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Quasistationary problem for a cracked body with
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We consider a problem related to resistance spot welding. The mathematical model describes the
equilibrium state of an elastic, cracked body subjected to heat transfer and electroconductivity and
can be viewed as an extension to the classical thermistor problem.

We prove existence of a solution in Sobolev spaces.
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1. Introduction

In resistance spot welding two workpieces are pressed together by electrodes. Owing to the Joule
effect and the high resistivity in the contact area between the workpieces, the welding current leads
to an increase in temperature, until finally a weld nugget is formed (see Fig. 1).

For a complete description of the process, one has to take into account mechanical, thermal and
electrical effects, as well as the free boundary between liquid metal and solid. To the knowledge of
the authors, mathematical models up to now have only considered the thermal and electrical effects,
neglecting mechanics (see, for example, [15]).

A mathematical model for the special case of impulse resistance welding has been developed
in [7]. The basic equations to obtain the displacement u = (u1, u2), the temperature θ and the
electric potential ϕ are the quasistatic balance law of momentum, the balance of internal energy
as well as the quasistatic balance law of electrical charge. In the framework of isotropic linearized
thermoelasticity, we can formulate the balance laws in the undeformed domain.
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FIG. 1. Schematic illustration of the resistance spot welding process.

Using Ohm’s law
J = γ (θ)E,

where J is the current density, E the electric field and γ (θ) the electric conductivity, and

E = −∇ϕ,

the quasistatic balance law of electrical charge reads

−div(γ (θ)∇ϕ) = 0.

We tacitly assume that the density, the specific heat and the heat conductivity are independent of
temperature and normalized to one. Then the first two balance laws lead to the following system of
partial differential equations:

−σi j, j + δ2θ,i = 0, i = 1, 2,

θt − ∆θ + δ2θ̄
∂

∂t
divu = Ji Ei ,

where θ̄ is the temperature in the stress-free state and δ describes the thermal expansion ( [6], pp. 48–
51, [13]). The elastic part of the stress tensor, σi j , i, j = 1, 2, is given by Hooke’s law

σi j = ai jklεkl(u),

where εkl(u) = 1
2 (uk,l + ul,k) are the strain tensor components. In what follows we put θ̄ = 1

without any loss of generality. The source term Ji Ei corresponds to the Joule heat caused by the
electric current. Using Ohm’s law, it can be rewritten as

Ji Ei = γ (θ)|∇ϕ|2.
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FIG. 2. The domain Ωc .

Obviously, the most important control parameters for the process are the force applied to join the
workpieces and the shape of the electrode (Fig. 1). To achieve a uniform current density between the
electrodes, flat electrodes would be desirable. On the other hand, to reduce wear, a domed electrode
is more favourable. Hence, the area of contact between electrode and workpiece is very important
to control the quality of the weld joint.

The aim of this paper is to initiate the investigation of this contact problem. Owing to the
quadratic Joule heating term in the energy balance, a crucial point for the analysis will be the
regularity of solutions for the electric potential equation. To avoid the additional difficulties which
arise from the geometric singularity at the boundary of the contact between electrode and workpiece,
we focus on the simplified problem of a cracked thermoelectroelastic body.

Note that the so-called thermistor problem for finding the temperature and electrical potential
was considered in [4, 5, 8, 19, 20]. The Stefan problem with Joule’s heating was analysed in [15].
On the other hand, there are many papers related to equilibrium of elastic bodies with cracks and
nonpenetration conditions imposed on the crack faces (see [9, 11, 12]), and to thermoelastic bodies
with linear and nonlinear boundary conditions of Signorini’s type (see [1, 3, 14, 18]).

In the next section we give a precise formulation of the model, assumptions and the main result
are stated in Section 3 and the proof is given in Section 4.

2. Mathematical model and main result

Let Ω ⊂ R
2 be a bounded domain with smooth boundary Γ , and Ξ ⊂ Ω be a smooth curve without

self-intersections. Denote Ωc = Ω \ Ξ , Qc = Ωc × (0, T ), Q = Ω × (0, T ), T > 0. Assume that
Γ = Γ1 ∪ Γ2, Γ1 ∩ Γ2 = ∅, measΓ1 > 0.

In the domain Qc (see Fig. 2), we want to find a solution u = (u1, u2), θ, ϕ of the following
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boundary value problem:

−σi j, j + δ2θi = 0, i = 1, 2, (2.1)

θt − ∆θ + δ2 ∂

∂t
divu = γ (θ)|∇ϕ|2, (2.2)

div(γ (θ)∇ϕ) = 0, (2.3)

θ = θ0 for t = 0, (2.4)

ϕ = ϕ0, θ = 0 on Γ × (0, T ), (2.5)

σi j n j = gi on Γ2 × (0, T ), i = 1, 2, (2.6)

[ϕ] =
[
γ (θ)

∂ϕ

∂ν

]
= 0, [θ ] =

[
∂θ

∂ν

]
= 0 on Ξ × (0, T ), (2.7)

u = 0 on Γ1 × (0, T ); [u] · ν � 0 on Ξ × (0, T ), (2.8)

σν � 0, [σν] = 0, στ = 0, σν · [u] · ν = 0 on Ξ × (0, T ). (2.9)

We select a unit normal vector ν = (ν1, ν2) to Ξ , and n = (n1, n2) is a unit normal vector
to Γ , {σi jν j } = στ + σν · ν, i = 1, 2, σν = σi jν jνi , τ = (−ν2, ν1). The mathematical
model (2.1)–(2.9) describes the equilibrium state of an elastic body subjected to the heat transfer
and electroconductivity. The brackets [v] = v+ − v− mean the jump of v across Ξ and v+, v−
stand for the values of v on Ξ +, Ξ −, respectively, where Ξ +, Ξ − are defined for given choice of
positive and negative directions of ν on Ξ . The curve Ξ presents the crack in the body, and the
second inequality of (2.8) corresponds to the mutual nonpenetration condition between the crack
faces.

Note that the jump conditions in (2.7) are consistent with the framework of linearized elasticity,
since we work in the reference domain.

We make the following assumptions: γ is a given continuous function, γ1 � γ (s) � γ2,
s ∈ R; γ1, γ2 are positive constants. The elastic coefficients ai jkl are smooth and satisfy the usual
assumptions of symmetry and positive definiteness. For the boundary and initial data we assume

θ0 ∈ H1
0 (Ω); gi ∈ H1(0, T ; L2(Γ2)), i = 1, 2; ϕ0 ∈ L∞(0, T ; H

3
2 (Γ )).

Here
H1

0 (Ω) = {v ∈ H1(Ω)|v = 0 on Γ }.
The space H

3
2 (Γ ) can be defined as the space of traces on Γ of all functions from H2(Ω). To

formulate an existence theorem we first have to note that for any given g = (g1, g2, g3) ∈ L p(Ω),
p > 1, the solution w of the problem

div(∇w + g) = 0 in Ω ,

w = 0 on Γ

exists and the following estimate holds:

‖∇w‖L p(Ω) � Λp‖g‖L p(Ω) (2.10)

with the positive constant Λp depending on p. Assume that the oscillation of the function γ is small
enough so that

Λ < 1, Λ = γ2 − γ1

γ1 + γ2
Λ4. (2.11)
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With this merely technical assumption, we can formulate the following existence theorem.

THEOREM 2.1 Assume that all assumptions concerning gi , γ, ϕ0, θ0, ai jkl are satisfied. Then for
small δ there exists a solution to the problem (2.1)–(2.9) such that

θt ∈ L2(Qc), θ ∈ L2(0, T ; H1(Ωc)), u ∈ K , u ∈ H1(0, T ; H1(Ωc)), (2.12)

ϕ ∈ L∞(0, T ; W 1
4 (Ω)), (2.13)∫

Qc

σi jεi j (u − u) − δ2
∫

Qc

θdiv (u − u) �
∫
Γ2×(0,T )

gi (ui − ui ) ∀u ∈ K , (2.14)

∫
Qc

(
θt + δ2 ∂

∂t
div u − γ (θ)|∇ϕ|2

)
η = −

∫
Qc

∇θ · ∇η ∀η ∈ L2(0, T ; H1
0 (Ω)), (2.15)

∫
Q

γ (θ)∇ϕ · ∇ψ = 0 ∀ψ ∈ L2(0, T ; H1
0 (Ω)). (2.16)

Here

K = {v ∈ L2(0, T ; H1(Ωc))|v = 0 on Γ1 × (0, T ), [v] · ν � 0 on Ξ × (0, T )}.

3. Proof of Theorem 2.1

To prove the existence of a solution to (2.1)–(2.9) we substitute the function θ = θ in (2.3) and
determine the function ϕ from (2.3) and the first conditions of (2.5), (2.7), respectively. Then we
consider γ (θ)|∇ϕ|2 as a given function in the right-hand side of (2.2) and solve the equations (2.1),
(2.2) along with all boundary and initial conditions. In such a way we find the functions u, θ . The
next step of the proof is to show that the mapping A : θ −→ θ admits a fixed point in an appropriate
functional space. To this end we use the Schauder fixed point theorem.

Let θ ∈ L2(0, T ; L2(Ωc)) be any fixed function. Consider the following problem:

div(γ (θ)∇ϕ) = 0 in Qc, (3.1)

ϕ = ϕ0 on Γ × (0, T ), (3.2)

[ϕ] = 0,

[
γ (θ)

∂ϕ

∂ν

]
= 0 on Ξ × (0, T ). (3.3)

Here, t plays the role of a parameter. Note first that the conditions ξ ∈ H1(Ωc), [ξ ] = 0 on Ξ
provide the inclusion ξ ∈ H1(Ω).

Consider the problem (3.1), (3.2) with the first condition of (3.3). The weak solution of this
problem can be defined as

ϕ ∈ L∞(0, T ; H1(Ω)),∫
Q

γ (θ)∇ϕ · ∇ψ = 0 ∀ψ ∈ L2(0, T ; H1
0 (Ω))

(3.4)

with the condition (3.2). It is easy to obtain the estimate for the function ϕ by choosing ψ = ϕ −Φ0.
Here we take Φ0 as an element of the space L∞(0, T ; H2(Ω)) such that Φ0 = ϕ0 on Γ × (0, T ).
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From the condition imposed on ϕ0 it follows that such an extension of ϕ0 in the domain Q exists.
As a result of the substitution we have the equality∫

Q
γ (θ)∇ϕ · (∇ϕ − ∇Φ0) = 0

which provides the estimate

γ1

∫
Q

|∇ϕ|2 � γ2

∫
Q

|∇ϕ · ∇Φ0|.

Hence the above inclusion ϕ ∈ L∞(0, T ; H1(Ω)) follows. Existence of the solution is proved by the
standard variational method. Moreover, the second condition of (3.3) is fulfilled since equation (3.1)
holds in Q (compare [9] and [11]).

Indeed, in the domain Q, consider the zeroth distribution div(γ (θ)∇ϕ). Denote by 〈·, ξ〉 the
value of a distribution at the test function ξ . We divide Ωc into two subdomains Ω1,Ω2 by extending
the curve Ξ . In doing so we assume that the extended curve crosses the boundary Γ at two points,
and the boundaries ∂Ωi , i = 1, 2, with unit external normals ν1, ν2, respectively, to possess the
Lipschitz property, Γ1 ∩ ∂Ωi �= ∅, i = 1, 2. We have in Q,

〈div(γ (θ)∇ϕ), ξ〉 = 0, ξ ∈ C∞
0 (Q).

Consequently,

〈div(γ (θ)∇ϕ), ξ〉 = −
∫
Ω1×(0,T )

γ (θ)∇ϕ · ∇ξ −
∫
Ω2×(0,T )

γ (θ)∇ϕ · ∇ξ

=
∫ T

0

〈[
γ (θ)

∂ϕ

∂ν

]
, ξ

〉
Ξ ,1/2

dt = 0.

Here we use the following well known fact. Let D ⊂ R2 be a bounded domain with a Lipschitz
boundary ∂ D. Then the conditions u ∈ H1(D), div(a∇u) ∈ L2(D), a ∈ L∞(D) imply a ∂u

∂ν
∈

H−1/2(∂ D), and the Green formula holds: i.e.∫
D

div(a∇u)ξ =
〈
a

∂u

∂n
, ξ

〉
1/2

−
∫

D
a∇u · ∇ξ ∀ξ ∈ H1(D),

where 〈·, ·〉1/2 is the duality pairing between H−1/2(∂ D) and H1/2(∂ D). This implies the second
condition of (3.3), ∫ T

0

〈[
γ (θ)

∂ϕ

∂ν

]
, ξ

〉
Ξ ,1/2

dt = 0,

which holds in the sense∫ T

0

〈
γ (θ)

∂ϕ

∂ν1
, ξ

〉
∂Ω1,1/2

dt +
∫ T

0

〈
γ (θ)

∂ϕ

∂ν2
, ξ

〉
∂Ω2,1/2

dt = 0, ξ ∈ C∞
0 (Q).

Hence we obtain the following boundary value problem for ϕ:

div(γ (θ)∇ϕ) = 0 in Q, (3.5)

ϕ = ϕ0 on Γ × (0, T ). (3.6)
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Now we aim to show an additional regularity for ϕ. The problem (3.5), (3.6) can be rewritten in the
form

div

(
γ1 + γ2

2
∇v + γ̃ (θ)∇v + γ (θ)∇Φ0

)
= 0 in Q, (3.7)

v = 0 on Γ × (0, T ). (3.8)

Here v = ϕ − Φ0 is unknown function, γ̃ (s) = γ (s) − γ1+γ2
2 . Note that |γ̃ (s)| � γ2−γ1

2 , s ∈ R.
Take any function v0 ∈ L∞(0, T ; W 1

4 (Ω)) and apply the iteration method for solving the
problem (3.7), (3.8):

div

(
γ1 + γ2

2
∇vn+1 + γ̃ (θ)∇vn + γ (θ)∇Φ0

)
= 0 in Q, (3.9)

vn+1 = 0 on Γ × (0, T ), (3.10)

where n = 0, 1, 2, . . . . According to (2.10) for almost all t ∈ (0, T ) we have the estimate

‖∇vn+1‖L4(Ω) � Λ‖∇vn‖L4(Ω) + λ‖∇Φ0‖L4(Ω), λ = 2γ2Λ4

γ1 + γ2
. (3.11)

By (3.11), it is easy to conclude that the sequence vn is fundamental, and we can assume that as
n → ∞

vn → v in L∞(0, T ; L4(Ω)).

This allows us to pass to the limit in (3.9), (3.10) as n → ∞. Hence the problem (3.7), (3.8)
(or, what is the same, the problem (3.5), (3.6)) has the solution v ∈ L∞(0, T ; W 1

4 (Ω)), i.e.
ϕ ∈ L∞(0, T ; W 1

4 (Ω)). Consequently, ∇ϕ ∈ L∞(0, T ; L4(Ω)). This implies that γ (θ)|∇ϕ|2 ∈
L2(Qc), and we can consider the following initial-boundary value problem in Qc for unknown
functions u = (u1, u2), θ :

−σi j, j + δ2θ,i = 0, i = 1, 2, (3.12)

θt − ∆θ + δ2 ∂

∂t
divu = γ (θ)|∇ϕ|2, (3.13)

u = 0 on Γ1 × (0, T ); σi j n j = gi on Γ2 × (0, T ), i = 1, 2, (3.14)

[u] · ν � 0, σν � 0, [σν] = 0, στ = 0, σν · [u] · ν = 0 on Ξ × (0, T ), (3.15)

θ = 0 on Γ × (0, T ), (3.16)

[θ ] =
[
∂θ

∂ν

]
= 0 on Ξ × (0, T ), (3.17)

θ = θ0 for t = 0. (3.18)

The problem (3.12)–(3.18) with the given right-hand side h = γ (θ)|∇ϕ|2 ∈ L2(Qc) can be solved
for small δ (see [10, 14]), with the following estimates:

‖θt ‖L2(Qc)
+ ‖θ‖L2(0,T ;H1(Ωc))

� c1δ‖u‖H1(0,T ;H1(Ωc))
+ c2‖h‖L2(Qc)

, (3.19)

‖u‖H1(0,T ;H1(Ωc))
� c3δ‖θ‖H1(Qc)

+ c4‖g‖H1(0,T ;L2(Γ2))
+ c5‖θ0‖H1(Ω), (3.20)
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and the constants ci are independent of δ, θ . This solution (u, θ) satisfies the variational inequality

∫
Qc

σi j (u)εi j (u − u) − δ2
∫

Qc

θdiv(u − u) �
∫
Γ2×(0,T )

gi (ui − ui ) ∀u ∈ K , (3.21)

and the identity

∫
Qc

(
θt + δ2 ∂

∂t
divu − γ (θ)|∇ϕ|2

)
η = −

∫
Qc

∇θ · ∇η ∀η ∈ L2(0, T ; H1
0 (Ω)). (3.22)

Note that inequality (3.21) can be written for almost all t ∈ (0, T ) in the following form:

∫
Ωc

σi j (u)εi j (u − u) − δ2
∫
Ωc

θdiv(u − u) �
∫
Γ2

gi (ui − ui ) ∀u ∈ K̃ , (3.23)

where
K̃ = {v ∈ H1(Ωc)|v = 0 on Γ1, [v] · ν � 0 on Ξ }.

The presence of the estimates (3.19), (3.20) allows us to find δ0 such that for all δ � δ0 the
problem (3.12)–(3.18) is solvable. The bound δ0 for δ can be found similar to [10]. The bound
depends on the norms of θ0, ϕ0, g in the respective spaces and on the domain Ωc (dependence on ϕ0
appears due to the presence of γ (θ)|∇ϕ|2 on the right-hand side of (3.19)).

In what follows we fix any δ � δ0 which provides the solvability of (3.12)–(3.18). Notice
that the solution (θ, u) is unique. Indeed, assume that there are two solutions (θ1, u1), (θ2, u2),
corresponding to the function h. These solutions satisfy the relations

θ1
t − ∆θ1 + δ2 ∂

∂t
divu1 = h, (3.24)∫

Ωc

σi j (u
1)εi j (u − u1) − δ2

∫
Ωc

θ1div(u − u1) �
∫
Γ2

gi (ui − u1
i ) ∀u ∈ K̃ , (3.25)

θ2
t − ∆θ2 + δ2 ∂

∂t
divu2 = h, (3.26)∫

Ωc

σi j (u
2)εi j (u − u2) − δ2

∫
Ωc

θ2div(u − u2) �
∫
Γ2

gi (ui − u2
i ) ∀u ∈ K̃ . (3.27)

Denote θ = θ1 − θ2, u = u1 − u2. From (3.24)–(3.27) it follows that

θt − ∆θ + δ2 ∂

∂t
divu = 0, (3.28)∫

Ωc

σi j (u)εi j (u) − δ2
∫
Ωc

θdivu � 0. (3.29)

Variational inequality (3.23) can be considered at t = 0 which provides the uniqueness of the
displacement for t = 0. Hence divu(0) = 0 and, consequently, equation (3.28) implies

δ2divu(t) = −θ(t) +
∫ t

0
∆θ.
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Substitution of this value of δ2divu in (3.29) provides the inequality

∫
Ωc

σi j (u)εi j (u) −
∫
Ωc

θ

(
−θ +

∫ t

0
∆θ

)
� 0,

i.e.

‖u(t)‖2
H1(Ωc)

+ ‖θ(t)‖2
L2(Ωc)

+ 1

2

d

dt

∥∥∥∥
∫ t

0
∇θ

∥∥∥∥
2

L2(Ωc)

� 0.

Hence θ ≡ 0, u ≡ 0 which proves the assertion. The solution of (3.12)–(3.18) satisfies the following
inclusions:

θt ∈ L2(Qc), θ ∈ L2(0, T ; H1(Ωc)), u ∈ H1(0, T ; H1(Ωc)).

Actually, the function θ has a higher regularity. To see this we write the equation (3.22) in Qc in the
following form:

−∆θ = −θt − δ2 ∂

∂t
divu + γ (θ)|∇ϕ|2 (3.30)

with the right-hand side −θt −δ2 ∂
∂t divu +γ (θ)|∇ϕ|2 belonging to L2(Q). Of course, the derivative

∂
∂t divu is defined with respect to the domain Qc. Conditions (3.17) provide that the equation (3.30)
holds in Q. In this case we can argue as in the case of the boundary value problem (3.1)–(3.3) which,
in fact, removes the singularity surface Ξ × (0, T ). Consequently, by the boundary condition (3.16),
we have θ ∈ L2(0, T ; H2(Ω) ∩ H1

0 (Ω)). Note that the estimate

‖θ‖L2(0,T ;H2(Ω)∩H1
0 (Ω)) � c6

for the solution to the system (3.21), (3.22) is also independent of the norm ‖θ‖L2(0,T ;L2(Ωc))
. The

constant c6 depends on Q and the L2-norm of the right-hand side of (3.30). Notice next that the
space

θt ∈ L2(0, T ; L2(Ω)), θ ∈ L2(0, T ; H2(Ω))

is compactly embedded in the space θ ∈ L2(Q) and, consequently, into the space L2(Qc). This
means that if θ belongs to some ball BR in the space L2(0, T ; L2(Ωc)), i.e.

‖θ‖L2(0,T ;L2(Ωc))
� R

for R sufficiently large, the solution θ belongs to the same ball, and the mapping A :
L2(0, T ; L2(Ωc)) � θ −→ θ ∈ L2(0, T ; L2(Ωc)) is compact. To use the Schauder fixed point
theorem we have to verify a continuity of the mapping A from L2(Qc) into L2(Qc). Let θ

n → θ in
L2(Qc). We shall state that

A(θ
n
) → A(θ) in L2(Qc).

Denote θn = A(θ
n
), θ = A(θ). For θ

n
and θ we can define γ (θ

n
)|∇ϕn|2, γ (θ)|∇ϕ|2, and solve

the problem (3.21), (3.22) which provides an existence of (θn, un) and (θ, u), respectively. The
functions ϕn and ϕ satisfy the following equations in Q:

div(γ (θ
n
)∇ϕn) = 0, div(γ (θ)∇ϕ) = 0. (3.31)
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From the equations

θn
t − ∆θn + δ2 ∂

∂t
divun = γ (θ

n
)|∇ϕn|2,

θt − ∆θ + δ2 ∂

∂t
divu = γ (θ)|∇ϕ|2

it follows that

δ2 ∂

∂t
div(u − un) = −(θ − θn)t + ∆(θ − θn) + γ (θ)|∇ϕ|2 − γ (θ

n
)|∇ϕn|2. (3.32)

Since the initial conditions for θ and θn coincide, i.e.

θ(0) − θn(0) = 0,

equation (3.32) implies

δ2div(u − un)(t) = −(θ − θn)(t) +
∫ t

0
∆(θ − θn) +

∫ t

0
[γ (θ)|∇ϕ|2 − γ (θ

n
)|∇ϕn|2]. (3.33)

Variational inequalities∫
Ωc

σi j (u
n)εi j (u − un) − δ2

∫
Ωc

θndiv(u − un) �
∫
Γ2

gi (ui − un
i ) ∀u ∈ K̃ ,

∫
Ωc

σi j (u)εi j (u − u) − δ2
∫
Ωc

θdiv(u − u) �
∫
Γ2

gi (ui − ui ) ∀u ∈ K̃

provide the relation∫
Ωc

σi j (u − un)εi j (u − un) − δ2
∫
Ωc

(θ − θn) div(u − un) � 0

which, by (3.33), gives ∫
Ωc

σi j (u − un)εi j (u − un)

+
∫
Ωc

(θ − θn)((θ − θn) −
∫ t

0
∆(θ − θn) −

∫ t

0
[γ (θ)|∇ϕ|2 − γ (θ

n
)|∇ϕn|2]) � 0. (3.34)

Consequently, (3.34) implies the following inequality holding for almost all t ∈ (0, T ):

‖u − un‖2
H1(Ωc)

+ ‖θ − θn‖2
L2(Ωc)

+ 1

2

d

dt

∥∥∥∥
∫ t

0
∇(θ − θn)

∥∥∥∥
2

L2(Ωc)

�
∫ t

0

∫
Ωc

[γ (θ)|∇ϕ|2 − γ (θ
n
)|∇ϕn|2](θ − θn). (3.35)

Integrating (3.35) in t we derive
∫ T

0
‖u − un‖2

H1(Ωc)
+ ‖θ − θn‖2

L2(Qc)
� T

∫
Qc

[γ (θ)|∇ϕ|2 − γ (θ
n
)|∇ϕn|2](θ − θn). (3.36)
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Since

T
∫

Qc

[γ (θ)|∇ϕ|2 − γ (θ
n
)|∇ϕn|2](θ − θn)

� (1/2)‖θ − θn‖2
L2(Qc)

+ c
∫

Qc

[γ (θ)|∇ϕ|2 − γ (θ
n
)|∇ϕn|2]2

from (3.36) it follows that

‖θ − θn‖2
L2(Qc)

� c
∫

Qc

[γ (θ)|∇ϕ|2 − γ (θ
n
)|∇ϕn|2]2. (3.37)

Now we want to prove that the right-hand side of (3.37) goes to zero as n → ∞. Note that

γ (θ)|∇ϕ|2 − γ (θ
n
)|∇ϕn|2 = (γ (θ) − γ (θ

n
))|∇ϕ|2 + γ (θ

n
)(∇(ϕ − ϕn) · ∇(ϕ + ϕn)).

Hence ∫
Qc

[γ (θ)|∇ϕ|2 − γ (θ
n
)|∇ϕn|2]2

� 2
∫

Qc

(γ (θ) − γ (θ
n
))2|∇ϕ|4 + 2γ 2

2

∫
Qc

|∇(ϕ − ϕn)|2 · |∇(ϕ + ϕn)|2. (3.38)

Since θn are relatively compact in some ball BR ⊂ L2(Qc) it suffices to prove that θ is a unique
limit point of θn . Let θ̃ be a limit point, i.e. θ̃ = limk→∞ θnk . Choosing a subsequence θ

nk p with
the previous notation θ

nk , we assume that

θ
nk → θ almost everywhere in Qc. (3.39)

We already have proved that ∫
Qc

|∇ϕ|4 < c,

whence, by the Lebesgue convergence theorem and (3.39), the first integral of the right-hand side
of (3.38) goes to zero as n = nk → ∞. We take below n = nk . Now we prove that the second
integral of the right-hand side of (3.38) converges to zero as n → ∞. From (3.31) we have the
following equation in Q:

div(∇(ϕ − ϕn)) = 2

γ1 + γ2
div[(γ (θ

n
) − γ (θ))∇ϕ] − 2

γ1 + γ2
div[(γ̃ (θ

n
)∇(ϕ − ϕn)]. (3.40)

Since |γ̃ (θ
n
)| � γ2−γ1

2 , by (2.10) and the boundary condition

ϕ − ϕn = 0 on Γ × (0, T ),

from (3.40) we obtain the following estimate:

‖∇(ϕ − ϕn)‖L4(Ω) � 2Λ4

γ1 + γ2
‖(γ (θ

n
) − γ (θ))∇ϕ‖L4(Ω) + Λ‖∇(ϕ − ϕn)‖L4(Ω)
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being uniform in t ∈ (0, T ). Recall that Λ < 1, hence there exists a constant c independent of n
such that

‖∇(ϕ − ϕn)‖4
L4(Ω)

� c‖(γ (θ
n
) − γ (θ))∇ϕ‖4

L4(Ω)
. (3.41)

Integrating (3.41) in t implies

‖∇(ϕ − ϕn)‖L4(Q) � c‖(γ (θ
n
) − γ (θ))∇ϕ‖L4(Q). (3.42)

In view of (3.39) the right-hand side of (3.42) goes to zero by the Lebesgue convergence theorem,
hence

‖∇(ϕ − ϕn)‖L4(Q) → 0, n → ∞. (3.43)

Since ‖∇(ϕ + ϕn)‖L4(Q) are bounded uniformly in n, the convergence (3.43) yields as n → ∞
∫

Qc

|∇(ϕ − ϕn)|2 · |∇(ϕ + ϕn)|2 � ‖∇(ϕ − ϕn)‖2
L4(Qc)

‖∇(ϕ + ϕn)‖2
L4(Qc)

→ 0.

Therefore, we conclude that the second integral of the right-hand side of (3.38) converges to zero,
and we prove that

θnk → θ = θ̃ in L2(Qc).

Continuity of the operator A is established. So we can apply the Schauder fixed point theorem to
assure the existence of a solution to the problem (2.1)–(2.9) in the sense of Theorem 2.1.

4. Concluding remarks

We have some additional regularity for the solution of (2.12)–(2.16): in particular, θ ∈
L2(0, T ; H2(Ω) ∩ H1

0 (Ω)). This inclusion follows from the equation

−∆θ = −θt − δ2 ∂

∂t
divu + γ (θ)|∇ϕ|2

and the given boundary conditions for θ on Γ × (0, T ) and Ξ × (0, T ). Recall that the boundary
conditions on Ξ × (0, T ) remove the singularity surface Ξ × (0, T ).

Boundary conditions (2.6), (2.9) are included in the variational inequality (2.14). It can be shown
(see [10]) that the displacement u also has an additional regularity, at least in the case when Ξ is
a straight line segment. In particular, for any x ∈ Ξ there exists a neighbourhood V such that
u ∈ L2(0, T ; H2(V ∩ Ωc)). Consequently, from the variational inequality (2.14) it follows that
boundary conditions (2.9) hold for almost all (x, t) ∈ Ξ × (0, T ).

We can state an additional smoothness properties of ϕ provided that γ is C1-function such that
|γ ′(s)| < γ3, γ3 = const. Namely,

ϕ ∈ Lq(0, T ; H2(Ω)), q < 4. (4.1)

Indeed, equation (2.16) reads

∆ϕ = −γ ′(θ)

γ (θ)
∇θ · ∇ϕ in Q. (4.2)
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According to [16] the space

θt ∈ L2(0, T ; L2(Ω)), θ ∈ L2(0, T ; H2(Ω))

has (compact) embedding in the space θ ∈ Lq(0, T ; H
3
2 (Ω)), q < 4.

Consider the right-hand side of equation (4.2). Since the embedding H1/2(Ω) ⊂ L4(Ω) is
continuous for the two-dimensional case we have

∇θ ∈ Lq(0, T ; L4(Ω)). (4.3)

Consequently, by the inclusion ∇ϕ ∈ L∞(0, T ; L4(Ω)) and (4.3), we have ∇ϕ · ∇θ ∈
Lq(0, T ; L2(Ω)). The right-hand side of equation (4.2) belongs to Lq(0, T ; L2(Ω)), and Φ0 ∈
L∞(0, T ; H2(Ω)), hence the inclusion (4.1) follows.

Also, note that to prove the theorem it suffices to require a weaker regularity assumption on ϕ0.
We can assume that ϕ0 is a trace on Γ × (0, T ) of a function Φ0 ∈ L∞(0, T ; W 1

4 (Ω)).
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