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A free-boundary problem in combustion theory
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In this paper we consider the following problem arising in combustion theory:{
∆uε − uε

t = vε fε(uε) in D,

∆vε − vε
t = vε fε(uε) in D,

where D ⊂ R
N+1, fε(s) = 1

ε2 f
( s
ε

)
with f a Lipschitz continuous function with support in

(−∞, 1].
Here vε is the mass fraction of some reactant, uε the rescaled temperature of the mixture and ε is

essentially the inverse of the activation energy. This model is derived in the framework of the theory
of equi-diffusional premixed flames for Lewis number 1.

We prove that, under suitable assumptions on the functions uε and vε , we can pass to the limit
(ε → 0)—the so-called high-activation energy limit—and that the limit function u = lim uε =
lim vε is a solution of the following free-boundary problem:

∆u − ut = 0 in {u > 0}
|∇u| = √

2M(x, t) on ∂{u > 0} (0.1)

in a pointwise sense at regular free-boundary points and in a viscosity sense. Here M(x, t) =∫ 1
−w0(x,t)(s + w0(x, t)) f (s) ds and −1 < w0 = limε→0

vε−uε

ε .
Since vε−uε is a solution of the heat equation, it is fully determined by its initial-boundary datum.

In particular, the free-boundary condition only (but strongly) depends on the approximation of the
initial-boundary datum.

Moreover, if D ∩ ∂{u > 0} is a Lipschitz surface, u is a classical solution to (0.1).

1. Introduction

In this paper we consider the following problem arising in combustion theory:{
∆uε − uε

t = vε fε(uε) in D,

∆vε − vε
t = vε fε(uε) in D,

(1.1)

where D ⊂ R
N+1.

This model appears in combustion theory in the analysis of the propagation of curved flames. It is
derived in the framework of the theory of equi-diffusional premixed flames analysed in the relevant
limit of high- activation energy for Lewis number 1. In this application, vε represents the fraction of
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some reactant (and hence it is assumed to be non-negative), and uε its temperature (more precisely,
uε = λ(T f − T ε) where T f is the flame temperature and λ is a normalization factor). We observe
that the term vε fε(uε) acts as an absorption term in the equation (1.1). Since T ε = T f − (uε/λ), it
is in fact a reaction term for the temperature. In the flame model, such a term represents the effect of
the exothermic chemical reaction and f has accordingly a number of properties: it is a non-negative
Lipschitz continuous function which is positive in an interval (−∞, ε) and vanishes otherwise (i.e.
reaction occurs only when T > T f − ε

λ
). The parameter ε is essentially the inverse of the activation

energy of the chemical reaction. For the sake of simplicity we will assume that fε(s) = 1
ε2 f ( s

ε
),

where f is a non-negative, Lipschitz continuous function with support in (−∞, 1].
For the derivation of the model, see [3].
Here we are interested in high-activation energy limits (i.e. ε → 0). These limits are currently

the subject of active investigation, specially in the case uε = vε. This is a natural assumption in the
case of travelling waves.

The study of the limit as ε → 0 was proposed in the 1930s by Zeldovich & Frank-
Kamenetski [13] and has been much discussed in the combustion literature. In the case uε = vε,
the reaction function uε fε(uε) tends to a Dirac delta, M0δ(u) where M0 =

∫ 1
0 s f (s) ds. In this way

the reaction zone where uε fε(uε) acts is reduced to a surface, the flame front, and a free-boundary
problem arises. The fact that M0 > 0 ensures that a non-trivial combustion process takes place so
that a non-empty free boundary actually appears.

Although the convergence of the most relevant propagation modes, i.e. the travelling waves, was
already discussed by Zeldovich and Frank-Kamenetski, and an enormous progress in this direction
has been made, a rigorous mathematical investigation of the convergence of general solutions is
still in progress. Berestycki and his collaborators have rigorously studied the convergence problem
for travelling waves and, more generally, in the elliptic stationary case; cf. [2] and its references.
See also [12]. The study of the limit in the general evolution case for the heat operator has been
performed in [7] for the one-phase case (this is with uε � 0) and in [4–6] for the two-phase case,
where no sign restriction on uε is made.

In [7] the authors show that, under certain assumptions on the initial datum and its
approximations, for every sequence εn → 0 there exists a subsequence εnk and a limit function
u = lim uεnk which solves the following free-boundary problem:{

∆u − ut = 0 in D ∩ {u > 0}
|∇u+| = √

2M0 on D ∩ ∂{u > 0} (1.2)

in a weak integral sense. Here M0 =
∫ 1

0 s f (s) ds.
In [5] and [6] the authors show that the free-boundary condition for the two-phase case (when it

is assumed that no reaction takes place if uε � 0) is

|∇u+|2 − |∇u−|2 = 2M0

and that the limit function is a solution of the free-boundary problem in a pointwise sense at regular
free-boundary points when {u = 0} has zero ‘parabolic density’ and in a viscosity sense in the
absence of a zero phase (i.e. when {u = 0}◦ ∩D = ∅).

On the other hand, in [10] it was shown, for the one-phase problem in a cylinder with Neumann
boundary conditions, that when a classical solution to the free-boundary problem (1.2) exists, it is
the limit of the whole family uε, not just of a subsequence. Moreover, this classical solution is the
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limit of uε independently of the choice of the approximate initial data uε(x, 0). A similar result has
been obtain for the two-phase case in [11].

So that a natural question is whether a classical solution to the free- boundary problem (1.2)
is also the limit of uε if (uε, vε) is the solution to the system (1.1) and both uε(x, 0) and vε(x, 0)

converge to u(x, 0) but uε(x, 0) �= vε(x, 0).
Or we may ask a more elementary question: will a sequence of uniformly bounded solutions

(uε, vε) with (vε − uε) → 0 as ε → 0 be such that uε converges to a solution of the free-boundary
problem (1.2)? This is: will the asymptotic limit for activation energy going to infinity, in the case
in which (vε − uε) → 0 but uε �= vε, be a solution of the same free-boundary problem as in the
case in which uε = vε?

In order to understand the relation between both assertions it is important to point out that, in
the case under consideration, this is when the Lewis number is 1, the function wε = vε − uε is a
solution of the heat equation. So that it is fully determined by its initial-boundary datum. Moreover,
the system (1.1) may be rewritten as a single equation for uε, namely

∆uε − uε
t = (uε + wε) fε(u

ε). (1.3)

In this paper we consider the case in which wε/ε converges to a function w0 (so that in particular,
vε − uε → 0). In this way, at least formally, the reaction term still converges to a delta function and
a free- boundary problem appears. But we prove that the free-boundary condition strongly depends
on the limit function w0, so that it is different for different approximations of the initial-boundary
datum of u.

In fact, we prove that for every sequence εn → 0 there exists a subsequence εnk and a limit
function u = lim uεnk which is a solution of the following free-boundary problem:{

∆u − ut = 0 in D ∩ {u > 0}
|∇u+| = √

2M(x, t) on D ∩ ∂{u > 0} (1.4)

where M(x, t) = ∫ 1
−w0(x,t)(s + w0(x, t)) f (s) ds.

The presence of the function w0 in the limit of integration gives the necessary positive sign of
the function M(x, t).

In conclusion, the combustion problem is very unstable in the sense that the asymptotic limit for
activation energy going to infinity depends on order ε perturbations of the initial-boundary data.

In this paper we prove that the limit function u is a ‘viscosity’ solution to (1.4), so that, as a
consequence of our results and of the regularity results for viscosity solutions to (1.4) of [8], we
deduce that, when the free boundary of a limit function u is given by x1 = g(x ′, t), x = (x1, x ′)
with g Lipschitz continuous, u is a classical solution.

We want to stress that because of our assumption that vε − uε → 0 and since vε � 0, the limit
function u must be non-negative, so our result is new even in the case uε = vε.

In particular, as a consequence of our results, we see that limit functions u with uε(x, 0)

constructed as in [7], and vε(x, 0) small perturbations of uε(x, 0) are viscosity solutions to (1.4). In
this construction, w0 is any constant such that w0 � −η where η > 0 is small enough.

Notation, hypotheses and outline of the paper. Throughout this paper N will denote the spatial
dimension and, in addition, the following notation will be used.
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For any x0 ∈ R
N , t0 ∈ R and τ > 0

Bτ (x0) ≡ {x ∈ R
N / |x − x0| < τ },

Bτ (x0, t0) ≡ {(x, t) ∈ R
N+1/ |x − x0|2 + |t − t0|2 < τ 2},

Qτ (x0, t0) ≡ Bτ (x0)× (t0 − τ 2, t0 + τ 2),

Q−
τ (x0, t0) ≡ Bτ (x0)× (t0 − τ 2, t0],

and for any set K ⊂ R
N+1

Nτ (K ) ≡
⋃

(x0,t0)∈K

Qτ (x0, t0),

N−
τ (K ) ≡

⋃
(x0,t0)∈K

Q−
τ (x0, t0).

When necessary, we will denote points in R
N by x = (x1, x ′), with x ′ ∈ R

N−1. Also, 〈·, ·〉 will
mean the usual scalar product in R

N . Given a function v, we will denote v+ = max(v, 0), v− =
max(−v, 0).

In addition, the symbols ∆ and ∇ will denote the corresponding operators in the space variables;
the symbol ∂p will denote parabolic boundary.

Finally, we will say that a function v is in the class Liploc
(
1, 1

2

)
in a domain D ⊂ R

N+1, if for
every D′ ⊂⊂ D, there exists a constant L = L(D′) such that

|v(x, t)− v(y, s)| � L(|x − y| + |t − s|1/2)

for every (x, t), (y, s) ∈ D′. If the constant L does not depend on the set D′, we will say that
v ∈ Lip

(
1, 1

2

)
in D.

For the existence of a limit function for a subsequence uεnk we only need the weaker condition
that for every compact K ⊂ N−

τ (K ) ⊂ D,

‖vε − uε‖L∞(N−
τ (K )) = O(ε). (1.5)

Then, we have (see [9])

‖vε − uε‖C2,1(K ) = O(ε). (1.6)

Under this assumption, we are able to apply the results of [4] and get the uniform Lipschitz
estimates needed to pass to the limit in (1.1). This is done in Section 2 where we also prove some
technical lemmas that are used throughout the paper.

In Sections 3 and 4 we assume that uε → 0 in {u = 0} fast enough. This is an essential condition
that was already considered in [7]. This assumption is a natural one in applications; roughly speaking
it means that the mixture temperature reaches the flame temperature only if some combustion is
taking place.

We also assume that there exists limε→0(v
ε − uε)/ε =: w0 and, as a consequence of the

hypothesis that uε → 0 in {u = 0} fast enough, we show that necessarily w0 > −1 in {u ≡ 0}◦. So
that, in Sections 3 and 4 we assume that for every K ⊂ N−

τ (K ) ⊂ D compact

vε − uε

ε
→ w0 uniformly in N−

τ (K ). (1.7)
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Thus, ∥∥∥∥vε − uε

ε
− w0

∥∥∥∥
C2,1(K )

→ 0. (1.8)

And, for the sake of simplicity, we assume that w0 > −1 in D.
In Section 3, we show that the limit function u is a solution to the free- boundary problem (1.4)

in a pointwise sense.
Finally, in Section 4 we prove that the limit function u is in fact a viscosity solution of the free-

boundary problem (1.4) under a non-degeneracy assumption on the limit function u. We also prove
some results that give the necessary non-degeneracy of u.

Our presentation is of a local nature, so that our hypotheses are stated in terms of the solution
(uε, vε). As can be seen in the example treated in Corollary 4.3 it is possible to deduce our
hypotheses on (uε, vε) from conditions on its initial-boundary datum.

2. Uniform estimates

In this section we consider a family uε, vε of solutions to (1.1) in a domain D which are uniformly
bounded in L∞ norm in D. We show that the functions uε, vε are locally, uniformly bounded in the
semi-norm Lip

(
1, 1

2

)
. Then, we get further local uniform estimates and pass to the limit as ε → 0.

We also show that the limit function u is a solution to the free-boundary problem (1.4) in a very
weak sense. Finally, we prove an approximation lemma that will be used throughout the rest of the
paper and some lemmas concerning particular limit functions. Also, we prove a proposition that
justifies the hypothesis we make in the following sections.

For convenience, let us define the following function:

wε(x, t) = vε(x, t)− uε(x, t), (2.1)

then, wε is a caloric function with ‖wε‖C2,1(K ) = O(ε) for every compact set K ⊂ D.
We begin with a proposition (which is a consequence of [4]) that gives us the uniform control

on the gradients of solutions of (1.1).

PROPOSITION 2.1 Let (uε, vε) be solutions of (1.1) such that ‖uε‖∞ � A, vε � 0, which
verify (1.5). Let K ⊂ D be compact and τ > 0 such that N−

τ (K ) ⊂ D. Then, there exists
L = L(τ,A) such that

|∇uε(x, t)| � L , |∇vε(x, t)| � L .

Proof. Let us start by making the following observation:

uε = vε − wε � −wε � −Cε.

Then, let zε = 1
C+1 (uε + Cε) and we define, for (x0, t0) ∈ K ,

zε
τ (x, t) = 1

τ
zε(x0 + τ x, t0 + τ 2t).

In B1(0)× [−1, 0], zε
τ verifies (with B � ‖ f ‖∞)

0 � ∆zε
τ −

∂zε
τ

∂t
� τ

C + 1
(Cε + |uε|) 1

ε2
f

(
uε

ε

)

� Bτ
1

ε
X[−Cε,ε](uε) = B

ε/τ
X[0,ε/τ ](zε

τ ).
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On the other hand,

|zε
τ (x, t)| � |uε(x, t)| + C

τ(1+ C)
� 1

τ

A+ C

1+ C
.

Therefore, by Theorem 2 of [4] it follows that

|∇zε
τ (x, t)| � L̄ = L̄(τ,A) in B1/2(0)× (−1/2, 0].

In particular,

|∇uε(x0, t0)| = (C + 1)|∇zε(x0, t0)| = (C + 1)|∇zε
τ (0, 0)| � (C + 1)L̄,

|∇vε(x0, t0)| � |∇uε(x0, t0)| + |∇wε(x0, t0)| � (C + 1)L̄ + C.

The proof is complete. �

As is usual in parabolic theory, Lipschitz regularity in space gives Hölder 1
2 regularity in time.

We follow here ideas in [5] and [7].

PROPOSITION 2.2 Let (uε, vε) be solutions of (1.1) such that ‖uε‖∞ � A, vε � 0, which
verify (1.5). Let K ⊂ D be compact and τ > 0 such that Nτ (K ) ⊂ D. Then there exists
C = C(τ,A) such that

|uε(x, t +∆t)− uε(x, t)| � C |∆t |1/2, |vε(x, t +∆t)− vε(x, t)| � C |∆t |1/2,

for every (x, t), (x, t +∆t) ∈ K .

Proof. As in Proposition 2.1 we define zε = 1
C+1 (uε + Cε) and

zε
λ(x, t) = 1

λ
zε(x0 + λx, t0 + λ2t),

for 0 < λ < τ and (x0, t0) ∈ K .
By a simple computation we get, as in Proposition 2.1,

0 � ∆zε
λ −

∂zε
λ

∂t
� B

ε/λ
X[0,ε/λ](zε

λ).

Now, zε
λ � 0, and in {zε

λ > 1} we have

∣∣∣∣∆zε
λ −

∂zε
λ

∂t

∣∣∣∣
{

� B if ε/λ � 1

= 0 if ε/λ < 1.

Moreover, we have that

|∇zε
λ(x, t)| = 1

C + 1
|∇uε(x0 + λx, t0 + λ2t)| � L̄

in Bτ/λ(0)× [0, τ 2/λ2]. Then, by Proposition 2.2 of [5], we have

|zε
λ(0, t)− zε

λ(0, 0)| � C(L̄) ∀ 0 � t � 1

4N + B
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which, in terms of uε, is

|uε(x0, t0 + λ2t)− uε(x0, t0)| � C(L̄)λ.

In particular, ∣∣∣∣uε

(
x0, t0 + λ2

4N + B

)
− uε(x0, t0)

∣∣∣∣ � C(L̄)λ.

Let (x0, t0 +∆t) ∈ K . If 0 < ∆t < τ 2

4N+B , we take λ = ∆t1/2
√

4N + B < τ to get

|uε(x0, t0 +∆t)− uε(x0, t0)| � C(L̄)
√

4N + B∆t1/2.

If ∆t � τ 2

4N+B , we have

|uε(x0, t0 +∆t)− uε(x0, t0)| � 2A � 2A
τ

√
4N + B∆t1/2.

The analogous inequality for vε is an immediate consequence of (1.6). �

REMARK 2.1 Under the hypothesis of the previous propositions, we have that

uε ∈ Liploc
(
1, 1

2

)
.

PROPOSITION 2.3 Let (uε, vε) be solutions of (1.1), such that ‖uε‖∞ � A, vε � 0, and
verify (1.5). Then, for every sequence εn → 0, there exists εn′ → 0 a subsequence and
u ∈ Liploc

(
1, 1

2

)
such that

1. uεn′ → u uniformly on compact subsets of D;
2. ∇uεn′ → ∇u in L2

loc;

3. ∂uεn′
∂t → ∂u

∂t weakly in L2
loc;

4. ∆u − ∂u
∂t = 0 in {u > 0};

5. for every compact K ⊂ D, there exists CK > 0 such that∥∥∥∥∂uε

∂t

∥∥∥∥
L2(K )

� CK

for every ε > 0.

Proof. The proof is similar to Lemma 3.1 of [5].
Let K ⊂ D be a compact set and τ > 0 such that N3τ (K ) ⊂ D. Let L = L(K ) such that

|uε(x, t)− uε(y, s)| � L(|x − y| + |t − s|1/2),

where (x, t), (y, s) ∈ Nτ (K ).
Then, by Arzela–Ascoli’s theorem, there exists εn′ → 0 and u ∈ Lip

(
1, 1

2

)
in Nτ (K ) such that

uεn′ → u uniformly in Nτ (K ). By a standard diagonal argument, (1) follows.
Let us now find uniform bounds for ∂uε

∂t in L2
loc(D). In fact, uε verifies

∆uε − ∂uε

∂t
= vε fε(u

ε).
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Now, let (x0, t0) ∈ K and let us multiply the equation by uε
t ψ

2 where ψ � 0, ψ = ψ(x) ∈
C∞

c (Bτ (x0)), ψ ≡ 1 in Bτ/2(x0). Then, integrating by parts, we get∫∫
Qτ (x0,t0)

(uε
t )

2ψ2 dx dt + 1

2

∫∫
Qτ (x0,t0)

(|∇uε|2)tψ
2 dx dt + 2

∫∫
Qτ (x0,t0)

∇uεuε
t ψ∇ψ dx dt

= −
∫∫

Qτ (x0,t0)
vε fε(u

ε)uε
t ψ

2 dx dt.

Now we use Young’s inequality to obtain

1

2

∫∫
Qτ (x0,t0)

(uε
t )

2ψ2 dx dt + 1

2

∫
Bτ (x0)

|∇uε(x0, t0 + τ 2)|2ψ2 dx �

1

2

∫
Bτ (x0)

|∇uε(x0, t0 − τ 2)|2ψ2 dx −
∫∫

Qτ (x0,t0)
vε fε(u

ε)uε
t ψ

2 dx dt

+ C
∫∫

Qτ (x0,t0)
|∇uε|2|∇ψ |2 dx dt.

Then, by Proposition 2.1,∫
Bτ/2(x0)

∫ t0+τ 2

t0−τ 2
(uε

t )
2 dx dt �

∫
Bτ (x0)

|∇uε(x0, t0 − τ 2)|2ψ2 dx

+ 2

∣∣∣∣
∫∫

Qτ (x0,t0)
vε fε(u

ε)uε
t ψ

2 dx dt

∣∣∣∣+ C
∫∫

Qτ (x0,t0)
|∇uε|2|∇ψ |2 dx dt

� C(τ )+ 2

∣∣∣∣
∫∫

Qτ (x0,t0)
vε fε(u

ε)uε
t ψ

2 dx dt

∣∣∣∣ .
Hence, it only remains to get bounds on∫∫

Qτ

ψ2uε
t v

ε fε(u
ε) dx dt = I.

Let

Gε(u, x, t) =
∫ u

0
(wε(x, t)+ s) fε(s) ds,

then
∂

∂t
(Gε(u

ε, x, t)) = ∂uε

∂t
vε fε(u

ε)+ ∂Gε

∂t
(uε, x, t),

so that we get

I =
∫∫

Qτ

ψ2 ∂

∂t
(Gε(u

ε, x, t)) dx dt −
∫∫

Qτ

ψ2 ∂Gε

∂t
(uε, x, t) dx dt = A − B.

Let us first get bounds on A:

A =
∫ t0+τ 2

t0−τ 2

∫
Bτ (x0)

ψ2 ∂

∂t
(Gε(u

ε, x, t)) dx dt =
∫

Bτ (x0)

ψ2
[∫ t0+τ 2

t0−τ 2

∂

∂t
(Gε(u

ε, x, t)) dt

]
dx

=
∫

Bτ (x0)

ψ2[Gε(u
ε(x, t0 + τ 2), x, t0 + τ 2)− Gε(u

ε(x, t0 − τ 2), x, t0 − τ 2)] dx .
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Since uε � −Cε, fε(s) = 0 if s � ε and |wε| = O(ε), we have

|Gε(u
ε, x, t)| � Cε

∫ ε

−Cε

fε(s) ds +
∫ ε

−Cε

s fε(s) ds � C,

so that
|A| � C(τ ).

It only remains to get bounds on B. For that purpose, let us first make the following observation:∣∣∣∣∂Gε

∂t
(uε, x, t)

∣∣∣∣ =
∣∣∣∣∂wε

∂t
(x, t)

∫ uε

0
fε(s) ds

∣∣∣∣ � C

ε

∣∣∣∣∂wε

∂t
(x, t)

∣∣∣∣.
By (1.6), ∣∣∣∣∂wε

∂t

∣∣∣∣ � Cε for (x, t) ∈ Nτ (K ).

Therefore, using the fact that 0 � ψ � 1, we get

B � C

ε

∫∫
Qτ

∣∣∣∣∂wε

∂t
(x, t)

∣∣∣∣ dx dt � C

ε
|Qτ |

∣∣∣∣∂wε

∂t

∣∣∣∣ � C(K , τ ).

Thus, ∫
Bτ/2(x0)

∫ t0+τ 2

t0−τ 2
(uε

t )
2 dx dt � C,

with C independent of ε and (x0, t0) ∈ K . Now, as K is compact,∫∫
K
(uε

t )
2 dx dt � C,

so that, for a subsequence, ∂
∂t uεn′ → ∂

∂t u weakly in L2(K ) and by a standard diagonal argument,
(3) follows.

Let us see that u is a solution of the heat equation in {u > 0}. In fact, from the fact that
uε → u uniformly on compact subsets of D, we deduce that every point (x0, t0) ∈ {u > 0}
has a neighbourhood V such that uε(x, t) � λ > 0 for some λ > 0. Therefore, for ε < λ,
fε(uε(x, t)) = 0 in V . Thus, uε is caloric in V for every ε < λ, and then the same fact holds for u.

Let us finally analyse the convergence of the gradients. We already know that
‖∇uε‖L∞(Nτ (K )) � L . So we can assume that ∇uε → ∇u weakly in L2(Nτ (K )). In particular,∫∫

Nτ (K )

φ|∇u|2 � lim inf
ε→0

∫∫
Nτ (K )

φ|∇uε|2,

for every non-negative φ ∈ L∞(D).
We follow here ideas from [2] and [7] in order to prove that we have strong convergence.
Since ∆u − ut = 0 in {u > 0}, if we take δ > 0 and multiply this equation by (u − δ)+ψ(x)

with ψ ∈ L∞(D) and non-negative, we get, after integration by parts in Qτ (x0, t0),∫∫
{u>δ}

|∇u|2ψ = −
∫∫

{u>δ}
u∇u∇ψ + δ

∫∫
{u>δ}

∇u∇ψ

− 1

2

∫
{u>δ}

(u − δ)2(x, t0 + τ 2)ψ(x)+ 1

2

∫
{u>δ}

(u − δ)2(x, t0 − τ 2)ψ(x).
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Now, letting δ → 0, we get∫∫
{u>0}

|∇u|2ψ =−
∫∫

{u>0}
u∇u∇ψ −

− 1

2

∫
{u>0}

u2(x, t0 + τ 2)ψ(x)+ 1

2

∫
{u>0}

u2(x, t0 − τ 2)ψ(x).

On the other hand, since ψ � 0, fε � 0 and uε � −Cε, multiplying (1.1) by (uε + Cε)ψ and
integrating by parts, we get∫∫

Qτ (x0,t0)
|∇uε|2ψ � −

∫∫
Qτ (x0,t0)

uε∇uε∇ψ − Cε

∫∫
Qτ (x0,t0)

∇uε∇ψ

− 1

2

∫
Bτ (x0)

(uε + Cε)2(x, t0 + τ 2)ψ(x)+ 1

2

∫
Bτ (x0)

(uε + Cε)2(x, t0 − τ 2)ψ(x).

Thus,

lim sup
ε→0

∫∫
Qτ (x0,t0)

|∇uε|2ψ �
∫∫

Qτ (x0,t0)
|∇u|2ψ,

so that
‖ψ1/2∇uε‖L2(Qτ (x0,t0)) → ‖ψ1/2∇u‖L2(Qτ (x0,t0)).

Since, in addition,

ψ1/2∇uε → ψ1/2∇u weakly in L2(Qτ (x0, t0)),

it follows that
ψ1/2∇uε → ψ1/2∇u in L2(Qτ (x0, t0)).

Therefore, as ψ ≡ 1 in Bτ/2(x0),

∇uε → ∇u in L2(Qτ/2(x0, t0)),

and since K is compact, this implies that

∇uε → ∇u in L2(K ).

By the same standard diagonal argument used before, the assertion of the theorem follows. �

Next we show that the limit function u is a solution of the free- boundary problem in a very
weak sense.

PROPOSITION 2.4 Let (uε j , vε j ) be a family of solutions of (1.1) in a domain D ⊆ R
N+1 such

that uε j → u uniformly on compact subsets of D, vε j � 0, which verifies (1.5). Then, there exists
a locally finite measure µ supported on the free boundary D∩ ∂{u > 0} such that vε j fε j (u

ε j ) → µ

weakly in D and therefore

∆u − ∂u

∂t
= µ in D,

that is ∀ φ ∈ C∞
c (D) ∫∫

D
(uφt − ∇u∇φ) dx dt =

∫∫
D

φ dµ.
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Proof. The proof follows as that of Proposition 3.1 of [5]. �

Now we state an approximation lemma that will be used throughout the rest of the paper.

LEMMA 2.1 Let (uε j , vε j ) be a family of solutions of (1.1) in a domain D ⊆ R
N+1, such that

uε j → u uniformly on compact subsets of D, vε j � 0, and verifies (1.5). Let (x0, t0) ∈ D∩∂{u > 0}
and let (xn, tn) ∈ D∩∂{u > 0} be such that (xn, tn) → (x0, t0) as n →∞. Let λn → 0, uλn (x, t) =
1
λn

u(xn + λn x, tn + λ2
nt) and (uε j )λn (x, t) = 1

λn
uε j (xn + λn x, tn + λ2

nt). Assume that uλn → U

as n → ∞ uniformly on compact sets of RN+1. Then, there exists j (n) → ∞ such that for every
jn � j (n) there holds that

ε jn
λn
→ 0 and

1. (uε jn )λn → U uniformly on compact sets of RN+1;
2. ∇(uε jn )λn → ∇U in L2

loc(RN+1);
3. ∂

∂t (u
ε jn )λn → ∂

∂t U weakly in L2
loc(RN+1).

Also, we deduce that
4. ∇uλn → ∇U in L2

loc(RN+1);
5. ∂

∂t uλn → ∂
∂t U weakly in L2

loc(RN+1).

Proof. The proof is a straightforward adaptation of Lemma 3.2 of [5]. �

Now we state some lemmas on special limits of solutions to Pε that will be used throughout the
paper.

LEMMA 2.2 Let (uε j , vε j ) be a solution to (1.1) in a domain D ⊂ R
N+1, such that vε j � 0,

and verifies (1.7) in D with w0 = constant. Let (x0, t0) ∈ D and assume that uε j converges to
u = α(x − x0)

+
1 uniformly on compact subsets of D, with α ∈ R and ε j → 0. Then,

0 � α �
√

2M (2.2)

where M = ∫ 1
−w0

(s + w0) f (s) ds.

Proof. The proof is an adaptation of Proposition 5.2 of [5].
Without loss of generality we may assume that (x0, t0) = (0, 0).
First we see that necessarily α � 0 since u is subcaloric in D and u(0, 0) = 0. If α = 0 there is

nothing to prove. So let us assume that α > 0.
Let ψ ∈ C∞

c (D). Multiplying (1.1) by uε
x1

ψ and integrating by parts we get∫∫
D

u
ε j
t u

ε j
x1ψ =1

2

∫∫
D
|∇uε j |2ψx1 −

∫∫
D

u
ε j
x1∇uε j∇ψ

+
∫∫

D
Bε j (u

ε j , x, t)ψx1 +
∫∫

D
w

ε j
x1

(∫ uε j

−w0

fε j (s) ds

)
ψ,

(2.3)

where Bε(u, x, t) = ∫ u
−w0ε

(s + wε) fε(s) ds.
In order to pass to the limit in (2.3) we observe that, by Proposition 2.3

(uε j )t → 0 weakly in L2
loc(D),

∇uε j → αX{x1>0}e1 in L2
loc(D).
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On the other hand,

∇wε j

ε j
→ 0 uniformly on compact subsets of D.

Therefore, in order to pass to the limit in (2.3) we only need to analyse the limit of Bε j (u
ε j , x, t).

On one hand, it is easy to see that

Bε j (u
ε j (x, t), x, t) → M (2.4)

for every (x, t) such that x1 > 0. In fact,

Bε j (u
ε j , x, t) =

∫ u
ε j
ε j

−w0

(
s + wε j

ε j

)
f (s) ds =

∫ 1

−w0

(
s + wε j

ε j

)
f (s) ds

if j is large enough. Since |Bε j (u
ε j , x, t)| � C , it holds that (2.4) holds in L1

loc({x1 � 0}). On the
other hand, there exists M̄(x, t) ∈ L∞(D) such that Bε j (u

ε j , x, t) → M̄(x, t) weakly in L2
loc(D).

Clearly, M̄(x, t) = M in {x1 > 0}. Let us see that M̄(x, t) = M̄(t) in {x1 < 0}. In fact,

∇(Bε j (u
ε j (x, t), x, t)) = ∂Bε j

∂u
(uε j , x, t)∇uε j + ∇Bε j (u

ε j , x, t)

= (uε j + wε j ) fε j (u
ε j )∇uε j + ∇wε j

∫ uε j

−w0ε j

fε j (s) ds

= vε j fε j (u
ε j )∇uε j + ∇wε j

ε j

∫ u
ε j
ε j

−w0

f (s) ds.

Since vε j fε j (u
ε j ) → 0 in L1

loc({x1 < 0}), ∇uε j is uniformly bounded in L∞(D′) if D′ ⊂⊂ D and
∇w

ε j

ε j
→ 0 uniformly on compact subsets of D, it holds that

∇(Bε j (u
ε j (x, t), x, t)) → 0 in L1

loc({x1 < 0}).
So that, passing to the limit in (2.3) we get

α2

2

∫∫
{x1>0}

ψx1 = M
∫∫

{x1>0}
ψx1 +

∫
{x1<0}

M̄(t)ψx1 .

Thus, integrating in the variable x1 we get

∫
{x1=0}

(
α2

2
− M + M̄(t)

)
ψ = 0.

Since ψ is arbitrary, we conclude that

α2

2
− M + M̄(t) = 0.
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Finally, we notice that M̄(t) � 0. In fact,

Bε j (u
ε j , x, t) =

∫ u
ε j
ε j

−w
ε j

ε j

(
s + wε j

ε j

)
f (s) ds +

∫ −w
ε j

ε j

−w0

(
s + wε j

ε j

)
f (s) ds

�
∫ −w

ε j
ε j

−w0

(
s + wε j

ε j

)
f (s) ds → 0

since w
ε j

ε j
→ w0 uniformly on compact subsets of D.

Thus,

α =
√

2(M − M̄(t)) �
√

2M

and the proof is complete. �

LEMMA 2.3 Let (uε j , vε j ) be a solution to (1.1) in a domain D ⊂ R
N+1, such that vε j � 0,

and verifies (1.7) with w0 = constant in D. Let (x0, t0) ∈ D and assume that uε j converges to
u = α(x − x0)

+
1 + ᾱ(x − x0)

−
1 uniformly on compact subsets of D, with α, ᾱ > 0 and ε j → 0.

Then,

ᾱ = α �
√

2M (2.5)

where M = ∫ 1
−w0

(s + w0) f (s) ds.

Proof. We argue in a similar way as in Proposition 5.3 of [5].
We will denote Qr = Qr (0, 0). Without loss of generality we will assume that (x0, t0) = (0, 0)

and that Q2 ⊂⊂ D.
As before, uε satisfies∫∫

D
uε

t uε
x1

ψ =1

2

∫∫
D
|∇uε|2ψx1 −

∫∫
D

uε
x1
∇uε∇ψ

+
∫∫

D
Bε(u

ε, x, t)ψx1 +
∫∫

D
wε

x1

(∫ uε

0
fε(s) ds

)
ψ.

We want to pass to the limit. By Proposition 2.3 and the fact that uε j converges to αx+1 + ᾱx−1
we have that

u
ε j
t → 0 weakly in L2

loc(D),

∇uε j → αX{x1>0}e1 − ᾱX{x1<0}e1 in L2
loc(D).

Clearly, as α, ᾱ > 0, B(uε j , x, t) → M in L1
loc(D).

So, passing to the limit in the latter equation for the subsequence ε j , we get

−α2

2

∫∫
{x1>0}

ψx1 −
α2

2

∫∫
{x1<0}

ψx1 + M
∫∫

ψx1 = 0.

Integrating in the x1 variable, we conclude that

α = ᾱ.
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Next, we will assume that α >
√

2M and arrive at a contradiction.
First, let us consider zε j , defined in Q2, the solution to

∆zε j − z
ε j
t = (βε j (z

ε j )+ Wε j fε j (z
ε j ))ρε j (z

ε j /ε j ) in Q2 (2.6)

with boundary conditions
zε j = u − bε j on ∂p Q2

where βε(s) = s fε(s), Wε = supQ2
wε, bε j = supQ2

|uε j − u| and ρε j is a smooth cutoff function
with support in [−(w0 + 2Cε j ), 2] and ρε j ≡ 1 in [−(w0 + Cε j ), 1]. (Here Cε j → 0+ is such that
|wε j /ε j − w0| � Cε j in Q2 so that uε j /ε j � −(w0 + Cε j ) in Q2.)

We observe that zε j (x1, x ′, t) = zε j (−x1, x ′, t) in Q2.
It is easy to see that the proofs of Propositions 2.1 and 2.2 can be adapted to zε j so that, for a

subsequence, that we still call ε j , it holds that zε j → z uniformly on compact sets of Q2. We will
show that z = u.

First,

∆uε j − u
ε j
t = vε j fε j (u

ε j ) = (uε j + wε j ) fε j (u
ε j ) � βε j (u

ε j )+ Wε j fε j (u
ε j )

= (βε j (u
ε j )+ Wε j fε j (u

ε j ))ρε j (u
ε j /ε j ) in Q2.

From the fact that zε j � uε j on ∂p Q2, we deduce that zε j � uε j in Q2 and therefore z � u.
In order to see that u � z, we consider aε j ∈ C2(R) such that

a
ε j
ss =

(
β(aε j )+ Wε j

ε j
f (aε j )

)
ρε j (a

ε j ), s ∈ R (2.7)

aε j (0) = 1, a
ε j
s (0) = α. (2.8)

Integrating the equation we get, for every s ∈ R,

0 < γ − κε j � a
ε j
s (s) � α

where 1
2γ 2 ≡ 1

2α2 − M > 0 and κε j → 0 when j →∞.
It follows that there exists sε j < 0 such that

aε j (s) =
{

1+ αs s � 0

(γ − κε j )(s − sε j ) s � sε j

and it is easy to see that sε j are uniformly bounded below and, moreover, there exists s < 0 such
that sε j → s.

Now let

ãε j (x) = ε j a
ε j

(
x1

ε j
− bε j

(γ − κε j )ε j
+ sε j

)
.

Using that ãε j (0, x ′, t) = −bε j and the bounds on a
ε j
s , we deduce that

ãε j � u − bε j in Q2.

Now, since ãε j � zε j on ∂p Q2, and ãε j is a one-dimensional stationary solution to (2.6), we
have that ãε j � zε j in Q2. Since ãε j → u uniformly on compact subsets of {x1 > 0}, we deduce
that u � z in Q2 ∩ {x1 > 0}.
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Finally, we notice that zε j (x1, x ′, t) = zε j (−x1, x ′, t), so we conclude that u � z in Q2.
Now, the proof of the lemma follows as in [5] where it is shown, for the case in which wε ≡ 0,

that if zε j → αx+1 + αx−1 uniformly on compact subsets of Q2, where zε j are solutions to (2.6)
which are symmetric in the x1 variable, and α > 0, it holds that α �

√
2M . So that we arrive at

a contradiction since we have assumed that α >
√

2M . Here we use again that w
ε j

ε j
→ w0 and

lim infBε j (u
ε j , x, t) � 0. The proof is complete. �

LEMMA 2.4 Let (uε j , vε j ) be a solution to (1.1) in a domain D j such that vε j � 0, and
satisfies (1.7) in D j with w0 = constant. Here D j is such that D j ⊂ D j+1 and ∪ jD j = R

N+1.
Let us assume that uε j → U uniformly on compact subsets of R

N+1 as j →∞ and ε j → 0, with
U � 0, U ∈ Lip

(
1, 1

2

)
and ∂{U > 0} �= ∅. Then,

|∇U | � √
2M in R

N+1 (2.9)

with M = ∫ 1
−w0

(s + w0) f (s) ds.

Proof. The proof is similar to that of Theorem 6.2 in [5]. Here we use Lemmas 2.2 and 2.3 instead
of Propositions 5.2 and 5.3 in [5]. �

3. The free-boundary condition

In this section, we find the free-boundary condition for the limit problem and we show that the
limit function u is a solution to the free-boundary problem (1.4) in a pointwise sense, under the
assumption that the free boundary admits an inward spatial normal in a parabolic measure theoretic
sense (Definition 3.1).

Throughout this section we will assume that (1.7) holds and that for every K ⊂ {u ≡ 0}◦
compact there exists 0 < η < 1 and ε0 > 0 such that, for ε < ε0,

uε

ε
� η in K . (3.1)

This assumption is a natural one in applications; roughly speaking it means that the mixture
temperature reaches the flame temperature only if some combustion is taking place.

As a consequence, it holds that

w0 = lim
ε→0

vε − uε

ε
� − lim sup

ε→0

uε

ε
� −η > −1 in K .

So that, for the sake of simplicity, we will assume from now on that w0 > −1 in D.
We start this section with a lemma that is the essential ingredient in the subsequent proofs.

LEMMA 3.1 Let (uεk , vεk ) be a solution to (1.1) in a domain D ⊂ R
N+1 such that vεk � 0 and (1.7)

and (3.1) are satisfied with w0 > −1. Let u = lim uεk , with εk → 0, and Bεk (u, x, t) = ∫ u
−w0εk

(s +
wεk ) fεk (s) ds. Then,

Bεk (u
εk , x, t) → M(x, t)X{u>0}, in L1

loc(D)

where M(x, t) = ∫ 1
−w0(x,t)(s + w0(x, t)) f (s) ds.
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Proof. First, let us observe that

∫ ε

−w0ε

(wε + s) fε(s) ds =
∫ ε

−w0ε

(wε + s)
1

ε2
f

(
s

ε

)
ds

=
∫ 1

−w0

(
wε

ε
+ s

)
f (s) ds.

Therefore,

lim
εk→0

∫ εk

−w0εk

(wεk + s) fεk (s) ds = M(x, t).

Let us now see that Bεk (u
εk , x, t) → M(x, t) uniformly on compact subsets of {u > 0}.

Let K ⊂⊂ {u > 0}, then there exists λ > 0 and ε0 such that uεk (x, t) > λ ∀εk < ε0 , (x, t) ∈
K . Thus, we have

lim
k→∞Bεk (u

εk (x, t), x, t) = lim
k→∞

∫ uεk (x,t)

−w0εk

(wε + s) fεk (s) ds

= lim
k→∞

∫ εk

−w0εk

(wε + s) fεk (s) ds = M(x, t).

Since |Bεk (u
εk , x, t)| � C on every compact subset of D, it holds, for a subsequence that we

still call εk , that

Bεk (u
εk , x, t) → M̄(x, t) weakly in L2

loc(D).

Clearly, M̄(x, t) = M(x, t) in {u > 0}. Let us see that M̄(x, t) = 0 in {u ≡ 0}◦. In fact, let K be a
compact subset of {u ≡ 0}◦. For every ε1, ε2 > 0, it holds that, for k large enough,

|{(x, t) ∈ K / ε1 < Bεk (u
εk , x, t) < M(x, t)− ε2}|

�
∣∣∣∣
{
(x, t) ∈ K /

uεk

εk
(x, t) > −w0(x, t) ,

ε1

2
<

∫ uεk
εk

−w0

(s + w0) f (s) ds < M − ε2

2

}∣∣∣∣
�

∣∣∣∣
{
(x, t) ∈ K / − w0(x, t)+ µ � uεk

εk
� 1− µ

}∣∣∣∣
�

∣∣∣∣
{
(x, t) ∈ K /

vεk

εk
� µ

2
,

uεk

εk
� 1− µ

}∣∣∣∣
�

∣∣∣∣
{
(x, t) ∈ K / vεk fεk (u

εk ) � Cµ

2εk

}∣∣∣∣.
Since vεk fεk (u

εk ) → 0 as measures in K and vεk � 0, fεk � 0, it holds that

vεk fεk (u
εk ) → 0 in L1(K ).

Therefore,

|{(x, t) ∈ K / ε1 < Bεk (u
εk , x, t) < M(x, t)− ε2}| → 0.
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On the other hand, let 1 > η > supK (−w0) be the constant in (3.1) in K . It holds that

Bεk (u
εk , x, t) =

∫ uεk
εk

−wεk
εk

(
s + wεk

εk

)
f (s) ds +

∫ −wεk
εk

−w0

(
s + wεk

εk

)
f (s) ds

�
∫ η

−wεk
εk

(
s + wεk

εk

)
f (s) ds +

∫ −wεk
εk

−w0

(
s + wεk

εk

)
f (s) ds

=
∫ η

−w0

(
s + wεk

εk

)
f (s) ds →

∫ η

−w0

(s + w0) f (s) ds < M(x, t)

since −wεk

εk
� uεk

εk
� η in K . Therefore,

lim supBεk (u
εk , x, t) �

∫ η

−w0

(s + w0) f (s) ds < M(x, t).

So that, for ε2 > 0 small, we get

|{(x, t) ∈ K / ε1 < Bεk (u
εk , x, t)}| = |{(x, t) ∈ K / ε1 < Bεk (u

εk , x, t) < M − ε2}| → 0.

Let us now see that M̄(x, t) = 0 in K . As in Lemma 2.2 we see that M̄(x, t) � 0. Now
assume that for some ε1 > 0 we have |{M̄(x, t) > ε1}| > 0. Then, there exists m such that
|{M̄(x, t) > ε1 + 1

m }| := |Am | > 0.
Now, ∫

Am

Bεk (u
εk , x, t) →

∫
Am

M̄(x, t) >

(
ε1 + 1

m

)
|Am |

but, ∫
Am

Bεk (u
εk , x, t) =

∫
Am∩{Bεk (uεk ,x,t)>ε1}

Bεk (u
εk , x, t)

+
∫

Am∩{Bεk (uεk ,x,t)�ε1}
Bεk (u

εk , x, t).

Since the first term in the right-hand side goes to zero and the second is bounded by ε1|Am |, we get
a contradiction.

The proof is complete. �

Let us give the definition of a regular point.

DEFINITION 3.1 We say that ν is the interior unit spatial normal to the free boundary ∂{u > 0} at
a point (x0, t0) ∈ ∂{u > 0} in the parabolic measure theoretic sense, if ν ∈ R

N , |ν| = 1 and

lim
r→0

1

r N+2

∫∫
Qr (x0,t0)

|X{u>0} − X{(x,t)/ 〈x−x0,ν〉>0}| dx dt = 0.

DEFINITION 3.2 We say that (x0, t0) is a regular point of ∂{u > 0} if there exists an interior unit
spatial normal to ∂{u > 0} at (x0, t0) in the parabolic measure theoretic sense.
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We can now prove the main result of this section.

THEOREM 3.1 Let (uε j , vε j ) be a family of uniformly bounded solutions of (1.1) in a domain
D ⊂ R

N+1, such that uε j → u uniformly on a compact subset of D, vε j � 0, and verifies (1.7)
and (3.1), with w0 > −1. If (x0, t0) is a regular point of D ∩ ∂{u > 0}, then u has the asymptotic
development

u(x, t) = α〈x − x0, ν〉+ + o(|x − x0| + |t − t0|1/2)

with α = √
2M(x0, t0), where M = ∫ 1

−w0
(s+w0) f (s) ds. Here ν is the interior unit spatial normal

to the free boundary at (x0, t0) in the parabolic measure theoretic sense.

Proof. We assume, without loss of generality, that (x0, t0) = (0, 0) and ν = e1 = (1, 0, . . . , 0).
Let ψ ∈ C∞

c (D). We proceed as in Lemma 2.2. Let us multiply the equation for uε by uε
x1

ψ

and integrate by parts. We have∫∫
D

uε
t uε

x1
ψ =1

2

∫∫
D
|∇uε|2ψx1 −

∫∫
D

uε
x1
∇uε∇ψ

+
∫∫

D
Bε(u

ε, x, t)ψx1 +
∫∫

D

(
wε

ε
− w0

)
f (−w0)(w0)x1ψ

+
∫∫

D

wε
x1

ε

(∫ uε

ε

−w0

f (s) ds

)
ψ.

Since

Bε j (u
ε j , x, t) =

∫ u
ε j
ε j

−w0

(s + w0) f (s) ds +
∫ u

ε j
ε j

−w0

(
wε j

ε j
− w0

)
f (s) ds,

and Bε j (u
ε j , x, t) → 0 weakly in L1(K ) for every K ⊂ {u ≡ 0}◦ compact, it holds that

Fε j (x, t) :=
∫ u

ε j
ε j

−w0

(s + w0) f (s) ds → 0 weakly in L1(K ).

Since Fε j is non-negative, it holds that

Fε j → 0 in L1(K ).

So that, for a subsequence that we still call ε j , it holds that

Fε j → 0 a.e. K .

Thus,
uε j

ε j
→−w0 a.e. K .

Therefore,

∫ u
ε j
ε j

−w0

f (s) ds →
(∫ 1

−w0

f (s) ds

)
X{u>0} a.e. D. (3.2)
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By using Proposition 2.3, Lemma 3.1 and (3.2) we can pass to the limit (for the sequence ε j →
0) in the latter equation and get∫∫

D
ut ux1ψ = 1

2

∫∫
D
|∇u|2ψx1 −

∫∫
D

ux1∇u∇ψ +
∫∫

{u>0}
M(x, t)ψx1

+
∫∫

{u>0}
(w0)x1

(∫ 1

−w0

f (s) ds

)
ψ

(3.3)

for every ψ ∈ C∞
c (D).

Now, let ψλ(x, t) = λψ(
x−x0

λ
,

t−t0
λ2 ). Replacing ψ by ψλ in (3.3) and changing variables, we

get, for uλ(x, t) = 1
λ

u(x0 + λx, t0 + λ2t),∫∫
(uλ)t (uλ)x1ψ = 1

2

∫∫
|∇uλ|2ψx1 −

∫∫
(uλ)x1∇uλ∇ψ

+
∫∫

{uλ>0}
M(λx, λ2t)ψx1 +

∫∫
{u>0}

(w0)x1

(∫ 1

−w0

f (s) ds

)
ψλ.

(3.4)

Let r > 0 be such that Qr (x0, t0) ⊂⊂ D. We have that uλ ∈ Lip
(
1, 1

2

)
in Qr/λ(0, 0) uniformly

in λ, and uλ(0, 0) = 0. Therefore, for every λn → 0, there exists a subsequence λn′ → 0 and a
function U ∈ Lip

(
1, 1

2

)
in R

N+1 such that uλn′ → U uniformly on compact sets of R
N+1.

By our assumption on (x0, t0), we can easily see that for every k > 0

|{uλ > 0} ∩ {x1 < 0} ∩ Qk(0, 0)| → 0 as λ → 0, (3.5)

and

|{uλ = 0} ∩ {x1 > 0} ∩ Qk(0, 0)| → 0 as λ → 0. (3.6)

Now, using Lemma 2.1 and the fact that ψλ → 0 uniformly in D and supp ψλ ⊂ supp ψ , we
can pass to the limit in (3.4) and get∫∫

{x1>0}
UtUx1ψ =

1

2

∫∫
{x1>0}

|∇U |2ψx1 −
∫∫

{x1>0}
Ux1∇U∇ψ + M(0, 0)

∫∫
{x1>0}

ψx1 .

(3.7)

Our aim is to prove that U = αx+1 . First, by (3.5) and (3.6), we deduce that U = 0 in {x1 < 0}.
On the other hand, U is a solution to the heat equation in {U > 0} ⊂ {x1 > 0}. By Corollary A.1
in [5], for every x̄ ′ ∈ R

N−1, t̄ ∈ R, there exists α � 0 such that

U (x, t) = αx+1 + o(|(x1, x ′)− (0, x̄ ′)| + |t − t̄ |1/2) in {x1 > 0} ∩ {t < t̄}.

Replacing the test function ψ by Φλ(x, t) = λΦ(
x1
λ

, x ′−x̄ ′
λ

, t−t̄
λ2 ) with Φ ∈ C∞

c ({t < 0}) and
proceeding as above, we get

−α2

2

∫∫
{x1>0}

Φx1 + M(0, 0)

∫∫
{x1>0}

Φx1 = 0. (3.8)
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In order to pass to the limit for a sequence λn → 0 we have used Lemma 2.1. (See [6], Theorem 3.1
for the details.)

Thus, α = √
2M(0, 0).

In order to see that U = αx+1 we use Lemma 2.4. In fact, by Lemma 2.1, there exists a sequence
jn →∞ such that

uδn := 1

λn
uε jn (λn x, λ2

nt) → U (x, t)

uniformly on compact subsets of R
N+1. We recall that (uδn , vδn ) is a solution to (1.1) with ε replaced

by δn . Moreover,
wδn

δn
= wε jn (λn x, λ2

nt)

ε jn
→ w0(0, 0)

uniformly on compact sets of R
N+1.

In addition, U � 0 and ∂{U > 0} �= ∅. By Lemma 2.4 we have that |∇U | � α(= √
2M(0, 0)).

Since U ≡ 0 in {x1 = 0} we deduce that

U � αx1 in {x1 > 0}.
By Hopf’s Principle, we deduce that

U = αx1 in {x1 > 0}.
The theorem is proved. �

REMARK 3.1 It is clear from the proof that the result is still true if we replace condition (3.1) by
the following property: uε j

ε j
→−w0 a.e. {u ≡ 0}◦.

4. Viscosity solutions

In this section we prove that, under suitable assumptions, the limit function u is a viscosity solution
of the free-boundary problem (1.4).

For the sake of completeness, we state here the definition of viscosity solution that was
introduced in [6] for the two-phase case of this problem when w0 = 0.

DEFINITION 4.1 Let Q be a cylinder in R
N × (0, T ) and let v ∈ C(Q). Then v is called a classical

subsolution (supersolution) of (1.4) in Q if v � 0 and

1. ∆v − vt � 0 (� 0) in Ω+ ≡ Q ∩ {v > 0};
2. v ∈ C1(Ω+).;
3. for any (x, t) ∈ ∂Ω+ ∩ Q, ∇v(x, t) �= 0, and |∇v(x, t)| � √

2M
(
�
√

2M
)
.

We say that v is a classical solution in Q if it is both a classical subsolution and a classical
supersolution.

DEFINITION 4.2 Let u be a continuous non-negative function in Q; u is called a viscosity
subsolution (supersolution) of (1.4) in Q if, for every subcylinder Q′ ⊂⊂ Q and for every classical
supersolution (subsolution) v in Q′,

u � v on ∂p Q′ (u � v on ∂p Q′) and

v > 0 on {u > 0} ∩ ∂p Q′ (u > 0 on {v > 0} ∩ ∂p Q′)
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implies that u � v (u � v) in Q′.
The function u is called a viscosity solution if it is both a viscosity subsolution and a viscosity

supersolution.

DEFINITION 4.3 Let u be a continuous non-negative function in D and let (x0, t0) ∈ ∂{u > 0}∩D.
We say that (x0, t0) is a regular point from the non-positive side, if there exists a regular non-negative
function v in D such that v > u in {u > 0} for t < t0 and v(x0, t0) = u(x0, t0).

Finally we need the following definition on non-degeneracy.

DEFINITION 4.4 Let u be a continuous non-negative function in D. Let (x0, t0) ∈ D be such that
u(x0, t0) = 0. We say that u does not degenerate at (x0, t0) if there exist r0 > 0 and C > 0 such that

sup
∂p Q−

r (x0,t0)

u � C r for 0 < r � r0.

We now prove that, under suitable assumptions on the limit function u, it holds that u is a
viscosity solution to the free-boundary problem.

THEOREM 4.1 Let u = lim uεk , where (uεk , vεk ) are uniformly bounded solutions to (1.1) with
vεk � 0, satisfying (1.7) in D, with w0 > −1, and such that uεk either satisfies (3.1) or uεk

t � 0 in
D.

If u+ does not degenerate at every point of the free boundary which is regular from the non-
positive side, then u is a viscosity solution of (1.4).

Proof. By Proposition 2.3 and Lemma 2.1, Theorem 4.1 of [6] can be stated for our system, thus u
is a viscosity supersolution.

In order to see that it is a viscosity subsolution, let v be a classical supersolution such that

u � v in ∂p Q and v > 0 in {u > 0} ∩ ∂p Q.

We want to see that u � v in Q.
If it is not, we define

t0 = sup{0 < s < T : v > 0 in {u > 0} ∩ Q ∩ {0 � t < s}}.
From the definition of t0, it follows that t0 > 0 and, from our hypotheses, we deduce that

v � u in Q ∩ {0 � t < t0}. In addition, there exists a sequence (x(s), t (s)) → (x0, t0) ∈ Q
such that v(x(s), t (s)) = 0, (x(s), t (s)) ∈ {u > 0} ∩ Q. Clearly, u(x0, t0) = v(x0, t0) = 0 and
(x0, t0) ∈ ∂{u > 0} ∩ Q. If (x0, t0) ∈ {v = 0}◦ then, for τ small, we have u � v = 0 in
Bτ (x0, t0) ∩ {t < t0} and, therefore, u ≡ 0 there, which contradicts our hypothesis. Thus,

v � u in Q ∩ {0 � t � t0},
(x0, t0) ∈ ∂{u > 0} ∩ ∂{v > 0} ∩ Q.

We may assume, without loss of generality, that (x0, t0) = (0, 0) and Q1(0, 0) = Q1 ⊂ Q
(consider instead of u the function 1

λ0
u(x0+λ0x, t0+λ2

0t) for certain λ0 > 0 small, and analogously
with v). Let us take

vλ(x, t) = 1

λ
v(λx, λ2t), uλ(x, t) = 1

λ
u(λx, λ2t).
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It is easy to see that there exists a sequence λn → 0 and functions u0, v0 such that vλ →
v0, uλ → u0.

Since v is regular, we have that v0(x, t) = βx+1 with 0 � β �
√

2M(0, 0) (for some system of
coordinates).

Let us show also that u0(x, t) = αx+1 for some α � 0.
We may think that in Q1, ∂{v > 0} is the graph of some function ψ(x ′, t) = x1, x = (x1, x ′)

with ψ ∈ Lip
(
1, 1

2

)
, where ψ(0, 0) = 0 and {v > 0} = {x1 > ψ(x ′, t)}.

Hence, we have that
|ψ(x ′, t)| � C(|x ′| + |t |1/2).

Let R = {(x, t) ∈ Q1 : x1 < −C(|x ′| + |t |1/2)}. Then R ∩ {v > 0} = ∅ and let w be the
caloric function in O = Q−

1 \R with w = 0 in ∂pR and w = L � ‖u‖∞ in the rest of ∂pO.
Since u is globally subcaloric and u � w on ∂pO, then u < w in O.
Now, since w − u is supercaloric in O, w − u > 0 in the interior and w − u = 0 at (0, 0), then,

by Lemma A.1 of [5], we have that w − u = δx+1 + o(|x | + |t |1/2) and, since by the same lemma,
w has an asymptotic development at (0, 0),

u(x, t) = αx+1 + o(|x | + |t |1/2), with α � 0.

Since by hypothesis u+ does not degenerate, it follows that α > 0.
On the other hand, since v is regular, v admits an asymptotic development at the origin in the

form v(x, t) = βx+1 + o(|x | + |t |1/2). Clearly, β � α.
Now, let h be the caloric function in Õ := Q−

1 ∩ {v > 0} ∩ {−µ < t < 0} for some small
µ > 0, with h = v − u on ∂pÕ. And, let g be the caloric function in Õ with g = v on ∂pÕ. Then,
h = g = 0 in Q−

1 ∩ ∂{v > 0} ∩ {−µ < t < 0} and h > 0, g > 0 in Õ.
Therefore, by [1], there exists σ > 0 such that h � σg in Q−

1/2 ∩ {v > 0} ∩ {−µ
2 < t < 0}.

Since u is subcaloric in Q−
1 and u � v in Q−

1 we deduce that v − u � σu in Q−
1/2 ∩ {v >

0} ∩ {−µ
2 < t < 0}. In particular, β − α � σα > 0.

The theorem will be finished if we show that α = √
2M(0, 0).

Case 1 uεk verifies (3.1).

As in Theorem 3.1, we obtain∫∫
D

ut ux1ψ = 1

2

∫∫
D
|∇u|2ψx1 −

∫∫
D

ux1∇u∇ψ

+
∫∫

D∩{u>0}
M(x, t)ψx1 +

∫∫
D∩{u>0}

(w0)x1

(∫ 1

−w0

f (s) ds

)
ψ

for every test function ψ . Then, taking ψλ(x, t) = λψ( x
λ
, t

λ2 ) and changing variables, we get

∫∫
D

(uλ)t (uλ)x1ψ = 1

2

∫∫
D
|∇uλ|2ψx1 −

∫∫
D

(uλ)x1∇uλ∇ψ

+
∫∫

D∩{uλ>0}
M(λx, λ2t)ψx1 +

∫∫
D∩{u>0}

(w0)x1

(∫ 1

−w0

f (s) ds

)
ψλ.
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By Lemma 2.1, we get (for some sequence λk → 0)

0 = −1

2
α2

∫∫
D∩{x1>0}

ψx1 + lim
k→∞

∫∫
D∩{uλk >0}

M(λk x, λ2
k t)ψx1 .

We want to check that X{uλk >0} → X{x1>0} a.e. or, equivalently,

1. {x1 > 0} ⊂ ∪∞n=1 ∩k�n {uλk > 0} = lim inf{uλk > 0} a.e.
2. ∩∞n=1 ∪k�n {uλk > 0} = lim sup{uλk > 0} ⊂ {x1 > 0} a.e.

Let us show (1). If x1 > 0, we get that αx1 > 0 and since uλk (x, t) → αx1 it follows that
uλk (x, t) > 0 ∀k � k0.

Let us show (2). If there exists k j →∞ with uλk j
(x, t) > 0 then it must be x1 � 0, because if

x1 < 0, we have that vλk j
(x, t) = 0 for j � j0 (because as v is regular, {vλk > 0} → {x1 > 0}).

Since uλk j
� vλk j

we get a contradiction.
Therefore,

0 = −1

2
α2

∫∫
D∩{x1>0}

ψx1 + M(0, 0)

∫∫
D∩{x1>0}

ψx1 .

So that,

0 =
∫
D∩{x1=0}

( 1
2α2 − M(0, 0)

)
ψ dx ′ dt.

Since ψ is arbitrary, 1
2α2 = M(0, 0), so that,

α = √
2M(0, 0)

and the proof is complete.

Case 2 uεk
t � 0.

We already know that, if we consider uλ(x, t) = 1
λ

u(λx, λ2t), then it follows that

uλ(x, t) → u0(x, t) ≡ αx+1
uniformly on compact subsets of R

N+1.
As before,∫∫

D
uεk

t uεk
x1

ψ = 1

2

∫∫
D
|∇uεk |2ψx1 −

∫∫
D

uεk
x1
∇uεk∇ψ +

∫∫
D
Bεk (u

εk , x, t)ψx1

+
∫∫

D
wεk

x1

(∫ uεk

−w0εk

fεk (s) ds

)
ψ +

∫∫
D

(w0)x1

(
wεk

εk
− w0

)
f (−w0)ψ.

Now, as in the previous case, if we consider first ψλ(x, t) = λψ( x
λ
, t

λ2 ) and change variables,
we obtain ∫∫

(uεk
λ )t (u

εk
λ )x1ψ = 1

2

∫∫
|∇uεk

λ |2ψx1 −
∫∫

(uεk
λ )x1∇uεk

λ ∇ψ

+
∫∫

Bλ
εk/λ

(uεk
λ , x, t)ψx1 +

∫∫
D

(wεk )x1

εk

(∫ uε
k

εk

−w0

f (s) ds

)
ψλ

+
∫∫

D
(w0)x1

(
wεk

εk
− w0

)
f (−w0)ψ

λ

(4.1)
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where Bλ
ε (u, x, t) = ∫ u

−w0(λx,λ2t)ε(s+wε(x, t)) fε(s) ds. We want to pass to the limit as both εk and
λ go to zero.

Using Lemma 2.1, we see that for every sequence λn → 0 there exists a sequence kn → ∞
such that δn := εkn /λn → 0 and uδn := (uεkn )λn → u0 uniformly on compact sets of R

N+1. By
Proposition 2.3 we see that we can pass to the limit in the first three terms of (4.1) (with ε = εkn

and λ = λn).
Let us study the limit of Bλn

δn
(uδn (x, t), x, t).

It is easy to see that in {x1 > 0}, Bλn
δn

(uδn (x, t), x, t) → M(0, 0) uniformly on compact sets.
Now, let K ⊂ {x1 < 0} be compact. We will show that

∇(Bλn
δn

(uδn (x, t), x, t)) → 0 in L1(K ).

In fact,

∇(Bλn
δn

(uδn (x, t), x, t)) = vδn fδn (u
δn )∇uδn

+ λn∇w0(λn x, λ2
nt)

(
wδn

δn
(x, t)− w0(λn x, λ2

nt)

)
f (−w0(λn x, λ2

nt))

+ ∇wδn

δn

∫ uδn
δn

−w0(λn x,λ2
n t)

f (s) ds.

Since vδn fδn (u
δn ) → 0 as measures in K and is non-negative, we deduce that the convergence takes

place in L1(K ). On the other hand, ∇uδn is uniformly bounded. Therefore, the first term goes to
zero in L1(K ).

In order to see that the second and third terms go to zero uniformly in K we only need to observe
that

uδn

δn
(x, t) = uεkn

εkn

(λn x, λ2
nt)

and a similar formula holds for wδn

δn
. So that∣∣∣∣wδn

δn
(x, t)− w0(λn x, λ2

nt)

∣∣∣∣ → 0 uniformly on compact sets of R
N+1,

uδn

δn
� −wδn

δn
� −C,

|∇wδn |
δn

(x, t) = λn
|∇wεkn |

εkn

(λn x, λ2
nt) → 0 uniformly on compact sets of R

N+1.

On the other hand, |Bλn
δn

(uδn (x, t), x, t)| � CK , so that we have

Bλn
δn

(uδn (x, t), x, t) → M̄(t) weakly in L2(K ).

Let us now show that, actually, the convergence takes place in L1(K ).
It holds that

∂

∂t
(Bλn

δn
(uδn (x, t), x, t)) = vδn fδn (u

δn )(uδn )t + ∂

∂t
Bλn

δn
(uδn , x, t)

� ∂

∂t
Bλn

δn
(uδn , x, t) � CK in K .
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On the other hand, for every (x0, t0) ∈ K , and Qτ (x0, t0) ⊂ {x1 < 0},∫∫
Qτ (x0,t0)

∂

∂t
(Bλn

δn
(uδn (x, t), x, t)) =

∫
Bτ (x0)

Bλn
δn

(uδn (x, t0 + τ 2), x, (t0 + τ 2)) dx

−
∫

Bτ (x0)

Bλn
δn

(uδn (x, t0 − τ 2), x, (t0 − τ 2)) dx

� −Cτ

since |Bλn
δn

(uδn (x, t), x, t)| � CK for every compact set K .

Therefore, there exists CK > 0 such that ‖Bλn
δn

(uδn (x, t), x, t)‖W 1,1(K ) � CK . Hence the

convergence takes place in L1(K ) (for a subsequence).
Now arguing as in Lemma 3.1, we get M̄(t) = 0 or M̄(t) = M(0, 0).
We can now take the limit in (4.1) for the sequences εkn and λn and we obtain

0 = −1

2
α2

∫∫
D∩{x1>0}

ψx1 + M(0, 0)

∫∫
D∩{x1>0}

ψx1 +
∫∫

D∩{x1<0}
M̄(t)ψx1 .

Thus,

0 =
∫
D∩{x1=0}

(
1

2
α2 − M(0, 0)− M̄(t)

)
ψ dx ′ dt.

Since ψ is arbitrary we get 1
2α2 = M(0, 0)− M̄(t). So that, in particular, M̄(t) is constant and

then we have that M̄(t) ≡ 0 or M̄(t) ≡ M(0, 0). Since α > 0 we deduce that M̄(t) ≡ 0 and

α = √
2M(0, 0).

The proof is complete. �

Now we prove a proposition that says that, under suitable assumptions, u+ does not degenerate
on the free boundary. The proof is similar to Theorem 6.3 in [5], where the non-degeneracy of u+
was proved in the strictly two- phase case. Here we assume, instead of (3.1), the somewhat stronger
condition that for every K ⊂ D compact, there exist 0 < η < 1 and ε0 > 0 such that for every
0 < ε � ε0

uε

ε
� η in K ∩ {u ≡ 0}◦. (4.2)

PROPOSITION 4.1 Let u = lim uεk , where (uεk , vεk ) are uniformly bounded solutions to (1.1)
satisfying (1.7) with w0 > −1, such that vεk � 0 and the functions uεk satisfy (4.2). Let (x0, t0) ∈
∂{u > 0}.

Let us assume that there exists ν ∈ R
N , with |ν| = 1 such that

lim inf
r→0+

|{u > 0} ∩ {〈x − x0, ν〉 > 0} ∩ Q−
r (x0, t0)|

|Q−
r (x0, t0)|

> α1

and

lim inf
r→0+

|{u = 0}◦ ∩ {〈x − x0, ν〉 < 0} ∩ Q−
r (x0, t0)|

|Q−
r (x0, t0)|

> α2
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with α1 + α2 > 1
2 , then there exists a constant C > 0 and r0 > 0 which depends on N and f such

that, if 0 < r � r0,
sup

∂p Q−
r (x0,t0)

u � Cr.

Proof. Without loss of generality, we may assume that (x0, t0) = (0, 0) and that ν = e1 =
(1, 0, . . . , 0).

Here we note Q−
r = Q−

r (0, 0) and

(uε)r (x, t) = 1

r
uε(r x, r2t), (vε)r (x, t) = 1

r
vε(r x, r2t), ur (x, t) = 1

r
u(r x, r2t).

Let us see that there exists r0 > 0 and a constant c such that if r < r0 and ε < ε0 = ε0(r), then∫∫
Q−

1

(vε)r fε/r ((u
ε)r ) dx � c.

Following [5], there exists γ > 0 small such that, for some λ > 0,

|{ur > γ } ∩ {x1 > 0} ∩ Q−
1 |

|Q−
1 |

+ |{ur = 0}◦ ∩ {x1 < 0} ∩ Q−
1 |

|Q−
1 |

� 1

2
+ λ.

Let us now define

Ar = {ur > γ } ∩ {x1 > 0} ∩ Q−
1 , Br = {ur = 0}◦ ∩ {x1 < 0} ∩ Q−

1

and − Br = {(x1, x ′, t)/ (−x1, x ′, t) ∈ Br }.
Then, we have

|Ar ∩ (−Br )| � λ|Q−
1 | = λ̃.

Once again, following [5], we have for 0 < ρ < 1 fixed that there exists 0 < xr
1 < 1 such that

|Λr | = |{(x ′, t)/ (xr
1, x ′, t) ∈ Ar ∩ (−Br )}| > ρλ̃.

Let η > 0 be the constant in (4.2) in Q1(0, 0) and let 0 < δ′ < δ, 0 < b < b′ < 1 be such that

η < −w0(0, 0)+ δ < b.

Let κ > 0 be such that
f (s) > κ > 0 for s � b′.

Then, for (x ′, t) ∈ Λr , we have (for ε = εκ)

1

ε/r
(uε)r (xr

1, x ′, t) >
γ

2(ε/r)
> b,

1

ε/r
(uε)r (−xr

1, x ′, t) < −w0(0, 0)+ δ

if εk < ε1 = ε1(r) is small. So that, for every (x ′, t) ∈ Λr , there exists x̃r
1 ∈ (−1, 1) such that

−w0(0, 0)+ δ � 1
ε/r (uε)r (x̃r

1, x ′, t) � b.
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Now, by the uniform Lipschitz regularity of (uε)r and (vε)r , and (1.7), we have that for ε �
ε0(� ε1) and r � r0,

(uε)r

ε/r
(x1, x ′, t) � b′ and

(vε)r

ε/r
(x1, x ′, t) � δ′ if |x1 − x̃r

1 | < C
ε

r

where C depends on δ, δ′, b, b′, on the Lipschitz constant of uε and vε in Q−
1 and r0 depends only

w0.
Finally we have∫∫

Q−
1

(vε)r fε/r ((u
ε)r ) =

∫∫
Q−

1

(vε)r

ε/r

1

ε/r
f

(
(uε)r

ε/r

)

� δ′ κ

ε/r

∣∣∣∣
{
(x, t) ∈ Q−

1 /
(vε)r

ε/r
� δ′ and f

(
(uε)r

ε/r

)
� κ

}∣∣∣∣
� δ′ κ

ε/r
|Λr |2C

ε

r
� 2Cδ′κρδ̃ ≡ c.

The rest of the proof follows as in [5]. �
REMARK 4.1 Proposition 4.1 remains true if we change the hypothesis that uεk satisfies (4.2) by

uεk

εk
→−w0 a.e. {u ≡ 0}◦. (4.3)

In fact, as in the proof of Proposition 4.1, we consider for each 0 < r < 1 the sets Ar and Br . So
that, for some 0 < λ < 1

|Ar ∩ (−Br )| � λ|Q−
1 |.

Since Br ⊂ {ur ≡ 0}◦, it holds that

(uε)r

ε/r
(−x1, x ′, t) →−w0(−r x1, r x ′, r2t) a.e. Ar ∩ (−Br ).

Let 0 < µ < 1. There exists Cr ⊂ (Ar ∩ (−Br )) such that |Cr | = µ|Ar ∩ (−Br )| and

(uε)r

ε/r
(−x1, x ′, t) →−w0(−r x1, r x ′, r2t) uniformly in Cr .

Let δ > 0. There exists ε1 = ε1(r) such that

(uε)r

ε/r
(−x1, x ′, t) � −w0(−r x1, r x ′, r2t)+ δ

2
� −w0(0, 0)+ δ in Cr

if ε < ε1 and r < r0 = r0(δ). Now, the proof follows as in Proposition 4.1 by taking λ̃ = µλ|Q−
1 |

and
Λr := {(x ′, t) / (xr

1, x ′, t) ∈ Cr }.
REMARK 4.2 Proposition 4.1 remains true if we change condition (4.2) by condition (3.1). In fact,
as in the proof of Theorem 3.1, we see that condition (3.1) implies that

Bεk (u
εk , x, t) → 0 L1

loc({u ≡ 0}◦).
As in Theorem 3.1 we deduce that uεk satisfies (4.3).
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Using Remark 4.1, Remark 4.2 and Theorem 4.1 we get the following Corollaries.

COROLLARY 4.1 Let u = lim uεk where (uεk , vεk ) are unifomly bounded solutions to (1.1) in a
domain D ⊂ R

N+1 with vεk � 0, which verify (1.7) with w0 > −1 and such that uεk satisfies (3.1).
If the free boundary D∩∂{u > 0} is given by x1 = g(x ′, t) with g ∈ Lip

(
1, 1

2

)
, then u is a viscosity

solution of the free-boundary problem (1.4).

COROLLARY 4.2 Let u = lim uεk where (uεk , vεk ) are unifomly bounded solutions to (1.1) in a
domain D ⊂ R

N+1 with vεk � 0, which verify (1.7) with w0 > −1, and such that uεk satisfies (4.3)
and uεk

t � 0. If, for every (x0, t0) ∈ D ∩ ∂{u > 0}, {x ∈ R
N / (x, t0) ∈ D ∩ {u > 0}} is given

by x1 > Φ(x ′) with Φ Lipschitz continuous then, u is a viscosity solution of the free-boundary
problem (1.4).

Proof. We only need to see that u does not degenerate at points of the free boundary which are
regular from the zero side. Let (x0, t0) be any such point. We see that we can apply Remark 4.1 at
that point. In fact, since uεk

t � 0, u is decreasing in time. Therefore,

{(x, t) / x1 > Φ(x), t � t0} ⊂ {u > 0}
and the parabolic density of this set is positive. �

In particular, Corollary 4.2 can be applied to solutions of (1.1) with uε
0 constructed as in [7] and

vε
0 a small perturbation of uε

0.

COROLLARY 4.3 Let u0 ∈ C(RN ) ∩ C2({u0 > 0}) be such that ||u0||C2({u0>0}) < ∞, ∆u0 � 0
and (u0)x1 − λ|∇u0| � 0 in {u0 > 0} with λ > 0. Assume, moreover, that 0 < a2 � |∇u0| �
a1 <

√
2M0 in a neighbourhood of the free boundary: {x ∈ {u0 > 0} / dist (x, {u0 = 0}) � γ }, and

M0 =
∫ 1

0 s f (s). Then, there exists a sequence (uε
0, v

ε
0) ∈ (C1(RN ))2 with uε

0 → u0 uniformly in
R

N (so that uε
0 are uniformly bounded) and, moreover, it satisfies

1. ∆uε
0 − vε

0 fε(u
ε
0) � 0

2. (uε
0)x1 − λ|∇uε

0| � 0

3.
vε

0 − uε
0

ε
→ w0 uniformly on compact sets, with w0 > −1.

(4.4)

w0 ∈ R is any constant such that w0 � −η with η > 0 small enough.
Let (uε, vε) be the solution to (1.1) with initial datum (uε

0, v
ε
0) (so that, in particular, uε and vε

are uniformly bounded). For every sequence ε j → 0 there exists a subsequence ε jk such that there
exists

u = lim
k→∞ uε jk

and u is a viscosity solution to the free-boundary problem (1.4).

Proof. Let uε
0 be the approximations constructed in [7]. The approximations are constructed in the

following way. First, we extend u0 to a neighbourhood of {u0 > 0}: S := {x ∈ R
N / dist (x, {u0 >

0}) � γ } in such a way that ||u0||C2(S) < ∞. For ε small enough we define

uε
0(x) = εF

(
1√
2M0

(
1− u0(x)

ε

))
in {−Cε � u0 � ε},
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where F ∈ C2(R) is such that

F ′′ � (1+ δ)F f (F)+ αF ′, F(0) = 1, F ′(0) = −√
2M0.

Here δ > 0, α > 0 are such that F has a strict minimum at a finite point s̄ such that s̄
√

2M0 > 1.
(s̄ →+∞ as δ → 0), and F is decreasing for s < s̄.

The constant C is taken as C = s̄
√

2M0 − 1.
We define

uε
0 = u0 in {u0 > ε}

uε
0 = εF(s̄) in R

N \ {u0 > −Cε}.
As in [7], we see that uε

0 ∈ C1(RN ).
Let w0 ∈ R be such that w0 � −η > −F(s̄) with η > 0 to be fixed later and let

vε
0 = uε

0 + εw0.

Then, vε
0 � 0. It is straightforward to verify that (4.4)1 is satisfied in {u0 > ε} and R

N \{u0 > −Cε}.
Let us see that it is satisfied in {−Cε � u0 � ε}. In fact,

∆uε
0 − vε

0 fε(u
ε
0) =

1

2M0ε
F ′′|∇u0|2 − 1√

2M0
F ′∆u0 − 1

ε
F f (F)− w0

ε
f (F)

� 1+ δ

2M0ε
F f (F)|∇u0|2 + α

2M0ε
F ′|∇u0|2 − a√

2M0
F ′ − 1

ε
F f (F)− w0

ε
f (F)

where a > 0 is such that |∆u0| � a.
Let 0 < µ < 1 be such that a1 � (1−µ)1/2 A

√
2M0 with 0 < A < 1, and let δ in the definition

of F be such that (1+ δ)A2 � 1. Then, if ε is small enough so that αa2
2/
√

2M0 > aε it holds that

∆uε
0 − vε

0 fε(u
ε
0) � 1

ε

[
[(1+ δ)(1− µ)A2 − 1]F f (F)+

(
αa2

2

2M0
− aε√

2M0

)
F ′ − w0 f (F)

]

� 1

ε
[−µF − w0] f (F) � 1

ε
[−µF(s̄)− w0] f (F) � 0

if η = µF(s̄).
Clearly, (4.4)3 holds. Let us see that (4.4)2 also holds. We only need to verify this property in

the set {−Cε < u0 < ε} and this is clear from the fact that

∇uε
0 = − 1√

2M0
F ′

(
1√
2M0

(
1− u0

ε

))
∇u0.

Now, by the results of Section 2, for every sequence ε j → 0 there exists a subsequence and a
continuous function u such that uε jk → u uniformly on compact subsets of R

N × (0,∞).
On the other hand, uε

t is a solution to the following equation:

∆U −Ut = β ′ε(u)U.

Here βε(s) = s fε(s). Since, for ε small enough, uε
t (x, 0) � 0 we conclude that

uε
t � 0 in R

N × (0,∞). (4.5)
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In a similar way, we see that uε
x1
− λuε

xi
� 0 for every i . So that

uε
x1
− λ

N
|∇uε| � 0 in R

N × (0,∞). (4.6)

Clearly (4.5) and (4.6) imply that

ut � 0 and ux1 −
λ

N
|∇u| � 0 in {u > 0}.

In particular, the free boundary is Lipschitz in space.
So that, in order to apply Corollary 4.2, we only need to verify that uεk satisfies (4.3). On one

hand, given K ⊂ {u0 ≡ 0}◦ compact, there exists ε0 such that for ε < ε0

Bε(u
ε
0, x, 0) =

∫ uε
0
ε

(x)

−w0

(s + w0) f (s) =
∫ F(s̄)

−w0

(s + w0) f (s).

On the other hand,
∂

∂t
(Bε(u

ε, x, t)) = vε fε(u
ε)uε

t � 0.

Therefore,

Bε(u
ε, x, t) �

∫ F(s̄)

−w0

(s + w0) f (s) for x in K , t > 0.

As in the proof of Theorem 4.1 we see that, since uε
t � 0, it holds that Bε(uε, x, t) → M̄(x, t)

in L1
loc({u ≡ 0}◦) and, for almost every (x, t), we either have M̄(x, t) = 0 or M̄(x, t) = M =∫ 1

−w0
(s + w0) f (s). Since

∇(Bε(u
ε, x, t)) = vε fε(u

ε)∇uε → 0 in L1
loc({u ≡ 0}◦),

it holds that M̄(x, t) = M̄(t) in {u ≡ 0}◦. Therefore,

M̄(t) �
∫ F(s̄)

−w0

(s + w0) f (s) a.e. {u ≡ 0}◦.

Since F(s̄) < 1, it holds that M̄(t) ≡ 0.
Thus, for every sequence εk → 0,

∫ uεk
εk

−w0

(s + w0) f (s) → 0 a.e. {u ≡ 0}◦

and we deduce that uεk satisfies (4.3). �

Combining the regularity results for viscosity solutions of [8], Corollary 4.1 and Corollary 4.2,
we have the following regularity result for limit functions.

COROLLARY 4.4 Let u be as in Corollary 4.1 or Corollary 4.2. If, moreover, the free boundary
D ∩ ∂{u > 0} is given by x1 = g(x ′, t) with g Lipschitz continuous, then u is a classical solution
of the free-boundary problem (1.4).
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