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Three-phase boundary motion by surface diffusion: stability of a
mirror symmetric stationary solution
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We prove that the sharp interface model for a three-phase boundary motion by surface diffusion
proposed by H. Garcke and A. Novick-Cohen admits a unique global solution provided the initial
data fulfils a certain symmetric criterion and is also close to a minimizer of the energy under an area
constraint. This minimizer is also a stationary solution of the present model. Moreover, we prove that
the global solution converges to the minimizer of the energy as time goes to infinity.
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1. Introduction and main results

We study a sharp interface model for a three-phase boundary motion by surface diffusion proposed
by H. Garcke and A. Novick-Cohen [15]. Let £2 C R?2 be a bounded domain. We consider a situation
that three phases of a ternary alloy system in a non-equilibrium state are contained in (2 and they
are separated by evolving three interphase boundaries I (1),i = 1,2,3, where t > 0 denotes
the time variable. These interfaces are connected by a triple junction m(¢t) € (2 at their one end
points and are perpendicular to the boundary of {2, 92, at their other end points. It is known that a
Cahn—Hilliard system with a concentration-dependent mobility describes this situation as a diffuse
interface model. H. Garcke and A. Novick-Cohen [15] discussed a formal singular limit in this
system to derive a sharp interface model for I'(t) = Ui3=1 I''(t) with a triple junction m(t) in the
following: fori = 1,2,3,and 7 > 0

(A) along I'i(r); Vi=—-lig! K;si surface diffusion flow equation,
B) atl()Nasw;
I''(t) L 342: contact angle is /2,
«! = 0: no flux condition,
(C) atm(n);
LN, TH0) = 0%, L(IP@0), [P0) =06', LU0, I''(1) =67,

(1.1)

I'olk! = 12622 = 3ok} balance of fluxes,

o'kl + 6%k? + o3k = 0: continuity of the chemical potential
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with the initial condition
3
ro)=1I,= U Iy, m(0) = my. (1.2)
i=1

Here, V' and ' stand for the normal velocity and the curvature of I (¢) respectively, and s denotes
the arc-length parameter of I/ (¢). The sign convention used here is as follows: s runs from m(z), at
which s = 0, to the point of intersection of I/ (¢) with 342, at which s = L[I""(¢)], where L[I"! (¢)]
denotes the total length of I"(t); Vi(t, s) and «'(t, s) are computed to the direction of the unit
normal Ni(¢,s) to I'(¢) at s, where (T (z, s), N'(¢, s)) makes the orthogonal coordinate system
and T'(t, s) is the unit tangent to I" (¢) at s. Moreover I/, o, and ' are positive constants with the
constraints 81 4+ 6% + 93 = 27 and

o! o? o3

sinf!  sin2  sin@3’
The latter condition is called Young’s law which is well known among material scientists.
L(I''(t), ' (r)) stands for the angle between I/ (r) and I'/(t) for i, j = 1,2,3,i # j. In [15]
Garcke and Novick-Cohen also mathematically studied (1.1), (1.2) to obtain both a local existence
result for Iy € C*t® (0 < a < 1) with a suitable compatibility condition and a uniqueness result
in a geometric sense.

Our purpose in this paper is to obtain a unique global solution I'(#) with a triple junction m(t)
of (1.1), (1.2) for Iy € C3 with a suitable compatibility condition in a symmetric framework and
also to show its convergence to a stationary solution determined by the initial data as t — oo. As
far as we know this is a first contribution to global results for the problem (1.1), (1.2).

Let us explain our framework for the problem (1.1), (1.2) which is devoted to study a symmetric
evolution of I'(r) with respect to the x-axis. For this purpose let 2 = {(x,y) € R%; —a < x <
0, —b < y < b}, where a and b are positive constants large enough. We consider the evolution
such that I"'' () always stays a segment on the x-axis, and I 2(t) and I'3(¢) are symmetric with
respect to the x-axis and (@) isin {(x,y) € 2;y > 0}. Let 6 € (0, 7/2) and set ! = 26 and
6% = 03 = 7w — 6. For simplicity we put 6> = 0> = 1 and /! = /> = [> = 1. Then Young’s law
and the condition on the balance of fluxes are simplified to 0! = 2cos@ and k! = k2 =k} =0
at m(t), respectively, and by the symmetry the condition on the continuity of the chemical potential
is automatically fulfilled. Moreover, for brevity, we introduce two terminologies for union of three
curves [' = U?:l I'" with a triple junction m that has the configuration as above. To do so, we set

plél:=(=§,0)  foré € (0,a)

and we then associate I" with a function u : [—&, 0] — [0, b) as follows:

I'= Alu, ], m =[],

where

3
Alu, &1 := J A'lu, €1,

i=1

AMu, €] := {(x,0); —a < x < —&),
A2u, £] = {(x, —u(x)); —& < x <0},
Au, £] = {(x, u(x)); —& < x <O}
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DEFINITION 1.1 (i) Let6 € (0, /2). We say that a union of three curves I" belongs to Sy, if
there are £ € (0, a) and non-negative function u € C3[—£, 0] with u(—&) = 0, u (=) =
tan 6, u, (0) = 0, and (uy,(1 4+ u2)73/?), = 0 at x = —¢ and 0 such that I" = A[u, £] and
m = pul§].

(i) Let A > 0 be a given constant. We say that a union of three curves I belongs to Cy4 if there
are £ € (0, a) and non-negative function u € Cl[—é, 0] with u(—£&) = 0, u,(0) = 0, and
J2; u(x) dx = A such that I' = A[u, £] and m = p[£].

a

Note that a union of three curves in Sy or in C4 is symmetric with respect to the x-axis. In view
of the structure of the evolution problem (1.1), (1.2) it can be expected that if Iy € Sp, then the
solution I'(¢) of (1.1), (1.2) also belongs to Sp for all # > 0 as long as it exists. So we proceed with
the evolution problem (1.1), (1.2) on Sy and set I'(t) = Alu(t, -), £(¢)] with m(¢) = u[&(t)] for
t > 0and I'y = Alug, &] with mg = w[&]. Then (u(z, x), £(t)) fort > 0and —&(¢) < x < Oisan
unknown function to be looked for and the equation (1.1) for # > 0 is reduced to

1
ut:—8x< . 12ax( ”";32)), —E(t) < x <0,
A+ a2\ A+ u2)¥

uy(t,—£()) =tanb, uy(t,0) =0,

(1.3)
Uxx
ax<m> = O, atx = —E(I) and O,
u(t, —§@) =0
and the initial condition (1.2) is reduced to
u(0, x) = up(x) for =& <x <0, £&(0) =&. (1.4)

Now our task is reduced to solving the problem (1.3), (1.4).

In the study of the global-in-time solvability of the evolution problem (1.3), (1.4), an energy-
minimizing result plays an essential role. To explain this, let A > 0 satisfy &y 4 < a, where we
put

§9,A =T19,A SN0, (1.5)

24 1/2
=\— . 1.6
0.4 (9 —sinf cosO) (1.6)

(This choice of A is only to ensure that Iy 4 defined below is completely contained in {2.) For such
A, we also set

Up.A(x) = —rg.acost + (r5 , —xH'2 x €[~ a,0] (1.7)
and define

I'g o = Alug,a, 0,41 (1.8)
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Then Iy 4 belongs to C4 and it consists of one segment Fel 4= Al [1o,4, &p, 4] on the x-axis and
two circular arcs Fé 4= Al [uo.4. 80,41, i = 2,3, which are symmetric to each other with respect to

the x-axis. Iy 4 is also the unique stationary solution of (1.3) such that the area enclosed by Fé”, A
the x-axis, and the y-axis is equal to A. Now we define the energy E on C4 associated with the
problem (1.3), (1.4) by

0
E[l'] = (a — &) cos b +/ (14+u>)Y2dx  forI' = Alu, £] € Ca. (1.9)
-&

Then it will be shown in Theorem 2.1 that I 4 is the unique minimizer of E for I' = A[u, £] € C4.
It is possible to say that this minimizing problem is an extended version of several kinds of
isoperimetric problems with account of various boundary conditions, which were studied by many
researchers by applying abstract methods such as the geometric measure theory. We especially
refer the reader to [27]. But in Theorem 2.1 we shall give a direct proof, since our case can be
treated by means of piecewise smooth graphs in one dimension. Owing to one-dimensionality,
we have no extra difficulties to show the uniqueness and the existence of the minimizer of E
on C4, though some technical difficulties to be settled arise due to the presence of the triple
junction.

The result in Theorem 2.1 is a key to investigating the global-in-time solvability of the problerln

(1.3), (1.4) that depends on the magnitude of C 2+ _norm of the initial data with 0 < o < 3

In fact the L2-estimate of the first derivative of the curvature of I"3(r), which is the key estimate
for the global solvability, needs the lower bound of E[I'(¢)]. The reason why the range of « is
restricted to (O, %] is, roughly speaking, due to the estimate of the C*-seminorm of u,, by the
L2-norm of u,,,. Here we recall that Garcke and Novick-Cohen [15] previously presented the
local existence theorem for (1.1), (1.2) for Iy in C*T® with 0 < @ < 1. So when we try to
construct a global solution by extending a local solution, we are forced to improve their result
to reconstruct a local solution for Iy having at most C2T-regularity with 0 < o < % This issue
can be settled by applying the optimal regularity result for parabolic problems, as comprehensively
studied in [21].

Next we should mention that there are two remarkable features of the evolution problem (1.1),
(1.2); one is the area-preserving property and another is the energy-decreasing property [15]. The
former means that each area of the ‘A’-shaped domains enclosed by I''(r) U I'%(r) U 912 and
by I’y U3 @) uanis preserved for all # > 0 under the motion by (1.1). The latter means
that the energy associated with (1.1) for the solution I'(¢) of (1.1) is a non-increasing function
of 7. It will be shown in Section 4 that these two properties as well as the results in Section 2
enable us to obtain an a priori estimate of the first derivative of the curvature of I'3(r) in L2
when the initial curve Iy and I} 4, are close to each other in some sense, where Ay denotes
the area enclosed by I'3, the x-axis, and the y-axis. This procedure originates from X. Chen [5]
and C. M. Elliott and H. Garcke [8] where the motions of closed curves are treated. In our case
the motions of the triple junction and the end points of I'(z) at d{2 must be also taken into
account. When 6 € (0, m/2), we can settle this issue to establish a modified version of their
estimates.

Thus, one can expect that if I is close to Iy 4,, then a global solution I'(¢) with a triple
Jjunction m () of (1.3), (1.4) exists and converges to I 4, as t — o00. This is in fact the case and
we shall show it in our main theorem. To do so it is convenient to introduce the following notations.
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Notation. Let I =[0,1]. For0 < 19 < f; < oo we set Ry, = (fo,11] x I.For0 < o < 1 we
define spaces of functions v(¢, n) for (¢, ) € [to, t1] x I and £(¢) for t € [tg, t1] as

Y (Rign) = CO% Ry 1) N C 2 ([0, 11]; C* (1)),

VU Riga)) = v € V7 Rig)) 0 CHH (Riy )3 10|y ey < 00},

Z'to, n] = {& € Clto. 11N Cl(to. 1): 1€l 2140.0,) < 00}

where the norms with which the latter two spaces are equipped are defined by
[ I 1/4 _
v =|v su 8 v
Ioll e ey = IV lly2ra gy + ? Fonnnll cow @i

1/2 172
+ sup  § 7 upgyy ||c0-a(R,0+5_,l) + sup 87 v ”CO*“(RrOJra.fl)’
0<d<t;—tg 0<d<t;—tg '

IEN 211001 = 1€ Ctpn1 +  sup 82l cripts.n -

0<d<t;—1g

Here the spaces such as CIHRB([tg, 11 x 1) (0< j < (k+B)/4,k=0,1,...,0 < B < 1) used
here are defined in the usual manner; for their complete descriptions, see [22] or [21]. O

The manner of the establishment of the above spaces is somewhat complicated but it will be seen
in Section 3 that they are quite reasonable when they are devoted to the study of the local-in-time
solvability for (1.3), (1.4) with Iy € Sp. We also remind the reader that the indices of )-spaces
measure the space regularities, whereas the index of Z-space measures the time regularity.

Now we are in position to state our main result.

THEOREM 1.2 Let8 € (0, w/2) and let Iy = Alug, &o] € Sp. Assume that Iy and I} 4, are close
to each other in the sense that

g ||i2 ot Co.a(E[T0] — E[Tg.a,]) is sufficiently small, (1.10)
here Kg (s) is the curvature of Fg with the argument of its arc-length parameter s and Cy 4, is a
positive constant depending on 6 and Ag. Then,

(i) the problem (1.3), (1.4) admits a unique global solution I'(t) = Alu(t, -), £(¢)] with a triple
junction m(t) = pl[&(¢)] for t > 0 satisfying

(v, 6) € V*Ror) x Z'0,T]  forany T >0
with @ € (0, 1/2], where
v(t, ) = ut, —(1 —n&@)), (t,m) €10,00) x I.

(ii) Moreover the solution I'(t) converges to I 4, uniformly and E[I'(¢)] also converges to
E[Ig syl ast — oo.

Note that E[Io] — E[lp,4,] is positive, since Iy 4, is the unique minimizer of E on C4, as
mentioned above.
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REMARK 1.3 (i) The equation which describes evolving interface moved by surface diffusion
was first proposed by W. W. Mullins [24] and it takes the form

V=-ArpnH on I'(¢) fort > 0, (1.11)

where I'(¢) is an unknown hypersurface with no boundary; V, H, and A stand for the
outward normal velocity, the outward mean curvature, and the Laplace-Beltrami operator of
I'(t), respectively. We refer the reader to [3,4,7] for recent developments concerning the
derivation of (1.11) and also to [6, 8, 10, 11, 16, 17,20] and references cited therein for both
analytic and numerical results. For (1.11) it is known that a loss of embeddedness ( [16] for
curves, [23] for surfaces) and a graph-breaking [9] for I'(#) may occur for a class of the initial
data. Hence (1.10) seems necessary.

(i) For closed curves there are several results related to Theorem 1.2. X. Chen [5] showed
for the Hele-Shaw problem that if the initial closed curve Iy is close to a circle, then the
global solution I'(¢) of the Hele—Shaw problem exists and converges to a (possibly another)
circle with the same area enclosed by Iy as t — oo. Elliott and Garcke [8] also obtained
the same results for other area-preserving and curve-shortening motions including (1.11).
Escher et al. [10-13] extended their results to higher-dimensional versions by means of both
Amann’s sophisticated theory for analytic semigroups and a centre manifold analysis. For
further information, see the references cited in [12].

(iii) For the second-order case there are several results related to the present problem. D. Hilhorst
and J. Hulshof [19] showed for the heat equation with similar angle condition to our problem
that the solution I'(¢) exists in [0, T'] for a finite time 7 > 0 and is asymptotically equal to
a self-similar shrinking solution which vanishes at 7. Galaktionov et al. [14] extended the
result of [19] to the radially symmetric multi-dimensional case. For the three-phase problem
with a triple junction, L. Bronsard and F. Reitich [2] dealt with the mean curvature evolution
for phase boundaries which are coupled by an angle condition, known as Young’s law, at a

triple junction. They showed the local-time existence of that problem.
]

This paper proceeds as follows. In Section 2 we prove that the unique minimizer of £ on C4 is
Iy, 4. Next, by means of an optimal regularity result for parabolic problems (as studied in [21]), in
Section 3 we show a local existence result of (1.3), (1.4) depending on the magnitude of Iy € C 2o
(0 < a < 1), Theorem 3.1, which is an improvement of the result obtained in [15] since Garcke
and Novick-Cohen [15] treated C***-initial data. This improvement is necessary to obtain global
solutions I'(¢) of (1.3), (1.4) by means of a priori estimates of solutions in C 4 with 0 < o < %
For the reader’s convenience we show an essential part of calculations employed in the proof of
Theorem 3.1 in the Appendix. By virtue of the results in Sections 2 and 3 and the assumption
(1.10) as well as both area-preserving and energy-decreasing properties, in Section 4 we obtain an
a priori estimate of the solution I'(¢) in C*** (0 < « < %) for t > 0 and consequently get a
unique global solution for (1.3), (1.4), which proves Theorem 1.2(i). Finally, in Section 5, we prove
Theorem 1.2(ii) in Theorems 5.5 and 5.6.

2. Unique minimizer of the energy

This section is devoted to investigating the stationary problem associated with the non-stationary
one (1.3), (1.4). This problem is the energy-minimizing problem under an area-constraint in the
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following:
minimize E on Cy, 2.1

where C4 is as in Definition 1.1(ii).
The result is stated as follows.

THEOREM 2.1 (Unique existence of the minimizer). Let A > 0. Then the functional E : C4 — R
has a unique minimizer in C4, which coincides with Iy 4 in (1.8).

Proof. We shall prove this result by using a kind of isoperimetric inequality under the constraint
that the triple junction m = (—£&,0) of I' € Cy4 is fixed arbitrarily. This isoperimetric inequality
gives an information on the lower bound of the length of I"3, which is attained at the length of a
circular arc having one end point (—§, 0) (more precise descriptions are given in Step (a) below).
Thus our preliminary task is to investigate this length of the circular arc when & moves from —a to
0. The proof proceeds via four steps.

(a) The fundamental tool to prove Theorem 2.1 is a kind of isoperimetric inequality described
below.

LEMMA 2.2 Let £ and A be positive constants and fixed. Let X' be any C!-simple curve in
{(x,y); x <0, y > 0} satisfying the following (i)—(iii):

(i) one end point is (—&, 0) and another end point is on the positive y-axis,
(i) X intersects the y-axis perpendicularly,
(iii) the area enclosed by X, the x-axis, and the y-axis is equal to A. Moreover let X 4 be the
unique circular arc in {(x, y); x < 0, y > 0} satisfying the above conditions (i)—(iii). Then it
holds that

LIX] > L[ 2 al, (2.2)
where L[-] denotes the length of the curve. The equality sign holds only when X' = X 4.

The proof of Lemma 2.2 can be obtained by a slight modification of that of the standard
isoperimetric inequality for simple closed curves, so we omit this proof.

(b) Let X¢ 4 be as above and we then investigate p(§) := L[X¢ 4] for § > 0 as an independent
variable and with A > 0 still fixed.

We denote by v € (0, ) the angle of X¢ 4 from the x-axis at (=&, 0). Then an elementary
geometric observation shows that

¥
siny’
On the other hand, by an elementary calculation based on the area constraint, one can show that i
and £ must satisfy the relation

24 _ Y osinyeosy e, 2.4)

? sin? v

p&) =§ (2.3)
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We denote by S(v) the right-hand side of (2.4). It is straightforward to check that S : (0, ) - R
is monotone increasing. Hence we can solve (2.4) with respect to i as

_e1[2A
y=v(E) =S ) (2.5)
" . G e
us we obtain from (2.3) and (2.5) that p(§) = & m for & > 0. Differentiating p(&) and
using (2.4), we can easily derive the formula
p'(§) = cos ¥ (§). (2.6)

(c) Now we investigate E[I'] for I' € C4 with the triple junction m = (—§,0). Lemma 2.2
implies

E[l' = (a —&)cost + L[]
2z (a—§)cost + p(§) =: F(§).

We investigate the lower bound of F'(£). Using (2.6), we have

F'(§) = cos W(§) — cos b
=cos ¥ (§) —cos ¥(8p.4),

where &g 4 is in (1.5). Since the function & +— cos ¥ () is monotone increasing, we conclude that
F (&) takes its unique minimum only at § = &5 4 and then F(§p 4) = E[[}p, al.
(d) Thus we arrive at

E[Il'l 2 (a—§&)cosO + p(§) = E[Ip,al for I € Ca. 2.7)

This shows that I'y 4 is a minimizer of E on Cy4.

We shall show that Iy 4 is the unique minimizer of E on C4. In order to show this, we assume
that E[I'] = E[I}p al for a I' € C4, and we then imply I" = Iy 4. Under the above assumption,
both two inequality signs in (2.7) must be equality signs. It follows from Lemma 2.2 that for each
£ > 0, the first equality sign holds only when I = 2, 4. In addition, by (c) the second equality
sign holds only when & = &p_4. Hence we conclude that I" must coincide with Iy 4. This completes
the proof. (]

We can also obtain a lower bound of L[] for I" € Cy.

LEMMA 2.3 Itholds for I' € C4
L[] > V7 A.

Proof. Let m = (—§&,0) be the triple junction of I'. Then, as stated in (c) in the proof of
Theorem 2.1, it holds that L[I3] > p(&). By (2.6) we see that p takes its unique minimum
at &, satisfying ¥ (&,) = /2. It then follows from (2.4) that & = 2./A/m. Thus we have
p (&) = &, W(E,)/sin W (&) = v/ A. This completes the proof. O
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3. Local existence

In this section, we study a local existence result for (1.3), (1.4) for the initial data Iy € C 2+e with
0 < @ < 1. We once again point out that H. Garcke and A. Novick-Cohen [15] previously obtained
a local existence result for (1.1), (1.2) when the initial data Iy belongs to CH with 0 < o < 1.
Our result is an improvement of that of [15] in the sense that the existence time of the local solution
depends upon the magnitude of Iy in C>** with 0 < a < 1. This improvement is useful in
investigating the global solvability for (1.3), (1.4), which will be clarified in Section 4. In order to
obtain our local existence results for the less regular data, we shall use the optimal regularity theory
for parabolic problems as in [21] instead of the theory by V. A. Solonnikov [25] used in [15].

We shall first derive the equation for &. To do so we assume that (u, &) is a solution of the
problem (1.3) without the equation u(¢, —£(¢)) = 0 and (1.4) under the condition up(—&p) = O.
Then the equation u (¢, —£(¢)) = 0 and

E(t) = — C1(O)txrax (t, —E(1)) + C2(O)ud (1, —E(2)) 3.1)

are equivalent, where C1(0) := 1/[(1+tan” 0)? tan 0], C2(9) := 3(1+5tan?0)/[(1+tan? 0)* tan 0].
Here and hereafter, for simplicity of the notation we often use £ instead of d& /dz. In order to see this
equivalence, we first assume that the equation u (¢, —£(¢)) = 0 is satisfied. We differentiate it with
respect to ¢ and use the boundary conditions u, (#, —£(¢)) = tan6, and 9, (i, /(1 + u§)3/ y=0at
x = —&(¢). Then we get (3.1). Conversely, if (3.1) is satisfied, then we integrate it with respect to ¢.
By virtue of the condition ug(—&p) = 0, we then get the equation u(¢, —£(¢)) = 0.

From now on, we shall study the problem (1.3) without the equation u (¢, —&§(¢)) = 0, (1.4) and
(3.1) with £(0) = & for the initial data (ug(x), &y) satisfying uo(—&p) = 0, uox(—&p) = tan6 and
ugp, (0) = 0.

In order to normalize the coordinate x, we perform the change of variables for each t > 0 as
follows:

n=1+ v, n) = u(t, —(1 —mé&Q)).

X
E@t)’
Then, the problem (1.3) without the equation u(¢, —£(¢)) = 0, (1.4) and (3.1) become the form for
(t,m) € (0, T) x (0, 1):

U = f(”»vn»vnn»vnnnvvnnnnvé»é)’ (3.2)
v, (2, 0) = £(1) tan 0, (3.3)
vy (t, 1) =0, (3.4)

3tanf v, (t,0)

Unnn (£, 0) = T Twn2e Q) (3.5)
Vg (6. 1) = 0, (3.6)
v(0, ) = vo(n) == uo(—(1 — n)&o), (3.7)
Lo Uy (2, 0) vy, (2. 0)

E@) =—C1(0) 20 + C2(0) 50 (3.8)

£(0) = o, (3.9)
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where

S (0, vy, Vg Vs Vg € £
101},,1),,,7 n 382 — 5”%)”;?,7 _ a1 - n)év,7
G Vo a2y v T T @ 2 £

Thus our task is reduced to solve the problem (3.2)—(3.9) locally in time.

THEOREM 3.1 (Local existence) Let & € (0, 1). Let us assume that vy € C>**(1), and that vg
satisfies vo(0) = 0, vp,(0) = &ptanb, vy, (1) = 0. Let us also assume that & > 0. Then, there
exists a 71 = T1(&p, 1/ ||U()||C2+oz( n) > 0 such that the problem (3.2)—(3.9) has a unique solution

(v, §) € Y*(Ro.1y) x Z'(0, T1].

Before proving this theorem, we need some preliminaries. We shall first linearize (3.2), (3.9)
about the initial data. For later convenience, we introduce a parameter t > 0, which is regarded
as initial time. If a pair of functions (7, £), which has a suitable regularity, is given, then, for C*-
function U : [0, 1] 2 n — U(n) € R, we define a differential operator 4; by

AU = — — 1 24U + 1020 DV (T 1)

E2(@) + 02z, )2 " E2(0) + 02t )3 "
77( n)
E3(1)

+ C1) A —1n) ;U (0).

In addition, we set

1 1 _
Frm= = {(éz(n FRem? | @O+ n>)2}”””””(t’ G

i 10{ f’n(tv Moy, 1) _ ?n(fa Moy, (T, 1)
E2(n) +02(6,m) (EX) +02(T, M)}

Oy(t,m)  Uy(z.m)

Fo " B ) U (1, 0)

3EX (1) — 5t D, (1) (1 — )iy (t, n) 2.0

= Cr(0
E2(0) + 02, m)* 203

}ﬁnrm([» n)

+ G101 - n)(

In the proof of Theoren} 3.1, weuse t = 0. Let T > 0. Then, for given (v, £) € y4+“(Ro,T) X
210, T] with (0, ), &) = (vo(-), &), we consider the linearized problem of (3.2), (3.7) as
follows:

v, =Aov+ Fo(t,n)  in Ror,

vy (t,0) = E(t) tan 0,

v, (1, 1) =0,

v (1, 0) = 13tan92 ' ﬁ?,,l(t,O) (3.10)
+ tan~ 0 &)

Uy (2, 1) = 0,

v(0, n) = vo(n).
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Moreover, for v satisfying (3.10), we consider the equation of the form

sa)——cw)w() Cr(0) L — G

E4(1) £6(n) G.1D)
£(0) = &o.

REMARK 3.2 When we linearize (3.2)—(3.7), we should take care that the initial data Iy is given
in C2*%, and that the singularity of £ at = 0 is expected to be equal to that of Uy~ SO we first
plug (3.8) into (3.2) and use f as

f(n, Uns Unns Unnns Unnnn» g, Ummn(', 0), Um](', 0))
1 100,y 3(8% — Svp)vy,
(;;:2 2)2 Uy + (52 2)3 Uy + (52 + 02)4
(I =nv (I—n
?MW(-, 0) = Co®)—— LI

Then we linearize f in (3.12) with respect to vypy, Unnyys Unnyy (-, 0) around (vo, &o) to get the
linearized equation v, = Agv + Fy(z, n) in Ro 7. We should note that, owing to the third term of
Apv, which is a contribution of the triple junction, the operator Ag is different from usual elliptic
operators. For details, see the first half of the Appendix.

+ C1(0) 2 (. 0). (3.12)

For the unique existence results of the problem (3.10) and the problem (3.11), we have the following
lemma.

LEMMA 3.3 Let @ € (0,1) and let us assume that (3,§) € Y*™(Ror) x Z'[0, T] with
v(0, -), £(0)) = (vo(-), &0), which satisfies the assumption of Theorem 3.1. Then,

(1) there exists a unique solution v € y4+“(R0,T) of (3.10),
(i1) for v obtained in (i), there exists a unique solution & € Z 1[0, 77 of (3.11).

This lemma is essentially obtained by the first half of the Appendix. Indeed, by virtue of that, we
can apply the optimal regularity theory of analytic semigroups to the linearized problem (3.10), and
(i) is proved (see [21]). We omit its detailed proof. Once (i) is verified, then (ii) is obvious.

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. We explain an outline of the proof. We carry out the detailed calculation in
the Appendix.

In order to obtain local existence result for the full problem (3.2)—(3.9), we shall use a fixed
point argument. So we let

={(v,8) € Y"*"*(Ror) x 2'[0,T1;
©(0,), £0)) = (), &), Ivllyrezryy + 1€l z110,7) < K},

for positive bounded parameters K, T satisfying K T2 L &p/4. Here we note that, if £ € D, then
& satisfies

§0/2 <&(1) <38/2  forre[0,T] (3.13)
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by virtue of K T''/? < &)/4. Moreover, we define the map & as
¢:D>@,8) - v,§) e V" Ror) x 210, T,

where (v, £) is the unique solution of (3.10) and (3.11) established in Lemma 3.3. We shall show
that, for a suitable constant K and small enough 7' depending on &y and [|vol| 2+ (), the map & is
contracting in D. Once this is verified, then the map & has a unique fixed point in D. Of course, this
fixed point is a unique solution of the full problem (3.2)—(3.9) in D.

We shall first prove that @ maps D into itself when we choose suitable K and 7. By means of
the Appendix, if v satisfies the linearized problem (3.10), we get the estimate

10l sy < Mo+ NT”, (3.14)

where My is a constant depending on &, ||voll¢c2+e(s), &, and N is a constant depending on
&o, llvoll c2te(ry, 05,y (0 < @ < y < 1), K (throughout this section any constant depending
on the preceding quantities will be denoted by N whose value may be different on each occasion),
and v = min{a/4, (y — a)/4} € (0, %). In particular, we emphasize the dependences of My on
&0, llvoll c2+«(yy and of N on K. By virtue of the Appendix and the basic theory of elliptic equations,
we can eventually check that Mo is an increasing function of 1/&o, [|vollc2+e (7). and that N is an
increasing function of K. Then, according to (3.11) and (3.14),

2\
1€l 211077 < &0 + C1(0) <5) Mo+ NT".

Hence, choosing

K =2{& + (1 +16C, (9)&0_4)M0}, (3.15)
and
nemnf (£)". (2] a1
we obtain that
lollysar) + 1210 < K for T < To. (3.17)

That is, @ maps D into itself.

Next we prove that the map ¢ is a contraction on D for a suitable choice of T'. Let
(v1,81), (V2,62) € Dwith T < To, and put (vi, §1) = D(v1, §1), (v2, §2) = P(v2, §2). Moreover,
letV=v—v, =& —§&, V=0 —1y Z=E§& — &.Then the function V satisfies

Vi =AyV + F(t,n)  inRor,
V,(t,0) = Z(t) tan#,

V,(t. 1) =0,
3tan 0 _ - (3.18)

Vinn (2, 0) = m(bl(ﬂvnn(h 0) + b2 (1) Z(1)),

V(6. 1) = 0,

V(0,n) =0,
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and, for V satisfying (3.18), the function =’ satisfies

c%E(r) = —% Vinan (8, 0) + b3(1) Vi (2, 0)
1541 V20 (1, 0) + b5 DI (), G-19)
=(0) =0,
where
F(t, 1) = (Fy evaluated at 9; and &;) — (Fy evaluated at 9 and &)
_ _{ _ 1 ] B 1 }‘_/
Ew+v3)r @G+
+ &1, Vin)V2mny Vo + 820, Vi) O2ggn E + -+,
and by (1), ..., bs(t) are functions of & (z), Uiny(t,0) (i = 1,2) without significant singularities.
Here, applying the Appendix again, we obtain
IVllyssagrry < NTY UV lysra oy + 12 170,77 (3.20)
Then, by means of (3.19) and (3.20),
IZ1z110,77 < NTV UV lyta ey + 121 2100,7-
Thus we derive
IV llypiserry + 1201071 < NT UV I pssa gy + 120 210,77 (3.21)
Consequently, @ is a contraction on D for T < T, where
1\
T = min{ <ﬁ> , To}. (3.22)
This completes the proof of Theorem 3.1. (]

REMARK 3.4 According to (3.15), (3.16) and (3.22), T} is an increasing function of its arguments.
So, if we choose (v(tg, -), £(#p)) (wWhere 7y > 0) as the initial data, 77 is an increasing function of
&(to), 1/]|v (10, ‘)||C2+a(1). Thus, as long as there exist constants vy, v» such that

0<vi <EW). o, )licrreqy < v2 < 0,
T does not shrink to 0. In fact,

T1(§(to), 1/1v(t0, )llc2+acry) = Ti(vi, 1/v2) > 0.
This property is used in Section 4.

In the same way as we obtain the inequality (3.21), we can derive a uniqueness result. Since the
proof can be done identically as in the derivation of (3.21), we only show its statement without the
proof.
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PROPOSITION 3.5 (Uniqueness) Let 79 (= 0) be a given constant, and let (v, &) be given data
satisfying [|vg) || c2+a sy < 00 and &z, > 0 for a € (0, 1). Then, solutions of the problem (3.2)—(3.6)
and (3.8) on the time interval [7g, 79 + T'] with T > 0 for the initial condition (v(ty, -), £(t9)) =
(v‘f()(')s g‘[()) are Unique in y4+a(RT(),‘L’o+T) X Zl [z0, 70 + T1].

In the following we show that the solution obtained in Theorem 3.1 has a further regularity for
t € (0, T1].
THEOREM 3.6 (Regularity) Let o € (0, 1) and let (v, &) be the solution obtained in Theorem 3.1.
Then, (v, &) also satisfies

(v,§) € CPOP((0, il x I) x C' T+ 0, 1y,

Proof. Letd € (0, T1) be arbitrarily fixed. Then we study the problem (3.2)—(3.6) and (3.8) on the
time interval [8, 8 + 7] with T > 0 for the initial data v(3, -) € C*T%(I) and £(8) > 0, where (v, &)
is the solution obtained in Theorem 3.1. Now we set Rs¢ s+7 = (6 +¢,6+T] x [ fore € (0, T),
and define the spaces as

YO Ry ser) = {w € CHHRss50) N CHOM Ry 517); Twllyore sy < 00)
ZOTORs 5+ T):={¢ € C'[8,8 + TINCHEFOAGS 8 + T1; 121 z6vwas.s41) < O
where the norms are defined by

. . 1/4 5
Iy dsen = IWleregsm + S0P e 10wl con g

+ sup &'/ (30w

O<e<T CO%(Rste,547)

1/2
+ sup e/ ||wt||co’2+a(R6+55+T)
0<e<T ’

. 1/2 5
1Sl z6tarsags 5417 = NS lers 6417 + OSUPT el/ [Clcerarapsie s
<e<

We shall obtain the further regularity result via three steps.
Step 1 We shall first linearize the problem (3.2)—(3.6) and (3.8) about (v(§, -), £(8)). For given
(W, ) € Y (Rss1) x ZOFH0/3[5, 8 + T with (W (8, ), £(8)) = (v(3, -), £(8)), we consider
the linearized problem as follows:
w; = Asw + Fs(t, n) in Rs T,
wy(t,0) = ¢ (f) tan 6,
wy(t,1) =0,
3tang W5, (1,0) (3.23)
1+@an0 ()
Wy (£, 1) =0,
w(s, n) = v, n).

Moreover, for w satisfying (3.23), we consider the problem

Lo — Wiy (£, 0)
¢(1) == C1(0) 0

£(8) = &(5).

Wy (2, 0) =

w; (2, 0)

OO e (3.24)
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Then, using the same argument as we used to obtain Lemma 3.3, we can show that there exists a
unique solution (w, {) € Yote (Rs,5+1) X Z6+0)/3[5 5 4+ T of the linearized problem (3.23) and
the problem (3.24).

Step 2 In order to use a fixed point argument, we let

E:={(w, ) € Y Rss17) x 20T 5,8 +T71;
W, ), @) = (W8, ), E®)), Iwllysracmyyry) + 161 zerarags 57y < K,

for positive bounded parameters K , T satisfying KT < £(8)/2. Here we note that, if £ € £, then &
satisfies £(8)/2 < &(t) < 3&(6)/2 forany t € [§,§ + T] by virtue of KT < &€(6)/2. Moreover, we
define the map &5 as

By €3 (W, 8) > (w, ) € V¥ (Rys17) x ZOTO/4s 8 411,

where w and ¢ are the unique solutions of the problems (3.23) and (3.24) respectively. We claim
that, for a suitable constant K and small enough 7', the map ®; is contracting on £. Once this is
verified, then a unique fixed point of @; exists in £. Of course, this fixed point is the desired solution
of the problem (3.2)—(3.6) and (3.8) with the initial condition (w(3, -), £(8)) = (v(3, -), £(3)).

We verity this claim. Let us choose

K =2(£(5) + Mj), (3.25)

7 :min{<£)‘/”, 50), (L)’”}, (3.26)
2N 2K 2N
where Mj is a constant depending on £(3), [v(8, )l ca+a(y), ¢, and N is a constant depending on
§(8), lv(8, Ilca+a(py, 0, @, ¥, K. By the same argument about constants Mo, N of the inequality
(3.14), we can eventually check that M; is an increasing function of 1/£(8), [v(3, -) | c4+e(s), and
that N is an increasing function of K. Then, in the same way as we obtain the inequality (3.17), we
are led to

lwllysta gy T 11 z@r0sss s17) < K forT <.

That _is, &5 maps & into itself. The next task is to see that & is_ contracting in £. To do so, let
(w;i, ¢;) € £ =1,2) with T < Ty, and put (w;, &) = Ps(w;, &) (i = 1,2). Then, in the same
way as we obtain the inequality (3.21), we derive, for T < T,

lwi = w2llysregyyr) T 161 — Qll z6+arsgs 517y

T o
S gUlwr = w2llyere gy + 161 = &2l zerarsgs 5471

which shows that ;s is a contraction on £. Thus the above claim is verified.

Consequently, for 7' € (0, T3], there exists a unique solution (w, ¢) € & of the problem (3.2)—
(3.6) and (3.8) with the initial condition (w(é,-), () = (v(8, ), £(S8)). Then, by virtue of
Proposition 3.5, we see that this solution (w, ¢) coincides with (v, &) obtained in Theorem 3.1.
Thus, (v, &) has the desired regularity in [§, 6 4+ T3] for any § € (0, T1).
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Step 3 Asfaras§+ T» < T; for § € (0, T1), we repeat the same procedure as in Step 2. Then we
need an estimate concerning the infimum of 75. In order to see this, we use (3.13) and (3.17) to get,
for 7 obtained in Theorem 3.1,

50 >0, o(t, Ml careqy < K872 fort e [8, Thl, (3.27)

E(t) = £

where K is the constant established by (3.15). So, by means of (3.26), we obtain
TaE@), 1o, Mesray) = TaEo/2. 8'2/K) >0 fort €[8, Ti], (3.28)

that is, as long as t € [§, T1], T» evaluated at £(r) and 1/|v(¢, ')||C4+oc([) does not shrink to
0. Consequently, (v, &) has the desired regularity in (0, 77] since § is arbitrary in (0, 77). This
completes the proof of Theorem 3.6.

O

REMARK 3.7 In the same way as we obtained Theorem 3.6, we see that the solution obtained in
Theorem 3.1 also belongs to C1-2"+2+¢((0, T1] x 1) x C@+2+0/4(0_ Ty] for any positive integer
mand o € (0, 1).

4. Global existence

The purpose of this section is to obtain global solutions of (3.2)—(3.9) and consequently of (1.3),
(1.4) when the initial data Iy and Iy 4, are sufficiently close to each other in some sense. The
procedure to prove this is as follows. First we show that if the above condition is fulfilled, then
the derivative of the curvature k of I3 (1), kg, is always small (in this and the remaining sections,
for simplicity, we omit the upper indices 3 of x> and V?3). In this step we need C®-regularity for
solutions of (3.2)—(3.9). Of course, this requirement is fulfilled by virtue of Theorem 3.6. Next, using
this result, we derive a priori estimates of the solutions (v(z, 1), £(¢)) of (3.2)—(3.9) in a suitable
norm and we then obtain the desired global existence result.

In order to derive an a priori estimate we employ a similar method to those of X. Chen [5] and
C. M. Elliott and H. Garcke [8], although they only studied the motion of closed curves. In our
case the question is how to deal with the motion of the triple junction. We shall settle this issue to
establish a modified version of the estimates obtained in [5] and [8].

First we mention the energy-decreasing and the area-preserving properties found by Garcke
and Novick-Cohen [15] in the general setting in (1.1), (1.2). In this case the energy E associated
with (1.1), (1.2) is defined by

3
E[F ()= o' LII'(1)]
i=1

(see [15]), where L[ ()] denotes the length of I" (1). Let i, j, k € {1,2, 3} be mutually different.
Let £2/(r) be the domain enclosed by I'/ (1), I'*(r), and 042, where we assume that I"'L(z), I'2(z),
and I"3(r) are found in counterclockwise order. Let |£2! ()| be the area of {2/ (¢).
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LEMMA 4.1 ([15]) Assume that I'(-) be the C!*-solution of (1.1), (1.2) with Iy € C3 satisfying
suitable compatibility conditions. Then, it holds for ¢ > 0

LI 0]
dE[F(l‘)] Z( )zllf (K;)zds, @.1)

12 (1)] = 12'(0)). (4.2)

Proof. The explicit proof of (4.1) is given in [15]. Here we provide a proof of (4.2). We carry out
this only for i = 1, since the cases for i = 2, 3 can be done identically.
Let V1, be the outward normal velocity of 9 02'(¢). Then we have

di2' o)
dr = / Van(t) ds
AN

(see [18: Section 2]), where s runs clockwise. Recall that 321 (r) = I'(t) U 82 U I'*(¢). Taking
into account both the direction of s on I"?(¢) and the fact that V1 ) =0 when s € 3{2, we obtain

dIn ¢ LI @) LIT*(@)]
| ()|=/ V3ds—/ V2 ds.
dr 0 0

Plugging (A) in (1.1) into the above yields

d|2' @)

<5 = Bod3(t,0) — 12022 (1, 0) — Boicd (e, LI (0)]) + 1202k (t, LIT*(0)]).

By the balance of fluxes at s = 0 and the no flux condition at s = L[ ()] fori = 2,3, the last
terms vanish. This completes the proof. U

In the following we set for simplicity
L(t) = LI (1)) (4.3)

Let I'(¢) be the solution of (1.3) with the initial data Iy € Sy, which has enough regularity such that
atleast I'(-) € C1* fort > 0.Let A(r) be the area enclosed by I'3(1), the x-axis, and the y-axis, and
also let Ag be the area enclosed by I3, the x-axis, and the y-axis. Then, in our symmetric setting

Lemma 4.1 reads
dE[T'(t L®
dELT] _ —/ ks (1, 5)% ds, (4.4)
dr 0
A(t) = Ayp. 4.5)
Next we show a priori estimates for E[I"(r)] and L[I"3(¢)].
PROPOSITION 4.2 For all ¢ > 0 it holds that
E[I'pal < E[I'(t)] < E[10], (4.6)
VA < L(t) < E[ID]. 4.7
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Proof. We show (4.6). The first inequality is due to Theorem 2.1 and the second inequality is due
to (4.4), which shows (4.6).

Next we show (4.7). The first inequality is due to Lemma 2.3 and the second inequality follows
from the inequality L(¢) < E[['(#)] and (4.6). ([

In the following let I'(¢) be the solution of (1.3), (1.4) with the regularity in Theorem 3.6. We
investigate the boundary values of the derivatives of the curvature «.

LEMMA 4.3 There holds for¢ > 0

(i) Kss(2,0) ® 0
1) Kys(t, = ——sIn0,
v dr

(i) ks55(f,0) = —k (2, O)i—é; cos o,
(iii) Kyss(t, L(2)) = 0.

Proof. (i) Differentiating the equality u(¢, —&(¢)) = 0 with respect to ¢ and using the condition
uy(t, —&€(t)) = tan 9, we get

dé
u;(t, —£(t)) = — tané. 4.8)
dr
On the other hand, from the equation V = —«;, we have
Uy
Kos (1, 8) = —W(LX). (4.9)
Here the relation between s and x is
X
s :/ (14 u)? (1, x") dx'. (4.10)
—&()

Now, evaluating (4.9) at s = 0 and using the equality u,(#, —£(t)) = tan@ and (4.8), we
obtain (1).
(i1) Differentiating (4.9) with respect to s and using d/ds = (1 + u%)_l/ 2 /0x, we have

u Uy U
Ksss (1, 5) = (—1 +u2 + (lf +xu§§2><z,x). (4.11)

On the other hand, differentiating the equality u, (f, —£(¢)) = tan 6 with respect to ¢, we get

d
upe (t, =&(1)) = uxx (1, —f(l))d—j (4.12)

Evaluating (4.11) at s = 0 and using (4.12) and the condition u, (¢, —£(¢)) = tan6, we get
(ii).
(iii) It follows from the condition u,(t,0) = O that u;(¢,0) = 0. With this in mind we
evaluate (4.11) at s = L(¢) to get (iii).
O
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We are going to obtain an a priori estimate for «; in L2(I3(r)) by taking care of the boundary
values obtained in Lemma 4.3 and employing the method as in [5] and [8]. For this purpose we use
a new parametrization of r (1) as

I3t = {F(t, p) e R* p € [po(®), p1()])
satisfying
o [po(t), p1(®)] > p — x € [—&(¢), 0]: monotone increasing,

F(t, po(0)) = (—=£(1),0),  F(t, p1(t) = (0, u(r, 0)),
F-F,=0  fort>0and p € [po(t), p1(0)],

where - denotes the standard inner product in R?. We write the curvature « (¢, s) and the normal
velocity V (¢, s) in this new coordinate as

k(t,p)=«(t,s), V.p)=V,s).
Here p and s are linked via ¢ and (4.10). Then k (¢, p) satisfies the identity
& = AV + )%V,

where R
N 1/[ 1 gp ~ . A A
AV = — Vpp—ETVp , g, p):=Fy(t, p)- Fp(t, p)
8 8
(see [18: Section 2]). Since the equation V = —k;; is equivalent to the one V= — Ak, we get the
equation
R =—A%% —R?2Ak fort >0and p € [po(t), p1(D)]. (4.13)

We multiply (4.13) by —2Ak and integrate it on I"3(¢). Then a straightforward computation gives
p1(t) d L(t) L(1)
- / 2AR - &/ dp = & /0 KZ ds ~|—/ Kk ds,
p

0 (1) 0

p1(®) L)
/ 2AI2(A2I2 + /QZA/%)\/E dp = / 2uces (Kssss + KZKSS) ds.
po(t) 0

Thus we have

d ) Lo L)
d_”Ks(t)”z = _/ KKy Kss ds + 2/ Ksskssss AS
t 0 0

L(@t)
+ 2/ 122, ds (4.14)
0
= J1+ .+ /s
Here and hereafter we set for simplicity

I-l2=1" ||L2(1‘3(t)), I lloo=1" ||L°0(F3(z))-

We estimate J;,i = 1,2, 3.
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LEMMA 4.4 There holds fort > 0

1] < (L) s D113 4+ L) ke (D) [12) 1Ksss (D113, (4.15)
L(1)3/2 0 5
) < 2( kOl + — - 1)||Km(t>||2, (4.16)
J3 < 2L NIy (D13 + 20 L)Y 2 k5 (1) 1l2 + 81 llcsss (D13
+ CENO*LE) ks (0113, (4.17)

where §; > 0 is arbitrary small constant and C(81) is a constant depending on 4;.

Proof. We use the following inequalities, which are easily derived by the fact that kg = 0 ats =0
and L(t):

l[(k — kaw) @) lloo < L) |lks(D)]l2, (4.18)
10/, @)ll2 < L0 k@) )2, (4.19)
18k Dlloo < L2103 k@)1l (4.20)

for j =1, 2; here k4, () is the averaged curvature of k (¢, s) defined by

1 L(r)
1)y = —— t,s)ds. 4.21
Kav(t) L(t)/o K (t,s)ds 4.21)
We also note that

Kav(1) = (4.22)

L)

Indeed, if we let w(z, s) be the angle of the unit normal of I'3(¢) from the x-axis at s, then « (7, 5) =
dw/as(t, s). It then follows from (4.21) that

1
Kaqu(t) = m/(;

Note that the boundary conditions uy (¢, —&§(¢)) = tan6 and u,(t,0) = 0 mean that w(z,0) =
/2 + 0 and w(t, L(t)) = /2, respectively. Thus we obtain (4.22).
To show (4.15), we use (4.22) to get

LO je 1
3, & = 7@ LO) = 0. 0).

L) 5 L(1) 5
[J1] g/ [k — kaullKs| |Kss|d5+/ lcavllics| " lKss | ds
0 0

0
2 2
< <I|K — KavlloollKs 121155 lloo + ZIIKsllzlleslloo> .

Now (4.18)—(4.20) yield (4.15).
We show (4.16). An integration by parts and Lemma 4.3 imply
dg

2
Jo = —2sin 0 cos Ok (t, 0)(5) — 2lke5ss () 3. (4.23)
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It also follows from Lemma 4.3(i) and (4.20) with j = 2 that
dg\? 1 , L@ 5
— = — K¢ t, 0 < — Kgss (I .
(dt) Sin20 AA( ) sin29 ” Au( )”2

Then the above inequality together with (4.18) and (4.22) yields

. dg\?
sinf cos Ok (t,0)| —
dr

L
< tﬁﬂk(l’ 0) — kan(®)| + |Kav(f)|)||/(sss(t)”%
an 6

1
< —— (L0l Dll2 + 0) llcgss (115
tan 6
We plug this into (4.23) to get (4.16).
We show (4.17). We split J3 as

L) L@®
J3 = 2/ |k — Kav|2’(3v ds + 4xqy / (k — Kav)Kqu ds
0

0
L(1)
+ 262, / K% ds
0
= J31+ B2+ J33.
Applying (4.18), (4.19) with j = 2, and (4.22) to J3,1 and J3 2, we have
T30 < 2L s ()3 llkesss (15,
T32 S A0L(0)Y ks (1) l2lliesss ()3
An integration by parts in J3 3 employing the condition that k; = 0 at s = 0 and L(¢) yields
2 Lo 2
J3,3 = —2K40 (1) / Ksksss ds < 2kq0 () |lics (D) 12116555 (@) |2
0
<Ly lies (113 + 281 llcsss (113
<—|— K K .
28] L(I) K 2 1lKsss 2
Thus (4.17) is proved. [l

It is observed that 1 — 6/tan® > 0 when 6 € (0, 7/2). Hence we can choose §; > 0 so small
sothat 1 —60/tan6 — §; > 0. We fix such a §; and put

0 2
Hl, M) =2(1— —— —8 ) =132+ (50 + — )1?%x forl, » > 0.
tan @ tan @

Then from Lemma 4.4 and (4.14) we get

d 2 2
g s Oz + H (L@, s @) 12)llcsss (12

< CENOLE) ks (D13
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Integrating this on [0, #] and using Proposition 4.2 and (4.4), we arrive at

t
llics (0113 + fo H(E[Tp], 15 () [12) 1555 ()13 de

< ko513 + Co, 40 (ELT0] — E[Ly,a,])- 4.24)
Here we put
Co.a, = C(81)0*(VmAg) ™. (4.25)

Now we are ready to show an a priori estimate of x; when Iy and Iy 4, are sufficiently close to
each other. To make the statement precise, we put

08 = lkosl13 4 Co.ay(ELT0] — E[Lp.a,]1)- (4.26)

Then we say that I and I} 4, are close to each other if H(E[Ip], pp) > 0. The following
proposition establishes a modified version of the a priori estimate presented in [5] and [8].

PROPOSITION 4.5 The following two statements hold.

(1) If E[Io] = E[I,4,], then I'(t) = I'p 4, fort > 0.
(ii) If E[Io] > E[Iy, 4,1 and H(E[I], po) > 0, then

t
llics (D3 + H(E[T], po) /0 llsss (D) I5dT < pg fort > 0. (4.27)

REMARK 4.6 Proposition 4.5 together with (4.18) and (4.7) shows that if I and Iy 4, are close to
each other, then « (¢, 5) is close to k4, (¢) fort > 0 and s € [0, L(¢)].

Proof of Proposition 4.5. (i) If E[Iy] = E[I},a,], then Theorem 2.1 implies that Iy = Iy 4,.
Since Iy 4, is a stationary solution of (1.3) and Proposition 3.5, on the other hand, guarantees
the uniqueness of the solution of (1.3), (1.4), we conclude that the solution I'(¢) of (1.3) with
I'y = I'p, o, must coincide with I 4, for all + > 0.

(ii) If E[Io] > E[I}y,a,l, the proof can proceed as in [8] by virtue of the boundary condition
ks = 0ats = 0and L(z), so we omit the details.
([l

By virtue of Proposition 4.5 we can obtain a number of a priori estimates. The contributions
arising from the motion of the triple junction emerge as various functions of 6. Throughout the
remaining part of this paper we always assume the following conditions on initial data I:

E[Io] > E[Iy, Al H(E[Ib], po) > 0,

(4.28)
0+ E[ITo1?p0 <7/2,  /mAosin/6 — LE[IH1?pg > 0.

The reason why the third and fourth conditions are imposed will be clarified in Remarks 4.8
and 4.12.

We begin by showing an a priori estimate of w(z, s), the angle of the unit normal of I'3(z) from
the x-axis at s.
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PROPOSITION 4.7 It holds that
T T
5= E[Lo1??po < o(t,s) < S+o+ E[Io1??po (4.29)

fort > 0ands € [0, L(2)].

REMARK 4.8 Owing to the third assumption in (4.28), the right-hand side of (4.29) is less than r,
which means that I"3(¢) does not develop graph-breaking.

Proof of Proposition 4.7. 'We only show the estimtate from below. The estimate from above can be
checked almost identically.
Since dw/ds = k, we have

N
w(t,s) = % +0+/O k(t,o0)do

= % + 60 + Kav(1)s + /S(K(t, o) — Kav(1)) do.
0

We use (4.22) in the third term and (4.18) in the last term. Then,

ot.s) > " +0<1 _ ﬁ) — L (D)2

2

Now (4.7) and (4.27) yield the desired result. U
LEMMA 4.9 It holds that

—(E[Fo]1/2po + sz—m)) <) < B - s (4:30)
fort > 0ands € [0, L(?)].
Proof. We write

K(t,s) = (k(t,5) = Kav (1)) + Kap (1).

Now a similar argument employed in the proof of Proposition 4.7 gives (4.30). (]

Now we shall derive an a priori estimate for £(¢). Let (X, Y)(t, s) be the parametrization of
I'3(t) with respect to its arc-length parameter s. Then the unit tangent of I'3(¢) at s is given by
(sinw(t, s), —cosw(t, s)). Thus we have

N

S
(X, Y)(t,s5) = (—’;‘(t) + / sinw(t, o) do, —/ cosw(t, o) da). “4.31)
0 0
Let Fg’v(t) be the circular arc in {(x, y); x < 0, y > 0} with the radius |k, (t)|~! = L(r)/6 and
with the centre on the y-axis and with Z(Fl?v(t), X-axis)|x=—g,, (1) = 0, where —&,,(¢) is the x-
coordinate of the point at which I'> (¢) intersects to the x-axis. Then it is easily seen that the total
length of F;’U () is also equal to L(#). Let (X4y, Yau)(2,5) € R? be the parametrization of F;’v ()
with its arc-length parameter s € [0, L(7)]. Let wg,y (2, s) be the angle of the unit normal of Fjv (1)
from the x-axis at 5. Then, as in (4.31), we have

N

Xav, Yau)(t,5) = (—S,w(t) + /S sin wgy (t, o) do, —/ COS wyy(t, o) da). 4.32)
0 0

The following lemma enables us to relate I'3(r) with FSU (1).
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LEMMA 4.10 There holds fort > O and s € [0, L(¢)]

1X(t,8) — Xa(t, )| < SL@ ks (D) ]2, (4.33)

Y (1,5) = Yau(t, $)] < L@ [lics @) |2 (4.34)
Proof. We employ the method as in [5]. Note the facts that

T sin 6
Wgay(t,0) = ) +0, Eav (1) = LU)T’ (4.35)

which are easily seen by an elementary geometric observation. Since
X(t, L(1)) = Xav(t, L(1)) =0,
we have

L(t) L)
&)= / sinw(t, o) do, Enn(t) = / sin wgy (f, o) do. (4.36)
0 0

On the other hand, we integrate the identities dw/ds = k and dw,, /0 = K4y With respect to s. By
virtue of the first of (4.35) and (4.18), we have

|l (t, 5) — way(t, 5)| < / lic(t, 0) — Kay(t)| do
0
< L)Y lies 2. (4.37)

Then, by (4.36) and (4.37),

1X(t,8) — Xao(t,8)| =

N N
/ sinw(t, o) do —/ sin wgy (t, 0) do
L(t) L()

L(t)
< / (1, 0) — ot 0| do
S

L(t)
< L(l)l/zllks(l)llz'/ o do
s
<3 LOP ks @)
Thus we have proved (4.33). A similar argument as in (4.33) gives (4.34). ([
The following proposition establishes a priori bounds for the triple junction.

PROPOSITION 4.11 It holds that

sinf 1 sinf 1
7 Ao == = S ELNOIpo < £(1) < ELT] ELLo1p0 (438)

o T2

fort > 0.
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REMARK 4.12 Owing to the fourth assumption in (4.28), it is assured that £(¢) > O for ¢ > 0.
Proof of Proposition 4.11. 1t follows from (4.35) and (4.7) that

sin 6 sin 6
VI Ayg—— < &4(H) < E[Ip]——.
0 0
Evaluating (4.33) at s = 0 and using (4.7), (4.27), and the above inequality, we get (4.38). [l
Now we can show an a priori estimate of v.
PROPOSITION 4.13 Leta € (0, 1/2]. Then we have
lv(@®)llc2+e(ry < Bo fort > 0. (4.39)

Here By > 0 is a constant depending only on [ through pg, Ag, and E[[p].
Proof. First we differentiate v(z, n) = Y (¢, s) with respect to n to get

vy =Y E+op/2 (4.40)
On the other hand, by (4.31), Yy = — cos w. Thus

2
s ,2COS"®
= g —_—

Uy 2

sin” w
It then follows from (4.29) and (4.38) that there is a constant Bp ; depending on [ such that
lvyWllcay < Bo,i fort > 0.
Moreover, since the condition v(z, 0) = 0 yields the estimate [v(z, )| < [|v,(¢)]lc(1), We obtain
lv@® ey < Boi forz > 0. (4.41)
Next we differentiate (4.40) with respect to 1. With the equality Ys¢ = « sin @ in mind we obtain
ksinw - (€2 + v,zl)

Upn = .
T Tt vy cosw - (82 +v2)7 12

Now (4.30), (4.38), and (4.41) imply that there is a constant Bp » depending on [ such that
lom@llcay < Bop  forr > 0. (4.42)
Finally, we show that there is a constant By 3 depending on I such that
[vgy(t, Ncepo < Boz  fort > 0witha € (0, 3]. (4.43)

Indeed, differentiating (4.40) twice with respect to n and using Y55 = K sinw + 2 cos w, we have

14+ Uy COS @ .
&2+ otz

= (ks Sinw + k2 cos w) (52 + 1),2,)3/2 + 3kvyvy, Sinw
2.2
3 £y, cos®
2+ )7
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We take the L2(I)-norm in both sides and use (4.30), (4.38), (4.41), and (4.42). Consequently, we
can find a constant By 3 depending on [ such that

lvgnn Ol L2y < Bo3 fort > 0.

Now (4.43) immediately follows from the above inequality when « € (0, %]. [

Now by virtue of Propositions 4.11 and 4.13 one can always solve (3.2)—(3.9) on the time
intervals [0, Ti], [Ty, 2T4], [2T%, 3T%], ..., for a T, > 0 which is determined only on Ij. Thus,
we arrive at the following global existence result.

THEOREM 4.14 (Global existence) Let ¢ € (0, 1/2]. Assume (4.28). Then the equations (3.2)—
(3.9) admits a unique global solution (v, &) € YHte (m) x Z10, T for any T > 0. Consequently,
the problem (1.1), (1.2) admits a unique global solution in C'+%/44+¢ for t > 0 provided the initial
data belong to Sp and are also close to I 4,.

REMARK 4.15 The global solutions obtained in Theorem 4.14 also possess the additional
regularities guaranteed in Theorem 3.6 and Remark 3.7 with o € (0, %].

5. Convergence to the minimizer of the energy

This section gives the proofs that the global solution of (1.3), (1.4) obtained in Theorem 4.14
converges to the minimizer Iy 4, of the energy E and the energy of the solution converges to
E[ly aplast — oo.

The fundamental tool to obtain this result is the following fact.

LEMMA 5.1 Assume that ['(t) = U?:l T'i(1) is a (at least) C°-global solution of (1.3), (1.4) with
a C3-initial data Iy € Sy. Let k (¢, s) be the curvature of I'3(r). Then,

ks (®)]l2 = O ast — oo.
This lemma can be proved as in [8: Theorem 6.4] by employing the same argument to derive (4.24),
SO we omit its proof.

Let I'(¢) be the global solution of (1.3), (1.4) for the initial data Iy € Sy constructed in Theorem
4.14. Put

3
L@ =] Tl 0, 5.1)
i=1

where

Il @) = {(x,0); x € [—a, =&, (D]},
I2(1) = {(Xav, —Ya)(t, 8); 5 € [0, L()]},
[2,() = ((Xaw, Yau) (2, 8); s € [0, L(1)]}

for ¢t > 0 and (X4, Yay)(, s) is given in (4.32).
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LEMMA 5.2 Put E, :=lim;, E[I'(¢)] and L, := O(E, —acos8)/(0 — sin6 cos ). Then,

E[I4(0)] — E,, (5.2)
L(t1) - L. (5.3)

ast — 0Q.

Proof. Since E[I,,(t)] = (a — £4,(1)) cos 6 + L(t), we have
E[I4y(t)] — E[T(1)] = (£(t) — £qy (1)) cos 0.
Then (4.33) at s = 0 implies
E(1) — Eau(@)] < SLO ks () ll2 < S ELLOP [l (1)

Moreover, from Lemma 5.1 it follows that the right-hand side converges to 0 as t — oo. Thus we
get (5.2).
We check (5.3). By (4.35) we have

E[Tao(t)] = acos + (1 _ Si“ﬁ%”)m.

Using (5.2) and passing to the limit as # — oo in the above equality, we get (5.3). (]
The next lemma shows that the large-time profile of I'(¢) is approximated by [, ().
LEMMA 5.3

lim  sup (|X — Xgp| + Y = YauD(2,5) =0.

100 5e[0,L(1)]

Proof. Tt follows from (4.33) and (4.34) that

sup  (|1X — Xaol + 1Y = Yau (2, 8) < L) {lis () |2

s€l0,L(1)]
Now (5.3) and Lemma 5.1 give the desired result. U
We put
& = L*Siﬂ, Ky 1= —i. 5.4
0 L,

Define a circular arc in {(x, y); x < 0, y > 0} by

(X, Yo (s) = (—5* + / sin(% +6+ K*U> do, —/ cos(% +6+ K,,U) do)
0 0

fors € [0, L,] and set

3
F*=UF,£639,
i=1
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where

Il ={(x,0); x € [—a, =&},
I? = {(X,. =Y)(s); s € [0, L,]},
I = {(X,, Y,)(5); s € [0, L,]}.

The next lemma shows that the large-time profile of I}, (¢) is described by I’.

LEMMA 5.4
Fav(t)_)r* ast — oQ.

Proof. Passing to the limit as ¢+ — oo in the second equation in (4.35) and (4.22), we have
lim &,,(1) = &, lim k4y (1) = Ky
t—00 1—00

Then, by the first equation in (4.35),

ow,

N
@av (1, 8) = wa(t, 0) + / “(t.0)do
0 filog
T T
=5+9+Kav(t)s—>5+9+/c*s ast — o0

for s € [0, L,]. Now, passing to the limit as t — oo in (4.32), we obtain the desired result.

Thus we arrive at the desired result on the convergence of the solution as t — oco.

THEOREM 5.5
I'(t) = Iy a, ast — oo.

Proof. By virtue of Lemmas 5.3 and 5.4 we get

ING N ast — oQ.

(5.5)

(5.6)

Let A, be the area enclosed by Ff’, the x-axis, and the y-axis. If Iy # Iy 4,, then A, is not
equal to Ag. On the other hand (4.5) and (5.6) imply that A, must coincide with Ag. This yields a
contradiction and we then conclude that I, must coincide with Iy _4,. This completes the proof. [

We can also show the convergences of both the length and the energy of the solution as t — 0.

The key point is to make use of the area-preserving property.
THEOREM 5.6 We have
: 307 — 3
lim LI (0] = LITj 5,
lim E[I'(¢)] = E[Ip,4,].
t—0o0

Proof. We first show (5.7). We use the following fact.

(5.7)
(5.8)
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Fact. Let D C R? be a simply connected bounded domain with the piecewise smooth boundary
d D with the total length L. Suppose that d D is parameterized by its arc-length parameter s running
clockwise as dD = {F(s) € R%; s € [0, L1}. Let v(s) be the outward unit normal field on 9 D.
Then,

L
the area of D = %f F(s) - v(s) ds. (5.9)
0
We apply the formula (5.9) to the domain enclosed by I"(¢), the y-axis, and the x-axis to get
L(t)
At) =3 / (X, Y)(t,s) - (cosw, sinw)(t, s) ds
0

0 —&£(1)
+%/ ©,y) - (1,0)dy+%f (x,0) - (0, —1) dx.
u(t,0) 0

The last two terms of the right-hand side vanish. We use (4.5) in the left-hand side and use (4.31)
with (4.36) in the first term of the right-hand side. Moreover, after using Fubini’s theorem, we have

L(1) K
Ag = —/ (/ cosw(t, o) da) sinw(t, s) ds. (5.10)
0 0

On the other hand, using (4.37), (4.7), and Lemma 5.1, we get
| (t,5) — wav(t, )| < E[Tg a2 ksl > 0 ast — oo

for s € [0, L,]. Recalling (5.5) and (5.4), we have

(t,s) +0 0 t
s — — R — — o0
way(t, s > *s as

for s € [0, L,]. Consequently, we have

0
a)(t,s)—>%+0—L—*s ast — o0

for s € [0, L,]. Now we let # — oo in (5.10) and calculate the integral to obtain
L, =rp,4,0. (5.11)

where rg_4, is defined in (1.5). This shows (5.7).
Now (5.8) is a direct consequence of (5.11) and the definition of L, in the statement of Lemma
5.2. This completes the proof. [
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Appendix

In this section we shall prove the inequalities (3.14) and (3.20). To prove them, we use the optimal
regularity theory of analytic semigroups as comprehensively studied in [21].

Here we summarize a basic abstract framework used below. Let X be a Banach space with norm
|| -]landlet A : D(A) C X — X be a linear operator satisfying the following condition:

there exist constants w € R, u € (7/2,7), M > 0, which depend on A,

such that
) p(A)DRuw=1{1€C A#o,|agh — )| < u}, (A1)
.. )\‘ _ A —1 g
(i) IC ) e ol

where p(A) is a resolvent set of A.

for A € Ry, 0,

If A satisfies the condition (A.1), A is said to be sectorial in X. Then A generates an analytic
semigroup ¢4 in X for ¢ > 0. In addition, a family of intermediate spaces between D(A) and X
can be defined by

Da(B,00) = {p € X ; [lps(poc) = sup It PAedgp| <o}, 0<p<l.

0<t<1

They are Banach spaces under the norm

61l D4s(B,00) = PNl + [DlD4(8,00)-

Moreover, the following estimate is known. For k € N, Bq, 8> € (0, 1), there exists a constant
C = C(k, B1, B2, A) such that

1521402 AR A LDy 1.00). DaBrroon S € for0 <1 < 1. (A2)

The statement holds also for k = 0, provided that 8; < B>.

We shall return to our problem. In the remaining part of this section, we use C,, Cy, etc. to
denote various constants. Here their subindices are written to emphasize what they depend on. Let
T > 0. We define two differential operators Ai” and A?), for C*-function U : [0,1] > n
U(n) € R and given (v, &) € Y**(R; r17) X Z'[r, T + T1, by

_ 1 84 }_}17 (Tv U)ﬁrm (Tv ’7) 3
E@) + 02T, )2 " E(0) + 2@, m)3 "

Uy (T, 1)
E5(1)

1 .
AVY = —

APU = C1(0)(1 — 1) 91U (0).
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If we define X := CJ[O0, 1] and
DAY == {U e C*[0,1]: 3,U(0) = 3,U(1) = 3, U(0) = 3, U(1) = 0},

then A : X > D@AY) 5 U » AVU € X is the realization of A" in X and
satisfies the condition (A.1) where constants w, j, M depend on & (7), [[v(z, *)llc2+afo 1) (see [26]).

Therefore, A(Tl) is sectorial in X. In particular, we note that these constants increase with
1/&(7), llv(z, )llc2+apg, 1) Moreover, we obtain the following equalities:

c*0,11, if 0<p <1,
DB o0)=1CP0,11, if j<p<3, (A3)
o, if 2<p<l.

2

B A=

with equivalence of norms (see, for example, [1,22]), where

Cy10, 11 := (U € C*[0,1]; 8,U(0) = 8,U (1) =0},
CyP10.1]:= (U € €*[0, 111 9,U(0) = 3,U(1) = 83U (0) = 3;U (1) = 0}.

It can be checked that the constants, which assure equivalence of norms, increase with
1/&(7), llu(z, )llc2teapp,1)- From now on we represent the constants concerned with equivalence

of norms as C,,. Here 8 = % and 8 = % are sensitive cases. But these cases are unnecessary in our
paper, so we don’t make mention of them.

Now let A?) XD D(Ag)) 35U +— A?)U € X be the realization of .A(fz) in X. Then we are
led to the following lemma.

LEMMA A.1 Let A, := ALY + AP Then,

(i) A; is a sectorial operator in X.
(ii) there exists a constant C, which increases with 1/£(7), [[v(z, *)|lc2+e(g,1}> Such that

MM — Ar)_1||L(X) <C for A € RAgl) with |A| > r

where R 1) = (A € C; 1 # w(AY), |arg(h — 0(A))] < w(A)} and r is a sufficiently
large positive constant depending on & (7), ||9(t, -) | c2+eaq0, 13-

Proof. First, we prove that A; is a sectorial operator in X. As stated above, it is known that Agl) is
a sectorial operator in X (see [26]). Moreover, according to [21: Section 2.4], if A?) is a bounded
linear operator from D(Ag)) to DA(I) (%, 00) (=: Xy) fora € (0, 1), then A is a sectorial operator
in X. Thus we shall prove ’

1APU|x, < CIU| for U € D(AV), (A4)

D(AL)
where C is a constant independent of U. In fact, one can prove

18y Ulloo < Ce Ul p0,,
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where C; is a constant depending on é(‘t), lv(T, ')||C2+oc[0,1] . Then, by means of (A.3) and using
this inequality, we get

1APU|x, < Cege 1APU I capo.y

= Copr | 1O = ) 22500 0)
&2(1) c2[0,1]
Eﬂ(rv ) 4
S Cro | = -10-U (0)]
! 55(1') C@[0,1] 7
< Crp Ul ) (A.5)

In particular, we note that a constant C,4 . increases with 1 JE(T), |lo(r, Il c2tefo,17- Thus the
inequality (A.4) is proved.

Next, we prove the second half of Lemma A.1. For A € R,q) and g € X, we consider the

A0
T
resolvent equation

a— AV — APy = g. (A.6)

According to [21: Proposition 2.4.1(ii)] again, we obtain that for |1| large enough (A.6) is uniquely
solvable with

A+ 1
il g0, < 2(M(A§‘>)7m +1)lgll. (A7)
f . — (A

On the other hand, from (A.6) we get

A llaell < Yol (A+11AP] (A.8)

D) L@, x,) T8l

Using (A.5) and (A.7) in (A.8), we now obtain the desired estimate. [l

We first prove the inequality (3.14). Let v satisfy (3.10). In order to reduce the inhomogeneous
problem (3.10) to a homogeneous problem at the boundaries, we introduce an auxiliary function v
defined by

3 =2
_ n 3tanf Uy, 0)

t,n) = t)tanf + — - - — h
v, ) (n%‘( T Tae EQ ()
where h € C*°[0, 1] satisfying #'(n) < 0 forn € (i, %), h(n) = 1 forn € [0, %], h(n) = 0O for
ne [%, 1]. Then it is seen that v — v is homogeneous at the boundaries. From this fact and Lemma
A.1.(i), we can represent v — ¥ as the variation of constants formula by means of the analytic

semigroup efdo, After a simple computation, this formula finally takes the form, for0 <t < 7,
v(t, ) = vV, )+ v, )+ v, )
where

v, ) = ey — (0, 1)),

t
v, ) = / e[ Fy(o, ) + Ao (0, )] do,
0

t
v, ) = —Ag f e[y (0, ) — ¥ (0, )]do + ¥ (0, ).
0



78 K. ITO AND Y. KOHSAKA

Applying the theory of analytic semigroups (see [21]), we get

1
19 Pllysre @7y < Co llvo = 0. )l p, (2 o)

WP llyssame7y < Coa sup 872 sup [[Fot, ) + Aoy (t, Dy (¢ o0)-
' 0<8<T tels8,T]

In particular, we can verify that a constant Cy increases with 1/&o, |lvollc2+efo 1)- Hereafter any
constant depending on these quantities will be denoted by Cy.
In order to obtain the estimate of || v® | Ve Ry ) We set

t
() = / e[y (o, ) — ¥ (0, )1do. (A.9)
0
Then z satisfies
v, ) = —Agz(t) + ¥ (0, 1) = —%Z(t) +U(t, ). (A.10)

For the function z, we have the following estimates.

LEMMA A.2 Let z be a function represented by (A.9). Then, there exist constants y € (o, 1) and
N = N(&o, llvollc2tegp 1) @ ¥, K, 0) such that

d
) ‘_Z(t) SNTU=0,
dr DAO(HT‘Y»OO)
d
() sup 8"4 sup | —z(n) <NTU™OR,
0<é<T  rtefs,7]ll d! Dy, (34%,00)
d
(i) sup 8'2 sup |Ao—z(1) <NTU=O,
0<8<T tels,T] D4y (5,00)
(iv) ”A0Z||C'/2([0,T];DAO(%,OO)) < NT(V*ot)/Al.

Proof. We shall prove the inequality (i). By means of simple calculation, we see that

%z(t) = fo " Aet Ny (0, ) — (1, I do + (e, ) — Y (0. )]
=: J1(t) + J2(1).
Moreover, for o, t € [0, T], we get
Y(o.n) — ¥t n) =nh(n)E) — &) tan 6

3anf a,%nw,O)_ﬁ%,,(r,O))
(1 + tan20) - 3! "h(”)< E(0) Em /)

)+ Since n = nh(n) is in Dy, (%, 00) for

First, we shall consider the estimate of || J;(z)|| 24a
DAO( 7,00

any y € (0, 1), we choose y in the interval (o, 1). Then, using the inequalities (A.2) and Ié(t) —
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E(0)| <2K(t —0)'/? (6,1 €[0,T], o # 1), we obtain

t
fo | Age =4 Inh()E (@) = EO]lIp, (22 o) do
t
< Co / (1 — o) CHOM O, E () — E()| do
0

t
< Cox / (t —o) = 1 do
0

< Cok.ay TWV—)/4

On the other hand, since n — nSh(n) is in DAO(ZJFTV, oo) for any y € (0, 1), we are led to

/z Ageli=o)4o [n3 N (_)<f)§,, (@.0) 3, 0)>]
0

- — do
§(o) &)
!
<G / (1 — o)~ oy
0 ol 71

Dy (52 ,00)
03,(@.0)  03,(1.0)
E(0) E(r)
t
< co,K/O (t — )Y (15, (0, 0) — Dy (2, 0)| + [E(0) — E(1)]) do

00)

t
< Cox / (t — o)V do - ([ (-, O carspo ) + 2K T>4/%
0

4
< Cox., TV

Thus we obtain

”JI(I)HDAO(HTO‘,OO) < CO,K,D[,)/,Q T(Vfa)/“'

In the same way we also get the estimate of || J>(?) || Dy (2 00y Hence we obtain the inequality (i).
o\ "Ta

o
We can also prove the inequalities (ii), (iii), (iv) in a similar way as above by using the technique
in [21: Chapter 4] and leave the details of their proof to the interested reader. (]

Hence, by means of these estimates, (A.3) and (A.10), we obtain

WP ystagygy < 1O, ic2rago 1) + Ceg.0.ay.k0 TV,
Consequently, we are led to
D llyata gy + 102 lytre ey + 10D yra o

<
< Collvo — ¥ (0, .)”DAO(ZTTQ,OO)

+ Coo sup 8'7 sup [|Fo(t,) + Ao (1, )llp,, (% .00
0<6<T tel8,T]

+ ¥ (O, ')”C2+”[0,]] + Ceq,O,a,y,K,e T(V*a)/“-.

[lv]] Ve Ry 1)

In addition, since DAO(Zﬁ, ) = Cgf“[O, 1] and D4, (7, 00) = C*[0, 1] with equivalence of
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norms, we get

IVl ysta o) S Ceq.ollvo = ¥ (0, )l c2taro 1y

+ Ceq0.a sup 8% sup [|Fo(t,) + Aoy (t, )lcepo.
0<8<T tel8,T]

+ ||1/f(03 .)||C2+C([O’1] + quso,a,}/,K,G T(V—Ol)/4
< Mo+ Ceqoak.0 T*'* + Cego.ay.x.0 TV

where My is a constant depending on &o, [[vollc2+«(g, 1}, €. In particular, we note that Mo increases
with 1/&o, |lvollc2+apo,17- This completes the proof of the inequality (3.14).

Next, we prove the inequality (3.20). Let V satisfy (3.18). In order to obtain a homogeneous
problem at the boundaries, we introduce a function ¥ defined by

= 173 3tand
U(t,n) =|nZ@)tand + — -

TR (b1 (1) Vi (2, 0) + bz(t)é(t))}h(n)-

Then, since Ay is sectorial, we can represent V as
t ~ t
Vi, ) = f e"IM[F (o, ) + Ay ¥ (0, )]do — Ag / =MW (0, ) — ¥(0, )] do.
0 0

In the same way as we have proved the inequality (3.14), we can also prove the inequality (3.20).
So we omit the details.



