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The efficient numerical simulation of the curvature-driven motion of interfaces is an important tool
in several free- boundary problems. We treat the case of an interface which is given as a graph. The
highly non-linear problem is discretized in space by piecewise linear finite elements. Although the
problem is not in divergence form it can be written in a variational form which allows the use of
the modern adaptive techniques of finite elements. The time discretization is carried out in a semi-
implicit way such that in every time step a linear system with symmetric positive matrix has to be
solved. Optimal error estimates are proved for the fully discrete problem under the assumption that
the time-step size is bounded by the spatial grid size.

1. Introduction

The aim of this paper is to analyse a fully discrete finite element algorithm that approximates the
mean curvature flow of graphs. A family (I});¢[0,7] of n-dimensional surfaces in R"*! is said to
flow by mean curvature if the normal velocity V of I'; equals its mean curvature. We shall restrict our
attention to two-dimensional surfaces which can be written as graphs over some bounded, smooth
domain 2 C R?,ie. I} = {(x, u(x, 1)) | x € 2}. Abbreviating by defining

Q) =+/1+ |Vul?, (1.1)

the downward pointing normal v(u) to I} is given by

u(u)—(w —L> (1.2)
S \ow)’ Q) )

while normal velocity and mean curvature with respect to v(u) are calculated according to

Uy Vu

V=-—m—o, H=-V- . (1.3)
Q(u) O (u)
Thus, the relation V = H translates into the quasi-linear partial differential equation
\Y
U — OV - —— =0 in 02x(0,T) (1.4)
Ou)
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to which we add the following boundary and initial conditions:

u(-, 1) = ug f)n 02 x (0, T) (15)
u(-,0) = up in {2
Here, ug: 2 — Risa given smooth function.

If the mean curvature of 92 is non-positive with respect to the exterior normal it was shown
in [11] and [9] that (1.4), (1.5) has a global smooth solution. In general, however, smooth solutions
exist only locally in time and the gradient can blow up at the boundary; cf. [13]. Results for
Neumann-type boundary conditions can be found in [1, 2, 9].

The differential equation (1.4) is not in divergence form and so we could expect that a numerical
method like the finite element method, which is based on a variational formulation, might not be
applicable here. But it is easy to see that the energy equality

2
] i/ -0 16
/QQ(M)+dt | ow (1.6)

holds for time-independent boundary values and this will lead us to a variational form of our
problem. It will be possible to discretize the equation in space with piecewise linear finite elements
and this means that the resulting scheme will be open to the use of modern adaptive methods. An
error estimate for a semi-discrete scheme of this form has been proved in [8] for the isotropic and
in [7] for the anisotropic mean curvature flow of graphs.

In this work we will derive a fully discrete scheme for (1.4) in which the discretization is
such that it linearizes the problem by a semi-implicit choice of the time discretization. Under the
assumption that

T < 8oh,

where 7 is the time-step size and / is the grid size in space, we will prove optimal asymptotic error
estimates of the form
sup lu™ —up'll g1y < c(r +h).

o<m<M
Here we used the common shorthand v (x) = v(x,mt). The main idea for the proof will be
a form of the energy identity (1.6) together with a superconvergence result for a non-linear Ritz
Projection, which we call the minimal surface projection. An important fact will be the adequate
use of geometric quantities. We complete the paper with some numerical tests which confirm the
results of the error estimates precisely.

There are of course other approaches to studying motion by mean curvature which avoid
the restriction that I has to be a graph. Let us briefly review some of the corresponding work,
concentrating on fully discrete algorithms and their numerical analysis.

Numerical schemes for the level set approach were introduced by Osher & Sethian [14], while
Walkington [15] proposes a finite element algorithm and studies its stability. Crandall & Lions [4]
introduced a monotone, convergent finite difference scheme which uses a regularization of the level
set equation. An error estimate for this scheme is proved in [5].

A further possibility of approximating mean curvature motion is via the Allen—-Cahn equation, a
singularly perturbed parabolic equation. Convergence results for fully discrete algorithms are proved
in [3] and [12].
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2. Discretization in space and time

In order to derive our numerical algorithm we first rewrite (1.4) in the variational form

U Vu -V 1
RS SN HI(2)., o0<t<T 2.1
/QQ(u)+ ) v € Ho (1) ' @

together with (1.5). The fact, that (1.4) is not in divergence form is reflected in (2.1) by the
appearance of a denominator in the first integral which complicates the analysis.

Next, let us consider a family 7, of triangulations of (2 (allowing the boundary elements to have a
curved face) with maximum mesh size i := maxgc7; diam(S) for which we assume the following
regularity condition: there exists a constant ¥ > 0 (which is independent of /) such that each S € 7,
is contained in a ball of radius x ~' and contains a ball of radius «4. The discrete space is chosen
to be

X, :={vp € CO(2) | vy is a linear polynomial on each S € 7}
where the isoparametric modification is used in curved elements; see [16]. We also set Xpo =

XpN Hé ({2). Furthermore, we denote by 7 > O the time step and let M = T'/z.
Recalling (2.1), it is natural to introduce the following scheme.

ALGORITHM 1 For u) = iy, find ul! € Xy, 0 <m < M — 1such that u}" ™ — Iug € Xpo
and
um—H um " Vum+1 .V "
/ ( mh)‘p +/ - PR 0 forall g € Xno. (2.2)
O uy) o  Oy)

Here, I, is the usual Lagrange interpolation operator and o denotes the minimal surface projection
of up which will be defined below. The above scheme is semi-implicit and requires the solution of
a linear equation in each time step. Furthermore, the following stability estimate holds.

PROPOSITION 1 The solution u}', 0 < m < M of (2.2) satisfies for every m € {1, ..., M}

er Vil Q(u,,>+Z/ Q" — O ,,)>2Q( 5
up

lm 1
/ W™y — v POt + /Q ol = fn oud) (2.3)

k+1 k
k (uy, up)/t . . .
where V| = ————————— is the discrete normal velocity.

O (uy)
Proof. See [8], Theorem 2. O

Note that the above stability estimate is true without any restriction on the time step 7. The
purpose of the present work is to analyse the convergence of the scheme (2.2). To formulate our
result we define u” := u(-, t,,,), t,, = mt, 0 < m < M. Then we have the following.
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THEOREM 1 Let u be a smooth solution of (1.4), (1.5) and uj’ the solution of (2.2). Then there
exists 8o > 0 such that

sup [lu” —upl|| < e(z + h*|logh|?)

o<m<M
sup IV —up)|| < c(r +h)
o<m<M
provided T < 8oh. Here, || - || denotes the L2(2)—norm.

The precise regularity assumptions on u appear in Proposition 3 below. Although we formulated
our error bounds in terms of the usual L?-norms, we shall see that it is much more appropriate to
work with the geometric quantities v(z) and Q(u). This is not entirely surprising as we deal with
a geometric problem but it is interesting to see how the use of these quantities can simplify the
analysis or even make it possible. Thus, rather than trying to estimate ||V (u™ —u}")|| we shall focus
on the quantity

B i [ ) = v Poas). 4)
Here, i} denotes the minimal surface projection of ™ to be defined below. The main part of the
proof of Theorem 1 then consists in deriving the estimate
E™ < c(z? + h*|logh|Y), 0<m< M.

Note that there is superconvergence in 4 (as we obtain h* logh |4 rather than hz) and this effect will
be crucial for our argument.

3. Error estimates

Let us start with some useful relations involving the geometric quantities Q and v, which will be
used frequently throughout the paper.

PROPOSITION 2 Let u and v be in H*(£2). Then we have a.e. in £2:

Q) — Q)| < Q) Q(W)|v(u) — v(v)] (3.1)
V@ =0l < (1+50p Vo) Q@) (w) = v, (3.2)
Vv B (Q) — Qw)? [V —w)?
0G0 -Vw—u)=0w) — Q) + 20() + 200 3.3)
IV —v)]* = (Q) — Q)* + [v() — v(v)[*Qu) Q(v). (34)
Proof. The first relation follows from the fact that _—, _—1 are the last components of
Q) Q(v)

v(u), v(v) respectively. The second inequality is a consequence of

Vv — Vi = Q(u)( v o Vu >+ Q(u)(; - )VU
B o) Q) ow) QW)

Finally, (3.3) and (3.4) follow from elementary calculations. (Il
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Before we start with the proof of Theorem 1 we introduce an important tool for the analysis. For
a given function v € H 2(2) N H*°(£2) we define the minimal surface projection v, € X, by the
relations Iv — 0;, € X0 and

VvV Vi, -V
v V&h = Vh _ L for all ¢ € Xpo.
2 QW o Q)

Existence and uniqueness of 0y, together with an error analysis, were established in [10]. For
functions which also depend on time the following bounds are available.

PROPOSITION 3 Letu € L®((0, T); H*(2))NL%((0, T); H>(2)) withu, € L®((0, T); H*(2))
NL2((0, T); H*(2)), Vu; € L2 x (0,T)), uyy € L®((0, T); L*(£2)) N L2((0, T); H'(2)).
Then the error between u and iy, can be estimated as follows:

sup llu — iyl +h sup IV (u — ap)l| < ch?, (3.5)
0,T) 0,7
sup llu — inllpoocy + 1 SHP ||V(u — i)l Loy < ch?|loghl, (3.6)
0,7)
sup llu; — din¢|| < ch*|loghl?, (3.7)
0,7)
sup ||V (u; — ding)|| < ch. (3.8)
0,7)

Proof. The proof is carried out in [6] for the case of zero boundary values of u, but it can be
extended to inhomogeneous boundary values in a straightforward way. As for (3.8) we note that

T
in [6] the weaker estimate / IV (u; — 12;,,,)||2 < ch? is proved which was a consequence of
0
(see [6], p. 202)

IV @ty = dan )IP < kI Ve = dn )| (IVig Dz + gl g2) + e 1 Vi |z el g

However, our assumption Vu,; € L*°(§2 x (0, T)) (which was not made in [6]) implies the stronger
bound (3.8). (I

We shall keep the above assumptions concerning the regularity of u throughout this work. Using
the minimal surface projection and evaluating (2.1) at t = ¢, we obtain

ur (-5 b)) @ Vi - Vo
o O®wm) o oy

=0 forall ¢, € Xpo

and therefore

/ @t ey / Vi Vo 1 / R'on / V@t =) Ven oo
o™ 0 0 v Jo 0 0

where

IR™|| < cT2, 0<m<M—1. (3.10)
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Let us decompose the error " = u™ — u}' in the following way:
= W" —ay)+ @y —up) =" +ej.

The difference between the continuous (3.9) and the discrete (2.2) equation evaluated at a discrete
test function then gives

1/<um+1—um uZ’H—u’,’l’) +/<Vﬁ§f“ wz’+1> .
z Jo\ 0w own )" Jo\oarm T owm ) T

_l/ ngoh +/< V(Am+1 Am) V(ﬂh
ot o Ow™) o ®y)

for all ¢ € Xj0. The weights 1/Q within the integrals will be important for our reasoning and so
we will use the following form of the above equation:

(em+1_em)(ph /(V'\erl Vu;ln+l)
— -V 3.11
/ own  Jo\owm " own) G-1D

(s - ot L[ K [ S ) S
r/n(” “Nown " own ) 7)o 0wt oy '

We choose

o = (em-‘rl ezn)/f — (em+1 _ em)/_[ _ (6m+1 _ em)/_c

as a test function and get

(et —em)? vaptt o vupt! mil  m
er “owhH % L(Q(ﬁ;,")_gw")v(e ~

zif (em+1_em)(€m+l_€m) l/ V(Am—H ﬁZ')V(em_H et;lz
72 O (uy TJo QO (i)

m+1 _ u™ m+1 _ e 1 _ 1 ) i/ Rm(em+l ezn)
/(“ e )<Q(MZ’) o) T2 0T 0wy

Before we start our estimates we prove a useful lemma.

(3.12)

LEMMA 1 Suppose that 1=2E™ < 2 for some y < 1. Then we have

sup Q(uj)) <c, (3.13)
0}

Vel (> < cE™, (3.14)
Vel L= < cy. (3.15)

Proof. We infer from (3.6) that |Vi}!| is bounded uniformly in 7 and /. Thus, an inverse estimate
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together with (3.2) implies

sup Q(up) < 1+ [IVup! e < e+ V@) — i) [l
Q
1

<c+ch71||V(u2"—uh)|| c+ch™ (/ v(uy) — vl Q(uh)>

<c+c [sup Quy)h™ LVEm < %supQ(u,’f‘)—i—c,
(0}

which implies (3.13). To see (3.14), note that by (3.2) and (3.13)
Vel | =f IV — i < c/ () — @ 1> Qu)?* < cE™.
9] i

Finally, (3.15) again follows from an inverse estimate. O

In what follows we shall assume that the condition
h2E™ < y? (3.16)

is satisfied so that the results of Lemma 1 are available. We will justify this assumption at the end
of our proof within an induction argument.

Let us now return to (3.12). The crucial term is the second one on the left-hand side which we
shall bound from below by a suitable (discrete) time derivative minus some error terms. Since the
corresponding calculations are quite technical we sketch the argument in the continuous case for the
convenience of the reader. For two functions v and w which are smooth enough one can show the
following inequality:

Vv Vw OWw)Qw)— 1+ Vv-Vw)
/ < ) (vr —wy) = /
2\ QW)  Q(w) dr 0(v)

n /Vv.<Vw_Vw+Vv_l+Vv~VwVv)
o \0 0w Q) 0W? Q)

/|v<v)—v<w>| o(w) - /Wv,nu(v)—v(wn 0w).

2 dr
This relation translates into the time-discrete setting as follows.

LEMMA 2 For sufficiently small y we have

VAm+1 \vi m+1
l / ( N Mh ) V(em+l ezl) 2 L(Em+l _ Em)

T Jo\o@h)  ow) 21
Ve =P a2
+4T/TAZ[)_C(E +E )—C‘L’

Proof. Let us denote the integral on the left-hand side by L. Clearly,

1 VAm-H VMZH—] ~m—+1 ~m m+1 m
L:;/ (Q(ﬁh — Q('ﬁ?)) (V@™ —uy) — V@, ™ —uy)).
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From (3.3) and the trivial identity

1+ Vu-Vo

1 _ 2 _ 1 _
200 = vl =1 =5 0w

we infer

tL = /Q(Am+1)—Q(AZ1)+Q(um“) oM

/(Q(”"+l >>2+(Q(um“> ouM)?
2Q<ﬁ;,"> 20(ul)
V@t — >|2 V@™ —um)?

f 2Q<ﬁ;7> 20y

(3.17)

A1 11 on
_/( 1 N 1 )Vum+l Vum+l+f vy ~Vuf+Vuf - vy
h

@ oWl
—/ D@yt — v ™o — L@ — v 1?0y
f Q@ — o@m)? N Q™) — 0@)?

o Q) O(up)

20(@) 20(up)
|V(Am+1 ﬁzn)|2 |V(um+1 uzn)|2 /
+ - + + [ s
fg 20y 20(uy) 0
where
L+ vaptt . var 1 var . v
_ Am+1 Ay 4 h _ ii h
= Q") — Q) 0@ o
_< 1 1 >Vﬁm+1 Vum+1_i_v,\erl VMZL +Vu2"“~vﬁ’;:
Q(ﬁ;") oum ) Tt oy Q@
Am+1y ~m Am—i—] m+1 1 1 )
=Q®; ™) —0@y) + A+ Va, ™ - Vuy )(Q(Amﬂ) oG
i s - ) - ST D ST )
lo@m oy oM

(3.18)
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Using again (3.17) this term can be rewritten as follows:

Am+1
7 = (1= 3t - v Hb o (1- S )

m . . oM
—(1 = 3™ —v@hH»H 0 +‘)( oG %))

A 1 1
(m+ —ap) - V(um+ —uj

Am41y ~m
+o@rh — 0@ — o
o . . o@yth
L@ty — v thP? Q(uh“)( 0w )

m - . o
et —v@h P ow “)( Q(ui’n))

@t = 0@y th — oy vyt —

- +1
) - V™ —ul)

349

Q(uy') Q)

Inserting the above expression into (3.18) we obtain

2L = f|v(”"+1 @YW /|v(ﬁz’)—v(u;,">|2Q<uz"

/ Q@ — oam)? / Q@™ — 0@uim)?
Q(ﬁ;?) ol
/ |V(Am+1 )|2 / |v(um+1 )|2
R owh
Am+1
/ |U(Am+l) 1)(Mm—i-l)l Q( m+1)<QQ(( )) _ l)

- m . Q)

+ [ ) v o “)(1—ﬁ>

_2/ (QaR™H = QN (™ = Q)
Qup)

_2/ V@t —am - vyttt —um
0 o(uy)
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/|v<”"+l — v HPowth /gw(ﬁz”)—v(uzwﬁg(uz")

/ Q@Y — 0@y — (0@ — QiM))? / V(e —em?

Ol 0@
Am—H ~myy2 1 _ 1 )

/(Q( — oG (Q(ﬁ? S

1 1
\v4 m+1 _ m 2( _ )
/' Wi =) gem ~ oar

Q(’\m-‘rl) )
Am+] m+1 m—+1 -1
/ w@p™h — v H1r o, )( oW

oy
Am m+1 m+1 h
/ @@ — vy ™HI* Q) )( —Q(u2’)>

/|v<”"“) vt Q(u’"“)—fglv(ﬁZ”)—V(uf)le(uZ’)

/ (2, — Qy™h) — Q) — Qw))? /'V(em+1 e
oGy o

m m m O (uj))
/ [v(ue), Ty v PO +1)( Q(ﬁg" )

f Q@™ — 0M)* — (@t — Q(ﬁZ’))z)(
o@yth
Am+1 m+1 m+1 -1
f|v( Yo )( o )

AMm m m Q(
/|v<u,,)—v(u RO +‘>( o $>>

1 1
ow)) Q(ﬁ',?))

where we used (3.4) in order to rewrite |V(uerl u;’])|2. Recalling the definition (2.4) of E™ we
finally arrive at

ool = g gy /((Q(””“) QW) — (0@ — 0w))’

O(uy)
|V(em+l m)|2 4
- + ) S, (3.19)
/ Cooayny ; l

where S, ..., S4 are the last four terms in the equation above. We are going to examine these
integrals separately. To begin, note that (3.1) and (3.13) imply

O(uy)) 1 . .

= =k = —— 0@ — Qi < Q@) — v(| < el(@y) — vl
O (uj, O (uj,
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so that
111 < / @y = v Py — v Q™. (3.20)
We define
= (Qyth — 0@yt — (@) — 0@y)).
The estimate (3.13) together with the boundedness of |V} | yields
0y < c+1gjl.

Using this in (3.20) we get for small enough § > 0

1511 < /|v<u"’+1 — @M Pl — @I+ gl

5/9 51(}; / G ™ = v Py — vap)l. 3.21)

Here we used again (3.13) as well as the fact that |[v(u)| < 1. Next we observe that (3.4) implies in
view of Q(u), Q(v) > 1

[v(m) —v()| < |V(u —v)| ae.in 2 (3.22)
for u, v € H*(£2). In particular, we derive

W™ — v < V@ —uh < VRt — el + (vartt —am)

IVt — e + et sup || Vit 1o
0,7)

<Vt — e +ct (3.23)

which follows from (3.8) together with an inverse estimate. We insert (3.23) into (3.21) and
use (3.22), (3.15) to find

|Sl|<6/ 'q”m (/ V(e — ez">|2|Vez1|+r2/|v(uz")—v(ﬁ$>|>
2 Qu h) 02

g |2 V(e — >|2 5 . -
«s/QQ( ) (n el / —aan +1 /Qw(uh)—v(uhn)

/ Q@ — Q@) — (@M — QM))?
C

Q(up)

|V(em+1 m)|2 ¢ ;3
+—y/ 0T St o,
8" Ja Quy) )

where the last estimate follows from Holder’s inequality and the definitions of g;' and E™. Next,
letting a = Q(um+l) Q(uj)and b = Q(A'"H) — Q(u}) wehave a — b = q}' (g} as above) and

la> — b?| = |(a — b)* +2b(a — b)| < 2la — b|* +b* < 2|g)"|* + ¢t
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Since Q ( ; is the last component of v(z) we obtain similarly as above

15| <cf (gl" P + ) — vl

/ Q@Y — ) — (0@ — QiM))?

3 m
Q(uzl) +c(t+TE™).

Finally, note that

Q(Am+1) B 1)
O uy)

/ @ — v ) + @D — @) O m+1)<

s3+s4—/ @t — v 1wt (

Q(ﬁ;f))
ol
le( upyth

"
+/Q<2<v(A;;’“> vl ) - @) —va@pth)

oy
_ ~m+1 m+1
@y —v@pthH o, )( oW )

=/Q|v(””“) vyt a@rth — oamy)

Thus, using similar arguments as in the estimate for S; we conclude

1S3 + Sa] < crE'"“+cr/(|v<um“) V@O + D@ —v@mHIewth

<crEm+l~|—CT/ (@™ — @)+ D@ — v@I( + gD

/ Q@ — 0@y — (@@ — QwM))?

c 3 m m+1
+ (T 4+ TE™ + TE™.
Q(uy) )

Combining (3.19) with the above estimates and choosing é and y small enough completes the
proof of the lemma. O

Let us now return to (3.12) and estimate the four terms on the right-hand side of this relation.

m+1

(i) Since || — ™| <t osup & < crh2| loghl (by (3.7)) we obtain
0,7)

1 1 1 2
(em+ _ em)(6m+ _ ém (em+ m) mtl my2
fz e A

2 o o uy
(em+l m)2 c 4 4
< —h7|logh|~.
rZ/ oGy Tt loeh
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(i1) Since eZH — €)' € Xpo, integration by parts yields

_f v@aptt —ap - vt — o l/ V@t —umy - Vet — e
2 2

T o) E; Q™)
1/(V(”"*i—ﬁ?)_wm“—um)) Vet — am
w Jo\ oap )

1 V(um+1 _ um) el m
g‘_?/nV( 0(um) >( )

c |v(€m+l _6m)| mt m
+- ——— + IV -
- /n< oy Vel

1 +1
—IIV(Mer —u")galley™ — €l

LN
Q™ QG

)W(e’”“ —e)|

+;<||V(em+1 — M+ TIVE"DIV(ErT —em)|

Le(le™ —e™| + lle™ T — €™ + c(sup IVerll + ) Vet —em)
\v/ em+1 e 2 m+1 _ em 2
/' ¢ — i) /(e ) + S 1 ¥ log by
oy 1’2 Qufh) P

where we used (3.5), (3.8) and once again (3.13).
Combining the above estimates we arrive at

/ V(Am-l—] _Mh) V(em+1 e;’ln)
Qi)

Vet _ emy2 m+l _ amy2
/| = @™ o 12/ %Jrg(r%h“lloghl“l
h h

T

(iii) To begin, let us rewrite the difference as follows:

1 _ 1
Quy) Q™)

[
Quy) Q™)

= —by - Ve
where

: d 1
n = BGVuy + (1 —s)Vu™)ds, Bi = _(7>
=) e e
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If we let in addition »™ := B(Vu™) we may write

m+1 _ u m+1 el 1 1 )
/ w e )<Q(u 0™

——2[ @™t —umyErtt — b - Vel

/ (um+l m)(em-H e;l:)bm . Ve

/ (um+1 m)(em—H _ e;ln)(b;;n — ™). Ve
:I+II+III.

Since |b}!| < 1 uniformly in 2 and m we obtain for 0 < § < 1 with the help of (3.14)

1
m+1 |em+ m ¢ m 2
1] < |e —ey | IVey | < gllVehII
|em+l m ¢ m+1 m 2 Crm
€ —€ -E
< / T Ll 2+

|em+l m
< / +ch4|1ogh| +6E’"
Next, as |b)' — b™| < ¢|Ve™| we may estimate

111] < —||Ve’"||Loof et — e |Ve™|
8 |em+l |2
< —
T2 o owy

|em+l m c 4 4 c
< —h"|logh -E™.
/ Q(uﬁ) + 5 |log h|* + 3

It remains to examine /7. Integration by parts gives

—||V "2 (IVE™ I + 1Ver 1)

1
11 = _2/ pm . V(um-‘r] _ um)(e);l%H _ e;ln)em
_/ . V(em+l m)(um+l _ um)em

+— bm(um—H m)(em-H ezn)em

r2 Q
=1L+ 1L+ 115.

Using the regularity of # and similar arguments as above we get

|em+1 em A
L]+ 1115 < /|e’"+‘ elflem] < / +Snt,
h h oW "3
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Observing that 1™+ — u™ = tu,(-, t,,) + R™ (where R™ satisfies (3.10)) and letting d" :=
u (-, ty)b™, the remaining term 7 I, can be rewritten as

1
10 T/;) V(em+1—eh )e™ —}——/ " V(em+l e; )R"e™
1] dm—H . VCZH_IEm-H _ l/ am . m M l/ (dm—i-l _dm) X VeZL-HGm—H
T Jo T Jo T

1 1
__/ am . ve;l:+l(6m+l _ Gm) + _2/ v(em+1 _ e?)Rmem‘
T Jo T

We shall keep the discrete time derivative and estimate the last three integrals. To begin, note
that

d™ —d™ = uy (- b)) BOVU™ YY) — g (-, 1) B(VU™)

Im+1 Im+1
f ot -, ) ds BOVU™Y) 4+ 1ty -y 1) / B/ (Vu(-, $)Vits (-, ) ds.
tm Im

Recalling that u;, Vu, € L*°(f2 x (0, T)) we infer

41
/ uy (-, s)ds
t}’ll

|dm+l _dm| <C

+ cT,

so that (3.5) and (3.6) imply
1
‘_; /;(dm+l _ dm) . Vez’l+16m+l

1,
< S gem+ i d m1 )\ gt
. le™ Nz up (., s)ds| +tlle™ | [[Ve, |l
tm

1 1 1
< c(sup lluglllle™ e + e FHDIVeL |
©.7)

< ch?|logh|(IIV (e ™! —

e+ Ve 1D

|V(em+1 )|2 " ¢ 4 )
/ Q(ﬁ’;l’) +cE™ + gh (logh)~. (3.24)

Furthermore, using (3.10) and (3.6) we have

1 1
+1, m+1 +1
‘—; /Qd’" Ve T (T — €M) + —2/ V(e — e )RMe™
/ (Ve + V(e —

c
< ” m+1 _

Pl — e |+—/ V(! — )R "]

E"IAVeEr ] + IVErT — e + el Ve —emllle™ | 1o

|V(em+1 )|2 ¢y A
~h”|logh E™.
/ —oan + 37 loghl" +c
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Collating our estimates we finally get
1 1
(Mm—H m)(em—H )< _ )
/ I\ own 0w
< = 1 / dm+l vem+1 m+1 l / dm . mem

1 2
|em+l |2 26[ |V(em+ )| ¢4 . c .
—h*logh —(E™ 4+ E™T),
/ Q(u +8 | log h| +8( + )

(iv) From (3.10) and (3.13) we obtain

I/R’"(em“—eh
2 Jo Q(u™)

cllef ™t — e < c(fle™ —e™| + et — ™)

S m+1 _ .m\2 2
< — %—i—cr——kcrhzuoghﬁ
2 Jo O (uj )
If we apply Lemma 2 and our estimates (i)—(iv) to (3.12) we obtain, by choosing § sufficiently
small,

1 |em+1 _ em|2 1 / |V(em+1 ez1)|2 N 1 (Em+] £ (3.25)
222 Jo Q) 87 o 2t ‘
1 1
< ;/ dmt L ventlemtl ;/ d™ - Vele™ 4+ c(E™ + E™) 4 c(x? + h*|log h|*).
N 2

Now we are in position to complete the proof of Theorem 1. In a first step we claim that
h2E™ <y?  forall 0<m<M (3.26)

provided < 8ok, h < hg and y is chosen according to Lemmas 1 and 2. Since E® = 0, the
assertion clearly holds for m = 0. Assuming that (3.26) is true for k < m we may multiply (3.25)
(with m replaced by j) by t and sum from j =0, ..., k:

TEMT < fd"“ Ve, e k+1+ch(Ef+Ef+1)+c(r + h* log h|*)
Q =0

k
SG+DEM 4o Y BN+ e(r? + h*loghl*).
j=0

Here, we used the inequality

/ JhH .Ve’;l“ek“ < %EH‘ + ch*|logh|?
2

which can be derived in essentially the same way as (3.24). If t is small enough we obtain

k
EM <ot Y BT+ e + it loghl"), 0<k<m (3.27)
j=0
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and a discrete Gronwall argument implies
EMY Ce(e? + h*loghl*), 0<k<m. (3.28)
In particular,
E" e + h*log hl*) < c(82h% + h*|logh|*) < y2h?

provided t < 8ph, h < ho and &g is chosen sufficiently small. Thus, (3.26) is proved and we can
start again from (3.25) in order to show that

kéc(r2+h4|logh|4) forall 0 <k M

as well as

M- 11 |em+1 e 5 4 .
/ Q(um) L™+ h7|loghl™).

Since Q(u}') is uniformly bounded, this implies
= v %
e I < N+ ) fle™ ! — el < eh® + (— Z et —em| )
m=0 T m=0
< c(t + h?|loghl?).
Finally,
IV@™ —up) |l < IVep | + IVe™ | S c(WE™ + h) < c(t +h)

by (3.5) and (3.14). This completes the proof of Theorem 1.

4. Implementation and numerical tests

The scheme (2.2) is such that in every time step a linear system of equations has to be solved.
Assume that X, = span{gi, ..., ¢n} with the nodal basis functions ¢;(j = 1, ..., N). Then u}’
has the form u}' (x) = Z?le u;’?(pj (x) with coefficients ™ = (u}', ..., u'y). For given uhm_l the
linear system then is

le—l + Sm—l ut = le—lum—l
T - T -
with mass matrix M™~1 and stiffness matrix $"!

0 Vo:Vo;
R N = S A B SRS
: 2 Q(Mh ) 0 Q(”h )

The matrices are symmetric and M™~!/t 4+ §”~! is positive definite and we can use a suitable
conjugate gradient algorithm to solve the linear system.

We are going to verify the asymptotic error estimates of the Theorem. For this we use an exact
solution of the equation for the mean curvature flow of graphs with a given right-hand side, i.e. with
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TABLE 1
Absolute errors in L°°((0, T); L*(£2)) and experimental orders of convergence

(EOC) for the test problem

h T =h? T =0.25h 7 =0.5h T=h

2.0 1.1608 1.1925 1.1608 1.1608

1.0 0.6903 (0.75) 0.6732(0.82)  0.6671(0.80)  0.6903 (0.75)
0.7368  0.4141 (1.67) 0.3119(2.52) 03584 (2.03)  0.4480 (1.42)
04203  0.1836 (1.45) 0.1416(1.41)  0.1995(1.04)  0.2851 (0.81)
0.2219  0.0600 (1.75) 0.06510(1.22) 0.1065 (0.98)  0.1723 (0.79)
0.1137  0.01656(1.93)  0.03061 (1.13)  0.05490 (0.99) 0.09827 (0.84)
0.05754 0.004285(1.99) 0.01447 (1.10) 0.02787 (0.99)  0.052 60 (0.92)

TABLE 2
Absolute errors in L>®((0,T); H'(2)) and experimental orders of conver-

gence (EOC) for the test problem

h T =h2 7 =0.25h T = 0.5h T="h

2.0 0.6916 0.9141 0.9129 0.6916

1.0 1.0025 (—0.54)  0.9755(—0.09)  0.7169 (0.35)  1.0025 (—0.54)
0.7368  0.8899 (0.39) 0.625 3 (1.46) 0.8013 (—0.36)  0.9913 (0.04)
0.4203  0.4708 (1.13) 0.367 6 (0.95) 0.5124 (0.80)  0.6596 (0.73)
02219  0.1786 (1.52) 0.1912 (1.02) 0.2991 (0.84)  0.4766 (0.51)
0.1137  0.06301(1.56)  0.09666 (1.02)  0.1634 (0.90)  0.2834 (0.78)
0.05754 0.02628 (1.28)  0.04844 (1.01)  0.0856 (0.95)  0.1568 (0.87)

prescribed mean curvature. This introduces additional error terms in the analysis not presented in
this paper. We solve the geometric equation

Vu
ur — Q)V- —— = f0u) 4.1

Q(u)
on the unit disk 2 = {x € R?||x| < 1} with zero boundary conditions # = 0 on 3£2. The solution
is given by
u(x,t) =sin(|x)*> — 1) — sin (1 — 7).

The solution does not decay for large time ¢ and the norm L*°((0, T); H L)) is quite large. We
have chosen 7" = 4 for the test computations. The right-hand side is calculated from equation (4.1)
and then used in the program to compute the discrete solution. For two sucessive grids with grid
sizes h1 and hp we computed the absolute errors Err(h ), (j = 1, 2) between discrete solution and
exact solution for certain norms. The experimental order of convergence then was defined by

og Err(hy)
EOC(hy, hy) = —— 2.
ha
In Table 1 Err(h) = SUPO< < M [u™ — up'|l with Mt = T and in Table 2 Err(h) =

Supogmm IV @™ — up)|l. We see that the computations confirm the results of the Theorem
precisely. In order to demonstrate the dependency on the coupling parameter §p in the condition
T < §ph we provide computations for 69 = &, 0.25, 0.5 and 1.0.
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