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On Maxwellian equilibria of insulated semiconductors
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A semi-linear elliptic integro-differential equation subject to homogeneous Neumann boundary
conditions for the equilibrium potential in an insulated semiconductor device is considered. A
variational formulation gives existence and uniqueness. The limit as the scaled Debye length tends to
zero is analysed. Two different cases occur. If the number of free electrons and holes is sufficiently
high, local charge neutrality prevails throughout the device. Otherwise, depletion regions occur, and
the limiting potential is the solution of a free boundary problem.
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1. Introduction

We consider a bounded domain Ω ⊂ R
d representing a piece of semiconductor. Built into the

semiconductor crystal are impurities creating a fixed distribution of background charges C(x), x ∈
Ω , called the doping profile. In addition, the crystal contains N (negatively charged) free electrons
and P (positively charged) holes both of which can move freely within Ω . We assume global charge
neutrality:

N − P −
∫
Ω

C dx = 0. (1.1)

We consider equilibrium states where the local distributions of electrons n(x) and holes p(x)

are, according to the Boltzmann–Maxwell statistics,

n(x) = N exp(qϕ(x)/(kT ))∫
Ω exp(qϕ/(kT )) dx

, p(x) = P exp(−qϕ(x)/(kT ))∫
Ω exp(−qϕ/(kT )) dx

x ∈ Ω .

Here ϕ denotes the electrostatic potential, and the parameters q, k, T are, respectively, the
elementary charge, the Boltzmann constant, and the temperature of the crystal lattice. This form
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of the distributions can be derived from the equilibrium condition for different transport models
such as the drift–diffusion model (see, e.g. [10]), the Vlasov equation [4, 5], or the Vlasov–Poisson–
Boltzmann equation [3]. In the context of semiconductors, mostly the case of devices with contacts,
resulting in the absence of the integral terms in the formulas for the densities, has been previously
considered.

The electrostatic potential is determined from the Poisson equation

ε∆ϕ = q(n − p − C), in Ω , (1.2)

where ε denotes the permittivity of the semiconductor. As a model for an insulated device we
consider homogeneous Neumann boundary condidtions:

∂ϕ

∂ν
= 0, on ∂Ω . (1.3)

Note that the global neutrality assumption (1.1) is necessary for the solvability of the Neumann
problem (1.2), (1.3).

For a non-dimensionalization the reference length L (say, the diameter of Ω ) and the reference
particle density C̃ (a typical value of the doping profile) are chosen. Then the potential is scaled
by the thermal voltage kT/q and the electron and hole numbers N and P by L3C̃ . We obtain the
dimensionless equations

λ2∆ϕ = n − p − C, with (1.4)

n = N exp(ϕ)∫
Ω exp(ϕ) dx

, p = P exp(−ϕ)∫
Ω exp(−ϕ) dx

, (1.5)

where the dimensionless parameter

λ = 1

L

√
εkT

q2C̃

can be interpreted as the scaled Debye length. For notational simplicity, dimensionless quantities
are denoted by the same symbols as their dimensional counterparts. The dimensionless versions of
the global neutrality assumption and of the boundary conditions keep their forms (1.1) and (1.3),
respectively.

Unique solvability of the problem (1.3)–(1.5) for the potential (up to an additive constant)
has been proven in [19] (for a class of equilibrium distributions including the Boltzmann–
Maxwell statistics). Similar results can be found in [18], where mixed Dirichlet–Neumann boundary
conditions are considered, and in [4] and [5] , where instead of a bounded domain a confining
potential is used. For the sake of completeness the proof is outlined and the result is formulated in
Section 2. The basic idea is to rewrite the problem in variational form.

Our main interest is the limit λ → 0. The formal limit of the Poisson equation (1.4) is the local
neutrality equation

0 = n − p − C, (1.6)

implying n � C+, p � C− (where C± denote the absolute values of the positive and negative parts,
i.e., C = C+ − C−). Integration shows that this is only possible for

N �
∫
Ω

C+ dx, P �
∫
Ω

C− dx . (1.7)
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These two conditions are equivalent under the global neutrality assumption (1.1). In [19], the
limit (1.6) has been justified under the assumption (1.7). A simplified proof for Boltzmann–
Maxwell statistics is given in Section 2. This can be seen as an extension of earlier results for
devices with contacts [9, 10].

If (1.7) is violated, local neutrality cannot hold throughout Ω . This case is analysed in Section 3.
The rescaled potential Φ = λ2ϕ is introduced, and it is shown that its limit satisfies a free
boundary problem. The free boundaries separate depletion regions (where n = p = 0 holds)
from charge neutral regions (where (1.6) holds). The limiting potential solves a double obstacle
problem where the difference between the obstacles is determined by a side condition. As in the full
problem, the limiting problem possesses a variational formulation. Depletion regions have already
been part of the pioneering theoretical investigations of semiconductor devices by Shockley [17].
Mathematically, free boundary problems have been derived as singular limits of the classical
drift–diffusion model [1, 2, 6, 14–16] and they occur in the solution of drift–diffusion models with
nonlinear diffusion [7, 11]. Also, we refer to [12] and [13], where the theory of viscosity solutions
is used to pass to the limit λ → 0.

2. Existence, uniqueness, and the charge neutral limit

For functions ψ ∈ H = {ψ ∈ H1(Ω) : ∫
Ω ψ dx = 0} we introduce the functional

J (ψ) =
∫
Ω

(
λ2

2
|∇ψ |2 − Cψ

)
dx + N ln

(∫
Ω

eψ dx

)
+ P ln

(∫
Ω

e−ψ dx

)
.

In the following it will be shown that J is coercive, bounded from below, and strictly convex. Since
ez and e−z are convex functions, Jensen’s inequaltity gives

exp

(
± 1

|Ω |
∫
Ω

ψ dx

)
� 1

|Ω |
∫
Ω

e±ψ dx,

implying

J (ψ) � λ2

2

∫
Ω

|∇ψ |2 dx +
∫
Ω

N − P − |Ω |C
|Ω | ψ dx + (N + P) ln |Ω |

� λ2

2
‖∇ψ‖2

L2(Ω)
− c2‖ψ‖L2(Ω) − c3

� λ2

2
‖∇ψ‖2

L2(Ω)
− c4‖∇ψ‖L2(Ω) − c3 (2.1)

where the constants c j may depend on λ2, N , P , |Ω |, and ‖C‖L2(Ω). The last inequality is a
consequence of the Poincaré inequality ‖ψ‖L2(Ω) � c5‖∇ψ‖L2(Ω), holding for every ψ ∈ H.
By (2.1), J is coercive and bounded from below.

Since the first term in J is strictly convex on H, it suffices to prove convexity of the second and
third terms. For 0 < t < 1, the Hölder inequality gives

∫
Ω

e±tψ1±(1−t)ψ2 dx �
(∫

Ω
e±ψ1 dx

)t (∫
Ω

e±ψ2 dx

)1−t

.
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Taking the logarithm proves convexity of the second and third terms in J . Weak lower
semicontinuity of J is immediate.

A consequence of our results is the existence of a unique minimizer ϕ ∈ H of the functional
J . The variation of J is easily computed. Using the global neutrality assumption (1.1), it is
straightforward to show that a criterion for the minimization is the weak formulation of the
problem (1.3)–(1.5) together with the condition

∫
Ω ϕ dx = 0. When removing this last condition,

the solution can obviously be shifted by an arbitrary additive constant. Regularity of the solution is
the consequence of elliptic regularity results. Consequently, we obtain Theorem 2.1

THEOREM 2.1 Let the domain Ω ⊂ R
d , 1 � d � 3, have a smooth boundary and let it satisfy

0 < |Ω | < ∞. Let C ∈ L∞(Ω) and (1.1) hold. Then, problem (1.3)–(1.5) has a solution in W 2,p(Ω)

for every p < ∞, which is unique up to an additive constant.

We are going to carry out the limit λ → 0. We proceed in several steps. First, we use the freedom
of choosing an arbitrary additive constant in the potential. From now on the potential is chosen such
that

N∫
Ω exp(ϕ) dx

= P∫
Ω exp(−ϕ) dx

=: ni ,

and, thus, n = ni eϕ , p = ni e−ϕ . The parameter ni (in the equilibrium condition np = n2
i ) is called

the intrinsic density in the semiconductor literature. The uniform boundedness of the densities will
now be shown.

LEMMA 2.2 Let the assumptions of theorem 2.1 hold. Then, the densities n and p are bounded in
L∞(Ω), uniformly as λ → 0.

Proof. Consider

C = ess supΩC , C = ess infΩC.

Then the maximum principle implies the estimates

ln


C +

√
C2 + 4n2

i

2ni


 � ϕ � ln


C +

√
C

2 + 4n2
i

2ni


 , (2.2)

and, consequently,

n �
C +

√
C

2 + 4n2
i

2
, p �

−C +
√

C2 + 4n2
i

2
.

The uniform boundedness of ni remains to be proven. Setting

Ω1 = {x ∈ Ω : ϕ(x) � 0}, Ω2 = {x ∈ Ω : ϕ(x) � 0},
we have |Ω1| + |Ω2| � |Ω |, and

max

{∫
Ω

eϕ dx,

∫
Ω

e−ϕ dx

}
� max{|Ω1|, |Ω2|} � |Ω |

2
,
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with the consequence

ni � 2

|Ω | max{N , P}. � (2.3)

Note that the assumption (1.7) has not been used yet and that no uniform bound for the potential
has been established so far. For this, we use a slightly strengthened version of condition (1.7):

N >

∫
Ω

C+ dx, P >

∫
Ω

C− dx . (2.4)

We recall that the two inequalities are equivalent under assumption (1.1).

LEMMA 2.3 Let the assumptions of Theorem 2.1 and (2.4) hold. Then the potential ϕ is bounded
in L∞(Ω), uniformly as λ → 0.

Proof. Considering (2.2) and (2.3), it is sufficient to prove that ni is uniformly bounded away from
zero. We shall use

N =
∫

ϕ�0
n dx +

∫
ϕ>0

n dx � ni |Ω2| +
∫

ϕ>0
n dx � ni |Ω | +

∫
ϕ>0

n dx,∫
ϕ>0

p dx � ni |Ω1| � ni |Ω |,∫
ϕ>0

C dx �
∫

ϕ>0
C+ dx �

∫
Ω

C+ dx, and∫
ϕ>0

∆ϕ dx � 0.

Integration of the Poisson equation over {ϕ > 0} leads to the inequality

0 �
∫

ϕ>0
(n − p − C) dx � N −

∫
Ω

C+ dx − 2|Ω |ni ,

implying

ni �
N − ∫

Ω C+ dx

2|Ω | . �

The Poisson equation (1.4) is singularly perturbed. So it is not a surprise that, for passing to the
limit, we need a smoothness assumption on the data, i.e., the doping profile, as follows.

THEOREM 2.4 Let the assumptions of Theorem 2.1, (2.4), and C ∈ H1(Ω) hold. Then, as λ → 0
the solution ϕ of (1.3)–(1.5) converges strongly in L p(Ω) for every p < ∞ to the unique solution
of the formal limiting problem.

Proof. Multiplication of the Poisson equation (1.4) by n − p − C , integration by parts, and using
∇n = n∇ϕ, ∇ p = −p∇ϕ gives

λ2
∫
Ω

(n + p)|∇ϕ|2 dx +
∫
Ω

(n − p − C)2 dx = λ2
∫
Ω

∇ϕ · ∇C dx .
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Note that, by Lemma 2.3, the densities are uniformly bounded away from zero: n + p � c > 0.
This implies uniform boundedness of ϕ in H1(Ω) and the strong convergence of n − p − C to zero
in L2(Ω). By the H1(Ω)-bound, we have strong convergence (of a subsequence) of ϕ to ϕ0, and
we can pass to the limit in the nonlinear terms, since ϕ is also uniformly in L∞(Ω) as λ → 0. It
remains to prove uniqueness for the limiting problem

0 = ni0eϕ0 − ni0e−ϕ0 − C, ni0 = N∫
Ω exp(ϕ0) dx

.

Substitution of the solution ϕ0 of the first equation into the second gives an equation for ni0:∫
Ω

(
C +

√
C2 + 4n2

i0

)
dx = 2N ,

having a unique solution, if (2.4) is satisfied. �

3. A limiting free boundary problem

If the assumption (2.4) is violated, the potential is expected to take O(λ−2)-values. Therefore we
consider in this section the problem for the rescaled potential Φ = λ2ϕ:

∆Φ = n − p − C,
∂Φ
∂ν

= 0, on ∂Ω , (3.1)

n = N exp(Φ/λ2)∫
Ω exp(Φ/λ2) dx

, p = P exp(−Φ/λ2)∫
Ω exp(−Φ/λ2) dx

. (3.2)

From the previous section we know that a solution exists, which is unique up to a shift in the
potential Φ, and that the densities n and p are bounded uniformly as λ → 0. With the normalization
minΩ Φ = 0 of the potential, the Poisson equation (3.1) implies uniform boundedness of Φ in
W 2,p(Ω) for every p < ∞ and, as a consequence, convergence (subsequencewise) of Φ to Φ0
in C1(Ω). The densities n and p converge (after extracting a further subsequence) to n0 and,
respectively, p0 in L∞(Ω) weak*. By the above, Φ is uniformly Lipschitz continuous. Introducing
Φ := maxΩ Φ = Φ(x0), we therefore have Φ − Φ(x) � L|x − x0| and, thus,

∫
Ω

exp

(
Φ − Φ

λ2

)
dx �

∫
Ω

exp

(
− L|x − x0|

λ2

)
dx � cλ2d ,

with a positive, λ-independent constant c. For the electron density, this implies

n =
N exp

(
Φ−Φ

λ2

)
∫
Ω exp

(
Φ−Φ

λ2

)
dx

� N

cλ2d
exp

(
Φ − Φ

λ2

)
.

Assume Φ0 = maxΩ Φ0 > 0. Then the above estimate implies n0 = 0 wherever Φ0 < Φ0 with
uniform convergence of the electron density in compact subsets of {Φ0 < Φ0}. Analogously it is
shown that p converges to zero uniformly in compact subsets of {Φ0 > 0}. At this point it is clear
from the theory of variational inequalities [8] that Φ0 solves a classical double obstacle problem
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with the obstacles Φ0 = 0 and Φ0 = Φ0, which can be written as the variational inequality that we
find Φ0 ∈ IK = {Ψ ∈ H1(Ω) : 0 � Ψ � Φ0} such that∫

Ω
(∇Φ0 · ∇(Ψ − Φ0) − C(Ψ − Φ0)) dx � 0, ∀Ψ ∈ IK. (3.3)

The domain Ω can be split in the form Ω = Ω+ ∪ Ω− ∪ N , with the coincidence sets Ω+ = {x ∈
Ω : Φ0(x) = Φ0}, Ω− = {x ∈ Ω : Φ0(x) = 0}, and the non-coincidence set N = {x ∈ Ω : 0 <

Φ0(x) < Φ0}. From our previous results and from the limit of the Poisson equation (3.1) we have

n0 = C, p0 = 0, in Ω+,

p0 = −C, n0 = 0, in Ω−,

n0 = p0 = 0, ∆Φ0 + C = 0, in N .

Fixing the value of Φ0 would make the solution of the obstacle problem unique. By passing to the
limit in the equation

∫
Ω n dx = N , we obtain∫

Ω+
C dx = N . (3.4)

It is clear from the above that in the coincidence set Ω+ the doping profile takes non-negative values.
The above equation, thus, implies

N �
∫
Ω

C+ dx, (3.5)

the complementary condition to (2.4). We recall that we assumed Φ0 > 0, to arrive at (3.5).
Therefore (2.4) implies Φ0 = 0 and, consequently, Φ0 ≡ 0 in Ω , which is also a consequence
of the analysis of the preceding section and of the rescaling Φ = λ2ϕ.

Note that (3.4) is equivalent to
∫
Ω− C dx = −P . This follows from the global neutrality

condition and from the fact that Φ0 solves a Neumann problem in N implying
∫
N C dx = 0.

It remains to show that Φ0 is uniquely determined by the side condition (3.4). We first show
that the dependence of the coincidence sets on Φ0 is monotone. Let α, β with 0 < α < β be two
different values for Φ0 and denote by Φα , Φβ the corresponding solutions of (3.3). We shall also
need the corresponding coincidence and non-coincidence sets Ωα−, Ωα+, N α , Ωβ

−, Ωβ
+, N β . Then Φα

is the solution of a single obstacle problem (Φα � 0), when C is replaced by

f =
{

C in Ωα− ∩ N α,

0 in Ωα+.

Now we define Ω̃ = {x ∈ Ω : Φβ(x) < α}. Then, in Ω̃ , Φβ � 0 is a supersolution of ∆Φ + f = 0.
Also, ∂Φβ

∂ν
= 0 or Φβ = α � Φα on ∂Ω̃ . By a slight generalization of Theorem II.6.4 in [8] (to

mixed boundary conditions), Φα � Φβ holds and, thus, Ωβ
− ⊂ Ωα−. Similarly, Ωβ

+ ⊂ Ωα+ is shown.
Assume that ∫

Ωα+
C dx =

∫
Ωβ

+
C dx

(
⇐⇒

∫
Ωα−

C dx =
∫
Ωβ

−
C dx

)
.
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By C � 0 in Ωα+ (C � 0 in Ωα−), this implies

C = 0 a.e. in (Ωα+ \ Ωβ
+) ∪ (Ωα− \ Ωβ

−).

From the consequence ∆(Φα − Φβ) = 0 in Ω and from Φα = Φβ = 0 in Ωβ
− we deduce the

contradiction Φα = Φβ in Ω to Φα = α < β = Φβ in Ωβ
+. Therefore∫

Ωα+
C dx >

∫
Ωβ

+
C dx,

and the map Φ0 �→ ∫
Ω+ C dx is strictly monotone.

THEOREM 3.1 Let the assumptions of Theorem 2.1 and (3.5) hold. Then, as λ → 0 the solution Φ
of (3.1), (3.2) converges in C1(Ω) to the unique solution of the variational inequality (3.3) where
the upper obstacle Φ0 is uniquely determined by (3.4).

Finally, a variational formulation of the limiting problem will be given. We start with a rescaled
version of the energy functional introduced at the beginning of the preceding section:

Jλ(Ψ) = λ2 J

(
Ψ
λ2

)
=

∫
Ω

(
1

2
|∇Ψ |2 − CΨ

)
dx

+λ2 N ln

(∫
Ω

eΨ/λ2
dx

)
+ λ2 P ln

(∫
Ω

e−Ψ/λ2
dx

)
.

The second term on the right-hand side can be rewritten in the form

N sup
Ω

Ψ + λ2 N ln

(∫
Ω

exp

(
Ψ − supΩ Ψ

λ2

)
dx

)
.

Formally passing to the limit in Jλ for Ψ ∈ IK0 = {Ψ ∈ H1(Ω) : Ψ � 0} gives

J0(Ψ) =
∫
Ω

(
1

2
|∇Ψ |2 − CΨ

)
dx + N sup

Ω
Ψ .

It is easily shown that J0 is bounded from below, weakly lower semi-continuous, and strictly convex
on IK0. We shall show that the unique minimizer Ψ0 ∈ IK0 of J0 is equal to Φ0. First, by fixing
supΩ Ψ0, it is clear that Ψ0 solves a double obstacle problem. Second, we compute

0 = d

dµ
J0(µΨ0)

∣∣
µ=1 =

∫
Ω

(
|∇Ψ0|2 − CΨ0

)
dx + N sup

Ω
Ψ0. (3.6)

Only the coincidence set where Ψ0 = supΩ Ψ0 contributes to the integral, showing that (3.6) is
equivalent to (3.4).
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