/2 for ∀z ∈ C.
We substitute (2.5) in the boundary conditions (2.4) and solve the system obtained. Then we find
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a solution of problem (2.3), (2.4) which we write in the form convenient for the following estimates:

ṽ = We±0 + V±e±1 , ±x3 > 0, (2.6)

p̃ = −C+
3 ρ+

0 se−|ξ |x3 = −µ+C+
3 (r+ − |ξ |)(r+ + |ξ |)e−|ξ |x3 , x3 > 0,

where

e±0 = e∓r±x3 , e+1 = e−r+x3 − e−|ξ |x3

r+ − |ξ | , e−1 = er−x3 − er−1 x3

r− − r−1
,

W =
ω1

ω2
ω3

 , V+ = −C+
3 (r+ − |ξ |)

 iξ1
iξ2
−|ξ |

 , V− = −C−
3 (r− − r−1 )

iξ1
iξ2

r−1

 ,

C+
3 = − 1

(r+ − |ξ |)P

{
A

{[
2µ+r+ + σ

s
ξ2

]
(r−r−1 − ξ2) (2.7)

+ µ−r+(r−2 − 2r−r−1 + ξ2) + ρ−
0 sr−

}
+ b̃′3{µ+(r−r−1 − ξ2)(r+2 + ξ2)

+ µ−ξ2(r−2 + ξ2 − 2r−r−1 ) + ρ−
0 sr+r−1 }

}
,

C−
3 = − A

P

{
µ+[r+(r+ + |ξ |) + r−(r+ − |ξ |)] + 2µ−r−|ξ | + σ

s
|ξ |3

}
+ b̃′3

P
{µ+[r+|ξ |(r− + |ξ |) + (r− − |ξ |)ξ2] + µ−(r−2 + ξ2)|ξ |},

ωα = 1

µ+r+ + µ−r−
{̃bα + iξα[µ+(r+ − |ξ |)C+

3 + µ−(r− − r−1 )C−
3

+ (µ+ − µ−)ω3]}, α = 1, 2,

ω3 = −(r+ − |ξ |)|ξ |C+
3 + (r−r−1 − ξ2)C−

3

r+ + r−
.

In formulas (2.7) we have used the notation:

A = iξ1b̃1 + iξ2b̃2, b̃′3 = b̃3 + σ

s
B̃,

P = ρ+
0 µ+s(r+ + |ξ |)(r−r−1 − ξ2) + ρ−2

0 s2|ξ |
+ ρ−

0 µ+s(r+ + |ξ |)(r−|ξ | + r+r−1 + 2ξ2)

+ 4(µ+ − µ−)ξ2{µ+r+(r−r−1 − ξ2) − µ−r−(r− − r−1 )|ξ |}
+ σ |ξ |3

s
{µ+(r+ + |ξ |)(r−r−1 − ξ2) + ρ−

0 r−1 s}.

We observe that solution (2.6), (2.7) may be obtained by the passage to the limit r+1 → |ξ | from
a solution of the model problem with a plane interface between two compressible fluids (see [4]).
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On the other hand, it goes over as r−1 → |ξ | into a solution of the corresponding problem for
two incompressible liquids [2]. This passage may also be demonstrated in the system of equations.
Let us turn r−1 to |ξ | that corresponds to β− → ∞, in system (2.3). In this case, the Navier–
Stokes equations for a compressible fluid in the domain {x3 < 0} become the equations for the
incompressible one.

We now move on to the estimates of solution (2.6), (2.7). As C+
3 is contained in all the

expressions with multiplier (r+−|ξ |), which is cancelled with the denominator of C+
3 , the estimate

of solution (2.6), (2.7) depends only on the lower bound of P .
We rewrite P in the form:

P =
6∑

j=1

I j (2.8)

where

I1 =
(

ρ+
0 + ρ−

0 |ξ |
r−1

)
sq,

I2 = (µ+ − µ−)µ+ξ2r+(r−r−1 − ξ2),

I3 = 4µ−2
r−(r− − r−1 )|ξ |3,

I4 = µ+ρ−
0 s(r+ + |ξ |)(r−1 |ξ | + |ξ |3/r−),

I5 = 2µ+ρ−
0 sξ2

{
r+ + |ξ | − 2ν−|ξ |r

−(r− − r−1 )

s

}
= 2µ+ρ−

0 sξ2
{

r+ + |ξ | − 2
1 + β−

2 + β−
r−|ξ |

r− + r−1

}
,

I6 = σ |ξ |3
s

q,

q = µ+(r+ + |ξ |)(r−r−1 − ξ2) + ρ−
0 r−1 s.

LEMMA 2.1 For ∀ξ ∈ R
2, ∀s ∈ C, Re s > 0, the absolute value of the expression q is estimated

by

|q| �
ρ−

0√
2
|r−1 ||s|, (2.9)

|q| � c1(|s|3/2 + |s||ξ |). (2.10)

Moreover, if the viscosities of the fluids satisfy the inequality

ν+ < ν−

then arg (q/s) ∈ (0, (arg s)/2].
Proof. For definiteness, we assume from now on that arg s � 0. (For arg s � 0 the picture will be
symmetric with respect to the axis Im s = 0.) Under this hypothesis, arg r±, arg r−1 ∈ [0, π/4) and

arg
r−r−1 − ξ2

s
= arg

1

(2 + β−)ν−

(
1 + (1 + β−)r−1

r− + r−1

)
∈ (−π

4
, 0

]
. (2.11)
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Hence, arg q/s ∈ (−π/4, π/4) and

|q| � |s|Re

{
µ+(r+ + |ξ |)r−r−1 − ξ2

s
+ ρ−

0 r−1
}

�
ρ−

0 |s||r−1 |√
2

.

Inequality (2.10) follows from the estimate

|q| � |s|
{

c2(|r+| + |ξ |)
(

1 + sup
s,ξ

|r−1 |
|r− + r−1 |

)
+ ρ−

0 |r−1 |
}

� c1|s|(|s|1/2 + |ξ |).
Next, it follows from the inequality ν+ < ν− that arg (r+ + |ξ |) > arg (r− + |ξ |) >

arg
r−+r−1

r−1
= arg(r− + |r−1 |) because |ξ | < |r−1 |. So, arg q/s > 0.

It is not difficult to see that the arguments of vectors r±, r−1 , r± + |ξ | do not exceed 1
2 arg s.

Taking (2.11) into account again, we conclude that arg(q/s) � (arg s)/2 < π/4. �
LEMMA 2.2 Assume that for the viscosities of the fluids the inequalities

ν+ < ν−, µ+ > µ− (2.12)

hold and that σ � 0. Then for ∀ξ ∈ R
2, ∀s ∈ C, Re s = γ > 0, we have

|P| � c3(ρ
±
0 , ν−, β−)γ 5/2, (2.13)

|P| � c4

(
|s|2 + |s|3/2|ξ | + |s|ξ2 + σ |ξ |3

) (
|s|1/2 + |ξ |

)
.

Proof. We will show that each Re (I j/q) is non-negative. Then for the modulus of the expression
P , we can use the inequality

|P| � |q|
∣∣∣∣Re

6∑
j=1

I j

q

∣∣∣∣ = |q|
6∑

j=1

Re
I j

q
. (2.14)

We have

Re
I1

q
= Re

(
ρ+

0 s + ρ−
0 |ξ | s

r−1

)
= ρ+

0 Re s

+ ρ−
0 |ξ | |s||r−1 | {cos(arg s) cos(arg r−1 ) + sin(arg s) sin(arg r−1 )}

� γ

(
ρ+

0 + ρ−
0

|ξ |√
2|r−1 |

)
> 0 (2.15)

because the arguments of s and r−1 have the same sign and consequently the product of their sines
is non-negative; in addition cos(arg r−1 ) > 1/

√
2.

Next,

Re
I2

q
= Re

{
4(µ+ − µ−)µ+ξ2 r+(r−r−1 − ξ2)

s

s

q

}
� 0,

Re
I3

q
= Re

{
4µ− 1 + β−

ν−(2 + β−)

r−|ξ |3
r− + r−1

s

q

}
� 0,
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as arg
r+(r−r−1 −ξ2)

s , arg s
q ∈ (−π

4 , π
4 ), and arg r−

r−+r−1
∈ [0, π

4 ).

For I4
q , we have

Re
I4

q
= µ+ρ−

0 |ξ |
{

Re
(r+ + |ξ |)r−1 s

q
+ Re

(
(r+ + |ξ |)ξ2

r−1

s

q

)}
� µ+ρ−

0 |ξ |Re
1

µ+ r−r−1 −ξ2

sr−1
+ ρ−

0
r++|ξ |

� 0

since the argument of the last fraction’s denominator belongs to the interval (−π/2, 0].
We transform I5 in the following way:

I5 = 2µ+ρ−
0 sξ2

{
r+ + (2 + β−)r−1 |ξ | − β−r−|ξ |

(2 + β−)(r− + r−1 )

}
= 2µ+ρ−

0 sξ2
{

2

2 + β− r+ + 2(1 + β−)r−1 |ξ |
(2 + β−)(r− + r−1 )

+ β−(r+ − |ξ |)
2 + β−

}
.

Then taking the preceding arguments into account, we verify that

Re
I5

q
= 2µ+ρ−

0 ξ2Re

{
2

2 + β−
r+

q/s
+ 2(1 + β−)r−1 |ξ |

(2 + β−)(r− + r−1 )q/s

+ β−

(2 + β−)ν+
s

(r+ + |ξ |)q/s

}
> 0. (2.16)

Finally,

Re
I6

q
= Re

σ |ξ |3
s

= σ |ξ |3γ
|s|2 > 0.

Now let us return to estimate (2.14). Dropping all the terms except the first one, by virtue of (2.9)
and (2.15) we obtain:

|P| � γρ+
0

ρ−
0 |r−1 ||s|√

2
� c3(ρ

±
0 , ν−, β−)γ 5/2

which proves the strict positiveness of |P| for γ > 0. In addition, from (2.16), it follows an
inequality useful for the further estimates of the absolute value of P . As

|P| �
4µ+ρ−

0 sξ2

2 + β− |q|Re
r+

q/s

and arg r+
q/s ∈ (−π

4 , π
4 ), we have

|P| � 4µ+ρ−
0 ξ2

2 + β−
|r+||s|√

2

= c5|s||r+|ξ2 � c6(|s|3/2ξ2 + |s||ξ |3). (2.17)

In order to prove the second inequality in (2.13), we consider two cases.



296 I. V. DENISOVA

Case 1. Let |s| < ξ2. Then

|s|5/2 + |s|2|ξ | � |s|3/2ξ2 + |s||ξ |3 � |P|
c6

.

In view of formula (2.8) for P , we have

σ |ξ |3
∣∣∣∣q

s

∣∣∣∣ � |P| +
5∑

j=1

|I j |.

Let us estimate |I j |, j = 1, . . . , 5. Using (2.10), we obtain:

|I1| �
(

ρ+
0 + ρ−

0 |ξ |
|r−1 |

)
|s||q| � c7

(
|s|5/2 + |s|2|ξ |

)
� c7

c6
|P|,

|I2| � 4(µ+ − µ−)µ+

(2 + β−)ν−
|s||r+|ξ2 max

s,ξ

∣∣∣∣1 + (1 + β−)r−1
r− + r−1

∣∣∣∣ � c8|s||r+|ξ2

� c8

c5
|P|,

|I3| � c9 max
s,ξ

∣∣∣∣ r−

r− + r−1

∣∣∣∣|s||ξ |3 � c9

c6
|P|,

|I4| � c10|s|
(|r+| + |ξ |) (

|r−1 ||ξ | + ξ2
)

� c11

(
|s|2|ξ | + |s||ξ |3

)
� c11

c6
|P|,

|I5| � c12|s|ξ2 (|r+| + |ξ |) � c12

(
1

c5
+ 1

c6

)
|P|.

Hence,

σ |ξ |4 � σ |ξ |3|r−1 | � σ

√
2

ρ−
0

|ξ |3
∣∣∣∣q

s

∣∣∣∣ � c13|P|.

Thus, (2.13) is proved for the first case.

Case 2. Now consider |s| � ξ2. From (2.17) it follows that

σ |ξ |3(|s|1/2 + |ξ |) � 2σ
|s||ξ |3√

γ
� 2σ |P|

c6
√

γ
. (2.18)

We gather all terms in P of orders |s|5/2 and |s|2|ξ | and introduce the function

I0 = I1 + µ+ρ−
0 s

(
r+ − |ξ |) r−1 |ξ |.

Evaluating its absolute value by its real part, we deduce the estimate

|I0| � |s|2Re

{
ρ+

0
q

s
+ ρ−

0 |ξ |
r−1

q

s
+ ρ+

0 ρ−
0

r−1 |ξ |
r+ + |ξ |

}

� 1√
2
|s|2

{
ρ+

0 ρ−
0√

2
|r−1 | + ρ−2

0√
2
|ξ | + ρ+

0 ρ−
0 min

s,ξ

∣∣∣∣ r−1
r+ + |ξ |

∣∣∣∣|ξ |
}

.
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We note that in the last inequality we have used Lemma 2.1 and the fact that the argument of each
term lies in the interval (−π/4, π/4).

At last, with regard to (2.17), (2.18) we have:

c14

(
|s|5/2 + |s|2|ξ |

)
� |I0| � |P| +

6∑
j=2, j �=4

|I j | + 2µ+ρ−
0 |s||r−1 |ξ2

+ µ+ρ−
0 |s| |r

+ + |ξ ||
|r−1 | |ξ |3 � c15|P|.

So, (2.13) is completely proved.

�

Now we may estimate the solution (2.6) easily.

LEMMA 2.3 For the coefficients W, V± defined by formulas (2.7), the inequalities

|V±| � c16(γ )

(
2∑

α=1

|b̃α| + |b̃3||ξ | + σ |B̃|√|s| + ξ2

)
, (2.19)

|W| � c17

(
2∑

α=1

|b̃α|√|s| + ξ2
+ |b̃3||ξ | + σ |B̃|

|s| + ξ2

)
(2.20)

hold.

Proof. Taking into account the evident inequality

|r−r−1 − ξ2|
|s| � 1

(2 + β)ν−

(
1 + (1 + β) sup

s,ξ

|r−1 |
|r− + r−1 |

)
� c18(ν

−, β−),

we obtain

|V+| � c19

2∑
α=1

|b̃α|ξ2

|P| |s| (|r+| + |r−|)
+ c20

(|b̃3||s| + σ |B̃|)
|P| |ξ |

{
|s| + ξ2 + |r+||r−1 |

}
,

|V−| � (1 + β−)|s||r−1 |
(2 + β−)ν−|r− + r−1 | |C

−
3 | (2.21)

� c21|s|
|P|

{ 2∑
α=1

|b̃α||ξ |
[
|s| + ξ2 + (|r+| + |r−1 |) |ξ | + σ |ξ |3

|s|

]

+
(
|b̃3| + σ |B̃|

|s|
)
|ξ |

[
|s| + ξ2 + |r+||ξ |

]}
.
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From here, in view of (2.13), we obtain the estimate

|V±| � c22

 2∑
α=1

|b̃α| +
|b̃3||ξ | + σ |B̃|( 1

σ
+ 1√

γ
)

|s|1/2 + |ξ |

 ,

(the term with |B̃| drops out for σ = 0).
The inequality (2.20) follows from the relations

|ω3| � c23

|r+ + r−|
(|V+| + c18|s||C−

3 |) ,

|ωα| � 1

|µ+r+ + µ−r−|
(|b̃α| + µ+|V+| + µ−|V−| + (µ+ − µ−)|ω3||ξ |

)
,

α = 1, 2,

and from estimates (2.19), (2.21). �

In the dual Fourier–Laplace space, we introduce normalizations corresponding to the norms
defined in Section 1. It is possible to do so by means of a Parceval equality for the transform (2.2)∫ ∞

−∞

∫
R2

| f̃ (ξ, x3, γ + iξ0)|2 dξ dξ0 = (2π)3
∫ ∞

0
e−2γ t

∫
R2

| f (x, t)|2 dx ′ dt .

Thus in Section 2 of [7] it was shown that for ∀γ � 0 the norm ‖u‖⋃
i Hm,m/2

γ (Di∞)
is equivalent to

the norm whose square is given by

‖|u|‖2
m,γ,D3∞

≡
∫

R2

∫ ∞

−∞

{∑
j<m

∥∥∥∥ ∂ j

∂x j
3

ũ(ξ, x3, s)

∥∥∥∥2

R−∪R+
|r |2m−2 j

+ ‖ũ(ξ, ·, s)‖2
Ẇ m

2 (R−)∪Ẇ m
2 (R+)

}
dξ0 dξ

where s = γ + iξ0, r = √
s + ξ2, R±={y ∈ R| ± y >0}, D3∞ = D−∞ ∪ D+∞.

For the trace of a function u on the plane R
2, the norm ‖u‖

Hm,m/2
γ (R2∞)

is equivalent to the norm

‖|u|‖m,γ,R2∞ ≡
( ∫

R2

∫ ∞

−∞
|̃u(ξ, 0, s)|2|r |2m dξ0 dξ

)1/2

while the norm ‖u‖
Hm+1/2,1/2,m/2

γ (R2∞)
is equivalent to the norm

|u|m,γ,R2∞ ≡
( ∫

R2
|ξ |

∫ ∞

−∞
|̃u(ξ, 0, s)|2|r |2m dξ0 dξ

)1/2

.

Consider now the velocity vector ṽ from (2.6). We can write:∣∣∣∣∣d j ṽ(x3)

dx j
3

∣∣∣∣∣ � c24

(
|W|

∣∣∣∣∣d j e±0 (x3)

dx j
3

∣∣∣∣∣ + |V±|
∣∣∣∣∣d j e±1 (x3)

dx j
3

∣∣∣∣∣
)

, ±x3 > 0,
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where j = 0, 1, . . . . We estimate the derivatives of functions e±0 ,e±1 according to the inequalities
(see Lemma 3.1 from [7]):

±
∫ ±∞

0

∣∣∣∣∣d j e±0 (x3)

dx j
3

∣∣∣∣∣
2

dx3 � |r±|2 j−1

√
2

, (2.22)

±
∫ ±∞

0

∫ ∞

0

∣∣∣∣∣d j e±0 (x3 ± z)

dx j
3

− d j e±0 (x3)

dx j
3

∣∣∣∣∣
2

dz dx3

z1+2α
� c±26|r |2( j+α)−1,

±
∫ ±∞

0

∣∣∣∣∣d j e±1 (x3)

dx j
3

∣∣∣∣∣
2

dx3 � c±27|r |2 j−3, (2.23)

±
∫ ±∞

0

∫ ∞

0

∣∣∣∣∣d j e±1 (x3 ± z)

dx j
3

− d j e±1 (x3)

dx j
3

∣∣∣∣∣
2

dz dx3

z1+2α
� c±28|r |2( j+α)−3

where j = 0, 1, . . . , α ∈ (0, 1), r = √
s + ξ2, s = γ + iξ0, γ > 0, ξ ∈ R

2, and the constants
c±26, c±27, c±28 do not depend on |r |. Then for the norm of vector v the relation

‖|v|‖2
2+l,γ,D3∞

� c29

∫
R2

∫ ∞

−∞
(|W|2|r |2l+3 + |V±|2|r |2l+1) dξ0 dξ (2.24)

holds.
As the function e−|ξ |x3 satisfies inequalities (2.22) with |r | replaced by |ξ |, for the pressure

gradient
∇ p̃ = µ+V+(r+ + |ξ |)e−|ξ |x3 , x3 > 0,

the inequality

‖|∇ p|‖2
l,γ,D+∞

� c30

∫
R2

∫ ∞

−∞
|V+|2|r+|2|ξ |2l−1 dξ0 dξ

holds.
And finally, as a consequence of Lemma 2.3 we conclude that

‖|v|‖2+l,γ,D3∞ + ‖|∇ p|‖l,γ,D+∞

� c31

( ∫
R2

∫ ∞

−∞

(
2∑

α=1

|b̃α|2 + |b̃3|2|ξ |2 + σ 2|B̃|2
|r |2

)
|r |2l+1 dξ0 dξ

)1/2

� c32

{
2∑

α=1

‖|bα|‖l+1/2,γ,R2∞ + |b3|l,γ,R2∞ + σ‖|B|‖l−1/2,γ,R2∞

}
. (2.25)

Thus, we have proved the unique solvability of problem (2.1).

THEOREM 2.4 Assume that l > 1/2, γ � γ0 > 0, σ � 0 and that inequalities (2.12) hold for the
viscosities of the liquids. In addition, we suppose that bα ∈ Hl+1/2,l/2+1/4

γ (R2∞), α = 1, 2, b3 ∈
Hl+1/2,1/2,l/2

γ (R2∞), and B ∈ Hl−1/2,l/2−1/4
γ (R2∞).

Then there exists a unique solution (v, p) of problem (2.1) such that v ∈⋃
i=−,+ H2+l,1+l/2

γ (Di∞), ∇ p ∈ Hl,l/2
γ (D+∞), and inequality (2.25) holds.
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REMARK 2.5 It should be noted that the uniqueness of solution (2.6), (2.7) for γ � γ0 > 0 is
guaranteed by the first inequality in (2.13), i.e. by the fact that in this case P is separated from zero.

3. The non-homogeneous model problem

In this section we will prove the unique solvability of the non-homogeneous problem with plane
interface between the fluids by reducing it to problem (2.1).

Let T � ∞ and consider the system

Dt w − ν+∇2w + 1

ρ+
0

∇q = f , ∇ · w = g in D+
T = R

3+ × (0, T ),

Dt w − ν−∇2w − (ν− + κ−)∇(∇ · w) = f in D−
T = R

3− × (0, T ),

w

∣∣∣∣
t=0

= 0, w −−−→|x |→∞ 0, q −−−→|x |→∞ 0, [w]
∣∣∣∣
x3=0

= 0, (3.1)

−
[
µ±

(
∂wα

∂x3
+ ∂w3

∂xα

)]∣∣∣∣
x3=0

= aα(x ′, t), x ′ = (x1, x2), t ∈ (0, T ), α = 1, 2;

−(q + λ−∇ · w)

∣∣∣∣
x3=0

+
[

2µ± ∂w3

∂x3

]∣∣∣∣
x3=0

+ σ∆′
∫ t

0
w3

∣∣∣∣
x3=0

dτ

= a3 + σ

∫ t

0
A dτ on R

2
T ≡ R

2 × (0, T ).

THEOREM 3.1 Let T > 0, γ � γ0 > 0, σ � 0, and let the viscosities of the liquids µ±, ν±
satisfy inequalities (2.12). In addition, we assume that, for some l > 1/2, f ∈ ⋃

i=−,+ Hl,l/2
γ (Di

T ),

g ∈ H1+l,1/2+l/2
γ (D+

T ), g = ∇ · R, R ∈ H0,l+1/2
γ (D+

T ), aα ∈ Hl+1/2,l/2+1/4
γ (R2

T ), α = 1, 2,

a3 ∈ Hl+1/2,1/2,l/2
γ (R2

T ), and A ∈ Hl−1/2,l/2−1/4
γ (R2

T ). Then problem (3.1) is uniquely solvable on

the interval (0, T ] and for its solution (w, q), w ∈ ⋃
i=−,+ H2+l,1+l/2

γ (Di
T ), ∇q ∈ Hl,l/2

γ (D+
T ), the

inequality

‖w‖⋃
i H2+l,1+l/2

γ (Di
T )
+ ‖∇q‖

Hl,l/2
γ (D+

T )
� c1

{
‖ f ‖⋃

i Hl,l/2
γ (Di

T )

+ ‖g‖
H1+l,1/2+l/2

γ (D+
T )

+ ‖R‖
H0,1+l/2

γ (D+
T )

+
2∑

α=1

‖aα‖Hl+1/2,l/2+1/4
γ (R2

T )

+ ‖a3‖Hl+1/2,1/2,l/2
γ (R2

T )
+ σ‖A‖

Hl−1/2,l/2−1/4
γ (R2

T )

}
(3.2)

holds.

Proof. We shall look for the velocity vector w in the form: w = u + w ′ + v ′ where

u =
{

u+1 , x3 > 0,

u−1 + u−2 , x3 < 0,

w ′ =
{
∇Φ, x3 > 0,

0, x3 < 0,
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Φ(x, t) being a solution of the Dirichlet problem for the Poisson equation

∆Φ(x, t) = g − ∇ · u+1 ≡ g′(x, t), x ∈ R
3+, t > 0,

Φ|x3=0 = 0. (3.3)

Next, let (v ′, p′) be a solution of the homogeneous problem (2.1) with the boundary functions

bα = aα +
[
µ±

(
∂uα

∂x3
+ ∂u3

∂xα

)]∣∣∣∣
x3=0

+ µ+
(

∂w′
α

∂x3
+ ∂w′

3

∂xα

)∣∣∣∣
x3=0

, α = 1, 2,

b3 = a3 −
[

2µ± ∂(u3 + w′
3)

∂x3

]∣∣∣∣ + λ−∇ · (u−1 + u−2 )

∣∣∣∣
x3=0

+ µ+g′
∣∣∣∣
x3=0

, (3.4)

B = A − ∆′(u3 + w′
3)

∣∣∣∣
x3=0

then as a pressure function associated with w we can take q = p′ + ρ+
0 (ν+g′ − ∂Φ/∂t) (Φ = 0 in

R
3−).

We define the vector-function u as follows. u+1 is a solution of the Cauchy problem for the heat
equation

Dt u
+
1 − ν+∆u+1 = f+ in R

3
T ≡ R

3 × (0, T ),

u+1 |t=0 = 0; (3.5)

u−1 is a solution of the Cauchy problem too:

Dt u
−
1 − ν−∆u−1 − (ν− + κ−)∇(∇ · u−1 ) = f− in R

3
T ,

u−1 |t=0 = 0. (3.6)

(Here f+ and f− are continuous extensions of restrictions f |x3>0 and f |x3<0, respectively, on the
whole R

3∞.) We determine u−2 as a solution of the initial-boundary value problem

Dt u
−
2 − ν−∆u−2 − (ν− + κ−)∇(∇ · u−2 ) = 0 in D−

T ,

u−2 |t=0 = 0, u−2 |x3=0 = (u+1 − u−1 − w ′)|x3=0 ≡ ϕ. (3.7)

Now, we show that every function introduced above is well defined and that its norm is bounded
by the norms of the data of problem (3.1).

We consider T = ∞ because every given function admits an extension to t > T in the same
class.

Let us take the Laplace transform on t and the Fourier transform on the all spatial variables in
problems (3.5), (3.6). Then it is easy to see that for their solutions the estimate∫ ∞

−∞

∫
R3

|ũ±1 (ξ, s)|2(|s| + ξ2)l+2 dξ dξ0 � c2

∫ ∞

−∞

∫
R3

| f̃±(ξ, s)|2(|s| + ξ2)l dξ dξ0 (3.8)

holds. Here ξ = (ξ1, ξ2, ξ3), ξ2 = ξ2
1 + ξ2

2 + ξ2
3 , s = γ + iξ0. Estimate (3.8) is equivalent to the

inequalities

‖u±1 ‖H2+l,1+l/2
γ (R3∞)

� c3‖ f±‖
Hl,l/2

γ (R3∞)
� c±4 ‖ f ‖⋃

i Hl,l/2
γ (Di∞)

. (3.9)
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After the partial Fourier–Laplace transform (2.2), a solution of system (3.7) may be expressed
in form (2.6):

ũ−2 = We−0 + Ve−1 .

It is not difficult to show that

W = ϕ̃, V = −C3(r
− − r−1 )

iξ1
iξ2

r−1


where C3 = iξ1ϕ̃1+iξ2ϕ̃2+r−ϕ̃3

r−r−1 −ξ2 . Taking inequalities (2.22)–(2.24) into consideration, we conclude that

‖|u−2 |‖2+l,γ,D−∞ � c5‖|ϕ|‖3/2+l,γ,R2∞ (3.10)

� c5(‖|u+1 |‖2+l,γ,D+∞ + ‖|u−1 |‖2+l,γ,D−∞ + ‖|w ′|‖2+l,γ,D+∞).

Thus, it remains to estimate only the norm of w ′ = ∇Φ. To this end, we turn our attention to
problem (3.3). By means of the Green formula for the Poisson equation in the half-space

Φ(x, t) =
∫

R
3+

G(x, y)g′(y, t) dy = −
∫

R
3+
∇yG(x, y) · (R(y, t) − u+1 (y, t)) dy,

where G(x, y) = − 1
4π

(
1

|x−y| − 1
|x−y∗|

)
, y∗ = (y1, y2,−y3), it was proved in [7] that

‖w ′‖
H2+l,1+l/2

γ (D+
T )

� c6

{
‖g‖H1+l,0

γ (D+
T )

+ ‖R‖
H0,1+l/2

γ (D+
T )

+ ‖u+1 ‖H2+l,1+l/2
γ (D+

T )

}
. (3.11)

Finally, the evalution of the solution of the initial-boundary value problem (2.1), (3.4) is given
by Theorem 2.4. According to inequality (2.25), we have:

‖|v ′|‖2+l,γ,D3∞ + ‖|∇ p′|‖l,γ,D+∞ � c7

{ 2∑
α=1

‖|aα|‖l+1/2,γ,R2∞ + |a3|l,γ,R2∞

+ σ‖|A|‖l−1/2,γ,R2∞ + ‖|u + w ′|‖l+3/2,γ,R2∞ + |g′|l,γ,R2∞

}
� c7

{ 2∑
α=1

‖|aα|‖l+1/2,γ,R2∞ + |a3|l,γ,R2∞ + σ‖|A|‖l−1/2,γ,R2∞

+ ‖|u+1 |‖2+l,γ,D+∞ + ‖|u−1 |‖2+l,γ,D−∞ + ‖|u−2 |‖2+l,γ,D−∞

+ ‖|w ′|‖2+l,γ,D3∞ + ‖|g|‖1+l,γ,D+∞

}
. (3.12)



COMPRESSIBLE AND INCOMPRESSIBLE FLUIDS 303

Taking the equivalence of norms ‖| f |‖m,γ and ‖ f ‖
Hm,m/2

γ
and also inequalities (3.9)–(3.12) into

account, we arrive at the estimate (3.2). The existence of a solution of (3.1) is proved. Its uniqueness
in the spaces Hm,m/2

γ , γ � γ0 > 0, follows from the triviality of the solution of problem (2.1) with
homogeneous boundary conditions. �
REMARK 3.2 We note that the symmetry transformation with respect to the plane {x3 = 0} makes
the liquids change places. It is clear that this change preserves Theorems 2.4 and 3.1. Thus, our
results on the linear problem are independent of the location of the liquids.

4. Problems (1.8) and (1.10)

Now we suppose that Ω+ ≡ Ω+
0 is contained in the ball Bd−2, d < ∞. We introduce the notation:

B±
d ≡ Bd ∩ Ω±, B±

dT = B±
d × (0, T ); Ω− ≡ Ω−

0 .
First, we consider system (1.10) with u = 0. We rewrite this problem with respect to the

functions v and p :
Dt v − (ρ+

0 (x))−1∇T
′(v) = f in Q+

T ,

Dt v − ν−∇2v + 1

ρ−
0

∇ p = f , ∇ · v = r in Q−
T ,

v

∣∣∣∣
t=0

= w0 in Ω− ∪ Ω+, v −−−→|x |→∞ 0, p −−−→|x |→∞ 0, (4.1)

[v]
∣∣∣∣
GT

= 0, [µ±Π0S(v)n0]
∣∣∣∣
GT

= Π0a,

−(p + λ+∇ · v)

∣∣∣∣
Γ
+ [µ±n0 · S(v)n0]

∣∣∣∣
Γ
− σn0 · ∆Γ

∫ t

0
v

∣∣∣∣
Γ

dτ

= b + σ

∫ t

0
B dτ, t ∈ (0, T ).

Here ∆Γ is the Beltrami–Laplace operator on the given interface Γ and n0 is its outward normal
with respect to Ω+

0 .
We formulate the existence theorem for (4.1) with homogeneous initial data.

THEOREM 4.1 Assume that w0 = 0 in (4.1). Moreover, let Γ ∈ W 3/2+l
2 , ρ+

0 ∈ W 1+l
2 (Ω+) for

some l > 1/2, 0 < R0 � ρ+
0 (x) � R∞ < ∞, x ∈ Ω+, and let inequalities (1.9) hold. Then

for arbitrary f ∈ ⋃
i=−,+ Hl,l/2

γ (Qi
T ), r ∈ H1+l,1/2+l/2

γ (Q−
T ), r = ∇ · R, R ∈ H0,l+1/2

γ (Q−
T ),

a ∈ Hl+1/2,l/2+1/4
γ (GT ), b ∈ Hl+1/2,1/2,l/2

γ (GT ), and A ∈ Hl−1/2,l/2−1/4
γ (GT ) with T � ∞,

problem (4.1) is uniquely solvable on the interval (0, T ] provided that γ is large enough. Its solution
(v, p) has the properties: v ∈ ⋃

i=−,+ H2+l,1+l/2
γ (Qi

T ), p ∈ Hl,l/2
γ (B−

T ), ∇ p ∈ Hl,l/2
γ (Q−

T ), and
satisfies the inequality

‖v‖⋃
i H2+l,1+l/2

γ (Qi
T )
+ ‖∇ p‖

Hl,l/2
γ (Q−

T )
+ ‖p‖

Hl,l/2
γ (B−

T )
� c1

{
‖ f ‖⋃

i Hl,l/2
γ (Qi

T )

+ ‖r‖
H1+l,1/2+l/2

γ (Q−
T )

+ ‖R‖
H0,1+l/2

γ (Q−
T )

+ ‖a‖
Hl+1/2,l/2+1/4

γ (GT )

+ ‖b‖
Hl+1/2,1/2,l/2

γ (GT )
+ σ‖B‖

Hl−1/2,l/2−1/4
γ (GT )

}
≡ c1 M (4.2)
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where the constant c1 is independent of T .

Proof. We prove this theorem in two steps. At first, we obtain the estimate (4.2) as an a priori one.
Next, we show that system (4.1) with w0 = 0 has a unique solution belonging to the spaces Hl,l/2

γ .

Step 1. We use the Schauder method to prove the validity of (4.2).
We first estimate the solution outside some ball containing Ω+. We multiply equations (4.1) by

a smooth function η : η = 0 in the ball Bd−1 and η = 1 outside the ball Bd . Let us introduce the
new unknown functions u = vη and q = pη. It is necessary to evaluate a solution of the following
Cauchy problem:

Dt u − ν−∇2u + 1

ρ−
0

∇q = f η − ν−(v∇2η + 2(∇η · ∇)v) + 1

ρ−
0

p∇η,

∇ · v = rη + v · ∇η,

u

∣∣∣∣
t=0

= 0, u−−−→|x |→∞ 0, q −−−→|x |→∞ 0.

This problem was analysed in [2] where was obtained the estimate

‖u‖
H2+l,1+l/2

γ (R3
T )
+ ‖∇q‖

Hl,l/2
γ (R3

T )
� c2

{
‖ f ‖

Hl,l/2
γ (Q−

T )
+ ‖r‖

H
1+l, 1+l

2
γ (Q−

T )

+ ‖R‖
H0,1+l/2

γ (Q−
T )

+ ‖v‖
H2+l,1+l/2

γ (KdT )
+ ‖p‖

Hl,l/2
γ (KdT )

}
. (4.3)

Here KdT = (Bd \ Bd−1) × (0, T ).
Next, by a partition of unity, on the base of local estimates for compressible [9] and

incompressible [7] fluids, as well as of the boundary estimate (3.2) and inequality (4.3), we deduce
that

‖v‖⋃
i H2+l,1+l/2

γ (Qi
T )
+ ‖∇ p‖

Hl,l/2
γ (Q−

T )
+ ‖p‖

Hl,l/2
γ (B−

dT )

� c3

{
M + ‖v‖⋃

i H1+l,1/2+l/2
γ (Bi

dT )
+ ‖p‖

Hl,l/2
γ (B−

dT )
+ ‖p‖

H0,l/2
γ (GT )

}
� c4

{
M + ‖v‖⋃

i H1+l,1/2+l/2
γ (Bi

dT )
+ ε‖∇ p‖

Hl,l/2
γ (B−

dT )

+ c5(ε)‖p‖
H0,l/2

γ (B−
dT )

}
. (4.4)

In the last relation, we have used interpolation inequalities from [2: p. 21].
Thus, it remains to estimate only ‖p‖

H0,l/2
γ (B−

dT )
. To this end, we consider the Dirichlet problem

∇2 p

ρ−
0

= ∇ · ( f −Dt v + ν−∇2v) = ∇ · ( f −Dt R + ν−∇r)

≡ ∇ · F in Ω−,

p

∣∣∣∣
Γ
=

[
2µ±

(
∂v
∂n0

)
n0

]∣∣∣∣
Γ
− λ+∇ · v

∣∣∣∣
Γ
− σn0 · ∆Γ

∫ t

0
v

∣∣∣∣
Γ

dτ (4.5)

− b − σ

∫ t

0
B dτ ≡ p0, p −−−→|x |→∞ 0
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where bn0 = b · n0.
We extend the functions f , r, R, v, b, B with preservation of class into the region t > T in the

case when T < ∞. After the Laplace transform f̂ (x, s) = ∫ ∞
0 e−st f (x, t) dt in (4.5)we arrive at

the problem

∇2 p̂

ρ−
0

= ∇ · ( f̂ − s R̂ + ν−∇r̂) ≡ ∇ · F̂ in Ω−,

p̂

∣∣∣∣
Γ
=

[
2µ±

(
∂ v̂
∂n0

)
n0

]∣∣∣∣
Γ
− λ+∇ · v̂

∣∣∣∣
Γ
− σ

s
(∆Γ v̂)n0

∣∣∣∣
Γ

(4.6)

− b̂ − σ

s
B̂ ≡ p̂0, p̂ −−−→|x |→∞ 0.

We shall need also the solution Φ of the Dirichlet problem with homogeneous boundary
condition

∇2Φ
ρ−

0

= p̂ζ 2 in Ω−, Φ
∣∣∣∣
Γ
= 0, Φ −−−→|x |→∞ 0. (4.7)

Here ζ is a smooth function with compact support equal to 1 in Bd and to 0 outside Bd+1. The bar
means complex conjugation.

We multiply the equation in (4.7) by Φ and integrate by parts twice. Then we have∫
Ω−

| p̂|2ζ 2 dx = −
∫
Ω−

F̂ · ∇Φ dx +
∫
Γ

p̂0
∂Φ
∂n0

dΓ

whence it follows that

‖ p̂ζ‖2
Ω− � c6

(‖F̂‖2
Ω− + ε‖∇Φ‖2

Ω− + ‖ p̂0‖2
Γ + ε‖ ∂Φ

∂n0
‖2
Γ

)
. (4.8)

Applying the known estimates for ∇Φ
∣∣∣∣
Γ

and ∇∇Φ

‖∇Φ‖2
Γ � c7

(‖∇∇Φ‖2
B−

d
+ ‖∇Φ‖2

Ω−
)
, ‖∇∇Φ‖2

B−
d

� c8
(‖ p̂ζ‖2

Ω− + ‖∇Φ‖2
Ω−

)
,

we see that it is only necessary to estimate ‖∇Φ‖2
Ω− . To this end, we multiply the equation of (4.7)

by Φ and integrate by parts over Ω−. We then obtain the equality
∫
Ω−

|∇Φ|2
ρ−

0
dx = − ∫

Ω− p̂ζ 2Φ dx

from which it follows that

‖∇Φ‖2
Ω− � ε1‖Φζ‖2

Ω− + cε1‖ p̂ζ‖2
Ω− . (4.9)

Next, by the embedding theorems we obtain: ‖Φζ‖2
Ω− � c9‖Φζ‖2

L6(B−
d+1)

� c9‖∇Φ‖2
Ω− . Finally,

choosing sufficiently small ε1 and ε, we deduce from (4.9)

‖∇Φ‖2
Ω− � c10‖ p̂ζ‖2

Ω− ,
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and then from (4.8)

‖ p̂ζ‖2
Ω− � c11

(‖F̂‖2
Ω− + ‖ p̂0‖2

Γ

)
� c12

{
‖ f̂ ‖2

Ω− + ‖̂r‖2
Ω− + |s|2‖R̂‖2

Ω−

+ ‖∇ v̂‖2
Γ + σ 2

|s|2 ‖(∆Γ v̂)n0 + B̂‖2
Γ + ‖b̂‖2

Γ

}
. (4.10)

Let us multiply inequality (4.10) by |s|l and integrate over the line Im s = ξ0. By the Parseval
equality, we obtain the estimate

‖p‖2
H0,l/2

γ (B−
d∞)

� c13

{
‖ f ‖2

H0,l/2
γ (Q−∞)

+ ‖r‖2
H ,l/2

γ (Q−∞)
+ ‖R‖2

H0,1+l/2
γ (Q−∞)

+ ‖b‖
H0,l/2

γ (G∞)
+ σ 2‖(∆Γ v)n0 + B‖

H0,l/2−1
γ (G∞)

+ ‖∇v‖
H0,l/2

γ (G∞)

}
. (4.11)

For l < 2 the term with σ 2 must be replaced by σ 2γ l−2‖e−γ t
[
(∆Γ v)n0 + B

]‖G∞ .

By means of the embedding theorems for Hm,m/2
γ [7], in the same way as in [2], we obtain

from (4.4), (4.11) that

‖v‖⋃
i H2+l,1+l/2

γ (Qi
T )
+ ‖∇ p‖

Hl,l/2
γ (Q−

T )
+ ‖p‖2

H0,l/2
γ (B−

dT )

� c14

{
M + ‖v‖⋃

i H3/2+ j,3/4+ j/2
γ (Bi

dT )

}
.

Here j = max(1, l) which is always less than l + 1/2, since l > 1/2, and hence we have the weak
norm of v on the right. It can be estimated by θ‖v‖⋃

i H2+l,1+l/2
γ (Qi

T )
with a small coefficient θ for a

sufficiently large value of the parameter γ (see [7: Section 4]). Thus, we arrive at estimate (4.2).

Step 2. The proof of existence of a solution with the mentioned properties is proved by constructing
a regularizer in the same manner as in the case of single liquid [7, 9]. The uniqueness of the
constructed solution follows from the triviality of the homogeneous problem solution which is due
to inequality (4.2). �

The passage from the weighted spaces Hm,m/2
γ (Q±

T ), γ � 0, to the ordinary Sobolev spaces

W m,m/2
2 (Q±

T ) is easily made because they are equivalente for ∀T < ∞ [7: Section 6].
Problem (4.1) with w0 �= 0 can be reduced to the problem with homogeneous initial

conditions considered above by constructing a vector V ∈ ⋃
i W2+l,1+l/2

2 (Qi
T ) such that V(x, 0) =

w0, [V]∣∣GT
= 0 and

‖V‖⋃
i W2+l,1+l/2

2 (Qi
T )

� c15‖w0‖⋃
i W1+l

2 (Ω i )
.

In this way, we arrive at Theorem 1.2 with u = 0.

THEOREM 4.2 Suppose that Γ ∈ W 3/2+l
2 , ρ+

0 ∈ W 1+l
2 (Ω+

0 ) for some l ∈ (1/2, 1), 0 <

R0 � ρ+
0 (x) � R∞ < ∞, x ∈ Ω+

0 , and that inequalities (1.9) hold. In addition, assume

that f ∈ ⋃
i=−,+ Wl,l/2

2 (Qi
T ), r ∈ W 1+l,1/2+l/2

2 (Q−
T ), r = ∇ · R, R ∈ W0,1+l/2

2 (Q−
T ),
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w0 ∈ ⋃
i=−,+ W1+l

2 (Ω i
0), a ∈ Wl+1/2,l/2+1/4

2 (GT ), b ∈ W l+1/2,l/2+1/4
2 (GT ), and B ∈

W l−1/2,l/2−1/4
2 (GT ) with T < ∞ and that the compatibility conditions

[w0]
∣∣∣∣
Γ
= 0, [µ±Π0S(w0)n0]

∣∣∣∣
Γ
= Π0a

∣∣∣∣
t=0

,

∇ · w0 = r

∣∣∣∣
t=0

on Ω−
0

are satisfied.
Then problem (4.1) is uniquely solvable and its solution (v, p) has the properties: v ∈⋃

i=−,+ W2+l,1+l/2
2 (Qi

T ), p ∈ W l,l/2
2,loc(Q−

T ), ∇ p ∈ Wl,l/2
2 (Q−

T ), p
∣∣
GT

∈ W l+1/2,l/2+1/4
2 (GT ),

and

N [v, p] ≡ ‖v‖(2+l,1+l/2)

Q−
T ∪Q+

T
+ ‖∇ p‖(l,l/2)

Q−
T

+ ‖p‖(l,l/2)

B−
dT

+ ‖p‖
Wl+1/2,l/2+1/4

2 (GT )

� c16(T )

{
‖ f ‖(l,l/2)

Q−
T ∪Q+

T
+ ‖w0‖⋃

i W1+l
2 (Ω i

0)
+ ‖r‖W 1+l,0

2 (Q−
T )

+ ‖R‖
W0,1+l/2

2 (Q−
T )

+ T−l/2‖Dt R‖Q−
T
+ ‖a‖

Wl+1/2,l/2+1/4
2 (GT )

+ ‖b‖
Wl+1/2,l/2+1/4

2 (GT )
+ T−l/2‖b‖

W 1/2,0
2 (GT )

+ σ‖B‖
Wl−1/2,l/2−1/4

2 (GT )

}
≡ c16(T )F, (4.12)

c16(T ) being a non-decreasing function of T .

We will solve problem (1.10) by successive approximations taking w (0) = 0, s(0) = 0 and
determining (w (m+1), s(m+1)), m � 0, as solutions of the problems

Dt w (m+1) − (ρ+
0 (x))−1∇T

′(w (m+1)) = f + l1(w (m)) in Q+
T ,

Dt v − ν−∇2w (m+1) + 1

ρ−
0

∇s(m+1) = f + l1(w (m), s(m)),

∇ · w (m+1) = r + l2(w (m)) = ∇ · (L(w (m)) + R) in Q−
T ,

w (m+1)

∣∣∣∣
t=0

= w0, w (m+1) −−−→|ξ |→∞ 0, s(m+1) −−−→|ξ |→∞ 0, (4.13)

[w (m+1)]
∣∣∣∣
GT

= 0, [µ±Π0S(w (m+1))n0]
∣∣∣∣
GT

= l3(w (m)) + Π0a,

[n0 · T′(w (m+1), s(m+1))n0]
∣∣∣∣
Γ
− σn0 · ∆Γ

∫ t

0
w (m+1)

∣∣∣∣
Γ

dτ

= l4(w (m), s(m)) + b + σ

∫ t

0
(l5(w (m)) + B) dτ, t ∈ (0, T ).
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Here we use the notation

l1(w, s) =
{

(ρ+
0 (ξ))−1[A∇T

′
u(w) − ∇T

′(w)] in Ω+
t ,

ν−(∇2
u − ∇2)w + (∇ − ∇u)s in Ω−

t ,

l2(w) = (∇ − ∇u)w = ∇ · L(w), L(w) = (I − A
T )w,

l3(w) = [µ±Π0(S(w)n0 − ΠuSu(w)n)]
∣∣∣∣
GT

,

l4(w, s) = [n0 · (T′(w, s)n0 − T
′
u(w, s)n)]

∣∣∣∣
GT

, (4.14)

l5(w) = n0 ·Dt (∆(t) − ∆Γ )

∫ t

0
w

∣∣∣∣
Γ

dτ

= n0 ·
{
(∆(t) − ∆Γ )w + ∆̇(t)

∫ t

0
w

∣∣∣∣
Γ

dτ

}
,

where ∆̇(t) is the derivative of ∆(t) with respect to time.
Operators l1, . . . , l5 and L were considered in [8] and [9] where the following estimates were

obtained.

LEMMA 4.3 If u and u′ satisfy inequality (1.11) then

‖l1(w, s) − l ′1(w, s)‖(l,l/2)

Q−
T ∪Q+

T
+ ‖l2(w) − l ′2(w)‖(l,l/2)

W
1+l, 1+l

2
2 (Q−

T )

+ ‖l3(w) − l ′3(w)‖
W 1/2+l,1/4+l/2

2 (GT )
+ ‖l5(w) − l ′5(w)‖(l−1/2,l/2−1/4)

GT

� c17
√

T ‖u − u′‖(2+l,1+l/2)

Q−
T ∪Q+

T

{
‖w‖(2+l,1+l/2)

Q−
T ∪Q+

T
+ ‖∇s‖(l,l/2)

Q−
T

}
,

‖Dt (L(w) − L′(w))‖(0,l/2)

Q−
T

� c18

{√
T ‖u − u′‖(2+l,1+l/2)

Q−
T

+ T
1−l

2 ‖u(·, 0) − u′(·, 0)‖W1
2(Ω

−)

}
‖w‖(2+l,1+l/2)

Q−
T

, (4.15)

‖l4(w, s) − l ′4(w, s)‖W 1/2+l,1/4+l/2(GT ) � c19
√

T ‖u − u′‖(2+l,1+l/2)

Q−
T ∪Q+

T

×
{
‖w‖(2+l,1+l/2)

Q−
T ∪Q+

T
+ ‖∇s‖(l,l/2)

Q−
T

+ ‖s‖(l,l/2)

B−
T

+ ‖s‖
Wl+1/2,l/2+1/4

2 (GT )

}
. (4.16)

Here operators l ′1, . . . , l ′5 and L′ are calculated according to formulas (4.14) where vector u is

replaced by u′. If w

∣∣∣∣
t=0

= 0, then inequality (4.15) is valid without T
1−l

2 ‖u(·, 0)− u′(·, 0)‖W1
2(Ω

−)

in the right-hand side.

REMARK 4.4 We note also that in (4.16) it is sufficient to take the norm ‖s‖(l,l/2) over the bounded
domain B−

T .

Lemma 4.5 follows on from Lemma 4.3.
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LEMMA 4.5 If u satisfies inequality (1.11), then

‖l1(w, s)‖(l,l/2)

Q−
T ∪Q+

T
+ ‖l2(w)‖(l,l/2)

W
1+l, 1+l

2
2 (Q−

T )

+‖l3(w)‖
W 1/2+l,1/4+l/2

2 (GT )

+ ‖l4(w, s)‖W 1/2+l,1/4+l/2(GT ) + ‖l5(w)‖(l−1/2,l/2−1/4)
GT

� c20δ

{
‖w‖(2+l,1+l/2)

Q−
T ∪Q+

T
+ ‖∇s‖(l,l/2)

Q−
T

+ ‖s‖(l,l/2)

B−
T

+ ‖s‖
Wl+1/2,l/2+1/4

2 (GT )

}
,

‖DtL(w)‖(0,l/2)

Q−
T

� c21

{
δ + T

1−l
2 ‖u(·, 0)‖W1

2(Ω
−)

}
‖w‖(2+l,1+l/2)

Q−
T

. (4.17)

If w(·, 0) = 0 in Ω−, then the term with ‖u(·, 0)‖W1
2(Ω

−) may be dropped in the last inequality.

Proof of Theorem 1.2. We return to problem (4.13). It follows from Theorem 4.2 and Lemma 4.5
that (w (m+1), s(m+1)), m > 0, are uniquely determined, (w (1), s(1)) being a solution of (1.10) with
u = 0 and satisfying inequality (4.12).

Let us consider the differences z(m+1) = w (m+1) − w (m), g(m+1) = s(m+1) − s(m), m � 1. We
have for them the problem

Dt z(m+1) − (ρ+
0 (x))−1∇T

′(z(m+1)) = l1(z(m)) in Q+
T ,

Dt v − ν−∇2z(m+1) + 1

ρ−
0

∇g(m+1) = l1(z(m), g(m)),

∇ · z(m+1) = l2(z(m)) = ∇ · L(z(m)) in Q−
T ,

z(m+1)

∣∣∣∣
t=0

= 0, z(m+1) −−−→|ξ |→∞ 0, g(m+1) −−−→|ξ |→∞ 0, (4.18)

[z(m+1)]
∣∣∣∣
GT

= 0, [µ±Π0S(z(m+1))n0]
∣∣∣∣
GT

= l3(z(m)),

[n0 · T′(z(m+1), g(m+1))n0]
∣∣∣∣
Γ
− σn0 · ∆Γ

∫ t

0
z(m+1)

∣∣∣∣
Γ

dτ

= l4(z(m), g(m)) + σ

∫ t

0
l5(z(m)) dτ, t ∈ (0, T ).

If m � 1, then z(m+1)
∣∣
t=0 = 0, and we deduce from (4.12) and Lemma 4.5 that

N [z(m+1), g(m+1)] � c22δN [z(m), g(m)].
If m = 1 then in virtue of (4.17) we obtain

N [z(2), g(2)] � (c22δ + c21δ1)N [w (1), s(1)]
with δ1 = T

1−l
2 ‖u(·, 0)‖W1

2(Ω
−). Next, for Σm = ∑m

j=2 N [z( j), g( j)] the following inequality

Σm+1 � c22δΣm + N [z(2), g(2)]
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holds. Let us take c22δ < 1. It is obvious that

Σm+1 � (1 − c22δ)
−1 N [z(2), g(2)].

Because of Theorem 4.2 we have:

N [w (m+1), s(m+1)] � Σm+1 + N [w (1), s(1)]
�

(
1

1 − c22δ
+ c21

1 − c22δ
T

1−l
2 ‖u(·, 0)‖W1

2(Ω
−)

)
c16 F

where F is the sum of the right-hand-side norms in (4.12). Hence, the sequence {w (m+1), s(m+1)} is
convergent and its limit (w, s) is a solution of (1.10) satisfying inequality (1.12) with

c1(T ) = c16 F

1 − c22δ

(
1 + c21T

1−l
2 ‖u(·, 0)‖W1

2(Ω
−)

)
.

In a similar way, we can conclude that the difference (z = w − w ′, g = s − s′) of two solutions
of (1.10) satisfies the estimate

N [z, g] � c22δN [z, g]

whence it follows z = 0, g = 0. Thus, the uniqueness of the solution is also proved. �

Now, we give the main ideas of the Proof of Theorem 1.1.
Using the formula for twice the mean curvature,

∆(t)Xu = ∆(0)ξ +
∫ t

0
∆̇(τ )ξ dτ + ∆(t)

∫ t

0
u dτ,

we rewrite the last boundary condition in (1.8) as follows:

[n0 · T′
u(u, q)n]

∣∣∣∣
GT

− σn0 · ∆(t)
∫ t

0
u

∣∣∣∣
GT

= σ H0(ξ) + σ

∫ t

0
n0 · ∆̇(τ )ξ dτ

+(n0 · n)p+(ρ+
0 J −1

u )

∣∣∣∣
GT

.

Here H0(ξ) = n0 · ∆(0)ξ is twice the mean curvature of Γ .Au.Q. open face ‘N’?

Next, we use again the successive approximation method, now for solving system (1.8). We put
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u(0) = 0, q(0) = 0 and define u(m+1), q(m+1), m ∈ N, as a solution of the problem

Dt u(m+1) − 1

ρ+
0 (ξ)

Am∇T
′
m(u(m+1)) = f (Xm, t) − 1

ρ+
0 (ξ)

Am∇ p+(ρ+
0 J −1

m ) in Q+
T ,

Dt u(m+1) − ν−∇2
mu(m+1) + 1

ρ−∇mq(m+1) = f (Xm, t),∇m · u(m+1) = 0 in Q−
T , (4.19)

u(m+1)

∣∣∣∣
t=0

= v0 in Ω−
0 ∪ Ω+

0 , u(m+1) −−−→|ξ |→∞ 0, q(m+1) −−−→|ξ |→∞ 0,

[u(m+1)]
∣∣∣∣
GT

= 0, [µ±Π0ΠmSm(u(m+1))nm]
∣∣∣∣
GT

= 0,

[n0 · T′
m(u(m+1), q(m+1))nm]

∣∣∣∣
GT

− σn0 · ∆m(t)
∫ t

0
u(m+1)

∣∣∣∣
GT

= σ H0(ξ) + σ

∫ t

0
n0 · ∆̇m(τ )ξ dτ + (n0 · nm)p+(ρ+

0 J −1
m )

∣∣∣∣
GT

.

Here we have used the notation ∇m = ∇u(m) etc.; ∆m(t) is the Beltrami–Laplace operator on Γm(t);
nm is an outward normal to the surface Γm(t) = {x = Xm(ξ, t)|ξ ∈ Γ }; Πm is the projector on its
tangential plane; Am is the cofactor matrix for the Jacobi matrix {a(m)

i j } of (1.5) corresponding to the

vector field u(m).
Since n0 · ∆̇m(τ )ξ ∈ W l−1/2,l/2−1/4

2 (GT ) if u(m) ∈ ∪i W2+l,1+l
2 (Qi

T ) [8], and since H0 ∈
W l+1/2

2 (Γ ) then, by Theorem 1.2, problem (4.19) is solvable in an interval (0, Tm) in which
u(m), q(m) are determined and u(m) satisfies condition (1.11) with a sufficiently small δ > 0. It
is necessary to show that for ∀m Tm � T ′ > 0, N [u(m), q(m)] are uniformly bounded in (0, T ′) and
that the sequence {u(m), q(m)} converges to a solution of problem (1.8). The proof of these facts is
the same as in the case of a single fluid. It was presented in detail in [8].
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