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Mathematical analysis of phase-field equations with numerically
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This paper deals with the equations in a phase-field model with special terms coupling the heat
equation and the equation of phase. A finer control of latent heat release together with a gradient
coupling term in the phase equation are introduced as a consequence of an extensive numerical work
with models of phase transitions within the context of the solidification of crystalline substances.
We present a proof of the existence and uniqueness of the weak solution of the modified system of
equations. Furthermore, we perform an asymptotic procedure to recover sharp-interface relations.
Finally, several numerical studies demonstrate how the model behaves compared to its standard
version.
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1. Introduction

The description of microscopic phenomena accompanying the solidification process of crystalline
materials requires a simultaneous evaluation of the bulk enthalpy, the bulk and surface free energy
of the system. A diffuse interpretation of the phase interface has its origin in the Cahn–Hilliard
theory of solid–liquid phase transitions [9]. The equations known as the phase-field model have
been analysed from the viewpoint of the existence and uniqueness of solution, in relation to the
Stefan problem (see [7]), and convergence to the mean-curvature problem [6] in some special cases.
The model based on phase-field equations exhibits satisfactory qualitative agreement with the real
situation (see [3]). The model is able to demonstrate important microscopic phenomena appearing
in the solidification of crystalline substances (dendritic or equiaxed growth, coarsening, ripening,
reheating etc: see [3]). The question of quantitative agreement still remains open for the evolution
of general, non-convex shapes like dendrites. The simulation of this phenomenon is limited by
the power of currently used computers and requires more profound and sophisticated numerical
algorithms to be used, but also opens discussion about the physical relevance of the phase-field
model, or its particular parts. The behaviour of the equations in question can be investigated from
the viewpoint of approximation of mean curvature, of influence of the diffusive interface on the
release of latent heat and of stability of phase boundary. These points were discussed in [2] and
led to modifications of coupling between the two equations proposed in view of better satisfaction
of the sharp-interface relation—the Gibbs–Thompson equation. As the numerical behaviour of the
model has been improved (for example see [5]), it is useful to analyse the equations in question
from a mathematical point of view.
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2. Equations

We begin with the system of equations in [3] extensively used for the qualitative simulation of
microstructure phenomena in solidification of crystallic materials:

∂u

∂t
= ∆u + L

∂p

∂t
,

αξ2 ∂p

∂t
= ξ2∆p + f0(p) + F(u)ξ2|∇ p|, (2.1)

with initial conditions
u|t=0 = uini, p|t=0 = pini,

and with boundary conditions of the Dirichlet type

u|∂Ω = 0, p|∂Ω = 0.

Here, Ω is a bounded domain in R
n with a C2 boundary (or alternatively, a convex domain with

piecewise smooth boundary: see [12]), and L , α, ξ are positive constants.
The nonlinear function f0 = −w′

0 is given by the derivative of a double-well potential w0,
which plays a key role in the model. The function w0 is typically a polynomial of fourth degree
with two (stable) minima at 0 and 1, and one (unstable) maximum usually at 0.5. The solution
p is expected to look for stable states 0 and 1 and to allow a relatively small space for values
near 0.5. We therefore identify the stable states with the liquid and solid phases, and the unstable
state with a region between phases—a diffuse interface (see [7], [3]). The analysis below considers
f0(p) = ap(1 − p)(p − 1

2 ) with a > 0, but can be performed using any other function with the
same properties.

The coupling function F(u) is bounded and continuous, or even Lipschitz continuous, and is
related to the undercooling of the interface (in fact, it is proportional to the undercooling of the
interface in a certain range of values), and |.| denotes the Euclidean norm in R

n . For the sake of
simplicity, n = 2 and the boundary conditions are homogeneous. Obviously, extension to higher
dimensions and to other boundary conditions is possible.

In the physical context, the system (2.1) is treated as a regularization of the modified Stefan
problem describing isotropic microstructure formation in solidification of a pure substance if ξ → 0
(see [3], [7]):

∂u

∂t
= ∆u in Ωs and Ωl , (2.2)

u|∂Ω = 0, u|t=0 = uini,

∂u

∂nΓ

∣∣∣∣
s
− ∂u

∂nΓ

∣∣∣∣
l
= LvΓ on Γ (t), (2.3)

F(u) = κΓ + αvΓ on Γ (t), (2.4)

Ωs(t)|t=0 = Ωs,ini,

where Ωs , Ωl are solid and liquid phases, respectively, and u the temperature field. Discontinuity
of heat flux on Γ (t) is described by the Stefan condition (2.3), where vΓ is the velocity in the
direction of the outer normal nΓ to Ωs . The formula (2.4) is the Gibbs–Thompson relation on Γ (t)
whose mean curvature is denoted as κΓ . The parameter α is the coefficient of attachment kinetics.
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FIG. 1. Schematic illustration of the role of focusing latent heat.

Following [3], the relation between (2.1) and (2.2)–(2.4) can be studied with the use of asymptotic
analysis.

The phase equation in (2.1) contains a modified coupling term F(u)ξ2|∇ p|, proposed in [2] as a
consequence of the level-set reformulation of the condition (2.4) using the definition of the boundary
Γ as a manifold. The solution of (2.1), as is observed in numerical studies (see [3]), shows an
insufficient convergence rate towards a sharp-interface limit in terms of the magnitude of ξ required
to obtain quantitatively reasonable results. Therefore, we propose a slight modification of the source
term in the heat equation by a focusing function χ = χ(p) satisfying χ(0) = 0, χ(1) = 1, χ(0.5) =
0.5, whose derivative is bounded, Lipschitz continuous. The action of χ can be observed in Fig. 1
(H(u, p) = u − Lχ(p)). The paper presents an analysis for the phase-field equations including the
above-mentioned improvement:

∂u

∂t
= ∆u + Lχ ′(p)

∂p

∂t
,

αξ2 ∂p

∂t
= ξ2∆p + f0(p) + F(u)ξ2|∇ p|, (2.5)

with the initial conditions

u|t=0 = uini, p|t=0 = pini,

and with the boundary conditions of Dirichlet type

u|∂Ω = 0, p|∂Ω = 0.

Then, we relate model and physical parameters of the problem by using a matched asymptotic
analysis. Equations (2.5) have (in comparison with those of [7]) no Lyapunov functional and are
hard to be derived by minimization of an energy functional. On the other hand, the form of (2.5) is
closely related to geometrical aspects of level-set motion by mean curvature [4].
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3. Existence and uniqueness

First, we introduce the following notation:

(u, v) =
∫
Ω

u(x)v(x) dx, ‖u‖ =
√∫

Ω
u(x)2 dx for u, v ∈ L2(Ω),

(∇u,∇v) =
∫
Ω
∇u(x) · ∇v(x) dx, ‖∇u‖ =

√∫
Ω
|∇u(x)|2 dx for u, v ∈ H1(Ω).

We also note that the assumptions on χ imply that there are constants Cχ , Lχ > 0 such that
|χ ′(s)| � Cχ , |χ ′(s1)− χ ′(s2)| � Lχ |s1 − s2| for all s, s1, s2 ∈ R. Similarly, the assumptions on F
imply that there are constants CF , L F > 0 such that |F(s)| � CF , and |F(s1)−F(s2)| � L F |s1−s2|
for all s, s1, s2 ∈ R. We define the notion of the weak solution as usual, as follows.

DEFINITION 3.1 The weak solution of the boundary-value problem with homogeneous Dirichlet
boundary conditions for the phase-field equations (2.5) is a couple of functions [u, p] ∈
L2(0, T ; [H1

0(Ω)]2) such that it satisfies

d

dt
(u − Lχ(p), v) + (∇u,∇v) = 0 a.e. in (0, T ), (3.1)

u|t=0 = uini,

αξ2 d

dt
(p, q) + ξ2(∇ p,∇q) = ( f0(p), q) + ξ2(F(u)|∇ p|, q) a.e. in (0, T ),

p|t=0 = pini,

for each v, q ∈ H1
0(Ω).

The continuous embedding of H1(Ω) into Ls(Ω) for each s ∈ (1,+∞) (dim Ω = 2) ensures that
f0(p) ∈ L2(Ω) for almost all t ∈ (0, T ). If [u, p] ∈ L2(0, T ; [H1

0(Ω)]2) solves (3.1), then [u, p]
is a continuous mapping from the closed interval 〈0, T 〉 to [H−1(Ω)]2. Thus, the definition has the
proper sense. Our existence and uniqueness result is contained in the following theorem. By its
virtue, the proof investigates convergence of a semi-discrete scheme based on the Faedo–Galerkin
method.

THEOREM 3.2 Consider the problem (3.1) in a bounded domain Ω ⊂ R
2 with a C2 boundary, and

with F being a bounded continuous function, χ a function with χ(0) = 0, χ(1) = 1, χ(0.5) = 0.5,
χ ′ bounded, Lipschitz continuous. Assume that

uini, pini ∈ H1(Ω). (3.2)

Then, there is a solution of the problem (3.1) satisfying

u, p ∈ L∞(0, T ;H1
0(Ω)), p ∈ L2(0, T ;H2(Ω)),

∂u

∂t
,
∂p

∂t
∈ L2(0, T ;L2(Ω)).

Additionally, if F is Lipschitz continuous and χ(p) = p, the solution is unique.
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Proof. We derive a sequence of approximate solutions to the original problem (3.1). Assume that
there is an orthonormal basis {vi }i∈N of the Hilbert space L2(Ω) consisting of eigenvectors of the
operator −∆ coupled with homogeneous Dirichlet boundary conditions. Additionally, we assume
that (∀i ∈ N)(vi ∈ C2(Ω) ∩ C1(Ω̄)). Corresponding eigenvalues are denoted by {λi }i∈N. Let Vm =
span{vi }i∈Nm be a finite-dimensional subspace (Nm = {1, . . . , m}); Pm : L2(Ω) → Vm be the L2-
projection operator (coinciding with the H1-projector). We seek for a solution [um, pm] from 〈0, T )

to [Vm]2 of an auxiliary problem:

d

dt
(um − Lχ(pm), v) + (∇um,∇v) = 0 a.e. in (0, T ), ∀v ∈ Vm,

um(0) = Pmuini,

αξ2 d

dt
(pm, q) + ξ2(∇ pm,∇q) = ( f0(pm), q) + ξ2(F(um)|∇ pm |, q) (3.3)

a.e. in (0, T ), ∀q ∈ Vm,

pm(0) = Pm pini.

We use basic functions of Vm to express the solution of (3.3) as

um(t) =
∑

i∈Nm

βm
i (t)vi , pm(t) =

∑
i∈Nm

γ m
i (t)vi ,

and to obtain a system of ordinary differential equations for the unknown functions of time: βm
i ,

γ m
i :

dβm
j

dt
+ λ jβ

m
j = L

d

dt

(
χ

( ∑
i∈Nm

γ m
i vi

)
, v j

)
in (0, T ), (3.4)

βm
j (0) = β0

j , for each j ∈ Nm,

αξ2
dγ m

j

dt
+ ξ2λ jγ

m
j =

(
f0

( ∑
i∈Nm

γ m
i vi

)
, v j

)

+ ξ2

(
F

( ∑
i∈Nm

βm
i vi

) ∣∣∣∣∣
∑

i∈Nm

γ m
i ∇vi

∣∣∣∣∣ , v j

)
in (0, T ), (3.5)

γ m
j (0) = γ 0

j , for each j ∈ Nm,

where Pmuini = ∑
i∈Nm

β0
i vi , Pm pini = ∑

i∈Nm
γ 0

i vi . We follow the steps of the compactness
method (see, for example, [18]), show that the solution of (3.4), (3.5) is defined on (0, T ) for T > 0
and show an appropriate convergence of the couple [um, pm]. For this purpose, we prove an a priori

estimate by multiplying (3.4) by
dβm

j
dt , (3.5) by

dγ m
j

dt , and summing for j ∈ Nm :

∥∥∥∥∂um

∂t

∥∥∥∥
2

+ 1

2

d

dt
‖∇um‖2 = L

(
∂χ(pm)

∂t
,
∂um

∂t

)
,

αξ2
∥∥∥∥∂pm

∂t

∥∥∥∥
2

+ ξ2

2

d

dt
‖∇ pm‖2 =

(
f0(pm),

∂pm

∂t

)
+ ξ2

(
F(um)|∇ pm |, ∂pm

∂t

)
. (3.6)
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Using the Schwarz and Young inequalities, we get

∥∥∥∥∂um

∂t

∥∥∥∥
2

+ d

dt
‖∇um‖2 � L2C2

χ

∥∥∥∥∂pm

∂t

∥∥∥∥
2

,

1

2
αξ2

∥∥∥∥∂pm

∂t

∥∥∥∥
2

+ ξ2

2

d

dt
‖∇ pm‖2 + d

dt
(w0(pm), 1) �

C2
F

2α
ξ2‖∇ pm‖2, (3.7)

where w′
0 = − f0. Combining these estimates, we have

1

4
αξ2

∥∥∥∥∂pm

∂t

∥∥∥∥
2

+ αξ2

4L2C2
χ

∥∥∥∥∂um

∂t

∥∥∥∥
2

+ αξ2

4L2C2
χ

d

dt
‖∇um‖2 + ξ2

2

d

dt
‖∇ pm‖2

+ d

dt
(w0(pm), 1) �

C2
F

2α
ξ2‖∇ pm‖2. (3.8)

Adding non-negative terms on the right-hand side,

1

4
αξ2

∥∥∥∥∂pm

∂t

∥∥∥∥
2

+ αξ2

4L2C2
χ

∥∥∥∥∂um

∂t

∥∥∥∥
2

+ αξ2

4L2C2
χ

d

dt
‖∇um‖2 + ξ2

2

d

dt
‖∇ pm‖2 + d

dt
(w0(pm), 1)

�
C2

F

α

(
ξ2

2
‖∇ pm‖2 + αξ2

4L2C2
χ

‖∇um‖2 + (w0(pm), 1)

)
. (3.9)

Integrating over (0, t), we have

(
αξ2

4L2C2
χ

‖∇um‖2 + ξ2

2
‖∇ pm‖2 + (w0(pm), 1)

)
(t)

�
(

αξ2

4L2C2
χ

‖∇um‖2 + ξ2

2
‖∇ pm‖2 + (w0(pm), 1)

)
(0) exp

(
C2

F

α
t

)
. (3.10)

The assumption (3.2) of the theorem together with the coincidence of projectors in L2 and H1

imply that ∇Pm pini,∇Pmuini remain bounded in L2(Ω) uniformly in m, and Pm pini are bounded
in L4(Ω) uniformly in m (due to the continuous imbedding of H1 into L4). Consequently, the
inequality (3.10) implies that, independent of m, ∇um,∇ pm are bounded in L∞(0, T ;L2(Ω)), and
pm are bounded in L∞(0, T ;L4(Ω)) for each finite time T > 0. This result is valid for any spatial
dimension. The additional assumption n = 2 together with the above-mentioned boundedness of
the sequence ∇ pm implies through the embedding theorem that, independent of m, pm are bounded
in L∞(0, T ;L6(Ω)) for each finite time T > 0, which can be used to strenghten the convergence of
f0(pm) as shown below.

Integrating (3.10) over (0, T ), we get

∫ T

0

(
αξ2

4L2C2
χ

‖∇um‖2 + ξ2

2
‖∇ pm‖2 + (w0(pm), 1)

)
(t) dt

�
(

αξ2

4L2C2
χ

‖∇um‖2 + ξ2

2
‖∇ pm‖2 + (w0(pm), 1)

)
(0)

α

C2
F

(
exp

(
C2

F

α
T

)
− 1

)
. (3.11)
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We use this estimate for the integration of the relation (3.9), and we see that

∫ T

0

(
1

4
αξ2

∥∥∥∥∂pm

∂t

∥∥∥∥
2

+ αξ2

4L2C2
χ

∥∥∥∥∂um

∂t

∥∥∥∥
2)

(t) dt

+
(

ξ2

2
‖∇ pm‖2 + αξ2

4L2C2
χ

‖∇um‖2 + (w0(pm), 1)

)
(T )

�
(

ξ2

2
‖∇ pm‖2 + αξ2

4L2C2
χ

‖∇um‖2 + (w0(pm), 1)

)
(0)

+ C2
F

α

∫ T

0

(
ξ2

2
‖∇ pm‖2 + αξ2

4L2C2
χ

‖∇um‖2 + (w0(pm), 1)

)
(t) dt

�
(

αξ2

4L2C2
χ

‖∇um‖2 + ξ2

2
‖∇ pm‖2 + (w0(pm), 1)

)
(0) exp

(
C2

F

α
T

)
. (3.12)

Passing to a subsequence m′, we have um′
⇀ u and pm′

⇀ p in L2(0, T ;H1
0(Ω)). The nonlinear

terms in (2.5) require a stronger convergence result. Using the compact-embedding theorem [17]
with the setting

{um}∞m=1 bounded in L2(0, T ;H1
0(Ω)),

{
∂um

∂t

}∞

m=1
bounded in L2(0, T ;L2(Ω)),

{pm}∞m=1 bounded in L6(0, T ;H1
0(Ω)),

{
∂pm

∂t

}∞

m=1
bounded in L2(0, T ;L2(Ω)),

we see that {um′ }∞m′=1 converges strongly in L2(0, T ;L2(Ω)), and {pm′ }∞m′=1 converges strongly
in L6(0, T ;L6(Ω)). The polynomial form of f0 then implies the existence of the strong limit of
f0(pm′

) in L2(0, T ;L2(Ω)) being equal to f0(p). We also observe that the term F(um)|∇ pm |
is bounded in L2(0, T ;L2(Ω)), and, therefore, the subsequence converges weakly to a function
F̃ in this space. Convergence of χ(pm) in L2(0, T ;L2(Ω)) via subsequence is guaranteed by
boundedness of χ ′. Finally, the term χ ′(pm)

∂pm

∂t is bounded in L2(0, T ;L2(Ω)) which implies the

convergence of subsequence to a function χ̃ in this space which is equal to ∂χ(p)
∂t via definition of

the time derivative in the sense of distributions. In order to be able to pass towards the limit in (3.3),
we prove that F̃ = F(u)|∇ p|. For this purpose, we show more about the regularity of p.

LEMMA 3.3 Under the assumptions of the theorem, the function p belongs to L2(0, T ;H1
0(Ω) ∩

H2(Ω)).

Proof. Multiply equation (3.5) by (q, v j ), for a q ∈ D(Ω), and sum over Nm :

αξ2
(

∂pm′

∂t
,Pm′q

)
+ ξ2(∇ pm′

,∇Pm′q) = ( f0(pm′
),Pm′q) + ξ2(F(um′

)|∇ pm′ |,Pm′q).

We can pass to the limit in the sense of D′(0, T ) by obtaining

αξ2
(

∂p

∂t
, q

)
+ ξ2(∇ p,∇q) = ( f0(p), q) + ξ2(F̃, q). (3.13)
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Consequently, the function p is continuous from 〈0, T 〉 into L2(Ω). We rewrite the previous equality
in the sense of D′(Ω):

αξ2 ∂p

∂t
= ξ2∆p + f0(p) + ξ2 F̃ .

As ∂p
∂t , f0(p), F̃ belong to L2(0, T ;L2(Ω)), it follows that ∆p ∈ L2(0, T ;L2(Ω)). The

continuity of the operator ∆−1 mapping L2(Ω) to H2(Ω) ∩ H1
0(Ω)—see [14]—implies that p ∈

L2(0, T ;H2(Ω) ∩ H1
0(Ω)). �

The next statement investigates the convergence of gradient.

LEMMA 3.4 The sequence ∇ pm′
converges strongly to ∇ p in L2(0, T ; [L2(Ω)]2).

Proof. The statement of the lemma is shown by following the technique used in [4]. Multiply
equation (3.5) by γ m

i − γi , where p = ∑
i∈N

γivi , sum over i ∈ N and integrate over (0, T ):

αξ2
∫ T

0

(
∂pm′

∂t
, pm′ − p

)
dt + ξ2

∫ T

0
(∇ pm′

,∇(pm′ − p)) dt

=
∫ T

0
( f0(pm′

), pm′ − p) dt + ξ2
∫ T

0
(F(um′

)|∇ pm′ |, pm′ − p) dt. (3.14)

We add and subtract a term

ξ2
∫ T

0
(∇ p,∇(pm′ − p)) dt

to the equality (3.14) knowing that it tends to 0 as

∇(pm′ − p) → 0,

weakly in L2(0, T ; [L2(Ω)]2), and
pm′ − p → 0,

strongly in L2(0, T ;L2(Ω)), if m′ → ∞. Then, we have

ξ2
∫ T

0
(∇(pm′ − p),∇(pm′ − p)) dt

= −αξ2
∫ T

0

(
∂pm′

∂t
, pm′ − p

)
dt +

∫ T

0
( f0(pm′

), pm′ − p) dt

+ ξ2
∫ T

0
(F(um′

)|∇ pm′ |, pm′ − p) dt + ξ2
∫ T

0
(∇ p,∇(pm′ − p)) dt.

As all terms in the right-hand side tend to 0 if m′ → ∞, we see that ∇(pm′ − p) → 0 strongly in
L2(0, T ; [L2(Ω)]2), which gives the desired result. �
LEMMA 3.5 The sequence F(um′

)|∇ pm′ | converges weakly to F(u)|∇ p| in L2(0, T ;L2(Ω)).

Proof. The sequence |∇ pm′ | converges strongly in L2(0, T ;L2(Ω)) in the same way as is valid
for ∇ pm′

. The function F is bounded and continuous, and um′ → u in L2(0, T ;L2(Ω)), then
F(um′

) → F(u) strongly in Ls(0, T ;Ls(Ω)) for 1 < s < +∞. This implies that the sequence
F(um′

)|∇ pm′ | converges strongly to F(u)|∇ p| in L 2s
2+s

(0, T ;L 2s
2+s

(Ω)). Then, the boundedness of

the sequence F(um′
)|∇ pm′ | in L2(0, T ;L2(Ω)) yields the statement of the lemma. �
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3.0.1 Passage to the limit. Choose the test functions w, q ∈ D(Ω), multiply (3.4) by (w, v j )

and (3.5) by (q, v j ), sum over Nm . Then choose scalar functions ϕ, ψ ∈ C1(〈0, T 〉), for which
ϕ(T ) = ψ(T ) = 0. Integrate both equations by parts over (0, T ). Knowing that

(1) ∇ pm′
converges strongly in L2(0, T ; [L2(Ω)]2) to ∇ p,

(2) Pm′ pini, Pm′uini converge strongly to pini, uini in L2(Ω),
(3) F(um′

)|∇ pm′ | converges weakly to F(u)|∇ p| in L2(0, T ;L2(Ω)),
(4) χ(pm′

) converges strongly to χ(p) in L2(0, T ;L2(Ω)),
(5) pm′

(0) = Pm′ pini, um′
(0) = Pm′uini,

we are able to pass to the limit, and we obtain the following relations:

(uini − Lχ(pini), w)ϕ(0) −
∫ T

0
(u − Lχ(p), w)

dϕ

dt
dt +

∫ T

0
ϕ(∇u,∇w) dt = 0,

αξ2(pini, q)ψ(0) −
∫ T

0
αξ2(p, q)

dψ

dt
dt (3.15)

+
∫ T

0
ψ[ξ2(∇ p,∇q) − ( f0(p), q) − ξ2(F(u)|∇ p|, q)] dt = 0.

If ϕ, ψ ∈ D(0, T ), we have

d

dt
(u − Lχ(p), w) + (∇u,∇w) = 0,

αξ2 d

dt
(p, q) + ξ2(∇ p,∇q) = ( f0(p), q) + ξ2(F(u)|∇ p|, q). (3.16)

The weak solution satisfies the initial condition. Indeed, multiplying (3.16) by scalar functions
ϕ, ψ ∈ C1(〈0, T 〉) for which ϕ(T ) = ψ(T ) = 0 and integrating by parts over (0, T ) we obtain

(u(0) − Lχ(p(0)), w)ϕ(0) −
∫ T

0
(u − Lχ(p), w)

dϕ

dt
dt +

∫ T

0
ϕ(∇u,∇w) dt = 0,

αξ2(p(0), q)ψ(0) −
∫ T

0
αξ2(p, q)

dψ

dt
dt

+
∫ T

0
ψ[ξ2(∇ p,∇q) − ( f0(p), q) − ξ2(F(u)|∇ p|, q)] dt = 0.

Subtracting these equations from (3.15), we get

(uini − Lχ(pini)− u(0)+ Lχ(p(0)), w)ϕ(0) = 0, (pini − p(0), q)ψ(0) = 0, ∀w, q ∈ D(Ω).

From this we see that u(0) = uini, p(0) = pini in L2(Ω).
In the case when F is Lipschitz continuous with the Lipschitz constant denoted by L F and

when χ(p) = p, we prove uniqueness of the solution of (3.1). We consider two solutions of the
problem (3.1), denoted by [u1, p1] and [u2, p2]. Subtracting corresponding systems of equations
and denoting [u12, p12] = [u1 − u2, p1 − p2], multiplying the first equation by u12 − Lp12 and the
second equation by p12, we have

1

2

d

dt
‖u12 − Lp12‖2 + ‖∇(u12 − Lp12)‖2 + L(∇ p12,∇(u12 − Lp12)) = 0 in (0, T ),

(u12 − Lp12)(0) = 0,
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1

2
αξ2 d

dt
‖p12‖2 + ξ2‖∇ p12‖2 = ( f0(p1) − f0(p2), p12)

+ ξ2(F(u1)|∇ p1| − F(u2)|∇ p2|, p12) in (0, T ),

p12(0) = 0.

Denote

Ψ(p1, p2) = f0(p1) − f0(p2)

p12
.

The a priori estimate (3.9) guarantees that there is a constant C f > 0 such that

‖Ψ(p1, p2)‖ � C f in (0, T )

(as implied by the continuous embedding H1
0(Ω) ⊂> Ls(Ω) for s ∈ 〈1,+∞)). Therefore,

|(Ψ(p1, p2)p12, p12)| � ‖Ψ(p1, p2)‖‖p12‖2
L4(Ω) � C f C ′

4‖p12‖‖∇ p12‖
(C ′

4 > 0, see [18]). Using the Poincaré, Young and Schwarz inequalities, we get

d

dt
‖u12 − Lp12‖2 + 1

CΩ
‖u12 − Lp12‖2 � L2‖∇ p12‖2,

1

2
αξ2 d

dt
‖p12‖2 + ξ2‖∇ p12‖2 � C f C ′

4‖p12‖‖∇ p12‖ + ξ2L F‖u12‖‖∇ p1‖L4(Ω)‖p12‖L4(Ω)

+ξ2CF‖∇ p12‖‖p12‖,
in (0, T ), where CΩ appears in the Poincaré inequality. Considering the fact that there is a constant
C p for which ∫ T

0
‖∇ p1‖2

L4(Ω) dt � C2
4

∫ T

0
‖p1‖2

H2(Ω)
dt � C2

p, (3.17)

where C4 is the norm of the embedding H1
0(Ω) into L4(Ω), and ∆p1 ∈ L2(0, T ;L2(Ω)), we obtain

d

dt
‖u12 − Lp12‖2 � L2‖∇ p12‖2 in (0, T ), (3.18)

1

2
αξ2 d

dt
‖p12‖2 + ξ2

2
‖∇ p12‖2 � (ξ−2(C f C ′

4 + CFξ2)2 + 2L2ξ2C2
4‖∇ p1‖2

L4(Ω)L2
F )‖p12‖2

+ 2C2
4‖∇ p1‖2

L4(Ω)L2
Fξ2‖u12 − Lp12‖2 in (0, T ).

Combining these inequalities, we have in (0, T ):

d

dt

(
1

2
αξ2‖p12‖2 + ξ2

2L2
‖u12 − Lp12‖2

)
� M(t)

(
1

2
αξ2‖p12‖2 + ξ2

2L2
‖u12 − Lp12‖2

)

with

M(t) = 2(ξ−2(C f C ′
4 + CFξ2)2 + 2L2ξ2C2

4‖∇ p1‖2
L4(Ω)

L2
F )

min(α, 1)ξ2
.

Such an inequality, together with (3.17) and with the initial conditions, implies that

p12(t) = u12(t) = 0 in L2(Ω), ∀t ∈ (0, T ).

as follows from the Gronwall lemma. �
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4. Matched asymptotic analysis

The relationship of the phase-field equations (2.5) to the sharp-interface problem (2.2)–(2.4) is
demonstrated by the formal matched asymptotic analysis (the method is explained in [15]). A
rigorous asymptotic procedure applied to the standard variant of phase-field equations has been
performed in [7].

4.1 Assumptions

We assume that χ ′′ is smooth, the solution of equations (2.5)

u = u(t, x; ξ), p = p(t, x; ξ),

is sufficiently smooth, and ∇ p never vanishes on the level-set p = 1
2

∇ p|p= 1
2
�= 0. (4.1)

A very small diffusion term and derivative of a double-well function in the equation of phase lets
appear a thin layer ΩΓ between the two major domains (phases), where the function p quickly
changes its value (see [1]). To study such a behaviour in detail, the asymptotic analysis with
respect to the ‘small’ parameter ξ is applied. The formal procedure has been applied to the system
containing the Allen–Cahn equation in [16], and here it is extended to equations (2.5).

DEFINITION 4.1 We define

Ωs(t; ξ) = {x ∈ Ω | p(t, x; ξ) > 0.5},
Ωl(t; ξ) = {x ∈ Ω | p(t, x; ξ) < 0.5},
Γ (t; ξ) = {x ∈ Ω | p(t, x; ξ) = 0.5}.

The set Ωs is called solid domain, the set Ωl is called liquid domain, and the set Γ is called phase
interface.

According to (4.1), any pathological behaviour like fattening (described in [10]) is excluded.
The hypersurface Γ can be parametrized with a sufficiently smooth mapping Q

Γ (t) = {x ∈ Ω | (∃1s ∈ S)(x = Q(s))},
locally in t where S ⊂ R, Q : S → Ω and

(∀s ∈ S)(p(t, Q(s); ξ) = 0.5).

This also means that Q = Q(t, s; ξ). Consequently, a local orthogonal system of coordinates can be
introduced, in the neighbourhood of Γ

x = Q(t, s; ξ) + rnΓ (t, s; ξ), (4.2)

where s are longitudinal and r radial (the signed distance function, see [16]) coordinates, and nΓ is
unit normal to Γ pointing in the direction of decreasing p. The implicit-function theorem justifies
the existence of an inverse mapping

s = s(t, x; ξ), r = r(t, x; ξ).

Previous definitions directly imply (Q = [Q1, Q2], nΓ = [n1, n2]) the following lemma.
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LEMMA 4.2 On Γ (t), the following relations hold:

2∑
i=1

n2
i (s) = 1,

2∑
i=1

ni (s)
∂ni (s)

∂s
= 0,

2∑
i=1

ni (s)
∂ Qi (s)

∂s
= 0.

The transformation of the differential operator ∇ expressed in Euclidean coordinates (denoted by
∇(x)) to the local coordinates (s, r) (denoted by ∇(s,r)) is given by

∇(s,r) = J · ∇(x),

where

J =
(

∂ Q1
∂s + r ∂n1

∂s
∂ Q2
∂s + r ∂n2

∂s
n1 n2

)
,

and

J −1 = 1

detJ

(
n2 − ∂ Q2

∂s − r ∂n2
∂s

−n1
∂ Q1
∂s + r ∂n1

∂s

)
.

As a consequence, the Laplace operator expressed in the local coordinate system is

∆(x) = 1

det2 J
∂2

∂s2
+ ∂2

∂r2
+ 1

detJ
∂

∂r
(detJ )

∂

∂r
+ 1

detJ
∂

∂s

(
1

detJ

)
∂

∂s
.

The other quantities appearing in the analysis can be expressed as follows:

κΓ = ∆(x)r = 1

detJ
∂

∂r
(detJ ), |∇(x)r | = 1, ∇(x)r = nΓ on Γ (t).

For the normal velocity of Γ (t) and the normal unit vector we obtain

vΓ =
[

dx1

dt
,

dx2

dt

]
, nΓ = − ∇(x) p

|∇(x) p| , vΓ = vΓ · nΓ = 1

|∇(x) p|
∂p

∂t
.

This corresponds to the convention that the normal vector points out of Ωs , and κΓ > 0 for Ωs

convex. We investigate the functions [u, p] on Ωs(t; ξ), Ωl(t; ξ) (the outer expansion), and in a
close neighbourhood of Γ (t) denoted by ΩΓ (t; ξ) (the inner expansion) separately. For this purpose,
we assume that the functions Q, nΓ , vΓ , κΓ (i.e. the sum of principal curvatures) and κ̂Γ (i.e. the
sum of squares of principal curvatures) admit the following expansions in terms of ξ for s ∈ S and
t ∈ 〈0, T 〉:

Q = Q0 + ξQ1 + ξ2Q2 +O(ξ3),

nΓ = nΓ ,0 + ξnΓ ,1 +O(ξ2),

vΓ = vΓ ,0 + ξvΓ ,1 +O(ξ2),

κΓ = κΓ ,0 + ξκΓ ,1 +O(ξ2),

κ̂Γ = κ̂Γ ,0 +O(ξ).

For t ∈ 〈0, T 〉, the mapping Q0(·, t) : S → R
2 parametrizes a closed differentiable simple curve

Γ0(t) (see [13]), whose normal vector is nΓ ,0, normal velocity vΓ ,0, and curvatures κΓ ,0, κ̂Γ ,0. We
investigate the relation of Γ (t) and Γ0(t).
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4.2 Initial interface

We assume that the interface Γ is present since the initial moment (Γ (0) = Σ ), when it does not
exhibit any dependence on ξ :

Σ = {x ∈ R
2 | x = QΣ (s), s ∈ S}.

This will imply the following equalities (for all s ∈ S and ξ > 0):

Q0(s, 0) = QΣ (s), Q1(s, 0) = Q2(s, 0) = 0,

nΓ ,0(s, 0) = nΣ (s), nΓ ,1(s, 0) = 0, (4.3)

κΓ ,0(s, 0) = κΣ (s), κΓ ,1(s, 0) = 0.

4.3 Outer expansion

Assume the asymptotic expansions of u and p in the following form:

u(t, x; ξ) = u0(t, x) + u1(t, x)ξ + u2(t, x)ξ2 +O(ξ3),

p(t, x; ξ) = p0(t, x) + p1(t, x)ξ + p2(t, x)ξ2 +O(ξ3),

locally in t . Substituting such expansions into (2.5) and comparing terms at corresponding powers
of ξ up to the order 2, we get the following lemma.

LEMMA 4.3 The following outer relations hold:
O(1):

∂u0

∂t
= ∆u0 + Lχ ′(p0)

∂p0

∂t
, (4.4)

0 = f0(p0). (4.5)

O(ξ):

∂u1

∂t
= ∆u1 + L

(
χ ′(p0)

∂p1

∂t
+ χ ′′(p0)p1

∂p0

∂t

)
, (4.6)

0 = f ′0(p0)p1. (4.7)

O(ξ2):

∂u2

∂t
= ∆u2

+ L

(
χ ′(p0)

∂p2

∂t
+ χ ′′(p0)p1

∂p1

∂t
+ χ ′′(p0)p2

∂p0

∂t
+ 1

2
χ ′′′(p0)p2

1
∂p0

∂t

)
(4.8)

α
∂p0

∂t
= ∆p0 + f ′0(p0)p2 + 1

2
f ′′0 (p0)p2

1 + F(u0)|∇ p0|. (4.9)

Relation (4.5) gives two stable minima p0 = 0, 1 corresponding to stable equilibrium states
called solid and liquid (see Definition 4.1). Relations (4.7), (4.9) then yield p1 = 0, p2 = 0.
The functions u0,1,2 are solutions of the linear heat equations (4.4), (4.6), (4.8) with appropriate
boundary and initial conditions in two separate domains Ωl,s(t).
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4.4 Inner expansion

We proceed by the study of the solution within the transition layer near Γ (t). We use the transform
(4.2) with stretching

r = ξ z,

to convert equations (2.5). Denote the functions

ū(z, s, t; ξ) = u(x, t; ξ), p̄(z, s, t; ξ) = p(x, t; ξ).

The inner form of equations (2.5) is

∂ ū

∂t
+ ∂ ū

∂s

∂s

∂t
+ ∂ ū

∂z

∂z

∂t
= 1

ξ2

∂2ū

∂z2
+ 1

det2 J
∂2ū

∂s2
+ 1

ξ detJ
∂

∂r
(detJ )

∂ ū

∂z

+ 1

detJ
∂

∂s

(
1

detJ

)
∂ ū

∂s
+ Lχ ′( p̄)

(
∂ p̄

∂t
+ ∂ p̄

∂s

∂s

∂t
+ ∂ p̄

∂z

∂z

∂t

)
, (4.10)

αξ2
(

∂ p̄

∂t
+ ∂ p̄

∂s

∂s

∂t
+ ∂ p̄

∂z

∂z

∂t

)
= ξ2

(
1

ξ2

∂2 p̄

∂z2
+ 1

det2 J
∂2 p̄

∂s2
+ 1

ξ detJ
∂

∂r
(detJ )

∂ p̄

∂z

+ 1

detJ
∂

∂s

(
1

detJ

)
∂ p̄

∂s

)
+ f0( p̄) + ξ2 F(ū)

∣∣∣∣∣J −1

(
∂ p̄
∂s

1
ξ

∂ p̄
∂z

)∣∣∣∣∣ . (4.11)

The asymptotic expansion of the functions in question with respect to powers of ξ is

ū(z, s, t; ξ) = ū0(z, s, t) + ū1(z, s, t)ξ + ū2(z, s, t)ξ2 +O(ξ3),

p̄(z, s, t; ξ) = p̄0(z, s, t) + p̄1(z, s, t)ξ + p̄2(z, s, t)ξ2 +O(ξ3),

r(z, s, t; ξ) = r0(z, s, t) + r1(z, s, t)ξ +O(ξ2),

∂r

∂t
= −vΓ ,0 − ξvΓ ,1 +O(ξ2), ∇(x)r = nΓ ,0 + ξnΓ ,1 +O(ξ2), (4.12)

∆(x)r = κΓ + r κ̂Γ +O(r2) = κΓ ,0 + ξ(κΓ ,1 + zκ̂Γ ,0) +O(ξ2),

locally in t (also see [11]). Substituting previous expansions into (4.10), (4.11) and extracting
relations of coefficients at corresponding powers of ξ , we get the following lemma.

LEMMA 4.4 Order equalities of the inner expansion:
O(1):

∂2ū0

∂z2
= 0, (4.13)

∂2 p̄0

∂z2
+ f0( p̄0) = 0. (4.14)

O(ξ):

−∂ ū0

∂z
vΓ ,0 = ∂2ū1

∂z2
+ κΓ ,0

∂ ū0

∂z
− Lχ ′( p̄0)

∂ p̄0

∂z
vΓ ,0, (4.15)

−α
∂ p̄0

∂z
vΓ ,0 = ∂2 p̄1

∂z2
+ κΓ ,0

∂ p̄0

∂z
+ F(ū0)

∣∣∣∣∂ p̄0

∂z

∣∣∣∣ + f ′0( p̄0) p̄1. (4.16)
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O(ξ2):

∂ ū0

∂t
+ ∂ ū0

∂s

∂s0

∂t
− ∂ ū0

∂z
vΓ ,1 − ∂ ū1

∂z
vΓ ,0 = ∂2ū2

∂z2
+ 1

det2 J|0
∂2ū0

∂s2

+ κΓ ,0
∂ ū1

∂z
+ (κΓ ,1 + zκs,0)

ū0

∂z
+ 1

detJ
∂

∂s
(detJ )|0 ∂ ū0

∂s
(4.17)

+ Lχ ′( p̄0)

(
∂ p̄0

∂t
+ ∂ p̄0

∂s

∂s0

∂t
− ∂ p̄0

∂z
vΓ ,1 − ∂ p̄1

∂z
vΓ ,0

)
− Lχ ′′( p̄0) p̄1vΓ ,0

∂ p̄0

∂z
,

α

(
∂ p̄0

∂t
− ∂ p̄0

∂z
vΓ ,1 − ∂ p̄1

∂z
vΓ ,0

)
= ∂2 p̄2

∂z2
+ κΓ ,0

∂ p̄1

∂z
+ (κΓ ,1 + zκs,0)

p̄0

∂z

+ f ′0( p̄0) p̄2 + 1

2
f ′′( p̄0) p̄1

2 +
∣∣∣∣∂ p̄0

∂z

∣∣∣∣F ′(ū0)ū1 + F(ū0)

∂ p̄0
∂z

| ∂ p̄0
∂z |

∂ p̄1

∂z
. (4.18)

Relation (4.13) for z ∈ R has the only solution bounded in R in the form ū0 = const. We
multiply (4.14) by ∂ p̄0

∂z and integrate over (−∞, z) with zero far-field condition (at +∞) for both

p̄0 and ∂ p̄0
∂z :

1

2

(
∂ p̄0

∂z

)2

− w0( p̄0) = 0.

The sign convention for solid then gives

∫ z

0

∂ p̄0
∂z√

2w0( p̄0)
dz = −z, (4.19)

from which the function p̄0 is obtained as the inverse of an elliptic function with the far-field
conditions

lim
z→−∞ p̄0 = 1, lim

z→+∞ p̄0 = 0.

The main interface relations are given as follows.

THEOREM 4.5 On the manifold Γ0, the Stefan condition for the absolute terms in the outer
expansion of temperature holds:

∂u0

∂r

∣∣∣∣
s
−∂u0

∂r

∣∣∣∣
l
= LvΓ ,0, (4.20)

and the Gibbs–Thompson law for the absolute term in the inner expansion of the phase function
holds: ∫

R

(
−κΓ ,0

∂ p̄0

∂z
− F(ū0)

∣∣∣∣∂ p̄0

∂z

∣∣∣∣ − α
∂ p̄0

∂z
vΓ ,0

)
∂ p̄0

∂z
dz = 0. (4.21)

Proof. Relation (4.15) in the form

0 = ∂2ū1

∂z2
− Lχ ′( p̄0)

∂ p̄0

∂z
vΓ ,0
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yields the function ū1. It can be integrated, which gives

∂ ū1

∂z
− Lχ( p̄0)vΓ ,0 = c1.

The matching condition at the interface Γ from below and above (according to [8])

lim
z→±∞

∂ ū1

∂z
= lim

r→±0

∂u0

∂r
,

and properties of χ

lim
z→+∞χ( p̄0) = χ(0) = 0, lim

z→−∞χ( p̄0) = χ(1) = 1

lead to subtracting the upper and lower limit at Γ0, and to recovering the Stefan condition:

∂u0

∂r

∣∣∣∣
s
−∂u0

∂r

∣∣∣∣
l
= LvΓ ,0.

The relation (4.16) has the form

∂2 p̄1

∂z2
+ f ′0( p̄0) p̄1 = −κΓ ,0

∂ p̄0

∂z
− F(ū0)

∣∣∣∣∂ p̄0

∂z

∣∣∣∣ − α
∂ p̄0

∂z
vΓ ,0

of a linear differential equation for the function p̄1. The solution exists if and only if the solvability
condition holds

−κΓ ,0
∂ p̄0

∂z
− F(ū0)

∣∣∣∣∂ p̄0

∂z

∣∣∣∣ − α
∂ p̄0

∂z
vΓ ,0 ⊥ Ker

(
∂2

∂z2
+ f ′0( p̄0)

)
.

This implies that for each

ψ ∈ Ker

(
∂2

∂z2
+ f ′0( p̄0)

)
,∫

R

(
−κΓ ,0

∂ p̄0

∂z
− F(ū0)

∣∣∣∣∂ p̄0

∂z

∣∣∣∣ − α
∂ p̄0

∂z
vΓ ,0

)
ψ(z) dz = 0.

We observe that
∂ p̄0

∂z
∈ Ker

(
∂2

∂z2
+ f ′0( p̄0)

)
,

and we recover the Gibbs–Thompson relation on Γ0∫
R

(
−κΓ ,0

∂ p̄0

∂z
− F(ū0)

∣∣∣∣∂ p̄0

∂z

∣∣∣∣ − α
∂ p̄0

∂z
vΓ ,0

)
∂ p̄0

∂z
dz = 0.

�

We formally investigate the order of accuracy in relation (2.4) in terms of expansions in ξ .
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LEMMA 4.6 The Gibbs–Thompson law on Γ0 is satisfied up to order 2 in terms of formal
asymptotic expansion:

αvΓ ,0 + κΓ ,0 − F(ū0) = 0, (4.22)

αvΓ ,1 + κΓ ,1 − F ′(ū0)ū1 = 0. (4.23)

Proof. We denote

I1 =
∫

R

F(ū0)

∣∣∣∣∂ p̄0

∂z

∣∣∣∣∂ p̄0

∂z
dz, I2 =

∫
R

(
∂ p̄0

∂z

)2

dz.

We rewrite relation (4.21) as
I2(−κΓ ,0 − αvΓ ,0) − I1 = 0,

assuming that the quantities κΓ ,0, vΓ ,0 do not depend on z (obviously, they can vary along s).
Consequently,

I2 = −
∫

R

√
2w0( p̄0)

∂ p̄0

∂z
dz =

∫ 1

0

√
2w0(p) dp,

using properties of the double-well potential w0 and the sign convention. The function ū0 = const.,
from which finally

I1 = F(ū0)

∫
R

∣∣∣∣∂ p̄0

∂z

∣∣∣∣∂ p̄0

∂z
dz = −F(ū0)I2.

The Gibbs–Thompson condition at the O(1) level is then

F(ū0) = κΓ ,0 + αvΓ ,0.

To show (4.23), we recall that the relation (4.18) represents an equation for p̄2

∂2 p̄2

∂z2
+ f ′0( p̄0) p̄2 = G2,

where using the properties of ū0, p̄0, p̄1, and (4.22)

G2 =− ∂ p̄0

∂z
(αvΓ ,1 + κΓ ,1 + zκ̂Γ ,0) − ∂ p̄1

∂z
(αvΓ ,0 + κΓ ,0 − F(ū0))

− 1

2
f ′′0 ( p̄0) p̄1

2 −
∣∣∣∣∂ p̄0

∂z

∣∣∣∣F ′(ū0)ū1.

The solvability condition G2 ⊥ Ker( ∂2

∂z2 + f ′0( p̄0)) and the fact that

∫
R

f ′′0 ( p̄0) p̄1
2 ∂ p̄0

∂z
dz = 0,

∫
R

z

(
∂ p̄0

∂z

)2

dz = 0,

imply
αvΓ ,1 + κΓ ,1 − F ′(ū0)ū1 = 0.

Consequently, from (4.22) and (4.23), we see that relation (2.4) is satisfied by the solution of (2.5)
up to order ξ2. �
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REMARK Relation (4.22) allows us to identify the parameters of (2.5) in order to achieve a
quantitative agreement with the physical reality. Solving equation (4.19) in particular for f0(p) =
ap(1 − p)(p − 1

2 ) appearing in (2.5), we get

p̄0(z) = 1

2

(
1 − tanh

(
z

2

√
a

2

))
,

and

I2 = 1

6

√
a

2
.

We also observe that the resulting relation (4.22) is independent on the quantity I2 (which can be
cancelled on both sides of (4.21)), in contrast to the standard Allen–Cahn equation (see [16], [3]).

5. Computational results

Here, we present several numerical studies using the model (2.5) both with the coupling χ(p) = p,
and with non-trivial coupling

χ(p) = 22r−1 p2r for p < 1
2 , 1 − 22r−1(1 − p)2r for p � 1

2 ,

mostly with r = 2. We always set

F(u) = β(u∗ − u) for |u − u∗| < Cu,

and
F(u) = −Cuβ for u � u∗ + Cu,

F(u) = Cuβ for u � u∗ − Cu,

in order to satisfy basic theoretical requirements imposed on F . Here, u∗ denotes the melting point.
If Cu is sufficiently large, the model behaves as if F were linear, and is applicable in real situations.
The presented studies should clearly demonstrate the gain in accuracy with respect to the sharp-
interface standards. On the other hand, they are certainly not exhausting and qualitatively complete.
For details on this topic, see [3] and [5].

The numerical algorithm used to solve (2.5) has been described in [3] in detail. It is based on
spatial discretization by finite differences on a uniform grid, and on the Runge–Kutta fourth-order
time solver with adaptive time step.

The simplest benchmark test is to use the one-dimensional case, where there is an analytical
solution to the Stefan problem with undercooling effects:

∂u

∂t
= ∂2u

∂x2
in Ωs ⊂ R and Ωl ⊂ R, t > 0,

u |−∞ = u−∞, u |+∞= u+∞,

u |t=0 = uini, for x ∈ R,

∂u

∂n

∣∣∣∣
s
−∂u

∂n

∣∣∣∣
l
= LvΓ on Γ , (5.1)

u − u∗ = −α

β
vΓ on Γ ,

Ωs(t) |t=0 = Ωso.
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FIG. 2. One-dimensional travelling-wave solution of phase-field equations for the values of small parameter ξ = 0.01, 0.005.
Other parameters are u(t, 0) = 0.5, u(t, 1) = −0.5, t > 0, L = 1.0, β = 10.0, a = 2.0, α = 1.0, u∗ = 0.0, spatial domain
of size L1 = 2.0, spatial mesh sizes h1 = 0.005, 0.0025, respectively. The solutions for χ(p) = p and for non-trivial χ

(denoted as χ -model) are compared to the analytical solution of the Stefan problem with undercooling.

FIG. 3. Two-dimensional travelling-wave solution of phase-field equations with standard coupling (χ(p) = p) for the
values of small parameter ξ = 0.01, 0.005. Temperature on the top edge is utop = 1.0, temperature on the bottom edge is
ubottom = −5.5, the side edges are adiabatically isolated. Other parameters are L = 6.0, β = 10.0, a = 2.0, α = 1.0,
u∗ = 1.0, the domain Ω = (0, 2) × (0, 1), mesh h1 = 0.005, 0.0025, h2 = 0.005, 0.0025, respectively.

The solution of (5.1) has the form of a travelling wave

u(x, t) =u−∞ for x � vΓ t,

u−∞ − L + L exp(vΓ (x − vΓ t)) for x > vΓ t,

where

u+∞ = u−∞ − L , vΓ = β

α
(u∗ − u),

with u−∞ being the far-field temperature.
Figure 2 indicates the difference in convergence of the phase-field model (2.5) with standard and

improved coupling χ towards the sharp-interface formulation (5.1). We observe a gain in distance to
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FIG. 4. Two-dimensional travelling-wave solution of phase-field equations with improved coupling (χ ′(s) = r22r s2r−1 for
s < 0.5, χ ′(s) = r22r (1−s)2r−1 for s � 0.5 with r = 2) for the values of small parameter ξ = 0.01, 0.005. Temperature on
the top edge is utop = 1.0, temperature on the bottom edge is ubottom = −5.5, the side edges are adiabatically isolated. Other
parameters are L = 6.0, β = 10.0, a = 2.0, α = 1.0, u∗ = 1.0, the domain Ω = (0, 2) × (0, 1), mesh h1 = 0.005, 0.0025,
h2 = 0.005, 0.0025, respectively.

the analytical solution, and also in the shape of the numerically obtained temperature field. Figures
3 and 4 show the difference in the solution of the same two-dimensional problem if changing ξ . The
equations with non-trivial coupling χ exhibit more stable behaviour with respect to ξ .
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