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An obstacle-problem-like equation with two phases: pointwise
regularity of the solution and an estimate of the Hausdorff

dimension of the free boundary
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Concerning the obstacle-problem-like equation ∆u = λ+
2 χ{u>0} − λ−

2 χ{u<0}, where λ+ � 0 and
λ+ + λ− > 0, we prove regularity of the solution as well as an estimate on the Hausdorff dimension
of the free boundary Ω ∩ (∂{u > 0} ∪ ∂{u < 0}). We apply this result to the Stefan-like equation
α∂t max(v, 0) + β∂t min(v, 0) − ∆v = 0.
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1. Introduction

Whereas the regularity in one-phase free boundary problems has by now been extensively studied,
one-phase methods prove in many cases to be unsuitable for the corresponding two-phase problems.
Concerning two-phase problems, even regularity of the solution is in many cases still unknown.

Here we study the regularity of the obstacle-problem-like equation

∆u = λ+
2

χ{u>0} − λ−
2

χ{u<0}, (1)

where λ+ � 0 and λ+ + λ− > 0.
Equation (1) is related to the time-dependent equation 0 = α∂t max(v, 0)+ β∂t min(v, 0)−∆v

in (0, T ) × Ω which has been used to describe an instantaneous and complete reaction of two
substances coming into contact at a surface Γ (see [2, 3] and [6]). The difficulty one confronts in
this Stefan-like problem is that the interface {v = 0} consists in general of two parts—one where
the gradient of v is nonzero and one where the gradient of v vanishes. At the latter part we expect
the gradient of v to have linear growth in space. However, because of the decomposition into two
different types of growth, it is not possible to derive a growth estimate by, for example, a Bernstein
technique.

Assuming that α > β > 0 and that the time derivative ∂tv is non-negative and Hölder
continuous near some free boundary point (t0, x0), v(t0) is a solution of (1) with Hölder continuous
coefficients λ+ and λ−. To that our result applies and yields the expected C1,1-regularity of
v(t0) in a pointwise sense and, for positive time derivative, the Hausdorff dimension estimate
dim(∂{v(t0) > 0} ∪ ∂{v(t0) < 0}) � n − 1 (see Proposition 4.1, Remark 4.1, Corollary 5.1 and
Remark 5.1).
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Our methods are completely local and rely on new ideas involving frequency estimates as well
as a monotonicity formula introduced by the author in [9] and used in [7].

2. Notation

Throughout this paper R
n will be equipped with the Euclidean inner product x · y and the induced

norm |x |, and Br (x0) will denote the open n-dimensional ball of centre x0, radius r and volume
rnωn . We will use the k-dimensional Hausdorff measure Hk approximated by Hk,δ which we define
as the H δ

k of [5].
When considering a set A, χA shall stand for the characteristic function of A, while ν shall

typically denote the outward normal to a given boundary.

3. Existence

Let λ+ � 0, λ+ + λ− > 0, n � 2, let Ω be a bounded open subset of R
n with Lipschitz boundary,

assume that u D ∈ H1,2(Ω) and let A := {v ∈ H1,2(Ω) : v − u D ∈ H1,2
0 (Ω)}. Then the functional

E(v) := ∫
Ω (|∇v|2 + λ+ max(v, 0) − λ− min(v, 0)), being real-valued, coercive and weakly

lower semi-continuous, attains its infimum on the affine subspace A of H1,2(Ω) at the point u ∈ A.
The reader may replace the boundary condition in the definition of A at his own convenience,

since from now on everything we do will be completely local.
Let us compute the first variation of the energy E at the point u. Using v := u + εφ as test

function for the minimality of u, where ε > 0 and φ ∈ H1,2
0 (Ω) ∩ L∞(Ω), we obtain that

∫
Ω

(2∇u · ∇φ + φ λ+ χ{u�−εφ} − φ λ− χ{u�−εφ})

� −|λ−|
∫
Ω∩{−ε|φ|�u�ε|φ|}

|u|
ε
− ε

∫
Ω
|∇φ|2,

and, as ε → 0, that ∫
Ω∩{u=0}

(−λ+ max(φ, 0) + λ− min(φ, 0))

�
∫
Ω

(2∇u · ∇φ + φ λ+ χ{u>0} − φ λ− χ{u<0})

�
∫
Ω∩{u=0}

(λ+ max(−φ, 0) − λ− min(−φ, 0)) (2)

for every φ ∈ H1,2
0 (Ω). By the characterization of non-negative distributions this implies that v �→∫

(∇u · ∇φ + λ+
2 φ − λ−

2 χ{u<0}φ) is locally in Ω represented by a finite regular measure. Hence,

(2) yields by Radon–Nikodym’s theorem that ∆u ∈ L1
loc(Ω) and it follows that ∆u = λ+

2 χ{u>0} −
λ−
2 χ{u<0} a.e. in Ω .

Note that for λ− � 0 any other function v ∈ H1,2(Ω) with boundary data u D on ∂Ω satisfying
the weak equation∫

Ω
(2∇v · ∇φ + φ λ+ χ{v>0} − φ λ− χ{v<0}) = 0 for every φ ∈ H1,2

0 (Ω)
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must coincide with u. Subtracting the weak equation for u and inserting φ := v− u as test function
we obtain that ∫

Ω
2|∇(v − u)|2

�
∫
Ω
(2∇(v − u) · ∇(v − u) + λ+(χ{v>0} − χ{u>0})(v − u) − λ−(χ{v<0} − χ{u<0})(v − u)) = 0.

In what follows, the term ‘solution’ shall always denote a H2,2-function solving the strong equation
∆v = λ+

2 χ{v>0} − λ−
2 χ{v<0} a.e. in a given open set.

A powerful tool is now a monotonicity formula introduced in [9] by the author for a class of
semilinear free boundary problems (see also [7]). For the sake of completeness let us state the
two-phase obstacle problem case here.

THEOREM 3.1 (THE MONOTONICITY FORMULA) Suppose that Bδ(x0) ⊂ Ω . Then for all 0 <

ρ < σ < δ the function

Φx0(r) := r−n−2
∫

Br (x0)

(|∇u|2 + λ+max(u, 0) + λ−max(−u, 0))

− 2 r−n−3
∫

∂ Br (x0)

u2 dHn−1,

defined in (0, δ) satisfies the monotonicity formula

Φx0(σ ) − Φx0(ρ) =
∫ σ

ρ

r−n−2
∫

∂ Br (x0)

2

(
∇u · ν − 2

u

r

)2

dHn−1 dr � 0.

4. Pointwise regularity and non-degeneracy

By L p-theory the solution u ∈ C1,α
loc (Ω) for every α ∈ (0, 1). The set R := Ω ∩{u = 0}∩ {∇u �= 0}

is therefore open relative to Ω ∩ (∂{u > 0} ∪ ∂{u < 0}) and the implicit function theorem implies
that R is a C1,α-surface for every α ∈ (0, 1). The set of interest is therefore the set S := Ω ∩{∇u =
0} ∩ (∂{u > 0} ∪ ∂{u < 0}).
LEMMA 4.1 Let α− 1 ∈ N, let w ∈ H1,2(B1(0)) be a harmonic function in B1(0) and assume that
D jw(0) = 0 for 0 � j � α − 1. Then∫

B1(0)

|∇w|2 − α

∫
∂ B1(0)

w2 dHn−1 � 0,

and equality implies that w is homogeneous of degree α in B1(0).

Proof. A well known fact first revealed by F. J. Almgren is that the mean frequency

r �→ N (r) := r

∫
Br (0)
|∇w|2∫

∂ Br (0)
w2 dHn−1

is non-decreasing in (0, 1), and that N (σ ) = N (ρ) implies for 0 < ρ < σ < 1 that w is
homogeneous of degree N (ρ) in Bσ (0) − Bρ(0) [4]. Supposing now towards a contradiction that
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N (s) < α for some s ∈ (0, 1], it follows that α > N (r) ↘ N (0+) as r ↘ 0. Introducing the
scaling wr (x) := w(r x)

‖w(r x)‖L2(∂ B1(0))
, we infer from the boundedness of N (r) and from the compact

embedding on the boundary that wrm ⇀ w0 weakly in H1,2(B1(0)) and wrm → w0 strongly in
L2(∂ B1(0)) as a certain sequence rm → 0.

Consequently, the limit w0 is a harmonic function in B1(0) satisfying D jw0(0) = 0 for 0 �
j � α − 1 and ‖w0‖L2(∂ B1(0)) = 1.

Since N (Rrm) � N (Srm) � N (Rrk) for R � S and m >> k, we obtain furthermore that

r

∫
Br (0)
|∇w0|2∫

∂ Br (0)
w0

2 dHn−1
≡ N (0+) for r ∈ (0, 1),

so w0 must be a homogeneous function of degree N (0+) ∈ [0, α).
The regularity of w0 at the point 0 implies that N (0+) ∈ N. Together with the information that

N (0+) < α, that D jw0(0) = 0 for 0 � j � α − 1 and that ‖w0‖L2(∂ B1(0)) = 1, this yields a
contradiction.

Thus N (s) � α for s ∈ (0, 1], and N (1) = α implies that N is constant on (0, 1) and thereby
that w is a homogeneous function of degree α. �

The following proposition gives an estimate on the growth of the solution near Ω ∩ {u = 0} ∩
{∇u = 0};

PROPOSITION 4.1 There exists for each δ > 0 a constant C <∞ such that

∫
∂ Br (x0)

u2 dHn−1 � C rn−1+4

for every r ∈ (0, δ) and every x0 ∈ Ω ∩ {u = 0} ∩ {∇u = 0} satisfying B2δ(x0) ∈ Ω .
Furthermore Φx0(r) � 0 for every r ∈ (0, δ) and every x0 ∈ Ω ∩ {u = 0} ∩ {∇u = 0} satisfying

B2δ(x0) ∈ Ω .

Proof. Let us define the linear space Π := {p : R
n → R : p harmonic and p homogeneous

of degree 2}, let us define for B2r (x0) ⊂ Ω the function ux0,r (x) := u(x0+r x)

r2 and let us define
px0,r ∈ Π as the orthogonal projection of ux0,r into Π with respect to the inner product (v, w) :=∫
∂ B1(0)

vw dHn−1.
We maintain that there exists for each δ > 0 a constant C1 < ∞ such that

distL2(∂ B1(0))(ux0,r ,Π ) � C1 for every x0 ∈ Ω ∩ {u = 0} ∩ {∇u = 0} satisfying B2δ(x0) ⊂ Ω
and every r ∈ (0, δ). Let us assume towards a contradiction that this does not hold. Then there
exist sequences Ω ∩ {u = 0} ∩ {∇u = 0} � xm → x̄ and 0 < rm → 0 as m → ∞
such that

⋃
k,m∈N B2rk (xm) ⊂ Ω and Mm := ‖uxm ,rm − pxm ,rm‖L2(∂ B1(0)) → +∞ as m → ∞.

Introducing um := uxm ,rm , pm := pxm ,rm and vm := um−pm
Mm

we obtain from the monotonicity
formula Theorem 3.1 (using in the case λ− < 0 the fact that um is subharmonic in B1(0) and
um(0) = 0 and the fact that therefore

∫
B1(0)

(λ+max(um, 0)+λ−max(−um, 0)) = λ+
∫

B1(0)
um +
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(λ+ + λ−)
∫

B1(0)
max(−um, 0) � 0) that

∫
B1(0)

|∇vm |2 − 2
∫

∂ B1(0)

vm
2 dHn−1 � 1

M2
m

Φxm (rm)

+ 1

M2
m

∫
∂ B1(0)

(pm∇ pm · ν − 2um∇ pm · ν − 2pm
2 + 4um pm) dHn−1

� 1

M2
m

Φxm (sup
k∈N

rk) → 0

as m → ∞. Passing to a subsequence m → ∞ such that vm ⇀ v weakly in H1,2(B1(0)) as
m →∞, the compact embedding on the boundary implies that ‖v‖L2(∂ B1(0)) = 1, that

∫
B1(0)

|∇v|2 � 2
∫

∂ B1(0)

v2 dHn−1 (3)

and that ∫
∂ B1(0)

vp dHn−1 = 0 for everyp ∈ Π . (4)

Since

∆vm = 1

Mm

(
λ+
2

χ{um>0} − λ−
2

χ{um<0}
)

, (5)

it follows that v is harmonic in B1(0). Moreover, we obtain from L p-theory that vm → v in
C1,α

loc (B1(0)) for each α ∈ (0, 1) as m →∞. Consequently v(0) = 0 and ∇v(0) = 0.
Thus we can apply Lemma 4.1 with respect to α = 2 and obtain from (3) that v is homogeneous

of degree 2, contradicting (4) as ‖v‖L2(∂ B1(0)) = 1.
We infer from this contradiction that∫

B1(0)

(λ+max(ux0,r , 0) + λ−max(−ux0,r , 0)) = Φx0(r) −
∫

B1(0)

|∇(ux0,r − px0,r )|2

+ 2
∫

∂ B1(0)

(ux0,r − px0,r )
2 dHn−1 � Φx0(δ) + 2C1

2

for every r ∈ (0, δ) and every x0 ∈ Ω ∩ {u = 0} ∩ {∇u = 0} satisfying B2δ(x0) ⊂ Ω . In the case
that λ− < 0 we observe that ux0,r is subharmonic in B1(0) and vanishes at the origin and satisfies
therefore

∫
B1(0)

ux0,r � 0. Consequently the left-hand side

∫
B1(0)

(λ+max(ux0,r , 0) + λ−max(−ux0,r , 0))

� (λ+ + λ−) max

(∫
B1(0)

max(ux0,r , 0),

∫
B1(0)

max(−ux0,r , 0)

)

� λ+ + λ−
2

∫
B1(0)

|ux0,r |
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for x0 and r as above, which finishes the proof of our first statement.
Suppose now that λ− � 0 and that 0 < rm → 0 and Ω ∩ {u = 0} ∩ {∇u = 0} � xm → x̄

as m → ∞, that
⋃

k,m∈N B2rk (xm) ⊂ Ω and that NM := ‖uxm ,rm‖L2(∂ B1(0)) → +∞ as
m → ∞. As before, we obtain that some limit w of uxm ,rm

Nm
is harmonic in B1(0) and satisfies

w(0) = 0 and ‖w‖L2(∂ B1(0)) = 1. On the other hand we infer from the above estimate for∫
B1(0)

(λ+max(uxm ,rm , 0) + λ−max(−uxm ,rm , 0)) that w � 0 in the case of λ+ > 0 and that
w � 0 in the case of λ− > 0 which leads by the strong maximum principle to a contradiction. Thus
the first statement of our proposition has been proved.

Furthermore, this puts us in a position to show that Φx0(r) � 0 for every r > 0 and x0 ∈
Ω ∩ {u = 0} ∩ {∇u = 0} satisfying Br (x0) ⊂ Ω .

The function r �→ Φx0(r), being bounded and non-decreasing, has a right limit Φx0(0+) as
r ↘ 0, and we obtain from the monotonicity formula Theorem 3.1 that 0 ← Φx0(σ )− Φx0(ρ) =∫ σ

ρ
s−n−2

∫
∂ Bs (0)

2(∇u · ν − 2 u
s )2 dHn−1 ds as 0 < ρ < σ → 0. Supposing now that Φx0(r) ↘

Φx0(0+) < 0 as r ↘ 0, we obtain a sequence rm → 0 such that ux0,rm → u0 in C1,α
loc (Rn) and u0 is

a homogeneous solution of degree 2. This leads to the contradiction

0 > Φx0(0+) =
∫

B1(0)

(|∇u0|2 + λ+max(u0, 0) + λ−max(−u0, 0))

− 2
∫

∂ B1(0)

u0
2 dHn−1 =

∫
B1(0)

(
λ+
2

max(u0, 0) − λ−
2

min(u0, 0)

)
� 0.

�
LEMMA 4.2 (NON-DEGENERACY) For every x0 ∈ Ω∩(∂{u > 0}∪∂{u < 0}) and every B2r (x0) ⊂
Ω the estimate

sup
∂ Br (x0)

|u| � 1

4n
min(λ+, λ−) r2 holds for min(λ−, λ+) > 0

and the estimate

sup
∂ Br (x0)

|u| � 1

4n
max(λ+, λ−) r2 holds for min(λ−, λ+) � 0.

Proof. Let us first assume that λ+ > 0.
Considering now first a point x0 ∈ ∂{u > 0} such that B2r (x0) ⊂ Ω , we choose a sequence

{u > 0} � xm → x0 as m →∞. Supposing that sup∂ Br (xm ) u � 1
4n λ+ r2, the comparison principle

yields that u(x) � v(x) := 1
4n λ+ |x − xm |2 in Br (xm), a contradiction to the fact that u(xm) > 0.

Next we consider a point x0 ∈ ∂{u < 0} ∩ {max(u, 0) = 0}◦ such that B2r (x0) ⊂ Ω . In the case
that λ− � 0 this yields immediately a contradiction to the strong maximum principle, as min(u, 0)

is subharmonic in a neighbourhood of the point x0. In the case that λ− > 0, x0 ∈ ∂{u < 0} and
B2r (x0) ⊂ Ω we repeat the above comparison argument to obtain

sup
∂ Br (x0)

−u � 1

4n
λ− r2.

This finishes the proof for λ+ > 0.
In the case that λ+ = 0, it follows that λ− > 0, and we apply the already proven estimate to the

solution −u. �
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REMARK 4.1 Thus Ω ∩ (∂{u > 0}∪ ∂{u < 0}) can be decomposed into four parts: the regular part
P1 where ∇u �= 0, the one-phase parts P2 := Ω ∩ ∂{u > 0} − ∂{u < 0} and P3 := Ω ∩ ∂{u <

0} − ∂{u > 0} to which the existing regularity theory can be applied (see, for example, [1] and [7])
and P4 := Ω ∩ ∂{u < 0} ∩ ∂{u > 0} ∩ {∇u = 0} at which ∇u satisfies a linear growth condition.
Concerning P4 one obtains from a combination of our growth estimate with the well known estimate

sup
B 1

2
(0)

|∇v|2 � C(n) sup
B1(0)

v2

(which holds for every harmonic function defined in B1(0)) by a scaling and covering argument that
u ∈ C1,1(U ) for some open neighbourhood U of the interior of P4 relative to Ω∩(∂{u > 0}∪∂{u <

0}). It should therefore be possible to obtain regularity of the relative interior of P4, which will not
be investigated in this paper. Here we will derive a Hausdorff dimension estimate for the entire free
boundary Ω ∩ (∂{u > 0} ∪ ∂{u < 0}).

5. A Hausdorff dimension estimate

LEMMA 5.1 Let x0 ∈ S and let uk(x) := u(x0+ρk x)

ρk
2 be a blow-up sequence: i.e. assume that ρk → 0

as k → ∞. Then (uk)k∈N is for each open D ⊂⊂ R
n and each p ∈ (1,∞) bounded in H2,p(D),

and each limit u0 with respect to a subsequence k → ∞ is a nontrivial homogeneous solution of
degree 2 in R

n and satisfies the following condition: for each compact set K ⊂ R
n and each open

set U ⊃ K ∩ S0 there exists k0 < ∞ such that Sk ∩ K ⊂ U for k � k0; here S0 := {∇u0 =
0} ∩ (∂{u0 > 0} ∪ ∂{u0 < 0}) and Sk := {∇uk = 0} ∩ (∂{uk > 0} ∪ ∂{uk < 0}).
Proof. The boundedness of the sequence follows from Proposition 4.1, the nontriviality of the limit
follows from Lemma 4.2 and the homogeneity of the limit follows from the monotonicity formula
Theorem 3.1 and from the fact that Φx0(ρk)→ Φx0(0+) as k →∞. Concerning the last statement
let us suppose that Sk ∩ (K −U ) � xk → x̄ as k →∞. Then x̄ ∈ {u0 = 0}∩{∇u0 = 0}∩ (K −U ),
and the assumption U ⊃ K ∩ S0 implies that u0 = 0 on Bδ(x̄) for some δ > 0. The uniform
convergence of uk to u0 on Bδ(x̄) as well as the non-degeneracy of uk (Lemma 4.2) lead therefore
to a contradiction for large k. �
THEOREM 5.1 The Hausdorff dimension of the set S is less than or equal to n − 1.

Proof. Suppose that m > n − 1 and that Hm(S) > 0. Then we may use [5: Proposition 11.3],
Lemma 5.1 as well as [5: Lemma 11.5] at Hm-a.e. point of S to obtain a blow-up limit u0 with
the properties mentioned in Lemma 5.1, satisfying Hm,∞(S0) > 0. By [5: Lemma 11.2] we find
a point x̄ ∈ S0 − {0} at which the density in [5: Proposition 11.3] is estimated from below. Now
each blow-up limit u00 with respect to x̄ (and with respect to a subsequence k → ∞ such that the
limit superior in [5: Proposition 11.3] becomes a limit) again satisfies the properties of Lemma 5.1;
in addition, we obtain from the homogeneity of u0 as in Lemma 3.1 of [8] that the rotated u00 is
constant in the direction of the nth unit vector. Defining ū as the restriction of this rotated u00 to
R

n−1, it follows therefore that Hm−1((∂{ū > 0} ∪ ∂{ū < 0}) ∩ {∇ū = 0}) > 0.
Repeating this procedure n− 2 times we obtain a nontrivial homogeneous solution u� of degree

2 in R satisfying Hm−(n−1)((∂{u� > 0} ∪ ∂{u� < 0}) ∩ {∇u� = 0}) > 0, a contradiction. �
COROLLARY 5.1 The Hausdorff dimension of ∂{u > 0} ∪ ∂{u < 0} is less than or equal to n − 1.

REMARK 5.1 Proposition 4.1 and Corollary 5.1 can by obvious modifications be extended to the
case of Hölder continuous coefficients λ+ and λ− satisfying the assumptions in Section 3.



128 G. S. WEISS

REFERENCES

1. CAFFARELLI, L. A. The regularity of free boundaries in higher dimensions. Acta Math. 139, (1977)
155–184.

2. CANNON, J. R. & HILL, C. D. On the movement of a chemical reaction interface. Indiana Univ. Math.
J. 20, (1970) 429–454.

3. EVANS, L. A chemical diffusion-reaction free boundary problem. Nonlinear Anal. 6, (1982) 455–466.
4. GAROFALO, N. & LIN, F. H. Monotonicity properties of variational integrals, A p weights and unique

continuation. Indiana Univ. Math. J. 35, (1986) 245–268.
5. GIUSTI, E. Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston (1984).
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