
Interfaces and Free Boundaries 2, (2000) 267–282

Global existence for a non-local mean curvature flow as a limit of a
parabolic–elliptic phase transition model

D. HILHORST

Analyse Numérique et EDP, CNRS et Université de Paris-Sud, 91405 Orsay Cedex, France

E. LOGAK
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We consider a free boundary problem where the velocity depends on the mean curvature and on
some non-local term. This problem arises as the singular limit of a reaction–diffusion system which
describes the microphase separation of diblock copolymers. The interface may present singularities
in finite time. This leads us to consider weak solutions on an arbitrary time interval and to prove the
global-in-time convergence of solutions of the reaction–diffusion system.

1. Introduction

In this paper we consider the reaction–diffusion system

Pε




ut = ∆u + 1

ε2
( f (u) − εv) in Ω × R+

−∆v = u −
∫
−u in Ω × R+∫

−v(., t) = 0 for t � 0

u(x, 0) = gε(x) x ∈ Ω ,

with periodic boundary conditions for (u, v) on ∂Ω , where

Ω = {(x1, . . . , xN ) ∈ R
N , 0 < xi < ωi , 1 � i � N },

with ωi > 0 for i = 1, 2, . . . , N . Here,∫
−φ = 1

|Ω |
∫
Ω

φ(x) dx

and ε > 0 is a small parameter. The nonlinear term f (u) = −W ′(u) is the derivative of a double-
well potential with W (−u) = W (u), having two minima at ±1, with W (±1) = 0 and W ′′(±1) > 0.
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More precisely, f is of bistable type and satisfies

f (−u) = − f (u), f (u) = 0 if and only if u ∈ {±1, 0},
f ′(±1) < 0, f ′(0) > 0. (1.1)

A typical example is given by f (u) = u − u3. The initial condition gε is periodic of period ω =
(ω1, ω2, . . . , ωN ) and we will give the exact expression for gε in Section 2 below.

In what follows, we denote by (uε, vε) the unique solution of Problem (Pε) on Ω × R+ which
is periodic in space with period ω. For T > 0, we define QT = Ω × (0, T ). This problem arises as
a model for microphase separation in diblock copolymers [2, 9, 10]. More precisely, Pε is obtained
as a gradient flow for the energy functional Fε defined by

Fε[u] =
∫
Ω

[
ε|∇u|2

2
+ W (u)

ε
+ |∇v|2

2

]
,

where the function v is associated to the function u by

−∆v = u −
∫
−u in Ω ,

∫
−v = 0,

together with periodic boundary conditions for u and v. This functional is proposed in [10] and in [2]
to describe the microphase separation of diblock copolymers where two different homopolymers
are connected. This connectivity is responsible for long-range interactions between the two types of
homopolymers which are represented by the non-local term

∫
Ω |∇v|2 in Fε . Whereas minimizing

the sum of the first two terms in the functional Fε amounts to minimizing the area of the interface
between the regions where u ≈ 1 and u ≈ −1, minimizing the last term involving v tends to create
oscillations in the function u, which in turn tends to increase the area of the interface. Indeed, in

order to make the term
∫
Ω |∇v|2 small enough, one has to let u oscillate rapidly around

∫
−u. More

precisely, if u −
∫
−u converges weakly to 0 in L2(Ω), then by compactness ∇v converges strongly

to 0 in L2(Ω). Thus we have to deal with two opposite tendencies.
It follows as in [8] that Pε has a unique classical solution (uε, vε). We are concerned in this

paper with global-in-time convergence results about (uε, vε). As for local-in-time results, it has
been established in [8] that for suitable initial data gε , the solution (uε, vε) of system Pε converges
as ε → 0 to the solution (u0, v0) of the free boundary problem (FBP) defined on [0, T ] by

F B P




u0(x, t) =
{

−1 x ∈ Ω−
t

+1 x ∈ Ω+
t

−∆v0(x, t) = u0(x, t) − ∫− u0(x, t) dx x ∈ Ω−
t ∪ Ω+

t∫− v0(., t) = 0

Vn = −(N − 1)K + c0v
0(x, t) x ∈ Γt = Ω \ (Ω−

t ∪ Ω+
t )

Γt |t=0 = Γ0,

with periodic boundary data for v0 on ∂Ω . For each time t ∈ [0, T ], the free boundary Γt ⊂⊂ Ω
is a smooth compact hypersurface without boundaries that divides Ω into two subdomains Ω−

t and
Ω+

t , with Ω−
t ⊂⊂ Ω . Here, Vn denotes the normal velocity and K the mean curvature on Γt . The
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constant c0 ∈ R only depends on f and is related to the travelling wave solutions associated to the
one-dimensional bistable equation. Well posedness for the FBP has been established in [4] and the
associated local-in-time convergence result established in [8] reads as follows.

THEOREM 1.1 Let Γ = ((Γt × t)t∈[0,T ], u0, v0) be a smooth solution to FBP on [0, T ]. Then there
exists a class of initial data (gε)0<ε<1 such that if (uε, vε) denotes the corresponding solution of
Pε , we have

lim
ε→0

uε(x, t) = u0(x, t)

lim
ε→0

vε(x, t) = v0(x, t)

for a.e. (x, t) ∈ Ω × (0, T ).

Nevertheless even with smooth initial data Γ 0, the solution may develop a singularity in finite
time. Thus a global-in-time convergence result needs to define some weak notion of solution of FBP.

Moreover, the inclusion of interfaces is not preserved in time for FBP (cf. [4]). This is why we
cannot define a notion of viscosity solution for this problem. However, we will use the notion of
viscosity solution for the interface motion equation in FBP with a fixed function v0.

Let us mention other results about global-in-time convergence to viscosity solutions in similar
phase transition systems. In [11], the authors consider a system where the evolution of uε is given
by the same bistable equation as in Pε but where vε is coupled to uε by a parabolic equation. This
yields compactness in space-time for vε . Our main contribution is to extend their approach to the
case that the equation for vε is elliptic.

Note that we can prove similar global-in-time convergence results if the function pair (uε, vε)

satisfies an equation of the form

uε
t = ∆uε + 1

ε2
( f (uε) − εvε),

with (vε)ε>0 compact in C0(Q̄T ). In particular, this is true in the case where vε = ∫
Ω uε , which

has been studied in [5].
This paper is set out as follows. In Section 2, we first define our choice of initial data gε and then

prove estimates for (uε, vε) which imply the compactness of this sequence in L1(QT ) × C0(Q̄T ).
The convergence result for a subsequence is then established in Section 3, using a related result by
Barles et al. [3] in the case of a single equation. More precisely, we prove the following result.

THEOREM 1.2 For a suitable choice of initial data gε , there exists a sequence ε j → 0 such that for
all T > 0,

lim
j→+∞ uε j = u in L1(QT ), lim

j→+∞ vε j = v in C0(Q̄T ),

for two functions u and v with u = ±1 a.e. in QT and v defined as the solution of

−∆v = u −
∫
−u a.e. in QT ,

∫
−v = 0 on [0, T ],

together with periodic boundary conditions. Moreover, if ψ is the unique viscosity solution of the
problem

(P0)

{
∂ψ
∂t − |∇ψ |∇.

( ∇ψ
|∇ψ |

) + c0|∇ψ |v = 0 on R
N × R+

ψ(x, 0) = d0(x) for x ∈ R
N ,
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for some positive constant c0 wich only depends on f , the function u satisfies the inequalities

2χψ>0 − 1 � u � 2χψ�0 − 1 on R
N × R+.

2. Estimates on the solutions of Pε

In this section, we will consider the functions (uε, vε) on Ω . Thus the relation between uε and vε at
any time t � 0 is 

−∆vε(., t) = uε(., t) −
∫
−uε(., t) in Ω∫

Ω vε(., t) = 0,

with vε satisfying periodic boundary conditions on ∂Ω .
We first define our choice of initial data gε = uε |t=0 .
In view of the assumptions (1.1) on f = −W ′, the equation in u, f (u)− a = 0, has, for |a| � δ

small enough, three solutions that we denote by h−(a) < h0(a) < h+(a), with h±(0) = ±1 and
h0(0) = 0. Let us consider the travelling wave solution associated to the bistable non-linearity
f (u) − a which is defined as the unique solution (c(a), q(r, a)) of

qrr + c(a)qr + f (q) − a = 0

q(±∞, a) = h±(a), q(0, a) = h+(a) + h−(a)

2
. (2.1)

It is standard that (c, q) is uniquely determined and satisfies in particular for some constants C > 0
and α > 0 and for all r ∈ R and |a| � δ,

0 � qr � Ce−α|r |, − C � qa � 0, |qar | � C (2.2)

c(0) = 0, c′(0) = c0 > 0 and q(r, 0) = q0(r) satisfies q
′2
0 = 2W (q0). (2.3)

Let Γ 0 = ∂Ω−
0 be a smooth given interface in Ω , where Ω−

0 ⊂⊂ Ω and Ω+
0 = Ω \ Ω̄−

0 are smooth
subdomains of Ω . Let d0(x) be the signed distance function to Γ 0 and let the function u0 be defined
in Ω by u0(x) = ±1 for x ∈ Ω±

0 . We then consider the solution v0 of

−∆v0 = u0 −
∫
−u0 in Ω ,

∫
−v0 = 0, (2.4)

with v0 satisfying periodic boundary conditions on ∂Ω . The initial condition gε = uε |t=0 is then
given by

gε(x) = q

(
d0(x)

ε
, εv0(x)

)
, (2.5)

where q is defined in (2.1). We now associate to Pε the functional Eε defined for t � 0 by

Eε(t) =
∫
Ω

[
ε|∇uε |2

2
+ W (uε)

ε
+ |∇vε |2

2

]
.

Next we present some properties of the function gε and show in particular that the functional Eε(0)

is bounded.
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LEMMA 2.1 The function gε defined in (2.5) satisfies for some constant C > 0 and for all 0 < ε <

ε0 small enough,

(i) Eε(0) � C

(i i) |gε | � 1 + Cε

(i i i) lim
ε→0

gε(x) = u0(x) = ±1 for x ∈ Ω±
0 . (2.6)

Proof. Properties (ii) and (iii) are straightforward using the properties of the travelling wave q. We
now establish (i). First note that by (ii), the function vε(., 0) is uniformly bounded in H1(Ω) and
in L∞(Ω), so that the third term in Eε(0) is bounded for all ε > 0. Moreover, using (2.2) and the
definition of gε , we have that

gε(x) = q0

(
d0(x)

ε

)
+ O(ε)

so that using (2.2) and (2.3), we get

W (gε)

ε
= W (q0(

d0(x)
ε

))

ε
+ O(1) (2.7)

= 1

2ε
(q ′

0)
2
(

d0(x)

ε

)
+ O(1). (2.8)

As for the first term in Eε(0), note that

∇gε = qr
∇d0

ε
+ qaε∇v0

so that using again (2.2), we obtain

ε|∇gε |2 = q2
r
|∇d0|2

ε
+ O(ε)

= (q ′
0)

2
(

d0(x)

ε

) |∇d0|2
ε

+ O(1). (2.9)

It then follows from (2.7), (2.9), and the fact that |∇d0| is bounded, for some constant C > 0,

Eε(0) � C
∫
Ω

1

ε
(q ′

0)
2
(

d0(x)

ε

)
dx + O(1).

Using the fact that (q ′
0) decays exponentially fast to 0 at infinity and a parametrization x �→

(d0, µ) ∈ [−δ, +δ] × Γ 0 in a tubular neighbourhood of Γ 0, we deduce that for δ > 0 small



272 D. HILHORST, E. LOGAK & R. SCHÄZLE

enough,

∫
Ω

1

ε
(q ′

0)
2
(

d0(x)

ε

)
dx �

∫
|d0|�δ

1

ε
(q ′

0)
2
(

d0(x)

ε

)
dx + O

(
e−α δ

ε

ε

)

� C
∫
Γ 0

∫ δ

−δ

1

ε
(q ′

0)
2
(

r

ε

)
dr dµ + O

(
e−α δ

ε

ε

)

� C
∫ δ

ε

− δ
ε

(q ′
0)

2(σ ) dσ + O

(
e−α δ

ε

ε

)

� C
∫

R

(q ′
0)

2(σ ) dσ + C < +∞,

which finally yields (i). This completes the proof of Lemma 2.1. �

We now prove estimates on (uε, vε).

LEMMA 2.2 There exists α ∈ (0, 1) such that for all C > 0 large enough and for 0 < ε < ε0 small
enough, if gε satisfies

|gε | � 1 + Cε on Ω ,

then the solution (uε, vε) of Pε satisfies

−1 − Cε � uε(t) � 1 + Cε and ||vε(t)||C1+α(Ω̄) � C1

for some positive constant C1 and for all time t � 0.

Proof. First note that there exists a constant C1 > 0 such that if v satisfies

|| − ∆v||L∞(Ω) � 2,

∫
Ω

v = 0,

together with periodic boundary conditions, then by [1]

||v||C1+α(Ω̄) � C1.

Moreover, we define
C2 = max

s∈[−2,+2]
| f ′′(s)|,

and we assume that
|gε | � 1 + Cε

for some C � C1| f ′(1)| . We prove below that for all C ′ > C and for all time t � 0,

|uε(t)| < 1 + C ′ε,

if 0 < ε < ε0 = min
( 1

C ′ ,
2(| f ′(1)|C ′−C1)

C2C ′2
)
. Assume by contradiction that there exists ε ∈ (0, ε0) and

a first time τ = τ(ε) > 0 when this does not hold anymore. Note that for all 0 � t � τ , |uε(t)| � 2
so that

||vε(t)||C1+α(Ω̄) � C1.
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Defining xτ ∈ Ω as the point where uε(., τ ) achieves its maximum value, we deduce that

uε(xτ , τ ) = 1 + C ′ε, ∂uε

∂t
(xτ , τ ) � 0, ∆uε(xτ , τ ) � 0

so that
f (1 + C ′ε) − εvε(xτ , τ ) � 0.

But, we have that

f (1 + C ′ε) − εvε(xτ , τ ) � f ′(1)C ′ε + C2C ′2 ε2

2
+ C1ε

� ε

(
−| f ′(1)|C ′ + C1 + C2C ′2ε

2

)
< 0

by the definitions of C1, C2 and ε0. This contradiction proves that |uε(t)| � 1 + Cε for all time
t � 0. �

Next we remark that Eε is a Lyapunov functional for Pε . More precisely we have the following.

LEMMA 2.3 For all t > 0,

dEε(t)

dt
= −ε

∫
Ω

(uε
t )

2 � 0 (2.10)

so that

0 � Eε(t) � Eε(0) � C and ε

∫ t

0

∫
Ω

(uε
t )

2 � C.

Proof. Note that, using the fact that
∫
−vε = 0, the third term in Eε can be rewritten as

∫
Ω

|∇vε |2
2

= 1

2

∫
Ω

(−∆vε)vε = 1

2

∫
Ω

(
uε −

∫
−uε

)
vε = 1

2

∫
Ω

uεvε

so that
d

dt

(∫
Ω

|∇vε |2
2

)
= 1

2

∫
Ω

uε
t v

ε + 1

2

∫
Ω

uεvε
t .

On the other hand,
d

dt

(∫
Ω

|∇vε |2
2

)
=

∫
Ω

(−∆vε)vε
t =

∫
Ω

uεvε
t .

Combining the two above equalities yields∫
Ω

uεvε
t =

∫
Ω

uε
t v

ε

so that finally
d

dt

(∫
Ω

|∇vε |2
2

)
=

∫
Ω

uε
t v

ε.
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It is then standard to differentiate Eε and to get (2.10). The other inequalities in Lemma 2.3 are
straightforward.

In order to deduce from Lemma 2.3 more precise estimates on uε , we perform a change of
functions. We define the auxiliary function ũε = H(uε), where

H(s) = c
∫ s

0

√
W (τ ) dτ,

with c > 0 chosen such that H(±1) = ±1. For instance, if f (u) = 2(u − u3), then

W (u) = (1 − u2)2

2
and H(s) =

{
1
2 (3s − s3) for |s| � 1

2sgn(s) + 1
2 (s3 − 3s) for |s| � 1.

Let us now establish BV -type estimates on ũε . �

LEMMA 2.4 There exists C > 0 such that∫
Ω

|∇ũε | � C, |ũε | � C

and for all 0 � t1 < t2 we have ∫ t2

t1

∫
Ω

|∂ ũε

∂t
| � C |t2 − t1| 1

2 .

Proof. To begin with we remark that the boundedness of ũε follows from the boundedness of
uε established in Lemma 2.2. We have ∇ũε = H ′(uε)∇uε = c

√
W (uε)∇uε so that, using the

Lyapunov functional, we get∫
Ω

|∇ũε | � C

[∫
Ω

ε|∇uε |2 +
∫
Ω

W (uε)

ε

]
� C

for some C > 0. Moreover, since
∂ ũε

∂t
= c

√
W (uε)

∂uε

∂t
, we have that for all 0 � t1 < t2,

∫ t2

t1

∫
Ω

∣∣∣∣∂ ũε

∂t

∣∣∣∣ � c

[∫ t2

t1

∫
Ω

ε

(
∂uε

∂t

)2] 1
2
[∫ t2

t1

∫
Ω

W (uε)

ε

] 1
2

� C |t2 − t1| 1
2 .

This ends the proof of Lemma 2.4. �

Next we prove that ũε approximates uε in L∞(0, +∞; L1(Ω)).

LEMMA 2.5 If we define
ω(ε) = sup

t�0
||ũε(t) − uε(t)||L1(Ω),

then lim
ε→0

ω(ε) = 0.
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Proof. Note that both uε and ũε are bounded so that, since H is continuous, there exists C > 0
such that for all δ > 0, we have

|uε − ũε | � Cχ{||uε |−1|�δ} + max
||t |−1|<δ

|t − H(t)| (2.11)

where χA is the characteristic function of the set A. Moreover, if m[A] denotes the Lebesgue
measure of the set A in R

N ,∫
Ω

W (uε) � min
||t |−1|�δ

W (t) m[||uε | − 1| � δ]

so that by Lemma 2.3

m[||uε | − 1| � δ] � C(δ)

∫
Ω

W (uε) � εC(δ)

and, since H(±1) = ±1,

max
||t |−1|<δ

|t − H(t)| = ω̄(δ) → 0 as δ → 0.

Thus the integration of (2.11) in Ω yields

||uε − ũε ||L1(Ω) � εC(δ) + Cω̄(δ).

Choosing δ > 0 small enough and then 0 < ε < ε(δ) small enough, we deduce that ||uε − ũε ||L1(Ω)

tends to 0 as ε tends to 0, uniformly with respect to t � 0. This completes the proof of Lemma 2.5.
�

We now derive uniform time estimates on vε .

LEMMA 2.6 For all µ > 0, there exists δ > 0 such that for |t2 − t1| < δ, we have

||vε(t2) − vε(t1)||Cα(Ω̄) < µ (2.12)

for all ε ∈ (0, 1].
This inequality will be deduced from the two following lemmata.

LEMMA 2.7 Let C > 0 and α ∈ (0, 1) be fixed. Then for all µ > 0, there exists τ > 0 such that if
v satisfies

−∆v = u −
∫
−u in Ω ,

∫
−v = 0

together with periodic boundary conditions and

||u||L∞(Ω) � C and ||u||L1(Ω) � τ,

then ||v||Cα(Ω̄) � µ.
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Proof. Assume by contradiction that the result does not hold. Then there exists µ > 0 and a
sequence {u j } j∈N such that

u j → 0 in L1(Ω) and ||u j ||L∞(Ω) � C (2.13)

and such that if v j is the solution of

−∆v j = u j −
∫
−u j in Ω ,

∫
−v j = 0, (2.14)

together with periodic boundary conditions, then ||v j ||Cα(Ω̄) � µ > 0. By standard elliptic
estimates and Sobolev imbeddings, it follows from (2.13) and (2.14) that (v j ) j∈N is bounded in
W 2,p(Ω) for all p > 1 so that along a subsequence

v j → v in Cα(Ω̄) and weakly in W 2,p(Ω).

Thus

−∆v j = u j −
∫
−u j → 0 = −∆v.

Therefore v = 0, which is a contradiction. This ends the proof of Lemma 2.7. �

We now establish time estimates for uε .

LEMMA 2.8 For all τ > 0, there exists δ > 0 such that for |t2 − t1| < δ, we have

||uε(t2) − uε(t1)||L1(Ω) < τ (2.15)

for all ε ∈ (0, 1].
It follows from Lemma 2.5 and Lemma 2.4 that for all 0 � t1 < t2, we have

||uε(t2) − uε(t1)||L1(Ω) � ||uε(t2) − ũε(t2)||L1(Ω) + ||ũε(t2) − ũε(t1)||L1(Ω)

+||ũε(t1) − uε(t1)||L1(Ω)

� 2ω(ε) +
∫ t2

t1

∫
Ω

|ũε
t | � 2ω(ε) + C

√
t2 − t1. (2.16)

Also it follows from Lemma 2.3 that

||uε(t2) − uε(t1)||L1(Ω) �
∫ t2

t1

∫
Ω

|uε
t | �

(∫ t2

t1

∫
Ω

(uε
t )

2
) 1

2 √
t2 − t1

√|Ω |

� C√
ε

√
t2 − t1. (2.17)

Next we choose ε0 > 0 such that ω(ε) < τ
4 for all 0 < ε < ε0. Then it follows from (2.16) that for

|t2 − t1| < δ,

||uε(t2) − uε(t1)||L1(Ω) � τ

2
+ C

√
δ < τ

if δ � ε0
τ 2

C2 .
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In the case that ε � ε0, it follows from (2.17) that for |t2 − t1| < δ,

||uε(t2) − uε(t1)||L1(Ω) � C

√
δ

ε0
< τ

if 0 < δ < c0ε0τ
2 is small enough. This completes the proof of Lemma 2.8.

PROOF OF LEMMA 2.6 The inequality (2.12) follows from combining the conclusions of
Lemma 2.7 and of Lemma 2.8. We are now in a position to establish the following convergence
result.

PROPOSITION 2.9 There exist two functions (u, v) and a sequence ε j → 0 such that

lim
j→+∞ uε j = u in L1(QT ), lim

j→+∞ vε j = v in C0(Q̄T ).

Moreover,

u = ±1 a.e. in QT and − ∆v = u −
∫
−u a.e. in QT ,

∫
−v = 0 on [0, T ]

and v satisfies periodic boundary conditions.

Proof. It follows from the estimates in Lemma 2.2 and Lemma 2.6 that the family (vε)ε>0 is equi-
continuous in C0(Q̄T ) so that there exists a sequence ε j → 0 and a function v ∈ C0(Q̄T ) such
that vε j → v uniformly on Q̄T . Moreover, it follows from Lemma 2.4 that (ũε)ε>0 is bounded in
BV (QT ) so that by Rellich Lemma, there exists a function u ∈ L1(QT ) such that ũε j → u strongly
in L1(QT ). Since by Lemma 2.5

lim
ε→0

sup
t�0

||uε(t) − ũε(t)||L1(Ω) = 0,

it follows that uε j → u strongly in L1(QT ). Note that using the upper bound on the Lyapunov
functional and Fatou’s lemma, we again

0 �
∫
Ω

W (u) � lim
j→+∞

∫
Ω

W (uε j ) = 0,

which implies that W (u) = 0. Thus u = ±1 a.e. Finally, passing to the limit in the equation for vε j

yields that

−∆v = u −
∫
−u a.e. in QT and

∫
−v = 0 on [0, T ]

together with periodic boundary conditions. This ends the proof of Proposition 2.9.

REMARK 2.10 If v0(x) is the function defined in (2.4), we have that v(x, 0) = v0(x) for all x ∈ Ω .
In fact, it follows from the definition of gε in (2.5) that

lim
ε→0

gε(x) = u0(x) for all x ∈ Ω
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so that passing to the limit in

−∆vε j (x, 0) = gε j −
∫
−gε j and

∫
−vε j (x, 0) = 0

yields

−∆v(x, 0) = u0 −
∫
−u0 and

∫
−v(x, 0) = 0.

Thus v(x, 0) = v0(x).

3. Convergence

Let us consider the function v obtained in the previous section as the limit of vεn for some sequence
εn → 0. Since v is continuous on QT , it follows from the results in [6] that there exists a unique
continuous function ψ(x, t) defined on R

N × R+ which is the viscosity solution of

(P0)

{
∂ψ
∂t − |∇ψ |∇.

( ∇ψ
|∇ψ |

) + c0|∇ψ |v = 0 on R
N × R+

ψ(x, 0) = d0(x) for x ∈ R
N ,

where c0 > 0 is defined in (2.3).

3.1 Viscosity solutions

We now recall the definition of the viscosity solution of Problem (P0). Let us define for any
symmetric (n, n) matrix X ∈ Sn and for any vector p ∈ R

n \ {0}

K (p, X) = −T r(X) + (X p, p)

|p|2 (3.1)

and

F(x, t, p, X) = K (p, X) + c0|p|v(x, t) (3.2)

so that Problem (P0) can be rewritten as

(P0)

{
∂ψ
∂t + F(x, t, ∇ψ, D2ψ) = 0 on R

N × R+
ψ(x, 0) = d0(x) for x ∈ R

N .

We denote by K ∗ (K∗) the upper semi-continuous (lower semi-continuous) envelope of K . For
instance, we recall that

K ∗(p, X) = lim sup
ε→0

{K (q, Y ), |p − q| < ε, |X − Y | < ε}.

It can be shown [7] that

K∗(p, X) = −
n∑

i=2

λi (X) and K ∗(p, X) = −
n−1∑
i=1

λi (X),



GLOBAL EXISTENCE FOR A NON-LOCAL MEAN CURVATURE FLOW 279

where λ1(X) � λ2(X) � ... � λn(X) are the eigenvalues of X . We then define the upper semi-
continuous (lower semi-continuous) envelope of F by

F∗(x, t, p, X) = K ∗(p, X) + c0|p|v(x, t)

and
F∗(x, t, p, X) = K∗(p, X) + c0|p|v(x, t)

respectively.

DEFINITION 3.1 A function u : RN × (0, T ) → R is called a viscosity subsolution (respectively.
supersolution) of the equation

ut + F(x, t, u, ∇u, D2u) = 0, (x, t) ∈ RN × (0, T ) (3.3)

(which we formally write as

ut + F(x, t, u, ∇u, D2u) � 0, (x, t) ∈ RN × (0, T ) (� 0 for the supersolution))

if u is upper semi-continuous on RN × [0, T ] (lower semi-continuous on RN × [0, T ] for the
supersolution) and if

φt (x0, t0) + F∗(x0, t0, u(x0, t0), ∇φ(x0, t0), D2φ(x0, t0)) � 0
(φt (x0, t0) + F∗(x0, t0, u(x0, t0), ∇φ(x0, t0), D2φ(x0, t0)) � 0 for the supersolution)

for all φ in C2,1(RN × [0, T ]) and all local maxima (local minima) (x0, t0) of the function (u − φ).
The function u is a viscosity solution of (3.3) if it is both a sub- and a supersolution.

The last part of this paper is devoted to the proof of the following proposition

PROPOSITION 3.2 Let (u, v) be the limit of (uεn , vεn ) for some sequence εn → 0 given by
Proposition 2.9. Let ψ(x, t) be the unique viscosity solution of Problem (P0) associated to the
function v. Then,

2χψ>0 − 1 � u � 2χψ�0 − 1 on R
N × R+.

Equivalently, limn→+∞ uεn = ±1 a.e. with

lim
n→+∞ uεn (x, t) = +1 if ψ(x, t) > 0 and lim

n→+∞ uεn (x, t) = −1 if ψ(x, t) < 0.

Let ṽ ∈ C0(Q̄T ) be arbitrary and consider the unique viscosity solution ψ̃ of Problem (P0
ṽ
),

(P0
ṽ )

{
∂ψ̃
∂t − |∇ψ̃ |∇.

( ∇ψ̃

|∇ψ̃ |
) + c0|∇ψ̃ |ṽ = 0 on R

N × R+
ψ̃(x, 0) = d0(x) for x ∈ R

N .

We now establish two propositions about solutions of Problem (P0
ṽ
) which rely on properties

established by [6].

PROPOSITION 3.3 Let ṽ1 � ṽ2 and let ψ̃1 and ψ̃2 be the solutions of Problems (P0
ṽ1

) and (P0
ṽ2

),

respectively. Then ψ̃1 � ψ̃2 on R
N × R+.
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Proof. Let ψ̃1 (ψ̃2) be the viscosity solution of Problem (P0
ṽ1

) ((P0
ṽ2

)). We show that ψ̃1 is a

viscosity supersolution of Problem (P0
ṽ2

), which implies the above result by the standard comparison

principle for viscosity solutions [6]. Next we write that ψ̃1 is a viscosity supersolution of Problem
(P0

ṽ1
). For any test function φ such that (ψ̃1 − φ) has a local minimum at (x0, t0), we have that

φt (x0, t0) + K ∗(∇φ(x0, t0), D2φ(x0, t0)) + c0|∇φ(x0, t0)|ṽ1(x0, t0) � 0,

which implies that

φt (x0, t0) + K ∗(∇φ(x0, t0), D2φ(x0, t0)) + c0|∇φ(x0, t0)|ṽ2(x0, t0) � 0,

which yields the result. �
PROPOSITION 3.4 We define ṽα = ṽ + α for α ∈ R. Let ψ̃α (ψ̃) be the solution of Problem (P0

ṽα
)

((P0
ṽ
)). Then limα→0 ψ̃α = ψ̃ and the convergence is uniform on compact sets of R

N × R+.

Proof. We define

ψ+(x, t) = lim
ν→0

sup{ψ̃α(z, θ), for all 0 � α � ν and for all

(z, θ) ∈ R
N × (0, T ) such that |x − z| � ν and |t − θ | � ν}

and

ψ−(x, t) = lim
ν→0

inf{ψ̃α(z, θ), for all 0 � α � ν and for all

(z, θ) ∈ R
N × (0, T ) such that |x − z| � ν and |t − θ | � ν}.

One can show [7] that
ψ+(x, 0) = ψ−(x, 0) = d0(x) on R

N .

Note that ψ− � ψ+. The reverse inequality is a consequence of the comparison principle and of
the following lemma, which one can prove as in [7]. �
LEMMA 3.5 ψ+ (ψ−) is a subsolution (supersolution) to Problem (P0

ṽ
).

Finally let us recall a result by Barles et al. [3] about the perturbed Allen–Cahn equation
corresponding to ṽ,

ut = ∆u + 1

ε2
( f (u) − εṽ),

where ṽ = ṽ(x, t) is a smooth function. The result in [3] then reads as follows.

PROPOSITION 3.6 Let Γ 0 ⊂ R
N be a closed set and let d(x,Γ 0) be the signed distance function

to Γ 0. We define

g̃ε(x) = q

(
d(x,Γ 0)

ε
, εṽ(x, 0)

)
,

where q(., a) is defined in (2.1). Let ṽ ∈ C2,1(RN × R+) be fixed. Let (Pε
ṽ
) denote the Allen–Cahn

equation with right-hand-side ṽ,

(Pε
ṽ
)


ut = ∆u + 1

ε2
( f (u) − εṽ) in R

N × R+
u(x, 0) = g̃ε(x) x ∈ R

N
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and let ũε be the unique solution of this problem. Let ψ̃(x, t) be the solution of Problem (P0
ṽ
) with

ψ̃(x, 0) = d(x,Γ 0). Then, for all (x, t) ∈ R
N × R+,

lim
ε→0

ũε(x, t) = +1 if ψ̃(x, t) > 0 and lim
ε→0

ũε(x, t) = −1 if ψ̃(x, t) < 0.

We now come to the proof of the convergence result.

PROOF OF PROPOSITION 3.2 Let (x0, t0) ∈ R
N × R+ be fixed and assume that ψ(x0, t0) > 0.

For any α > 0, since v is continuous on Q̄T , there exists a smooth function ṽ which depends on α

such that
v + 2α � ṽ � v + α on Q̄T .

Using Proposition 3.4, we can choose α > 0 small enough so that ψ̃(x0, t0) > 0, where ψ̃ is
the solution of Problem (Pṽ). We will compare the function uε associated to Problem (Pε) to the
solution of Problem (Pε

ṽ
). First note that since qa � 0, we have that, since v(x, 0) = v0(x) �

ṽ(x, 0),

gε(x, 0) = q

(
d(x,Γ 0)

ε
, εv0(x)

)
� g̃ε(x). (3.4)

Moreover, for n ∈ N large enough, we have that vεn � v + α � ṽ on Q̄T so that in view of
Lemma 2.2, of inequality (3.4), and of the standard comparison principle, we have that

ũεn � uεn � 1 + Cεn on Q̄T , (3.5)

where ũεn is the solution of Problem (Pεn
ṽ

) defined above. Using Proposition 3.6, we deduce that

lim
n→+∞ ũεn (x0, t0) = 1

which implies by (3.5) that
u(x0, t0) = lim

n→+∞ uεn (x0, t0) = 1.

Similar arguments show that if ψ(x0, t0) < 0, then u(x0, t0) = −1.
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