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A simple model of a living cell which undergoes processes of growth and dissolution is described
as a free boundary problem for a system of two reaction–diffusion equations; the condition on the
free boundary is of the Stefan type. The special case of radially symmetric cells was studied in earlier
work. This paper is concerned with the existence of symmetry-breaking stationary solutions, i.e. with
solutions which are not radially symmetric. It is proved, in the two-dimensional case, that there exist
branches of non-radial stationary solutions bifurcating from radially symmetric solutions; indeed,
for any mode l, l � 2, there exists a unique bifurcation branch whose free boundary has the form
r = Rl + ε cos lθ + ∑

n�2 εnλn(θ), |ε| small, with λn(θ) orthogonal to cos lθ .
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1. The model

We denote a variable point in R
2 by x = (x1, x2) or, in polar coordinates, by (r, θ). Consider the

following free boundary problem: find a two-dimensional bounded domain Ω and functions µ and
u defined, respectively, in R

2 and Ω , such that

∆µ = χ
Ωµ in R

2, (1.1)

µ = log r(1 + o(1)) as r = |x | → ∞, (1.2)

µ is continuously differentiable across ∂Ω , (1.3)

− ∆u = µ in Ω , (1.4)

u = 0 on ∂Ω , (1.5)

∂u

∂n
+ β = 0 on ∂Ω (β > 0). (1.6)

Here χ
Ω denotes the characteristic function of Ω ; we shall sometimes use the notation

µ+ = µ|R2\Ω , µ− = µ|Ω .
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The above system is a two-dimensional version of a stationary ‘protocell’; the concept of a
protocell was introduced in [8] and [9] and it attempts to capture some of the average physical
and chemical properties of growth and dissolution of a living cell. The function µ represents the
nutrient concentration in the entire space with a given source at ∞, and the function u is defined as
C − C∗, where C is the concentration of the fluid-like building material of the cell, and C∗ is the
equilibrium concentration of the building material, so that u vanishes at the cell’s boundary ∂Ω . The
cell feeds on the nutrients in accordance with (1.4). Dissolution of the cell, at the rate β across the
boundary, represents waste removal through the cell. Actually, the model studied in [8] and [9] is
somewhat different, and equally motivated, but the present version is mathematically a little simpler.

It is easy to check that for any β > 0 there exists a unique radial solution

µ = µ(r), u = u(r), Ω = {r < R}
and, in fact, R = 1/β. The purpose of this paper is to prove that there exist also non-radial solutions.
We shall prove that for any integer l � 2 there exists a unique radius r = R0l which is a bifurcation
point of a family of analytic symmetry-breaking solutions with free boundary

r = R0l + ε cos lθ +
∞∑

n=2

εnλln(θ) (1.7)

and

β = βl0 +
∞∑

n=2

εnβln

(
βl0 = 1

R0l

)
. (1.8)

The fact that β depends on ε is a common feature of all bifurcation problems: one parameter of
the system (in our case, β) is always dependent on the ε-parameter of the bifurcating family of
solutions.

The corresponding solution ul , µ
+
l , µ−

l of (1.1)–(1.6) are also analytic in (r, θ, ε) in their
respect regions, up to the boundary. Each bifurcation branch is uniquely determined under the
following assumptions:

u and µ are even functions in θ, (1.9)∫ 2π

0
u(r, θ, ε) cos θ dθ ≡ 0,

∫ 2π

0
µ(r, θ, ε) cos θ dθ ≡ 0, (1.10)∫ 2π

0
λln(θ) cos mθ dθ = 0 for n � 2 and m = 1, l. (1.11)

Note that the orthogonality of λln(θ) to cos lθ for n � 2 is achieved by a choice of the bifurcation
parameter. If this condition is not satisfied for the expansions (1.7), (1.8), then by setting

ε′ = ε +
∞∑

n=2

εnλ0
ln where λ0

ln =
∫ 2π

0
λln(θ) cos θ dθ,

we obtain a new family of solutions with

r = R0 + ε′ cos lθ +
∞∑

n=2

(ε′)n λ̂ln(θ), β = βl0 +
∞∑

n=2

(ε′)nβ̂ln
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and µ̂(r, θ, ε′) = µ(r, θ, ε), û(r, θ, ε′) = u(r, θ, ε) for which all the conditions in (1.9)–(1.11) are
satisfied.

The general theory of bifurcation (see, for instance, [6] and [7]) deals with problems of the form

F(λ, u) = 0 (1.12)

where λ is a real parameter (like the parameter β in our case) and u varies in a fixed Banach space
X . Suppose for simplicity that F(λ, 0) ≡ 0 for all λ ∈ R. A bifurcation point (λ0, 0) is a point for
which there exists a one-parameter family of nontrivial solutions λ = λ(ε), v = u(ε) of (1.12) with
λ(0) = λ0, u(0) = 0. The Liapunov–Schmidt procedure reduces the construction of a bifurcation
branch from the infinite-dimensional Banach space X to a finite-dimensional space:

Suppose F(λ, u) maps u ∈ X into a Banach space Y such that X ⊂ Y , and F is smooth. Set

L0 = ∂ F(λ0, 0)

∂u
(1.13)

and assume that L0 is a Fredholm operator with index zero. Denote its null space by N (so that
n = dimN < ∞) and its range by R0. Denote by P the projection of Y into N and by Q the
projection of Y into R0. If we decompose u into Pu + Qu and project (1.12) into R0 and N , we
get the equations

K (λ, v, ψ) ≡ QF(λ, v + ψ) = 0, (1.14)

P F(λ, v + ψ) = 0 (1.15)

where v = Pu and ψ = Qu. This set of equations is equivalent to the single equation (1.12).
Noting that K (λ0, 0, 0) = 0 and ∂K (λ0, 0, 0)/∂ψ = QL0 is an isomorphism from Q X to QY , we
can apply an implicit function theorem to (1.14) and thus solve for ψ = ψ(λ, v). We then substitute
ψ into (1.15) and get the Liapunov–Schmidt bifurcation equation

P F(λ, v + ψ(λ, v)) = 0, (1.16)

which is a system of n equations; for more details see, for instance, [6, 7].
The above scheme cannot be directly applied to the problem (1.1)–(1.6) since the spaces X and

Y will vary in ε in a way which is unknown in advance (as it will depend on the free boundary).
Nevertheless, by making a change of variables which maps the free boundary into a fixed boundary,
we can state our problem within the framework of the generalized bifurcation theory. The system
of PDEs that we obtain in this way, however, has a non-standard structure. As a result, establishing
an implicit function theorem requires lengthy and delicate analysis. This will be done in Sections 6
and 7 in the analytic case, i.e. in the case of solution with power expansion in ε. We refer the reader
to Remark 6.1 which explains the strategy for establishing the implicit function theorem.

The method we use to establish the existence of analytic bifurcation branches is based on the
recent approach by Friedman & Reitich [5] who established the existence of analytic bifurcation
branches for a free boundary problem modelling tumour growth. However, the system (1.1)–(1.6)

presents new difficulties due to the following facts: (a) the present system of three PDEs (for
µ+, µ−, u) is more complicated than the system of two PDEs studied in [5]; (b) the present set
of free boundary conditions does not allow as strong a priori bounds as in [5] needed to estimate,
by induction, the coefficients in the series expansion for the solution.
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Because of (a) we shall require some new properties of zeros of quotients of Bessel functions
Im(x) (stated in Appendix A). Because of both (a) and (b), the inductive process (in Section 7) is
far more delicate than in [5].

The structure of the paper is as follows. In Section 2 we write down the radial solution of
(1.1)–(1.6). In Section 3 we consider the linearized (stationary) problem about the radial solution of
(1.1)–(1.6) with free boundary r = R + ε cos lθ (l � 2) and prove that it has a non-trivial solution
if and only if R = R0l where R0l is the unique solution of

I0(R0l)

I1(R0l)

Il(R0l)

Il−1(R0l)
= l + 1

2l
. (1.17)

In Section 4 we formally expand the solution of (1.1)–(1.6) into series

µ = µ0(r) +
∑
n�1

εnµn(r, θ), (1.18)

u = u0(r) +
∑
n�1

εnun(r, θ), (1.19)

with the free boundary and β as in (1.7), (1.8), where (µ0(r), u0(r), {r < R0l}) is a radial
solution of (1.1)–(1.6). We prove that, subject to the complementary conditions (1.9)–(1.11), the
µn, un, λln, βl,n−1 are uniquely determined by induction. To prove convergence of the formal series,
however, we need to use another approach.

In Section 5 we transform the free boundary bifurcation problem to one with fixed boundary by
the change of variables

r ′ = r

R0l + ε cos lθ + ∑
n�2 εnλln(θ)

.

For the new system we write down formal series

µ = µ̃0(r
′) +

∑
n�1

εnµ̃n(r ′, θ),

u = ũ0(r
′) +

∑
n�1

εnũn(r ′, θ),

with the free boundary and β as in (1.7), (1.8). Here again the coefficients µ̃n, ũn, λln, βl,n−1
are uniquely determined by induction. However, in contrast with the situation in Section 4, the
nonlinear structure of the inductive formulae which define the µ̃n , ũn and λl,n , βl,n−1 is much
simpler (although the formulae look more complicated). This fact enables us to derive good enough
estimates on µ̃n , ũn , λln, βl,n−1 for establishing convergence. The proof of convergence is given in
Section 7. Several fundamental estimates needed for this proof are derived in Section 6. The proof
in Section 7 requires also some calculus-type estimates on the derivatives of a composite function
Φ( f1(x), . . . , fk(x)) in terms of derivatives of both Φ(u1, . . . , uk) (in the us) and the f j (x) (in x).
These estimates are proved in Appendix B. In Section 8 we state the main theorem asserting the
existence, uniqueness and analyticity (in (x, ε)) of the symmetry-breaking bifurcation branches of
solutions of (1.1)–(1.6).
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2. Radial solutions

We seek stationary solutions (µ(r), u(r), R) of the system

∆µ = χ{r<R}µ for 0 < r < ∞, (2.1)

µ(r) = log r + const. + O(1/r), r → ∞, (2.2)

µ is continuously differentiable across r = R, (2.3)

∆u = −µ if r < R, (2.4)

u(R) = 0, (2.5)

u′(R) + β = 0. (2.6)

The general solution of this system is given by

µ(r) =
{

log r + λI0(R) − log R, r > R

λI0(r), r � R

where λ is a constant. Since µ′(r) is continuous across r = R, 1/R = λI ′
0(R) = λI1(R), so that

λ = 1/(RI1(R)). By (2.4), u(r) + µ(r) is harmonic in {r < R}, so that u + µ = const., or

ur = −µr = −λI ′
0(r) = −λI1(r),

which implies that u(r) = λ
∫ R

r I1(ξ) dξ and β = −u′(R) = 1/R. We summarize as follows.

THEOREM 2.1 For any β > 0 there exists a unique radially symmetric solution of (2.1)–(2.6),
given by

µ(r) =


log r + I0(R)

RI1(R)
− log R, r > R

I0(r)

RI1(R)
, r � R,

(2.7)

u(r) = 1

RI1(R)

∫ R

r
I1(ξ) dξ = I0(R) − I0(r)

RI1(R)
, (2.8)

R = 1

β
. (2.9)

In what follows we use the notation

[v]r=R = [v](R) = v(R + 0) − v(R − 0).

REMARK 2.1 In the time-dependent version of the protocell model [3], the differential equation
for u is

cut − ∆u = µ

where c is a positive number, and the Stefan free boundary condition is

Vn = −∂u

∂n
− β.
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By the method developed in [3] one can prove that for any initial data for u, there exists a unique
radially symmetric solution µ(r, t), u(r, t), {r < R(t)} to this problem for all t > 0, and, if c is
sufficiently small, ∣∣∣∣R(t) − 1

β

∣∣∣∣ < Ce−αt ∀t > 0,

where C, α are some positive constants.

3. The linearized problem

We want to construct non-radially symmetric stationary solutions of (1.1)–(1.6). To do this we first
need to find the bifurcation points R = R0, i.e. the values R = R0 for which the linearized system
of (1.1)–(1.6) about the radially symmetric solution

(µ0(r), u0(r), R0)

has a non-trivial solution. The linearization can be made for any mode l � 2 and it corresponds to
a perturbation of the free boundary of the form r = R0 + ε(a1 cos lθ + a2 sin lθ). By a translation
θ → θ + θ0 and a scaling of ε we may take, without loss of generality,

r = R0 + ελ1(θ), λ1(θ) = cos lθ. (3.1)

Writing

µ(r, θ) = µ0(r) + εµ1(r)λ1(θ),

u(r, θ) = u0(r) + εu1(r)λ1(θ),

we easily derive a system of equations and boundary conditions for µ1, u1:

∆µ1 − l2

r2
µ1 = χ{r<R0}µ1, 0 < r < ∞, (3.2)

µ1 = O(1) as r → ∞, (3.3)

[µ1](R0) = 0, (3.4)[
∂µ1

∂r

]
(R0) +

[
∂2µ0

∂r2

]
(R0) = 0 (3.5)

and

− ∆u1 + l2

r2
u1 = µ1 if r < R0, (3.6)

u1 + ∂u0

∂r
(R0) = 0 if r = R0, (3.7)

∂u1

∂r
+ ∂2u0

∂r2
(R0) = 0 if r = R0; (3.8)

recall that
∂u0

∂r
(R0) = −β = − 1

R0
.
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From (3.2), (3.3) we get

µ1(r) = AIl(r) if r < R0, µ1(r) = Br−l if r > R0

where A, B are constants. From (3.2), (3.6) we see that the function T = µ1(r) + u1(r) satisfies

Trr + 1

r
Tr − l2

r2
T = 0 if r < R0,

and therefore T = Crl , where C is a constant. Thus

u1(r) = Crl − AIl(r).

The boundary conditions (3.4), (3.5), (3.7), (3.8) then become

B R−l
0 − AIl(R0) = 0, (3.9)

− Bl R−l−1
0 − AI ′

l (R0) = I0(R0)

R0 I1(R0)
, (3.10)

− AIl(R0) + C Rl
0 = 1

R0
, (3.11)

− AI ′
l (R0) + Cl Rl−1

0 = I0(R0)

R0 I1(R0)
− 1

R2
0

(3.12)

and it remains to find R0 such that this system has a non-trivial solution (A, B, C).
Using (A.3)–(A.5), the condition on R0 reduces to

I0(R0)

I1(R0)

Il(R0)

Il−1(R0)
= l + 1

2l
. (3.13)

We now apply Theorem A.1 to conclude the following theorem.

THEOREM 3.1 The linearized system for mode l has a non-trivial solution if and only if R0 is the
unique solution R0 = R0l of (3.13).

From the previous formulae we find that the solution µ1(r), u1(r) is given by

µ1(r) =


− l + 1

2l
Rl−1

0 r−l if r > R0

− l + 1

2l

Il(r)

R0 Il(R0)
if r < R0

(3.14)

u1(r) = l − 1

2l

r l

Rl+1
0

+ l + 1

2l

Il(r)

R0 Il(R0)
if r < R0. (3.15)

REMARK 3.1 For l = 1, (3.13) holds for all 0 < R0 < ∞. The reason is that the problem (1.1)–
(1.6) is invariant under translation. By translating the centre of the free boundary from x = (0, 0)

to x = (0, ε), the solution changes and its new free boundary satisfies

r = R0 + ε cos θ + O(ε2) as ε → 0.

Since this situation is trivial, we shall not consider the bifurcation associated to l = 1. On the other
hand, if l � 2, the solutions with free boundary given by (1.7), as ε → 0, are not radially symmetric
with respect to any centre.
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Our goal is to prove that about each bifurcation point (µ1, u1, R0l), there is a bifurcation branch
of (symmetry-breaking) analytic solutions with free boundary given by (1.7) and β = β(ε) given
by (1.8).

4. Formal solution

We seek to find symmetry-breaking solutions initiating at R0l with free boundary

r = R0 + f (θ) ≡ f̃ (θ) where R0 = R0l , l � 2. (4.1)

Note that the boundary condition ∂u/∂n + β = 0 can be written in the form

f̃ (θ)
∂u

∂r
− f̃ ′(θ)

f̃ (θ)

∂u

∂θ
+ β

√
f̃ 2(θ) + ( f̃ ′(θ))2 = 0. (4.2)

Since u( f̃ (θ), θ) = 0, we have ur f̃ ′ + uθ = 0 on r = f̃ (θ) and, consequently, the boundary
condition (4.2) can also be written in the form

∂u

∂r
+ β

R0 + f√
(R0 + f )2 + f 2

θ

= 0. (4.3)

In this section we describe a natural formal approach to computing the coefficients in the power
series expansions of the bifurcation solutions given by (1.7), (1.8) and (1.18), (1.19). However, as
was shown in [5], this approach, surprisingly, is not a good one for actually proving convergence,
even for very simple elliptic problems with prescribed boundary that depends analytically on
a parameter ε. Therefore, in what follows we shall use another scheme developed in proving
convergence; this latter scheme looks more complicated but is nevertheless much easier to work
with.

The reason we have included the formal approach of this section in our paper is that it enables
us to reduce the compatibility condition which determines the βn to a much simpler formula than
does the scheme of the subsequent sections. This compatibility condition is based on Lemma 4.2
and is established in Theorem 4.3; it will be used to prove the assertion Λ̃ �= 0 of Lemma 7.1.

In determining (inductively) the coefficients λlm, µm, um in the expansions (1.7), (1.18), (1.19),
only powers of cos lθ to order �m will occur. Hence these coefficients will be finite linear
combinations of cos jlθ with j � m. We can therefore write (1.7) and (1.18), (1.19) more explicitly
in the form

r = R0 +
∞∑

m=1

εm
m∑

j=0

τmj cos jlθ ≡ R0 + f (θ, ε), (4.4)

µ = µ0(r) +
∞∑

m=1

εm
m∑

j=0

µmj (r) cos jlθ, (4.5)

u = u0(r) +
∞∑

m=1

εm
m∑

j=0

umj (r) cos jlθ. (4.6)
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From the differential equation (1.3) we get, for m � 1,

∆µmj − j2l2

r2
µmj = χ{r<R0}µmj , (4.7)

so that

µmj (r) =
{

Amj I jl(r) if r < R0,

Bmjr− jl if r > R0,
(4.8)

where Amj , Bmj are constants.
From the differential equations (1.1), (1.4) we find that (µmj + umj ) cos jlθ is harmonic in

{r < R0} so that

umj (r) = Cmjr
jl − Amj I jl(r) if r < R0, (4.9)

where Cmj is a constant.
We now wish to determine the constants Amj , Bmj , Cmj , τmj and βm−1 so that the boundary

conditions (1.3), (1.5), (1.6) are satisfied.
Proceeding by induction we assume that these coefficients have already been determined for

m < n, and we shall proceed to determine them for m = n.
Setting

fn(θ) = R0 +
n∑

m=1

εm
m∑

j=0

τmj cos jlθ, (4.10)

the condition (1.3) becomes

[µ0]r= fn(θ) +
n∑

m=1

εm
m∑

j=0

{Bmjr
− jl − Amj I jl(r)}r= fn(θ) cos jlθ = 0, (4.11)

[
∂µ0

∂r

]
r= fn(θ)

+
n∑

m=1

εm
m∑

j=0

{−( jl)Bmjr
− jl−1 − Amj I ′

jl(r)}r= fn(θ) cos jlθ = 0. (4.12)

The boundary condition (1.5) gives

u0(r)|r= fn(θ) +
n∑

m=1

εm
m∑

j=0

{Cmjr
jl − Amj I jl(r)}r= fn(θ) cos jlθ = 0. (4.13)

Finally, the boundary condition (1.6), written in the form (4.3), becomes

∂u0(r)

∂r

∣∣∣∣
r= fn(θ)

+
n∑

m=1

εm
m∑

j=0

{( jl)Cmjr
jl−1 − Amj I ′

jl(r)}r= fn(θ) cos jlθ

+
(

β0 +
n∑

m=2

εmβm

)√
1

1 + { f ′
n(θ)/ fn(θ)}2

= 0.

(4.14)
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Using the fact that [µ0](R0) = [ ∂µ0
∂r ](R0) = 0, we find from (4.11), (4.12), by equating the

coefficients of εn cos jlθ , that

Bnj R− jl
0 − Anj I jl(R0) = F1

nj , (4.15)

− ( jl)Bnj R− jl−1
0 − Anj I ′

jl(R0) + τnj

[
∂2µ0

∂r2

]
(R0) = F2

nj , (4.16)

where F1
nj , F2

nj are determined by the inductive assumption, i.e. they are given in terms of the
Amk, Bmk, Cmk, τmk, βm−1 for m � n − 1; the parameter βn−1, however, has not yet been
determined.

Similarly, from (4.13) we obtain, using the relations u0(R0) = 0, ∂u0/∂r(R0) = −β0 =
−1/R0,

−Anj I jl(R0) + Cnj R jl
0 − 1

R0
τnj = F3

nj , (4.17)

where F3
nj is determined by the inductive assumption, i.e. it is given in terms of Amk , Bmk , Cmk , τmk

and βm−1 for m � n − 1.
Finally, from (4.14) we get

−Anj I jl(R0) + ( jl)Cnj R jl−1
0 + τnj

∂2u0(R0)

∂r2
= F̃4

nj − βnδ j0 ≡ F4
nj , (4.18)

where F̃4
nj is given by the inductive assumption as the preceding Fi

nj . The coefficients matrix of the
linear system (4.15)–(4.18), for fixed j , is

Tjl =



−I jl(R0) R− jl
0 0 0

−I ′
jl(R0) (− jl)R− jl−1

0 0

[
∂2µ0

∂r2

]
(R0)

−I jl(R0) 0 R jl
0 − 1

R 0

−I ′
jl(R0) 0 ( jl)R jl−1

0
∂2u0(R0)

∂r2


.

Noting that

α ≡ −
[
∂2µ0

∂r2

]
(R0) = I0(R0)

R0 I1(R0)
, γ ≡ ∂2u0(R0)

∂r2
= 1

R2
0

− α, (4.19)

and using (A.3), (A.4), we easily obtain, for m = jl, the formula

det Tm = 2m
Im−1(R0)

R2
0

(
I0(R0)

I1(R0)

Im(R0)

Im−1(R0)
− m + 1

2m

)
.

Using Theorem A.2 we conclude as follows.

THEOREM 4.1 There holds:

det Tjl �= 0 if j �= 1; det Tl = 0.
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Equation det Tl = 0 is just (3.13), the solvability condition for the linearized problem. Equation
det Tjl �= 0 for j �= 1 implies the solvability of the equations for the coefficients in (4.4)–(4.6) for
any j �= 1. Thus it remains to solve the system (4.15)–(4.18) in case j = 1. Here we shall need to
use the parameter βn−1 to ensure solvability.

REMARK 4.1 For n = 2 mode l terms do not appear in the F0
nj and thus the system (4.15)–(4.18)

has a unique solution. However, in this special case, we necessarily have that β1 = 0. Indeed, if
n = 1 then F1

nj = 0, F2
nj = 0, F3

nj = 0 and F̃4
nj = 0, and since the linearized solution is of mode l,

also A1 j = B1 j = C1 j = τ1 j = 0 if j = 0. Equation (4.18) then implies that β1 = 0. This fact can
also be proved in another way. Denote by Ωε the domain bounded by r = R0 + ε cos lθ + O(ε2).
Then

β

∫
∂Ωε

1 = −
∫

∂Ωε

∂u

∂n
= −

∫
Ωε

∆u =
∫
Ωε

µ

where µ = µ0(r) + εµ1(r) cos lθ + O(ε2). Since∫
∂Ωε

1 = 2π R0 + O(ε2),

∫
Ωε

µ(r) =
∫
Ω0

µ0(r) + O(ε2),

writing β = β0 + εβ1 + O(ε2) we get

(β0 + εβ1 + O(ε2))(2π R0 + O(ε2)) =
∫
Ω0

µ0(r) + O(ε2)

which implies that β1 = 0.
Introducing the vector notation

Xnj =


Anj

Bnj

Cnj

τnj

 , Fnj =


F1

nj
F2

nj

F3
nj

F4
nj

 ,

we can write the system (4.15)–(4.18) for j = 1 in the form

TlXn1 = Fn1. (4.20)

This system is solvable if and only if the augmented matrix has the same rank as Tl , i.e. if and only
if

det


F1

n1 R−l
0 0 0

F2
n1 −l R−l−1

0 0 −α

F3
n1 0 Rl

0 − 1
R0

F4
n1 0 l Rl

0 γ

 = 0.

Adding l/R0 times the first row to the second row and (−l)/R0 times the third row to the fourth
row, the above condition reduces to

det

( l
R0

F1
n1 + F2

n1 −α

− l
R0

F3
n1 + F4

n1
l+1
R2

0
− α

)
= 0

(here we used the definitions of α, γ in (4.19)). Thus we have the following lemma.
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LEMMA 4.2 The system (4.20) has a solution if and only if(
l + 1

R2
0

− α

)(
l

R0
F1

n1 + F2
n1

)
+ α

(
− l

R0
F3

n1 + F4
n1

)
= 0. (4.21)

We want to prove that βn−1 can be uniquely determined so that (4.21) holds. We first have to
examine how βn−1 enters into Xn−1, j . It clearly appears only in the last equation for Xn−1,0 (see
(4.18) with n replaced by n − 1):

T0Xn−1,0 = Fn−1,0 − βn−1


0
0
0
1

 .

We can therefore write

Xn−1,0 = X̂n−1,0 + Xn−1,0 (4.22)

where X̂n−1,0 does not depend on βn−1, and, setting

Xn−1,0 =


An−1

Bn−1

Cn−1
τ n−1

 = βn−1X, X =


A
B
C
τ

 ,

there holds: T0X = −(0, 0, 0, 1)T . One can easily compute that

A = R0
I0(R0)

I 2
1 (R0)

, B = R0
I 2
0 (R0)

I 2
1 (R0)

, C = R0

(
I 2
0 (R0)

I 2
1 (R0)

− 1

)
, τ = −R2

0 . (4.23)

We now return to (4.20) and write

Fn1 = F̂n1 + Fn1βn−1, (4.24)

where F̂n1 and F̂n2 are independent of βn−1. We need to compute Fn1 = (F
1
, F

2
, F

3
, F

4
)T .

To do that we write (see (4.10))

fn(θ) = R0 + ε cos lθ + εn−1τ n−1 + O(ε2) = R0 + g(θ) (4.25)

where τ n−1 = τn−1,0. Then

g = ε cos lθ + εn−1τ n−1 + O(ε2),

(g)2 = 2εn cos lθ · τ n−1 + O(ε2), (g)k = O(ε2) (k � 3).
(4.26)

Here O(ε2) does not depend explicitly on τ n−1 and terms of order εn+1 have been discarded; these
conventions are also used in what follows.

We also have

( fn)k = Rk
0 + k Rk−1

0 εn−1τ n−1 + k Rk−1
0 ε cos lθ + O(ε2) + Oτ (ε

n), (4.27)

( fn)−k = R−k
0 − k R−k−1

0 εn−1τ n−1 − k R−k−1
0 ε cos lθ + O(ε2) + Oτ (ε

n), (4.28)
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where Oτ (ε
n) may depend on τ n−1.

From (4.26) we obtain

Im(r)|r= fn(θ) = Im(R0) + I ′
m(R0)ε

n−1τ n−1 + I ′
m(R0)ε cos lθ + O(ε2) + Oτ (ε

n), (4.29)

I ′
m(r)|r= fn(θ) = I ′

m(R0) + I ′′
m(R0)ε

n−1τ n−1 + I ′
m(R0)ε cos lθ + O(ε2) + Oτ (ε

n). (4.30)

We proceed to compute the first component F
1

of Fn1. For this we need to identify in (4.11) the
terms of the form λεn cos lθ where λ depends only on An−1, Bn−1, Cn−1, τ n−1; all other terms are
irrelevant and will be collectively designated by ‘· · · ’.

Using (4.26) we find that the first term on the left-hand side of (4.11) is of the form

[µ0]r= fn(θ) = 1

2
g2

[
∂2µ0

∂r2

]
(R0) + · · · =

[
∂2µ0

∂r2

]
(R0)ε

n cos lθ · τ n−1 + · · · . (4.31a)

Using (4.28) we see that from the series
∑

εm ∑
Bmjr− jl cos jlθ we can get εn cos lθ · τ n−1 only

if m = 1 and (necessarily) j = 1. We thus get

− l

Rl+1
0

B11ε
n cos lθ · τ n−1. (4.31b)

The coefficient Bn−1 does not come with εn cos lθ . Similarly, using (4.29) we get from
− ∑

εm ∑
Amj I jl(r) cos jl the term

−I ′
l (R0)A11ε

n cos lθ · τ n−1. (4.31c)

We also observe that An−1 appears when m = n − 1, j = 0 in the form

−εn cos lθ · An−1 I ′
0(R0). (4.31d)

Combining (4.31a)–(4.31d) we conclude that

−F
1 = τ n−1

(
− α − l

Rl+1
0

B11 − I ′
l (R0)A11

)
− An−1 I1(R0). (4.32)

Next we consider (4.12). From the first term or the left-hand side we get[
∂3µ0

∂r3

]
(R0)ε

n cos lθ · τ n−1. (4.33a)

From the sum of the Bmj we can get εn cos lθ · τ n−1 only if m = 1 and j = 1; the resulting term is

l + 1

Rl+2
0

l B11ε
n cos lθ · τ n−1. (4.33b)

From the sum of the Amj I ′
jl we get εn cos lθ · τ n−1 only if m = 1 and j = 1. Using (4.30) we find

that this gives the term

−I ′′
l (R0)A11ε

n cos lθ · τ n−1. (4.33c)
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Finally, An−1 appears (when m = n − 1, j = 0) in the form

−εn cos lθ · An−1 · I ′
1(R0). (4.33d)

Combining (4.33a)–(4.33d) we see that

−F
2 = τ n−1

{[
∂3µ0

∂r3

]
(R0) + l(l + 1)

Rl+2
0

B11 − I ′′
l (R0)A11

}
− An−1 I ′

1(R0). (4.34)

Next, by the same analysis as for (4.11), from the first term in (4.13) we obtain

∂2u0

∂r2
(R0)ε

n cos lθ · τ n−1,

and from the remaining terms we obtain

C11l Rl−1
0 εn cos lθ · τ n−1, −I ′

l (R0)A11ε
n cos lθ · τ n−1, −εn cos lθ · An−1 I ′

0(R0),

so that

−F
3 = τ n−1[γ + C11l Rl−1

0 − I ′
l (R0)A11] − An−1 I1(R0). (4.35)

Finally we consider (4.14). Computations as above show that we collect the terms

∂3u0

∂r3
(R0)ε

n cos lθ · τ n−1 (4.36a)

from ∂u0/∂r and

l(l − 1)C11 Rl−2
0 εn cos lθ · τ n−1, −I ′′

l (R0)A11ε
n cos lθ · τ n−1, −I ′

1(R0)ε
n cos lθ · An−1

(4.36b)

from the double sum in (4.14).
Since f ′(θ) does not contain τ n−1, {1 + ( f ′(θ)/ f (θ))2}−1/2 does not contain terms of the form

const. εn cos lθ · τ n−1. From (4.14) it then follows that

−F
4 = τ n−1

{
∂3u0

∂r3
(R0) + l(l − 1)C11 Rl−2

0 − I ′′
l (R0)A11

}
− An−1 I ′

1(R0). (4.37)

We shall next compute more explicitly the coefficients F
j
, making use of the formula

A11 = − l + 1

2l

1

R0 Il(R0)
, B11 = − l + 1

2l
Rl−1

0 , C11 = l − 1

2l

1

Rl+1
0

which follow from (3.14), (3.15) (after using also (3.13)).
Dropping the independent variable R0 in the various Bessel functions, we find that the coefficient

of τ n−1 in F
1

is equal to

I0

R0 I1
+ I ′

l A11 + l

Rl+1
0

B11 = I0

R0 I1
− I ′

l
l + 1

2l

1

R0 Il
− l

Rl+1
0

l + 1

2l
Rl−1

0

= I0

R0 I1
− l + 1

2l R0 Il

[
I ′
l + l

R0
Il

]
= 0
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by (A.3) and (3.13). Thus, by (4.32),

F
1 = I1(R0)An−1. (4.38)

The coefficient of τ n−1 in −F
4

is equal to[
∂3µ0

∂r3

]
(R0) + l(l + 1)

Rl+2
0

B11 − A11 I ′′
l

= I0

R2
0 I1

− 1

R0
− l(l + 1)

Rl+2
0

l + 1

2l
Rl−1

0 + l + 1

2l

I ′′
l

R0 Il
(by direct computation)

= I0

R2
0 I1

− 1

R0
− (l + 1)2

2

1

R3
0

− l + 1

2l

I ′
l

R2
0 Il

+ l + 1

2l R0

(
1 + l2

R2
0

)
(by (A.1))

= I0

R2
0 I1

− l − 1

2l

1

R0
− l + 1

2R2
0l Il

(
I ′
l + l

R0
Il

)
= − l − 1

2l

1

R0
,

by (A.3) and (3.13). Hence

F
2 = l − 1

2l

1

R0
τ n−1 + I ′

1(R0)An−1. (4.39)

Next, the coefficient of τ n−1 in −F
3

is equal to(
1

R2
0

− I0

R0 I1

)
+ 1

Rl+1
0

l − 1

2l
l Rl−1

0 + I ′
l

Il

l + 1

2l R0

= − I0

R0 I1
+ l + 1

2l R0 Il

(
I ′
l + l

R0
Il

)
= 0,

by (A.3) and (3.13), so that

F
3 = I1(R0)An−1. (4.40)

Finally, the coefficient of τ n−1 in −F
4

is equal to

∂3u0

∂r3
(R0) + l(l − 1)C11 Rl−2

0 − A11 I ′′
l

= ∂3u0

∂r3
(R0) + l(l − 1)

l − 1

2l

1

Rl+1
0

Rl−2
0 + I ′′

l
l + 1

2l

1

R0 Il

= − 2

R3
0

− 1

R0
+ I0

R2
0 I1

+ (l − 1)2

2

1

R3
0

+ l + 1

2l R0

[(
1 + l2

R2
0

)
− I ′

l

R0 Il

]
(by (A.1))

= 1

R3
0

(
− 2 + (l − 1)2

2
+ l(l + 1)

2

)
− l − 1

2l R0
+ I0

R2
0 I1

− l + 1

2l R2
0

(
Il−1

Il
− l

R0

)
(by (A.3))

= l2 − 1

R3
0

− l − 1

2l R0
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by (3.13).
We conclude that

F
4 = −

[
l2 − 1

R3
0

− l − 1

2l R0

]
τ n−1 + An−1 I ′

1(R0). (4.41)

Since, by (4.23),

τ n−1 = − R0 I 2
1 (R0)

I0(R0)
An−1,

we can rewrite (4.39) and (4.41) in the form

F
2 =

[
− l − 1

2l
· I 2

1 (R0)

I0(R0)
+ I ′

1(R0)

]
An−1, (4.42)

F
4 =

{[
l2 − 1

R3
0

− l − 1

2l R0

]
R0 I 2

1 (R0)

I0(R0)
+ I ′

1(R0)

}
An−1. (4.43)

Substituting (4.38), (4.42), (4.40) and (4.43) into the solvability condition (4.21) and using the
relation I ′

1 = I0 − I1/R0, we get

Λ(R0)βn−1 = F̃n (4.44)

where F̃n depends only on Amj , Bmj , Cmj , τmj , βm−1 for m � n − 1, and

Λ(R) = l − 1

R
I0(R)

{
2(l + 1)

R

(
I1(R)

I0(R)

)
− l + 1

2l

(
I1(R)

I0(R)

)2

− 1

}
. (4.45)

We now prove the following theorem.

THEOREM 4.3

Λ(R0) < 0. (4.46)

Consequently, equation (4.44) defines βn−1 uniquely in terms of Amj , Bmj , Cmj , τmj and βm−1
for all m � n − 1. Thus the asymptotic expansion can be developed for all n, and it is easy to see
that it formally defines a solution to the free boundary problem up to any order of precision εn .

PROOF OF THEOREM 4.1 Introduce the functions

V (x) = Im(x)

Im−1(x)
, G(x) = I1(x)

I0(x)
.

By (A.1)–(A.3) we find that

V ′ + V 2 + 2m − 1

x
V = 1, G ′ + G2 + 1

x
G = 1. (4.47)

so that

V ′(x)

V (x)
− G ′(x)

G(x)
= G(x)

V (x)

d

dx

(
V (x)

G(x)

)
> 0 (4.48)
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by Theorem A.1. Substituting V ′, G ′ from (4.47) into this inequality, and using (3.13), we find that,
at x = R0,

0 <

(
1

V
− V − 2m − 1

x

)
−

(
1

G
− G − 1

x

)
=

(
2m

m + 1

1

G
− m + 1

2m
G − 2m − 1

x

)
−

(
1

G
− G − 1

x

)
= m − 1

m + 1

1

G
+ m − 1

2m
G − 2(m − 1)

x

= m − 1

m + 1

1

G

[
1 + m + 1

2m
G2 − 2(m + 1)

x
G

]
,

so that Λ(R0) < 0. �

REMARK 4.2 The mode l solution is uniquely determined up to a multiple of a special solution
of the homogeneous system (4.15)–(4.18). It follows that by imposing the condition τnl = 0 (i.e.∫ 2π

0 λln(θ) cos lθ dθ = 0) we get a unique solution to (4.15)–(4.18). We have thus proved the
following theorem.

THEOREM 4.4 There exists a unique formal power series solution (4.4)–(4.6), (1.8) of (1.1)–(1.6)

subject to the conditions (1.9)–(1.11).

5. A change of variables

There is a serious difficulty in proving directly that the power series of the formal solution asserted
in Theorem 4.4 is convergent (see [5]). We therefore proceed indirectly, by first transforming the
free boundary problem into a problem in a fixed domain. We perform the change of variables

r ′ = r/(R0 + f (θ, ε)), (5.1)

under which the original problem is reduced to a problem in a disc {r ′ < 1}. For simplicity, we shall
still use r for the new variable (instead of r ′) and set

∆ = 1

(R0 + f (θ, ε))2
L(D),

where

f (θ, ε)) =
∞∑
j=1

ε jλ j (θ), (5.2)

and

L(D) = ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2
− fθθ

R0 + f

1

r

∂

∂r

− 2 fθ
R0 + f

1

r

∂2

∂θ∂r
+ 2 f 2

θ

(R0 + f )2

1

r

∂

∂r
+ f 2

θ

(R0 + f )2

∂2

∂r2
.

(5.3)
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Then, in the new coordinates, the system becomes

L(D)µ = χ{r<1}(R0 + f )2µ in {r < ∞}, (5.4)

L(D)u = (R0 + f )2u in {r < 1}, (5.5)

with the boundary conditions

u = 0 on r = 1, (5.6)

[µ] =
[
∂µ

∂r

]
= 0 on r = 1, (5.7)

∂u

∂r
+ β

(R0 + f )2

[(R0 + f )2 + f 2
θ ]1/2

= 0 on r = 1. (5.8)

As before, we seek solutions of the form

u = u0(r) +
∞∑
j=1

ε j u j (r, θ), (5.9)

µ = µ0(r) +
∞∑
j=1

ε jµ j (r, θ), (5.10)

f (θ, ε) = R0 + ε cos lθ +
∞∑
j=2

ε jλ j (θ), (5.11)

β = β0 +
∞∑
j=1

ε jβ j . (5.12)

The zeroth-order solution in the new variables is given by

µ0 =


I0(R0r)

R0 I1(R0)
for r < 1

log r + I0(R0)

R0 I1(R0)
for r > 1

, (5.13)

u0(r) = 1

I1(R0)

∫ 1

r
I1(R0ξ) dξ for r < 1, (5.14)

where β0 = 1/R0. Clearly

∂µ0

∂r
= I1(R0r)

I1(R0)
for r < 1, = 1

r
for r > 1, (5.15)

∂u0

∂r
= − I1(R0r)

I1(R0)
for r < 1. (5.16)

Substituting (5.2) and (5.9)–(5.12) into the system (5.4), (5.5), (5.8) we find that
(µn, un, λn, βn) satisfy the following system:

∆µn − χ{r<1}(R2µn + 2Rλnµ0) − 1

R
λn,θθ

1

r

∂µ0

∂r
= F1n(r, θ) in R

2, (5.17)

∆un + (R2µn + 2Rλnµ0) − 1

R
λn,θθ

1

r

∂u0

∂r
= F2n(r, θ) in {r < 1}, (5.18)
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where R = R0 = R0l , with the boundary conditions

[µn] =
[
∂µn

∂r

]
= 0 on r = 1, (5.19)

un = 0 on r = 1, (5.20)

∂un

∂r
+ βn R + 1

R
λn = F3n(θ) on r = 1. (5.21)

The F jn depend only on the µm, um, λm, βm for m < n.
By reversing the mapping

r → r

R0 + f (θ, ε)

and using the results of Section 4 we can deduce that the system (5.17)–(5.21) has a solution which
is even in θ .

In the next section we prove general lemmas which will enable us (in Section 7) to derive bounds
for the system (5.17)–(5.21) that ensure convergence of the power series (5.9)–(5.12).

6. Fundamental lemmas

We introduce the norm

‖N‖H2
r (B1)

=
∥∥∥∥|N | + 1

r

∣∣∣∣∂ N

∂r

∣∣∣∣ +
∣∣∣∣∂2 N

∂r2

∣∣∣∣ + 1

r

∣∣∣∣ ∂2 N

∂r∂θ

∣∣∣∣ + 1

r2

∣∣∣∣∂2 N

∂θ2

∣∣∣∣∥∥∥∥
L2(B1)

where B1 is the unit ball in R
2. This rather unusual norm is related to the form of the operators in

(5.8), (5.9), and will be very useful. It is easily seen that

‖N‖H2(B1)
� C‖N‖H2

r (B1)
. (6.1)

As proved in [5], if N = 0 on ∂ B1 and∫ 2π

0
N cos θ dθ =

∫ 2π

0
N sin θ dθ = 0,

then also

‖N‖H2
r (B1)

� C‖N‖H2(B1)
. (6.2)

The condition N = 0 on ∂ B1 may actually be dropped by applying the last inequality to N − N0
where ∆N0 = 0 in B1, N0 = N on ∂ B1, and then estimating ‖N0‖H2

r (B1)
using the expansion of N0

into a series
∑

m �=±1 amrmeimθ .
Consider the system for M = M(r, θ), U = U (r, θ),Λ = Λ(θ):

∆M − χ{r<1}(R2 M + 2RΛµ0) − 1

R
Λθθ

1

r

∂µ0

∂r
= F1(r, θ) in R

2, (6.3)

∆U + (R2 M + 2RΛµ0) − 1

R
Λθθ

1

r

∂u0

∂r
= F2(r, θ) in {r < 1}, (6.4)
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with the boundary conditions

[M] =
[
∂ M

∂r

]
= 0 on r = 1, (6.5)

U = 0 on r = 1, (6.6)

∂U

∂r
+ β R + 1

R
Λ = F3(θ) on r = 1, (6.7)

where β is a given real number.

REMARK 6.1 (Relation to bifurcation theory.) As in general bifurcation theory, let us write

u = u0(r) + εũ,

µ = µ0(r) + εµ̃,

f = R0 + ε̃λ (̃λ = cos lθ + ε̃λ1)

β = β0 + εβ̃

and split the system (5.4)–(5.8) analogously to (1.14), (1.15). We write the analogue of (1.14) in
the form

Π (Ũ , β̃) = F̃ (6.8)

where Ũ = (̃u, µ̃, λ̃); F̃ actually depends on Ũ . The implicit function theorem requires the
invertibility of (6.8) in certain Banach spaces. As a step toward establishing this fact, we need to
prove that, for any F̃ in a suitable Banach space B1 there is a unique properly normalized solution
Ũ of (6.8) in a Banach space B2, and

‖Ũ‖B2 � C‖F̃‖B1 . (6.9)

The Banach space B1, in our case, turns out to be very complicated. It includes norms such as (6.12)

below and corresponding norms of θ -derivatives to all orders with appropriate weights. For clarity,
we shall state (in this section) the estimate (6.9) just for the norm (6.12). The class of functions F̃
is described in Lemma 6.4, and consists of a linear combination of several subspaces of functions,
dealt with separately in Lemmas 6.1–6.3.

With Lemma 6.4 at hand we shall proceed in Section 7 to invert the problem (6.8) (for F̃
which is a nonlinear function of Ũ ). This inversion, however, is not straightforward. It requires a
compatibility result (Lemma 7.1). It also requires a delicate examination of the coefficients of βn as
they appear in the equations that determine un+1, µn+1, λn+1.

The analysis of Section 7 is written in the form of inductive estimates on un, µn, fn, βn−1 and
all their θ -derivatives. The end result could probably be formulated as a rather complicated analytic
implicit function theorem (involving the aggregate {un, µn, fn, βn−1; n = 1, 2, 3, . . . }, but such a
formulation seems less useful than the more direct approach of the inductive estimates. The final
conclusion is that there exists an analytic branch of solutions in the transformed variables. The
authors are not aware of any analytic implicit function theorem in Banach spaces which applies to
the present problem.
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LEMMA 6.1 Set R = R0 = R0l and let F j be even functions of θ such that F1 ∈ L2(R2), F2 ∈
L2(B1), F3 ∈ H1/2(∂ B1),∫ 2π

0
F1(r, θ) cos mθ dθ ≡ 0,

∫ 2π

0
F2(r, θ) cos mθ dθ ≡ 0,∫ 2π

0
F3(θ) cos mθ dθ = 0 for m = 1, l,

(6.10)

and, for r > 1,

F1(r, θ) = 1

r2
F10(θ) + 1

r2
F11(r, θ),∫ 2π

0
F10(θ) dθ = 0, ‖F11‖L2(R2\B1)

< ∞.

(6.11)

Set

‖|F‖| = (‖F1‖L2(B1)
+ ‖F10‖L2(∂ B1)

+ ‖F11‖L2(R2\B1)
+ ‖F2‖L2(B1)

+ ‖F3‖H1/2(∂ B1)
). (6.12)

Then there exists a unique solution (M, U,Λ) of (6.3)–(6.7), even in θ , such that∫ 2π

0
M(r, θ) cos mθ dθ ≡ 0,

∫ 2π

0
U (r, θ) cos mθ dθ ≡ 0,∫ 2π

0
Λ(θ) cos mθ dθ = 0 for m = 1, l,

(6.13)

and the following estimates hold:∥∥∥∥(
|M − M0| +

∣∣∣∣1

r

∂(M − M0)

∂r

∣∣∣∣ +
∣∣∣∣1

r

∂ M

∂θ

∣∣∣∣ +
∣∣∣∣∂2(M − M0)

∂r2

∣∣∣∣ +
∣∣∣∣1

r

∂2 M

∂r∂θ

∣∣∣∣)∥∥∥∥
L2(B1)

+ ‖M + U − C20‖H2(B1)
+ ‖Λ + β R2‖H3/2(∂ B1)

+
∣∣∣∣C20 − β R

(
I 2
0 (R)

I 2
1 (R)

− 1

)∣∣∣∣ � C‖|F‖|,
(6.14)

and ∥∥∥∥r2
(∣∣∣∣1

r

∂ M

∂r

∣∣∣∣ +
∣∣∣∣∂2 M

∂r2

∣∣∣∣ +
∣∣∣∣1

r

∂2 M

∂r∂θ

∣∣∣∣)∥∥∥∥
L2(R2\B1)

� C‖|F‖|, (6.15)

where C20 is a constant,

M0(r) = M (1)
0 (r) + M (3)

0 (r) for r < 1, (6.16)

and

M (3)
0 (r) = −Λ0

R

[
I0(Rr)

I0(R)
− r I1(Rr)

I1(R

]
, (6.17)

M (1)
0 (r) = C20

I0(Rr)

I0(R)
, (6.18)

Λ0 = 1

2π

∫ 2π

0
Λ(θ) dθ,

and C is a constant independent of β.
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We recall that the norms Hk for k which is not as integer can be defined either by the Fourier
transform, or by interpolation [1].

It is worth pointing out that the first term on the left-hand side of (6.14) is not the H2
r norm of

M − M0, as the pure second-order θ derivative is missing. Note, also, that on the left-hand side of
(6.15) there is a weight r2 inside the L2-norm; this is enabled by the factor 1/r2 in (6.11).

REMARK 6.2 It may look rather surprising that Λ + β R2 has one more derivative than F3, since
this is not apparent from the boundary condition (6.7). The reason for this gain of one derivative is
roughly the following: equation (6.3) suggests that the regularity of M is the same as the regularity
of Λ. Since M + U satisfies a ‘nice’ Poisson equation, ∂U/∂r is ‘likely’ to have the same regularity
as ∂ M/∂r at r = 1, i.e. as Λθ . Thus (6.7) is in some sense a pseudo-differential operator of the first
order for Λ, and thus should have one more derivative than F3.

Proof. By the assumptions on the F j we can write

F j (r, θ) =
∑

m �=1,m �=l

F j
m(r) cos mθ, j = 1, 2,

F3(θ) =
∑

m �=1,m �=l

F3
m cos mθ.

Furthermore, for r > 1,

F1
m(r) = 1

r2
(F10

m + F11
m (r)),

where

F10
m = 1

π

∫ 2π

0
F10(θ) cos mθ dθ if m � 2, F10

0 = 0,

F11
m (r) = 1

π

∫ 2π

0
F11(r, θ) cos mθ dθ if m � 2,

F11
0 (r) = 1

2π

∫ 2π

0
F11(r, θ) dθ.

(6.19)

In view of (6.13) the solution Λ, M, U must have the form

Λ =
∑

m �=1,m �=l

Λm cos mθ, (6.20)

M =
∑

m �=1,m �=l

Mm(r) cos mθ, (6.21)

U =
∑

m �=1,m �=l

Um(r) cos mθ. (6.22)

Then (Mm, Um,Λm) satisfy

M ′′
m + 1

r
M ′

m − m2

r2
Mm − χ{r<1}(R2 Mm + 2RΛmµ0) + 1

R
m2Λm

1

r

∂µ0

∂r
= F1

m in R
2, (6.23)

U ′′
m + 1

r
U ′

m − m2

r2
Um + (R2 Mm + 2RΛmµ0) + 1

R
m2Λm

1

r

∂u0

∂r
= F2

m for r < 1, (6.24)



SYMMETRY-BREAKING BIFURCATION FOR A STEFAN PROBLEM 165

with the boundary conditions

[Mm] =
[
∂ Mm

∂r

]
= 0 on r = 1, (6.25)

Um = 0 on r = 1, (6.26)

∂Um

∂r
+ 1

R
Λm + β Rδm0 = F3

m on r = 1. (6.27)

The general solution of (6.23) can be written in the form

Mm = M (1)
m + M (2)

m + M (3)
m , (6.28)

where M (1)
m corresponds to the general homogeneous solution, namely

M (1)
m =

{
C1m Im(Rr) for r < 1

C2mr−m for r > 1.
(6.29)

M (2)
m corresponds to an inhomogeneous solution involving F1

m(r), and M (3)
m corresponds to an

inhomogeneous solution involving Λm . Writing M (2)
m = gm(r)Im(Rr) for r < 1 and M (2)

m =
gm(r)r−m for r > 1, we derive a first-order ODE for g′

m(r) which can be readily solved by
integration. This leads to

M (2)
m =


−Im(Rr)

∫ 1

r

ds

s I 2
m(Rs)

∫ s

0
τ Im(Rτ)F1

m(τ ) dτ for r < 1

− 1

rm

∫ r

1
s2m−1 ds

∫ ∞

s

F1
m(τ )

τm−1
dτ for r > 1.

(6.30)

Finally, recalling (5.13) and (5.15), a solution M (3)
m is obtained by replacing, in (6.30), F1

m(r) by
Λm

I1(R)

{
2I0(Rr) − m2

Rr
I1(Rr)

}
for r < 1,

−m2

R

1

r2
Λm for r > 1.

This yields, for r > 1,

M (3)
m (r) = Λm

rm

∫ r

1
s2m−1ds

∫ ∞

s

m2

Rτm+1
dτ = Λm

R

(
1 − 1

rm

)
for m � 2,

M (3)
0 (r) = 0.

(6.31)

To compute M (3)
m (r) for r < 1, we use Theorem A.3:

M (3)
m (r) = Λm

R

Im(Rr)

I1(R)

∫ 1

r

ds

s I 2
m(Rs)

∫ Rs

0

1

R
Im(τ )

{
m2 I1(τ ) − 2τ I0(τ )

}
dτ

= Λm

R

Im(Rr)

I1(R)

∫ 1

r

Rs

I 2
m(Rs)

{
m − 2

Rs
I1(Rs)Im(Rs)

− [I2(Rs)Im(Rs) − I1(Rs)Im+1(Rs)]
}

ds,
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so that

M (3)
m (r) = Λm

R

Im(Rr)

I1(R)
Bm(r) for m � 2, (6.32)

where, in view of the relations I2(r)
I1(r)

= I0(r)
I1(r)

− 2
r ,

Bm(r) =
∫ 1

r

I1(Rs)

Im(Rs)

{
m − (Rs)

[
I0(Rs)

I1(Rs)
− Im+1(Rs)

Im(Rs)

]}
ds if m � 2. (6.33)

The same formula is valid for m = 0 with

B0(r) = −
∫ 1

r

ds

s I 2
0 (Rs)

∫ Rs

0

2

R
τ I 2

0 (τ ) dτ = −
∫ 1

r

ds

Rs I 2
0 (Rs)

(τ )2[I 2
0 (τ ) − I 2

1 (τ )]
∣∣∣∣Rs

0

= −
∫ 1

r
(Rs)

[
1 − I 2

1 (Rs)

I 2
0 (Rs)

]
ds = −s

I1(Rs)

I0(Rs)

∣∣∣∣1

r
,

or

B0(r) = − I1(R)

I0(R)
+ r

I1(Rr)

I0(Rr)
. (6.34)

The second and third equalities above can be verified by differentiating the right-hand sides and
using the relations (x I1(x))′ = x I0(x), I ′

0(x) = I1(x). In particular, we conclude that (6.17) is
valid.

We next add equations (6.23) and (6.24) to get

(Um + Mm)′′ + 1

r
(Um + Mm)′ − m2

r2
(Um + Mm) = F1

m + F2
m,

which leads to

Um = −Mm + C3mrm − rm
∫ 1

r

ds

s2m+1

∫ s

0
τm+1[F1

m(τ ) + F2
m(τ )

]
dτ. (6.35)

We divide the rest of the proof of the lemma into six steps.
Step 1. Solving the system for (C1m, C2m, C3m,Λm/R).
Substituting the expressions for Mm , Um from (6.28), (6.35) into the boundary conditions

(6.25)–(6.27), we find, after using the relation (A.5), that

C1m Im(R) = C2m, (6.36)

C1m RI ′
m(R) + 1

Im(R)

∫ 1

0
τ Im(Rτ)F1

m(τ ) dτ + Λm

R

[
m + R

(
I0(R)

I1(R)
− Im−1(R)

Im(R)

)]
= −mC2m + Λm

R
m −

∫ ∞

1

F1
m(τ )

τm−1
dτ, (6.37)

C2m = C3m, (6.38)

mC3m +
∫ 1

0
τm+1[F1

m(τ ) + F2
m(τ )

]
dτ + Λm

R
+ δm0β R

= −mC2m + Λm

R
m −

∫ ∞

1

F1
m(τ )

τm−1
dτ + F3

m . (6.39)
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Using (6.36) and (6.38) to eliminate C1m and C3m , we obtain a system of equations for C2m and
Λm/R which, after using (A.3), takes the form:

C2m
RIm−1(R)

Im(R)
+ Λm

R
R

(
I0(R)

I1(R)
− Im−1(R)

Im(R)

)
= −

∫ ∞

1

F1
m(τ )

τm−1
dτ − 1

Im(R)

∫ 1

0
τ Im(Rτ)F1

m(τ ) dτ, (6.40)

C2m2m + Λm

R
(1 − m) = F3

m − δm0β R

−
∫ 1

0
τm+1[F1

m(τ ) + F2
m(τ )

]
dτ −

∫ ∞

1

F1
m(τ )

τm−1
dτ. (6.41)

Since R = R0l , the determinant of the coefficients matrix of (6.40), (6.41) is

R

[
(m + 1)

Im−1(R)

Im(R)
− 2m

I0(R)

I1(R)

]
�= 0 by Theorem A.2,

and, consequently, the system (6.23)–(6.27) has a unique solution (C1m, C2m, C3m,Λm/R).

REMARK 6.3 If m = 0 then the quantity

Λm

R

[
m + R

(
I0(R)

I1(R)
− Im−1(R)

Im(R)

)]

in (6.37) (which is the expression for ∂ M (3)
m /∂r at r = R) should be replaced by the expression

B ′
0(1)I0(R)/I1(R), which is equal to

Λ0

R
R

(
I0(R)

I1(R)
− I1(R)

I0(R)

)
.

This implies that, in (6.40), if m = 0 then Im−1(R)/Im(R) should be replaced by I1(R)/I0(R).

Step 2. Estimating ‖Λ + β R‖H3/2(∂ B1)
.

By (A.2), Im(R)/Im−1(R) � R/2m → 0 as m → ∞. Hence by (A.5),

Im−1(R)

Im(R)
= Im+1(R)

Im(R)
+ 2m

R
∼ 2m

R
for large m,

so that Tm ∼ 2m2 for m large. It is also clear from (A.4) that RI ′
m(R)/Im(R) ∼ m, and from (A.6)

that

Im(Rτ)

Im(R)
∼ τm uniformly in τ, 0 < τ < 1. (6.42)
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Using these relations in (6.40), (6.41), we find that for m � 2, m �= l,

m

(∣∣∣∣Λm

R

∣∣∣∣ + |C2m |
)

� C

{∣∣∣∣ ∫ ∞

1

F1
m(τ )

τm
τ dτ

∣∣∣∣ +
∣∣∣∣ ∫ 1

0

Im(Rτ)

Im(R)
F1

m(τ )τ dτ

∣∣∣∣
+ |F3

m | +
∣∣∣∣ ∫ 1

0
τm(F1

m(τ ) + F2
m(τ ))τ dτ

∣∣∣∣}
� C

( ∫ ∞

0
[F1

m(τ )]2τ dτ

)1/2( ∫ 1

0
τ 2m+1 dτ +

∫ ∞

1

dτ

τ 2m−1

)1/2

+ C |F3
m | + C

( ∫ 1

0
[F2

m(τ )]2τ dτ

)1/2( ∫ 1

0
τ 2m+1 dτ

)1/2

� C

m1/2

(‖F1
m‖L2(R2) + ‖F2

m‖L2(B1)

) + C |F3
m |.

(6.43)

Consider now the case m = 0. By (6.19),∣∣∣∣ ∫ ∞

1
τ F1

0 (τ ) dτ

∣∣∣∣ =
∣∣∣∣ 1

2π

∫ 2π

0

∫ ∞

1

F11(τ, θ)

τ
dτ dθ

∣∣∣∣ � C‖F11‖L2(R2\B1)
.

Recall also that M (3)
0 is computed from (6.20), which means that in (6.40) we replace the quantity

Im−1(R)/Im(R) by I1(R)/I0(R) (see Remark 6.3). Solving (6.41) for Λ0
R +β and then substituting

this into (6.40) and observing that

C20
RI1

I0
− β R2

(
I0

I1
− I1

I0

)
= RI1

I0

[
C20 − β R

(
I 2
0

I 2
1

− 1

)]
,

we get∣∣∣∣Λ0

R
+ β R

∣∣∣∣ +
∣∣∣∣C20 − β R

(
I 2
0 (R)

I 2
1 (R)

− 1

)∣∣∣∣� C(‖F1
0 ‖L2(B1)

+ ‖F11‖L2(R2\B1)
+ ‖F2

0 ‖L2(B1)
+ |F3

0 |).
(6.44)

The estimates (6.43) imply that

∑
m �=1

m3|Λm |2 � C

{∑
m�2

(‖F1
m‖2

L2(R2)
+ ‖F2

m‖2
L2(B1)

) +
∑
m�2

m|F3
m |2

}
, (6.45)

and, together with (6.44),

‖Λ − Λ0‖H3/2(∂ B1)
� C(‖F1‖L2(R2) + ‖F2‖L2(B1)

+ ‖F3‖H1/2(∂ B1)
),∣∣∣∣Λ0

R
+ β R

∣∣∣∣ +
∣∣∣∣C20 − β R

(
I 2
0 (R)

I 2
1 (R)

− 1

)∣∣∣∣
� C(‖F1‖L2(B1)

+ ‖F11‖L2(R2\B1)
+ ‖F2‖L2(B1)

+ ‖F3‖H1/2(∂ B1)
).

(6.46)

Step 3. Estimating M (1).
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For the region r > 1, if m � 2,

m2
∫ ∞

1

[
r

∂

∂r
M (1)

m (r)

]2

r dr +
∫ ∞

1

[
r2 ∂2

∂r2
M (1)

m (r)

]2

r dr

� Cm4|C2m |2
∫ ∞

1
r−2mr dr � Cm|F3

m |2 + C(‖F1
m‖2

L2(R2)
+ ‖F2

m‖2
L2(B1)

), (6.47)

which implies the bound

‖r M (1)
r ‖L2(R2\B1)

+ ‖r M (1)
rθ ‖L2(R2\B1)

+ ‖r2 M (1)
rr ‖L2(R2\B1)

� C(‖F1‖L2(R2) + ‖F2‖L2(B1)
) + C‖F3‖H1/2(∂ B1)

. (6.48)

Next we consider a bound on M (1) for r < 1. Since C1m = C2m/Im(R), we have, by (6.29) and
(6.42),

m4
∫ 1

0

1

r4
[M (1)

m (r)]2r dr � m4|C2m |2
∫ 1

0

1

r4

(
Im(Rr)

Im(R)

)2

r dr

� Cm4|C2m |2
∫ 1

0
r2m−4r dr � Cm|F3

m |2 + C(‖F1
m‖2

L2(R2)
+ ‖F2

m‖2
L2(B1)

),

if m � 2, where the last inequality follows by (6.43). Also, by (A.3)–(A.5) we easily verify that∣∣∣∣ ∂

∂r
Im(r)

∣∣∣∣ � Cm
Im(r)

r
,

∣∣∣∣ ∂2

∂r2
Im(r)

∣∣∣∣ � Cm2 Im(r)

r2
,

so that

m2
∫ 1

0

1

r2

[
∂

∂r
M (1)

m (r)

]2

r dr +
∫ 1

0

[
∂2

∂r2
M (1)

m (r)

]2

r dr

� Cm4|C2m |2
∫ 1

0

(
Im(Rr)

Im(R)

)2

r dr � Cm|F3
m |2 + C(‖F1

m‖2
L2(R2)

+ ‖F2
m‖2

L2(B1)
),

if m � 2. Thus, altogether,

‖M (1) − M (1)
0 (r)‖H2

r (B1)
� C

(‖F1‖L2(B1)
+ ‖F10‖L2(∂ B1)

+ ‖F11‖L2(R2\B1)

+ ‖F2‖L2(B1)
+ ‖F3‖H1/2(∂ B1)

)
. (6.49)

Step 4. Estimating M (2).
For r < 1, M (2) = ∑

M (2)
m (r) cos mθ satisfies

∆M (2) − R2 M (2) = F1 in B1, M (2) = 0 on ∂ B1.

By elliptic L2 estimates, ‖M (2)‖H2(B1)
� C‖F1‖L2(B1)

so that, by (6.1)

‖M (2)‖H2
r (B1)

� C‖F1‖L2(B1)
. (6.50)
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To estimate M (2)(r, θ) in r > 1, we use (6.30) and (6.19). We can then write M (2) = M (20) +
M (21),

M (20)(r, θ) =
∑

M (20)
m (r) cos mθ,

M (21)(r, θ) =
∑

M (21)
m (r) cos mθ,

where

M (20)
m (r) = − 1

rm

∫ r

1
s2m−1

∫ ∞

s

F10

τm+1
dτ = − F10

m2

(
1 − 1

rm

)
if m � 2,

M (20)
0 = 0,

M (21)
m (r) = − 1

rm

∫ r

1
s2m−1

∫ ∞

s

F11
m (τ )

τm+1
dτ.

Hence

m2
∫ ∞

1

(
r

∂

∂r
M (20)

m (r)

)2

r dr +
∫ ∞

1

(
r2 ∂2

∂r2
M (20)

m (r)

)2

r dr � C

m
|F10

m |2 � C |F10
m |2,

and this allows us to deduce that

‖r M (20)
r ‖L2(R2\B1)

+ ‖r M (20)
rθ ‖L2(R2\B1)

+ ‖r2 M (20)
rr ‖L2(R2\B1)

� C‖F10‖L2(∂ B1)
. (6.51)

Next, by direct computation (m = 0 is included in the computation)

∂

∂r
M (21)

m (r) = m

rm+1

∫ r

1
s2m−1

∫ ∞

s

F11
m (τ )

τm+1
dτ − rm−1

∫ ∞

r

F11
m (τ )

τm+1
dτ,

∂2

∂r2
M (21)

m (r) = − m(m + 1)

rm+2

∫ r

1
s2m−1

∫ ∞

s

F11
m (τ )

τm+1
dτ + rm−2

∫ ∞

r

F11
m (τ )

τm+1
dτ + F11

m (r)

r2
.

Therefore, for all m � 0,∣∣∣∣(m + 1)r
∂

∂r
M (21)

m (r)

∣∣∣∣ +
∣∣∣∣r2 ∂2

∂r2
M (21)

m (r)

∣∣∣∣
� C

{
m(m + 1)

rm

∫ r

1
s2m−1

∫ ∞

s

|F11
m (τ )|
τm+1

dτ + (m + 1)rm
∫ ∞

r

|F11
m (τ )|
τm+1

dτ + |F11
m (r)|

}
.

We proceed to estimate the terms on the right-hand side by the method used in [5: Lemma 8.1]. We
can write

m(m + 1)

rm

∫ r

1
s2m−1

∫ ∞

s

|F11
m (τ )|
τm+1

dτ

= m(m + 1)

rm

∫ ∞

1

|F11
m (τ )|
τm+1

∫ min(r,τ )

1
s2m−1ds dτ

� m(m + 1)

rm

{ ∫ r

1

|F11
m (τ )|
τm+1

τ 2m

m
dτ +

∫ ∞

r

|F11
m (τ )|
τm+1

r2m

m
dτ

}
� (m + 1)

rm

∫ r

1
|F11

m (τ )|τm−1 dτ + (m + 1)rm
∫ ∞

r

|F11
m (τ )|
τm+1

dτ, (6.52)
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(notice that the left-hand side of the last inequality is 0 when m = 0) so that, for all m � 0,∣∣∣∣(m + 1)r
∂

∂r
M (21)

m (r)

∣∣∣∣ +
∣∣∣∣r2 ∂2

∂r2
M (21)

m (r)

∣∣∣∣
� C

{
m

rm

∫ r

1
|F11

m (τ )|τm−1 dτ + (m + 1)rm
∫ ∞

r

|F11
m (τ )|
τm+1

dτ + |F11
m (r)|

}
≡ C(Q1m + Q2m + |F11

m (r)|). (6.53)

It remains to estimate L2 norms of Q1m and Q2m . Substituting τ = rξ into the integrand of Q2m ,
we get[ ∫ ∞

1
|Q2m(r)|2r dr

]1/2

= (m + 1)

[ ∫ ∞

1
r2m

( ∫ ∞

1

F11
m (rξ)

rm+1ξm+1
r dξ

)2

r dr

]1/2

= (m + 1)

[ ∫ ∞

1

( ∫ ∞

1

F11
m (rξ)

ξm+1
dξ

)2

r dr

]1/2

� (m + 1)

∫ ∞

1

( ∫ ∞

1
|F11

m (rξ)|2r dr

)1/2 dξ

ξm+1
(by Minkowski’s inequality)

= (m + 1)

∫ ∞

1

( ∫ ∞

ξ

|F11
m (τ )|2τ dτ

)1/2 dξ

ξm+2
(r = τ/ξ)

�
( ∫ ∞

1
|F11

m (τ )|2τ dτ

)1/2

.

Similarly, for m � 2 (notice that Q10 = 0),[ ∫ ∞

1
|Q1m(r)|2r dr

]1/2

= m

[ ∫ ∞

1

1

r2m

( ∫ 1

1/r
F11

m (rξ)rm−1ξm−1r dξ

)2

r dr

]1/2

= m

[ ∫ ∞

1

( ∫ 1

1/r
F11

m (rξ)ξm−1 dξ

)2

r dr

]1/2

� m
∫ 1

0

( ∫ ∞

1
|F11

m (rξ)|2χ{rξ>1}r dr

)1/2

ξm−1 dξ (by Minkowski’s inequality)

= m
∫ 1

0

( ∫ ∞

1
|F11

m (τ )|2τ dτ

)1/2

ξm−2 dξ � m

m − 1

( ∫ ∞

1
|F11

m (τ )|2τ dτ

)1/2

.

Substituting these estimates into (6.53), we obtain, for all m � 0,∫ ∞

1

[
(m + 1)r

∂

∂r
M (21)

m (r)

]2

r dr +
∫ ∞

1

[
r2 ∂2

∂r2
M (21)

m (r)

]2

r dr � C
∫ ∞

1
|F11

m (τ )|2τ dτ.

(6.54)

This implies that

‖r M (21)
r ‖L2(R2\B1)

+ ‖r M (21)
rθ ‖L2(R2\B1)

+ ‖r2 M (21)
rr ‖L2(R2\B1)

� C‖F11‖L2(R2\B1)
. (6.55)
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Combining this inequality with (6.51), we get

‖r M (2)
r ‖L2(R2\B1)

+ ‖r M (2)
rθ ‖L2(R2\B1)

+ ‖r2 M (2)
rr ‖L2(R2\B1)

� C{‖F10‖L2(∂ B1)
+ ‖F11‖L2(R2\B1)

}. (6.56)

Step 5. Estimating M (3).
Using (6.31) we see that, for r > 1, the term with m = 0 disappears, whereas if m � 2,

m2
∫ ∞

1

[
r

∂

∂r
M (3)

m (r)

]2

r dr +
∫ ∞

1

[
r2 ∂2

∂r2
M (3)

m (r)

]2

r dr � Cm3
∣∣∣∣Λm

R

∣∣∣∣2

.

Therefore, by (6.45),

‖r M (3)
r ‖L2(R2\B1)

+ ‖r M (3)
rθ ‖L2(R2\B1)

+ ‖r2 M (3)
rr ‖L2(R2\B1)

� C
(‖F1‖L2(R2) + ‖F2‖L2(B1)

+ ‖F3‖H1/2(∂ B1)

)
. (6.57)

For r < 1,

M (3)
m (r) = Λm

R

Im(Rr)

I1(R)
Bm(r).

Each M (3)
m is a power series in r which does not contain a first-order term. Consequently,(

|M (3)
m | +

∣∣∣∣1

r

∂ M (3)
m

∂r

∣∣∣∣ +
∣∣∣∣∂2 M (3)

m

∂r2

∣∣∣∣) � C
|Λm |

R
for r < 1,

for each m � 0 (C depends on m). For m large, since Rs Im+1(Rs)
Im (Rs) = O( 1

m ) (by (A.6)), we have

|M (3)
m | � Cm

|Λm |
R

∫ 1

r

(
r

s

)m

s ds = C |Λm |
R

(r2 − rm) � C |Λm |
R

r2.

Next,

∂

∂r
M (3)

m = Λm

RI1(R)
(RI ′

m(Rr)Bm(r) + Im(Rr)B ′
m(r))

= Λm

RI1(R)

{
RI ′

m(Rr)Bm(r) + I1(Rr)

(
− m + Rr

[
I0(Rr)

I1(Rr)
− Im+1(Rr)

Im(Rr)

])}
.

Using the relations

I ′
m(Rr)

Im(Rr)
= − m

Rr
+ Im+1(Rr)

Im(Rr)
= − m

Rr
+ O(1), Bm(r)Im(Rr) = O(1),

which follow by(A.6), we find that

∂

∂r
M (3)

m = Λm

RI1(R)

(
− m

r
Im(Rr)Bm(r) − m I1(Rr) + O(1)

)
= Λm

RI1(R)

(
m2

r

∫ 1

r

rm

sm
I1(Rs) ds − m I1(Rr) + O(1)

)
(by (6.33),



SYMMETRY-BREAKING BIFURCATION FOR A STEFAN PROBLEM 173

so that, by integration by parts,

∂

∂r
M (3)

m = Λm

RI1(R)

(
m2

m − 1

∫ 1

r

rm−1

sm−1
RI ′

1(Rs) ds − m2

m − 1
I1(R)rm−1 + m

m − 1
I1(Rr) + O(1)

)
.

Thus ∣∣∣∣ ∂

∂r
M (3)

m

∣∣∣∣ � C
|Λm |

R
(mrm−1 + 1).

Finally, by a similar (but longer) computation, we get the bound∣∣∣∣ ∂2

∂r2
M (3)

m

∣∣∣∣ � C
|Λm |

R
(m2rm−2 + 1).

It follows that, uniformly in m,

(m + 1)3
∫ 1

0
[M (3)

m (r)]2r dr + (m + 1)2
∫ 1

0

[
1

r

∂

∂r
M (3)

m (r)

]2

r dr +
∫ 1

0

[
∂2

∂r2
M (3)

m (r)

]2

r dr

� C(m + 1)3
∣∣∣∣Λm

R

∣∣∣∣2

.

Hence ∥∥∥∥(
|M (3) − M (3)

0 | +
∣∣∣∣1

r

∂(M (3) − M (3)
0 )

∂r

∣∣∣∣ +
∣∣∣∣1

r

∂ M (3)

∂θ

∣∣∣∣
+

∣∣∣∣∂2(M (3) − M (3)
0 )

∂r2

∣∣∣∣ +
∣∣∣∣1

r

∂2 M (3)

∂r∂θ

∣∣∣∣)∥∥∥∥
L2(B1)

� C‖Λ − Λ0‖H3/2(∂ B1)
. (6.58)

Recall that the right-hand side was already estimated in (6.46).
Step 6. Estimating M + U .
By (6.35),

Mm + Um = C3mrm − rmPm,

where rmPm can be estimated by elliptic estimates and (6.2) in the same way as M (2)
m in r < 1.

Using also the fact that C2m = C3m and the bound (6.43), we conclude that

‖M + U − C20‖H2(B1)

is bounded by the right-hand side of (6.14).
Collecting (6.44), (6.46), (6.49), (6.50) and (6.58), the proof of (6.14) is complete, and

collecting (6.47), (6.48), (6.56) and (6.57), the proof of (6.15) also follows.
Uniqueness is a by-product of the proof. Actually, for uniqueness we need only to require that

the solution is even in θ , that it satisfies (6.13), and that the left-hand sides of (6.14) and (6.15) are
finite. �

In estimating the derivatives of µn, un, λn inductively from the system (5.17)–(5.21), we need to
have good enough estimates on the terms which appear in the F jn so that we can apply Lemma 6.1.
But some of the terms in F1n, F2n involve ∂2

θ λm for m < n, whereas we only have H3/2 estimates
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on the λms. This means that the assumption made in Lemma 6.1 that F1, F2 belong to L2 is too
restrictive for estimating solutions corresponding to the right-hand side terms of F1, F2 which
involve the ∂2

θ λm . Fortunately, these terms have a very special structure, to which the next lemma
can be applied.

LEMMA 6.2 Suppose that F1, F2 are even functions of θ such that (6.10) holds and

F1(r, θ) = ∂

∂θ
G1(r, θ) for r < 1,

F1(r, θ) = ∂

∂θ
G1(r, θ) + ∂

∂θ

(
g(θ)

r2

)
for r > 1,

F2(r, θ) = ∂

∂θ
G2(r, θ) for r < 1,

F3(θ) ≡ 0, β = 0,

(6.59)

where G1, G2, g are odd functions in θ which do not contain modes 1 and l terms, with

J1(G) ≡ ‖G1‖L2(B1)
+ ‖rG1

r ‖L2(B1)
+ ‖r2G1‖L2(R2\B1)

+ ‖r3G1
r ‖L2(R2\B1)

+ ‖G2‖L2(B1)
+ ‖rG2

r ‖L2(B1)
< ∞,

J2(G) ≡ ‖G1(1−, ·)‖H1/2(∂ B1)
+ ‖G1(1+, ·)‖H1/2(∂ B1)

+ ‖g‖H1/2(∂ B1)
< ∞.

(6.60)

Then there exists a unique solution (M,Λ, U ) of (6.3)–(6.7) which is even in θ and satisfies (6.13)

and the following inequalities:

‖Λ‖H3/2(∂ B1)
+ ‖M‖L2(B1)

+
∥∥∥∥(∣∣∣∣1

r

∂ M

∂r

∣∣∣∣ +
∣∣∣∣∂2 M

∂r2

∣∣∣∣ +
∣∣∣∣1

r

∂2 M

∂r∂θ

∣∣∣∣)∥∥∥∥
L2(B1)

+ ‖M + U‖L2(B1)
+

∥∥∥∥(∣∣∣∣1

r

∂(M + U )

∂r

∣∣∣∣ +
∣∣∣∣∂2(M + U )

∂r2

∣∣∣∣ +
∣∣∣∣1

r

∂2(M + U )

∂r∂θ

∣∣∣∣)∥∥∥∥
L2(B1)

� C(J1(G) + J2(G)),

(6.61)

∥∥∥∥r2
(∣∣∣∣1

r

∂ M

∂r

∣∣∣∣ +
∣∣∣∣∂2 M

∂r2

∣∣∣∣ +
∣∣∣∣1

r

∂2 M

∂r∂θ

∣∣∣∣)∥∥∥∥
L2(R2\B1)

� C(J1(G) + J2(G)). (6.62)

REMARK 6.4 It would appear more consistent with the statement of Lemma 6.1 to replace G1(r, θ)

by G1(r, θ)/r2 for r > 1, and similarly change

‖r2G1‖L2(R2\B1)
to ‖G1‖L2(R2\B1)

etc.

However, the present notation is more convenient for the subsequent applications of the lemma.

Proof. Proceeding as in the proof of Lemma 6.1, we can solve M (1), M (2), M (3), M + U,Λ as
before. Since F1, F2 are no longer in L2, we are forced to estimate the integrals in (6.43) in a
different way. Since F3 ≡ 0, β = 0, mode 0 terms also do not appear; by (6.10) also no modes 1
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and l appear in the solution, and thus we need to consider only modes m � 2, m �= l. In particular,
M0(r) ≡ 0, M (3)

0 (r) ≡ 0 and therefore C20 = 0.
Step 1. Estimate for M (1).
For r > 1,

F1
m(r) = 1

π

∫ 2π

0
F1(r, θ) cos mθ

= −m

π

∫ 2π

0

(
G1(r, θ) + g(θ)

r2

)
sin mθ dθ ≡ −m

[
G1

m(r) + 1

r2
gm

]
, (6.63)

so that, if m � 3,∣∣∣∣ ∫ ∞

1

F1
m(r)

rm−1
dr

∣∣∣∣
=

∣∣∣∣ 1

m − 2
F1

m(1+) + 1

m − 2

∫ ∞

1
r2−m ∂

∂r
F1

m(r) dr

∣∣∣∣
=

∣∣∣∣ −m

m − 2
[G1

m(1+) + gm] − m

m − 2

∫ ∞

1
r2−m

(
∂

∂r
Gm(r) − 2

r3
gm

)
dr

∣∣∣∣
� 3|G1

m(1+) + gm | + 3

[( ∫ ∞

1

[
r

∂

∂r
Gm(r)

]2

r dr

)1/2

+ 2|gm |
]( ∫ ∞

1
r−2mr dr

)1/2

� 3|G1
m(1+)| + 9|gm | + 6

m1/2

∥∥∥∥r
∂

∂r
Gm(r)

∥∥∥∥
L2(R2\B1)

, (6.64)

whereas if m = 2,∣∣∣∣ ∫ ∞

1

F1
m(r)

rm−1
dr

∣∣∣∣ � ‖F1
2 ‖L2(R2\B1)

� 2(‖G1
2(r)‖L2(R2\B1)

+ |g2|). (6.65)

Similarly, for all r < 1, m � 2,∣∣∣∣ ∫ 1

0

Im(Rτ)

Im(R)
F1

m(τ )τ dτ

∣∣∣∣ =
∣∣∣∣F1

m(1−)

∫ 1

0

Im(Rτ)

Im(R)
τ dτ −

∫ 1

0

( ∫ r

0

Im(Rτ)

Im(R)
τ dτ

)
∂

∂r
F1

m(r) dr

∣∣∣∣
� C

m
|F1

m(1−)| + C

m

∫ 1

0
rm+2

∣∣∣∣ ∂

∂r
F1

m(r)

∣∣∣∣ dr

� C |G1
m(1−)| + C

m1/2

∥∥∥∥r
∂

∂r
G1

m(r)

∥∥∥∥
L2(B1)

. (6.66)

We can estimate
∫ 1

0 τm(F1
m(τ ) + F2

m(τ ))τ dτ in the same manner. Substituting these estimates into
the first inequality in (6.43) and recalling that F3 = 0, we get

m

(∣∣∣∣Λm

R

∣∣∣∣ + |C2m |
)

� C(|G1
m(1±)| + |gm |)

+ C

m1/2

{∥∥∥∥r
∂

∂r
Gm(r)

∥∥∥∥
L2(R2\B1)

+
∥∥∥∥r

∂

∂r
Gm(r)

∥∥∥∥
L2(B1)

}
.

(6.67)
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Using this estimate (instead of (6.43)), we can then follow the proof of (6.45)–(6.49) and derive the
bounds

‖Λ‖H3/2(∂ B1)
� C(‖rG1

r ‖L2(B1)
+ ‖rG1

r ‖L2(R2\B1)
+ ‖G1(1+, ·)‖H1/2(∂ B1)

+ ‖G1(1−, ·)‖H1/2(∂ B1)
+ ‖g‖H1/2(∂ B1)

), (6.68)

‖r M (1)
r ‖L2(R2\B1)

+ ‖r M (1)
rθ ‖L2(R2\B1)

+ ‖r2 M (1)
rr ‖L2(R2\B1)

� C
(‖rG1

r ‖L2(B1)
+ ‖rG1

r ‖L2(R2\B1)
+ ‖G1(1+, ·)‖H1/2(∂ B1)

+ ‖G1(1−, ·)‖H1/2(∂ B1)
+ ‖g‖H1/2(∂ B1)

)
, (6.69)

and

‖M (1)‖H2(B1)
� C

(‖rG1
r ‖L2(B1)

+ ‖rG1
r ‖L2(R2\B1)

+ ‖G1(1, ·)‖H1/2(∂ B1)

+ ‖g‖H1/2(∂ B1)

)
. (6.70)

Step 2. Estimate for M (2).
Let W be the solution of

∆W − R2W = G1(r, θ) in B1, W = 0 on ∂ B1.

Then

M (2) = ∂

∂θ
W in B1. (6.71)

By elliptic estimates and (6.2),

‖W‖H2
r (B1)

� C‖W‖H2(B1)
� C‖G1‖L2(B1)

. (6.72)

A direct computation shows that the function ϕ(r, θ) = r Wr satisfies

∆ϕ − R2ϕ = rG1
r + 2Wrr + 2

r
Wr + 2

r2
Wθθ ≡ G in B1, (6.73)

ϕr = G1(1, θ) on ∂ B1, (6.74)

and, by (6.2) and (6.72),

‖G‖L2(B1)
� C(‖G1‖L2(B1)

+ ‖rG1
r ‖L2(B1)

).

Therefore, by L2 elliptic estimates for the Neumann boundary value problem and by (6.2),

‖r Wr‖H2
r (B1)

� C‖r Wr‖H2(B1)
= C‖ϕ‖H2(B1)

� C(‖G1‖L2(B1)
+ ‖rG1

r ‖L2(B1)
+ ‖G1(1−, ·)‖H1/2(∂ B1)

). (6.75)
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One can readily check that

‖M (2)‖L2(B1)
+ ‖M (2)

rr ‖L2(B1)
+

∥∥∥∥1

r
M (2)

r

∥∥∥∥
L2(B1)

+
∥∥∥∥1

r
M (2)

rθ

∥∥∥∥
L2(B1)

� C

(∥∥∥∥r

(
1

r
Wθ

)∥∥∥∥
L2(B1)

+
∥∥∥∥1

r
(r Wr )rθ

∥∥∥∥
L2(B1)

+
∥∥∥∥1

r
Wrθ

∥∥∥∥
L2(B1)

+
∥∥∥∥ 1

r2
(r Wr )θθ

∥∥∥∥
L2(B1)

)
� C(‖G1‖L2(B1)

+ ‖rG1
r ‖L2(B1)

+ ‖G1(1−, ·)‖H1/2(∂ B1)
), (6.76)

where the second inequality is a consequence of (6.72) and (6.75).
Next we estimate M (2) for r > 1. We use the formula (6.30), as before. Let

F1
m(r) = 1

r2
F10

m + F11
m (r),

F10
m = 1

π

∫ 2π

0
g′(θ) cos mθ dθ = −m

π

∫ 2π

0
g(θ) sin mθ dθ = −mgm, (6.77)

F11
m (r) = 1

π

∫ 2π

0
G1

θ (r, θ) cos mθ dθ = −m

π

∫ 2π

0
G1(r, θ) sin mθ dθ = −mG1

m(r).

We can then write M (2) = M (20) + M (21), where

M (20)(r, θ) =
∑
m�2

M (20)
m (r) cos mθ, M (21)(r, θ) =

∑
m�2

M (21)
m (r) cos mθ,

and

M (20)
m (r) = − 1

rm

∫ r

1
s2m−1

∫ ∞

s

F10

τm+1
dτ = − F10

m2

(
1 − 1

rm

)
,

M (21)
m (r) = − 1

rm

∫ r

1
s2m−1

∫ ∞

s

F11
m (τ )

τm−1
dτ.

As before, we have

m2
∫ ∞

1

(
r

∂

∂r
M (20)

m (r)

)2

r dr +
∫ ∞

1

(
r2 ∂2

∂r2
M (20)

m (r)

)2

r dr � C

m
|F10

m |2 � Cm|gm |2,

so that

‖r M (20)
r ‖L2(R2\B1)

+ ‖r M (20)
rθ ‖L2(R2\B1)

+ ‖r2 M (20)
rr ‖L2(R2\B1)

� C‖g‖H1/2(∂ B1)
. (6.78)

Next, by direct computation as in the previous lemma,

∂

∂r
M (21)

m (r) = m

rm+1

∫ r

1
s2m−1

∫ ∞

s

F11
m (τ )

τm−1
dτ − rm−1

∫ ∞

r

F11
m (τ )

τm−1
dτ, (6.79)

∂2

∂r2
M (21)

m (r) = − m(m + 1)

rm+2

∫ r

1
s2m−1

∫ ∞

s

F11
m (τ )

τm−1
dτ

+ rm−2
∫ ∞

r

F11
m (τ )

τm−1
dτ + F11

m (r). (6.80)
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By integration by parts, we obtain, for m � 3,∫ ∞

r

F11
m (τ )

τm−1
dτ = r2−m

m − 2
F11

m (r) + 1

m − 2

∫ ∞

r
τ 2−m ∂

∂τ
F11

m (τ ) dτ

= − m

m − 2
r2−m G1

m(r) − m

m − 2

∫ ∞

r
τ 2−m ∂

∂τ
G1

m(τ ) dτ,

∫ r

1
s2m−1

∫ ∞

s

F11
m (τ )

τm−1
dτ

= − m

m − 2

∫ r

1
sm+1G1

m(s) ds − m

m − 2

∫ r

1
s2m−1

∫ ∞

s
τ 2−m ∂

∂τ
G1

m(τ ) dτ

= m

m2 − 4
[G1

m(1) − rm+2G1
m(r)] + m

m2 − 4

∫ r

1
τm+2 ∂

∂τ
G1

m(τ ) dτ

− m

m − 2

∫ r

1
s2m−1

∫ ∞

s
τ 2−m ∂

∂τ
G1

m(τ ) dτ.

Substituting these equalities into (6.79), (6.80) we find that the O(m0) order terms of rG1
m(r) in

∂ M (21)
m (r)/∂r and O(m1) order terms of G1

m(r) in ∂2 M (21)
m (r)/∂r2 cancel out, and we obtain∣∣∣∣mr

∂

∂r
M (21)

m (r)

∣∣∣∣ +
∣∣∣∣r2 ∂2

∂r2
M (21)

m (r)

∣∣∣∣
� C

{
m2

rm

∫ r

1
s2m−1

∫ ∞

s
τ 2−m

∣∣∣∣ ∂

∂τ
G1

m(τ )

∣∣∣∣ dτ + mrm
∫ ∞

r
τ 2−m

∣∣∣∣ ∂

∂τ
G1

m(τ )

∣∣∣∣ dτ

+ m

rm

∫ r

1
τm+2

∣∣∣∣ ∂

∂τ
G1

m(τ )

∣∣∣∣ dτ + m

rm
G1

m(1) + |r2G1
m(r)|

}
≡ C(Q1m + Q2m + Q3m + m

rm
G1

m(1) + |r2G1
m(r)|).

The same computation as in (6.52) yields the estimate Q1m � Q2m + Q3m . Following the same
procedure as in Lemma 6.1, we obtain∫ ∞

1
[Q2m(r)]2r dr +

∫ ∞

1
[Q3m(r)]2r dr � C

∫ ∞

1

∣∣∣∣τ 3 ∂

∂τ
G1

m(τ )

∣∣∣∣2

τ dτ. (6.81)

Thus, for m � 3,

m2
∫ ∞

1

[
r

∂

∂r
M (21)

m (r)

]2

r dr +
∫ ∞

1

[
r2 ∂2

∂r2
M (21)

m (r)

]2

r dr

� C

{
m[G1

m(1)]2 +
∫ ∞

1
|τ 2G1

m(τ )|2τ dτ +
∫ ∞

1

∣∣∣∣τ 3 ∂

∂τ
G1

m(τ )

∣∣∣∣2

τ dτ

}
. (6.82)

For m = 2, |F11
2 (r)| = 2|G1

2(r)|, and we just have to slightly modify the above proof in order to
derive the same inequality. Summing over m � 2, we deduce that

‖r M (21)
r ‖L2(R2\B1)

+ ‖r M (21)
rθ ‖L2(R2\B1)

+ ‖r2 M (21)
rr ‖L2(R2\B1)

� C[‖G1(1+, ·)‖H1/2(∂ B1)
+ ‖r2G1‖L2(R2\B1)

+ ‖r3G1
r ‖L2(R2\B1)

]. (6.83)
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Step 3. Estimate for M (3).
The estimate for M (3) proceeds as in (6.58) with ‖Λ − Λ0‖H3/2 replaced by ‖Λ‖H3/2 .
Step 4. Estimate for M + U .
This is similar to the estimate in Lemma 6.1, but using the technique in Step 2 of this lemma for

estimating M (2) in r < 1.
Combining the above estimates, the proof of the lemma is complete. �
We next consider the case of mode l only, namely

F1(r, θ) = F1
l (r) cos lθ for r < 1,

F1(r, θ) = 1

r2
F10

l cos lθ + 1

r2
F11

l (r) cos lθ, for r > 1,

F2(r, θ) = F2
l (r) cos lθ for r < 1, F3(θ) = F3

l cos lθ.

(6.84)

As before, we obtain a linear system of equations for (C1l , C2l , C3l ,Λl/R). Since in this case the
determinant of the coefficients matrix of (6.40), (6.41) (with m = l) is zero, this system can be
solved if and only if the following compatibility condition is satisfied:

det


RIl−1(R)

Il(R)
, −

∫ ∞

1

F1
l (τ )

τ l−1
dτ − 1

Il(R)

∫ 1

0
τ Il(Rτ)F1

l (τ ) dτ

2l, F3
l −

∫ 1

0
τ l+1{F1

l (τ ) + F2
l (τ )} dτ −

∫ ∞

1

F1
l (τ )

τ l−1
dτ

 = 0.

The solution is unique up to a multiple by a homogeneous solution. Hence, if we impose the
condition Λl = 0 then the solution of (6.40), (6.41) is unique. For later references we state the
following lemma.

LEMMA 6.3 For the data (6.84) (mode l) a solution which is even in θ exists if and only if(
2l − R

Il−1(R)

Il(R)

) ∫ ∞

1

F1
l (τ )

τ l−1
dτ + 2l

Il(R)

∫ 1

0
τ Il(Rτ)F1

l (τ ) dτ

+ R
Il−1(R)

Il(R)

[
F3

l −
∫ 1

0
τ l+1{F1

l (τ ) + F2
l (τ )} dτ

]
= 0, (6.85)

and the solution is uniquely determined by the condition Λl = 0.

The next lemma summarizes Lemmas 6.1–6.3.

LEMMA 6.4 Assume that in (6.3),(6.4), F j = F̂ j + F̃ j + F
j
, where F̂ j , F̃ j and F

j
satisfy the

assumptions of Lemmas 6.1–6.3, respectively, i.e.

(a) F̂ j and F̃ j do not contain modes 1 and l; F
j

contains mode l only.
(b) F̂ j satisfies the conditions of Lemma 6.1 and F̃ j satisfies the conditions of Lemma 6.2.

If the compatibility condition (6.85) is satisfied for the F
j
, then there exists a unique solution

(M, U,Λ) which is even in θ , satisfies the condition Λl = 0 and can be decomposed into a sum of
three parts, satisfying, respectively, the properties asserted in Lemmas 6.1–6.3.

REMARK 6.5 If we differentiate the equations (6.3)–(6.7) in θ , we get an equation which is exactly
the same except that the solutions will be odd in θ and we need to work with Fourier sine series. The
conclusion in Lemmas 6.1–6.4 are still valid (with the estimates and the right-hand sides replaced
by their θ -derivative). If we differentiate in θ a second time, the solutions will become even in θ and
Lemmas 6.1–6.4 can again be directly applied.
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7. Convergence

In this section we estimate inductively the (µn, un, λn, βn−1). We denote the mode k of F jn in
(5.17), (5.18), (5.21) by F jn

k . By Lemma 6.4 the system (5.17)–(5.21) can be uniquely solved for
any mode k, k �= l. For mode l the system can be solved if and only if the compatibility condition
(6.85) is satisfied. This condition will take the form Λ̃βn−1 = F̃n where F̃n is determined by the
µs, us, λs, βs−1 for s < n and, as the next lemma shows, Λ̃ �= 0 and Λ̃ is independent of n.

LEMMA 7.1 The expression

Λ̃ ≡ ∂

∂βn−1

{(
2l − R

Il−1(R)

Il(R)

) ∫ ∞

1

F1n
l (τ )

τ l−1
dτ + 2l

Il(R)

∫ 1

0
τ Il(Rτ)F1n

l (τ ) dτ

+ R
Il−1(R)

Il(R)

[
F3n

l −
∫ 1

0
τ l+1{F1n

l (τ ) + F2n
l (τ )} dτ

]}
(7.1)

is independent of n and is nonzero.

Proof. The compatibility condition is invariant under the change of variable (5.1). Therefore the
assertion that Λ̃ �= 0 (which is equivalent to the statement that the compatibility condition (6.85)

holds for some choice of βn−1) follows from Theorem 4.3. We next proceed to derive an expression
for Λ̃ which, although very complicated, shows that it is independent of n (this fact does not follow
from Theorem 4.3). We begin by writing explicit formulae for F jn . Substituting (5.2), (5.9)–(5.12)

into (5.4), (5.5), (5.8), we find that (µn, un, λn, βn) = (M, U,Λ, β) satisfy (6.3)–(6.7) with F j =
F jn defined as the εn order terms in the following expansion:

∑
n�1

εn F1n =
(

− fθθ

R + f
+ fθθ

R

)
1

r

∂µ0

∂r
+ f 2

θ

(R + f )2

(
∂2µ0

∂r2
+ 2

r

∂µ0

∂r

)

− fθθ

R + f

∑
n�1

εn 1

r

∂µn

∂r
− 2 fθ

R + f

∑
n�1

εn 1

r

∂2µn

∂θ∂r

+ f 2
θ

(R + f )2

∑
n�1

εn
(

∂2µn

∂r2
+ 2

r

∂µn

∂r

)

− χ{r<1}
(

(2R f + f 2)
∑
n�1

εnµn + f 2µ0

)
, (7.2)

∑
n�1

εn(F1n + F2n) = − fθθ

R + f

∑
n�1

εn 1

r

∂(µn + un)

∂r
− 2 fθ

R + f

∑
n�1

εn 1

r

∂2(µn + un)

∂θ∂r

+ f 2
θ

(R + f )2

∑
n�1

εn
(

∂2(µn + un)

∂r2
+ 2

r

∂(µn + un)

∂r

)
, (7.3)

−
∑
n�1

εn F3n =
(∑

n�0

εnβn

) [
(R + f )2

[(R + f )2 + f 2
θ ]1/2

− R

]
− 1

R
f. (7.4)

Consider the system for (µn−1, un−1, λn−1), whose solution is given in Section 6 (Lemma 6.4)
with F j = F j,n−1. The solution depends on βn−1 only through its zero mode (see (6.36)–(6.39)
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with β = βn−1 and note that δm0β = 0 if m > 0). We need to find the explicit dependence of the
F jn

m on βn−1. We therefore first solve the system (6.36)–(6.39) with F j
m = F j,n−1

m , m = 0 and
β = βn−1. By Remark 6.2, if m = 0 then Im−1 in (6.37) is replaced by I1. Solving (6.40), (6.41)

and (6.36), (6.38), we find

1

R
Λn−1

0 = −βn−1 R + · · · ,

Cn−1
20 = Cn−1

30 = βn−1 R

(
I 2
0 (R)

I 2
1 (R)

− 1

)
+ · · · ,

Cn−1
10 = βn−1

R

I0(R)

(
I 2
0 (R)

I 2
1 (R)

− 1

)
+ · · · ,

where ‘· · · ’ refers to terms independent of βn−1. Then, from the formula for M = µn−1 in
Lemma 6.4 (or actually the special case stated as Lemma 6.1),

∂

∂βn−1
µn−1 = I0(Rr)

∂Cn−1
10

∂βn−1
+ I0(Rr)

I1(R)
B0(r)

∂

∂βn−1

Λn−1
0

R

= RI0(Rr)

I0(R)

{
I 2
0 (R)

I 2
1 (R)

− 1 − I0(R)

I1(R)
B0(r)

}
= RI0(R)I0(Rr)

I 2
1 (R)

− Rr

I1(R)
I1(Rr) for r < 1, (7.5)

∂

∂βn−1
µn−1 = ∂

∂βn−1
Cn−1

20 = R

(
I 2
0 (R)

I 2
1 (R)

− 1

)
for r > 1 (since M (3)

0 ≡ 0), (7.6)

∂

∂βn−1
(µn−1 + un−1) = ∂

∂βn−1
Cn−1

30 = R

(
I 2
0 (R)

I 2
1 (R)

− 1

)
for r < 1, (7.7)

1

(n − 1)!
∂

∂βn−1

∂n−1

∂εn−1

∣∣∣∣
ε=0

f = ∂

∂βn−1
λn−1 = ∂

∂βn−1
Λn−1

0 = −R2. (7.8)

Clearly, the µk, uk, λk do not depend on βn−1 if k < n −1. Since the right-hand sides of (7.6), (7.7)

are constants, we find from

∂

∂βn−1
F1n(r, θ) = 1

n!
∂

∂βn−1

∂n

∂εn

∣∣∣∣
ε=0

(
the right-hand side of (7.2)

)
that the only nonzero contribution comes from the first term(

− fθθ

R + f
+ fθθ

R

)
1

r

∂µ0

∂r
= fθθ f

R(R + f )

1

r

∂µ0

∂r
.

Hence

∂

∂βn−1
F1n(r, θ) = λ′′

1(θ)

R2

1

r

∂µ0

∂r

∂λn−1(θ)

∂βn−1

= −λ′′
1(θ)

1

r2
= λ1(θ)

l2

r2
for r > 1. (7.9)
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Similarly,

∂

∂βn−1
(F1n(r, θ) + F2n(r, θ))

= 1

n!
∂

∂βn−1

∂n

∂εn

∣∣∣∣
ε=0

(the right-hand side of (7.3)) = 0 for r < 1. (7.10)

A direct computation shows that

− ∂

∂βn−1
F3n(θ) = 1

n!
∂

∂βn−1

∂n

∂εn

∣∣∣∣
ε=0

(the right-hand side of (7.4))

= λ1(θ) + β1
∂

∂βn−1
Λn−1

0 = λ1(θ) − R2β1. (7.11)

Finally, for r < 1,

∂

∂βn−1
F1n(r, θ) = 1

n!
∂

∂βn−1

∂n

∂εn

∣∣∣∣
ε=0

(the right-hand side of (7.2))

= λ′′
1(θ)

R2

1

r

∂µ0

∂r

∂λn−1(θ)

∂βn−1
− λ′′

1(θ)

R

1

r

∂

∂βn−1

∂µn−1

∂r

−
[

2Rλ1(θ)
∂µn−1

∂βn−1
+ 2Rµ1(r, θ)

∂λn−1(θ)

∂βn−1
+ 2λ1(θ)µ0

∂λn−1(θ)

∂βn−1

]
where the expression in brackets comes from the coefficient of χ{r<1} in (7.2). Using (7.6), (7.8)

we get

∂

∂βn−1
F1n(r, θ)

= −λ′′
1(θ)

1

r

∂µ0

∂r
− λ′′

1(θ)
1

r

∂

∂r

[
I0(R)I0(Rr)

I 2
1 (R)

− r

I1(R)
I1(Rr)

]
− 2Rλ1(θ)

[
RI0(R)I0(Rr)

I 2
1 (R)

− Rr

I1(R)
I1(Rr)

]
+ 2R3µ1(r, θ) + 2R2µ0(r)λ1(θ).

= λ1(θ)

{
l2 I1(Rr)

r I1(R)
+ l2

r

[
RI0(R)I1(Rr)

I 2
1 (R)

− Rr I0(Rr)

I1(R)

]
− 2R

[
RI0(R)I0(Rr)

I 2
1 (R)

− Rr

I1(R)
I1(Rr)

]
− 2R3 l + 1

2l

Il(Rr)

RIl(R)
+ 2R2µ0(r)

}
, (7.12)

where in the last equality we have also used (3.14). Substituting (7.9)–(7.12) into (7.1), we conclude
that

Λ̃ =
(

2l − R
Il−1(R)

Il(R)

)
l + 2l

Il(R)

∫ 1

0
r Il(Rr)

{
l2 I1(Rr)

r I1(R)
+ l2

r

[
RI0(R)I1(Rr)

I 2
1 (R)

− Rr I0(Rr)

I1(R)

]
− 2R

[
RI0(R)I0(Rr)

I 2
1 (R)

− Rr

I1(R)
I1(Rr)

]
− 2R3 l + 1

2l

Il(Rr)

RIl(R)
+ 2R2µ0(r)

}
dr − R

Il−1(R)

Il(R)

(7.13)

which is independent of n. �
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REMARK 7.1 As was already stated before, for the solution (un, µn, λn, βn−1) constructed by
using Lemmas 6.4, 7.1, the mode l component is not unique, for we can add to it any multiple
of (µ1, u1, λ1). We shall henceforth fix this multiple uniquely by the condition∫ 2π

0
λn(θ) cos lθ = 0 for n � 2. (7.14)

This normalization is not necessarily the same as the normalization in Remark 4.2, because the
methods of construction of the solution are different.

We shall say that a linear function space X with norm ‖·‖X has the algebra property if, whenever
f, g belong to X , also f g belongs to X and

‖ f g‖X � C‖ f ‖X‖g‖X

where C is a constant independent of f, g. In what follows we shall need the algebra property in a
more general sense, whereby g belongs to one space X1, and f belongs to another space, X2, and

‖ f g‖X2 � C‖g‖X1‖ f ‖X2 .

In order to estimate the F jn we need to have the algebra property for the various terms in the
F jn . The spaces L2(B1) or H1/2(B1) are not suitable for this purpose. Noticing that the functions
defining F j in (7.2)–(7.4) have the form g(θ)ϕ(r, θ), it is convenient to work with the norm

‖ψ(r, θ)‖W m,n
2

=
∑

0� j�m,0�k�n

‖∂ j
r ∂k

θ ψ‖L2

where m, n are integers; notice that this definition is a little different from the usual Sobolev norm
since, for example, 1/r2 factor is not present in the ∂2

θ derivative. We shall need on one occasion to
also use the norm

‖ψ(r, θ)‖
W 1,3/2

2
≡ ‖ψ(r, θ)‖W 1,1

2
+ ‖∂1/2

θ ψ(r, θ)‖W 1,1
2

.

The following estimates are well known (see, for example, [1]).

LEMMA 7.2

‖g(θ)ϕ(r, θ)‖W 0,k
2 (B1)

� ‖g‖Hk (∂ B1)
‖ϕ(r, θ)‖W 0,k

2 (B1)
for k � 1, (7.15)

‖g(θ)h(θ)‖Hs (∂ B1) � ‖g‖Hs (∂ B1)‖h‖Hs (∂ B1) for s > 1/2, (7.16)

‖ϕ(1, θ)‖Hm+1/2(∂ B1)
� C‖ϕ(r, θ)‖W 1,m+1

2 (B1)
for m � 0. (7.17)

The first two inequalities provide the algebra properties needed to estimate the F jn . These
inequalities are also valid if B1 is replaced by R

2 \ B1.
Let H0, H, B and Γ be positive constants � 1 and set

E(n, k) = k! H0 Hn−1

n2

Bk

k2
for n � 0, k � 0, (7.18)



184 A. FRIEDMAN, B. HU, & J. J. L. VELAZQUEZ

with the following convention:

Hn−1 = 1 if n = 0, n2 = 1 if n = 0, k2 = 1 if k = 0.

We inductively assume that, for 1 � s < n,

∥∥∥∥(∣∣∣∣∂k
θ (µs − µ0

s (r))

∣∣∣∣ +
∣∣∣∣∂k

θ

(
1

r
∂r (µs − µ0

s (r))

)∣∣∣∣
+

∣∣∣∣∂k
θ

(
1

r
∂r∂θµs

)∣∣∣∣ +
∣∣∣∣∂k

θ ∂2
r (µs − µ0

s (r))

∣∣∣∣)∥∥∥∥
W 0,1

2 (B1)

� E(s, k), (7.19)∥∥∥∥r2
(∣∣∣∣∂k

θ µs

∣∣∣∣ +
∣∣∣∣∂k

θ

(
1

r
∂rµs

)∣∣∣∣ +
∣∣∣∣∂k

θ

(
1

r
∂r∂θµs

)∣∣∣∣ +
∣∣∣∣∂k

θ ∂2
r µs

∣∣∣∣)∥∥∥∥
W 0,1

2 (R2\B1)

� E(s, k), (7.20)∥∥∥∥(∣∣∣∣∂k
θ (µs + us)

∣∣∣∣ +
∣∣∣∣∂k

θ

(
1

r
∂r (µs + us)

)∣∣∣∣
+

∣∣∣∣∂k
θ

(
1

r
∂r∂θ (µs + us)

)∣∣∣∣ +
∣∣∣∣∂k

θ ∂2
r (µs + us)

∣∣∣∣)∥∥∥∥
W 0,1

2 (B1)

� E(s, k), (7.21)∥∥∥∥∂k
θ (λs + βs R2)

∥∥∥∥
H5/2(∂ B1)

� E(s, k), (7.22)

|βs | � Γ E(s, 0) (7.23)

where µ0
n(r) is defined in (6.16)–(6.18) with λ0

s = Λ0 = 1
2π

∫ 2π

0 λs(θ) dθ in (6.17), and Cs
20 = C20

in (6.18) is defined by (6.36)–(6.39) with F j ≡ F js :

µ0
s = λ0

s

R

[
r I1(Rr)

I1(R)
− I0(Rr)

I0(R)

]
+ Cs

20
I0(Rr)

I0(R)
. (7.24)

Note that (7.23) implies that

‖∂k
θ ∂

3/2
θ (λs + βs R2)‖W 0,1

2 (B1)
� C E(s, k).

For s = 1, 2, the solutions (µs, us, λs) are given in terms of the explicit analytic functions and
the estimates (7.19)–(7.23) are valid if we choose H0 to be large enough and H � 1, Γ � 1.

We proceed to establish the estimates (7.19)–(7.23) for s = n assuming n � 3 and H,Γ large
enough (independent of n).

In proving these estimates we shall use several lemmas which deal with estimating derivatives
of composite functions; these lemmas are stated and proved in Appendix B.

Step 1. Estimating F j,n .
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We need to estimate F j,n for j = 1, 2, 3. To estimate F3,n , we rewrite (7.4) as

−
∑
m�1

εm F3m

=
(∑

m�0

εmβm

) [
(R + f )2

[(R + f )2 + f 2
θ ]1/2

− R

]
− 1

R
f

=
(∑

m�2

εmβm

) [
(R + f )2

[(R + f )2 + f 2
θ ]1/2

− R

]
+ 1

R

[
(R + f )2

[(R + f )2 + f 2
θ ]1/2

− R − f

]
≡

∑
εmQ1,m +

∑
εmQ2,m . (7.25)

We can write

(R + ξ)2

[(R + ξ)2 + ζ 2]1/2
− R − ξ = − 1

2R
ζ 2 + ζ 2

∑
1�i+ j<∞

ai jξ
iζ 2 j ,

where ai j are constants such that
|ai j | � A0 Ai+ j .

Note that
[

(R+ f )2

[(R+ f )2+ f 2
θ ]1/2 − R

]
starts with ε order terms and

[
(R+ f )2

[(R+ f )2+ f 2
θ ]1/2 − R − f

]
starts with

ε2 order terms. Since the terms involving orders >n in the right-hand sides do not appear among the
terms of F j,n , we may replace them by 0 when estimating F j,n . By (7.23), |βn−1| � E(n − 1, 0) �
Γ
H E(n, 0). Using also (7.23) and applying (B.11) of Lemma B.4 and Lemma B.1 to the Q1,m terms,
we obtain

‖∂k
θQ1,n‖H3/2(∂ B1)

� C(Γ )

H
E(n, k). (7.26)

Using (7.22) and applying (B.12) of Lemma B.4 to the Q2m terms, we also get

‖∂k
θQ2,n‖H3/2(∂ B1)

� C(Γ )

H
E(n, k), (7.27)

so that

‖∂k
θ F3,n‖H3/2(∂ B1)

� C(Γ )

H
E(n, k). (7.28)

We next estimate the terms in (7.2) and (7.3) contributing to F1,n and F1,n + F2,n . For r > 1,
we can write(

− fθθ

R + f
+ fθθ

R

)
1

r

∂µ0

∂r
+ f 2

θ

(R + f )2

(
∂2µ0

∂r2
+ 2

r

∂µ0

∂r

)
=

[(
− fθ

R + f
+ fθ

R

)
1

r2

]
θ

≡
∑

εm 1

r2

∂

∂θ
gm(θ);

note that
( − fθ

R+ f + fθ
R

)
starts with ε2 order terms. Applying (B.12) of Lemma B.4, we obtain

‖∂k
θ gn‖H3/2(∂ B1)

� C(Γ )

H
E(n, k). (7.29)
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Similarly,

− fθθ

R + f

∑
n�1

εn 1

r

∂µn

∂r
− 2 fθ

R + f

∑
n�1

εn 1

r

∂2µn

∂θ∂r
+ f 2

θ

(R + f )2

∑
n�1

εn
(

∂2µn

∂r2
+ 2

r

∂µn

∂r

)

= −
[

fθ
R + f

∑
n�1

εn 1

r

∂µn

∂r

]
θ

+
{

f 2
θ

(R + f )2

∑
n�1

εn
(

∂2µn

∂r2
+ 1

r

∂µn

∂r

)
− fθ

R + f

∑
n�1

εn 1

r

∂2µn

∂θ∂r

}
≡

∑
m

εm ∂

∂θ
G1

m(r, θ) +
∑

m

εm Km(r, θ).

Using (7.20), (7.22) and Lemmas B.1, B.4, we obtain

‖r3∂k
θ ∂r G1

n‖W 0,1
2 (R2\B1)

+ ‖r2∂k
θ G1

n‖
W 1,3/2

2 (R2\B1)
� C(Γ )

H
E(n, k) (7.30)

‖r2∂k
θ Kn‖W 0,1

2 (R2\B1)
� C(Γ )

H
E(n, k). (7.31)

This completes the estimate for F1,n in the region r > 1. The estimate for F1,n and F1,n + F2,n

in the region r < 1 can be carried out in a similar way. Using the equations of µn, un, λn and the
equations obtained by differentiation k + 1 times in θ , we can apply Lemma 6.4 and Remark 6.4 to
conclude that

[the left-hand sides of (7.19)–(7.22) for s = n] � C(Γ )

H
E(n, k) for k � 0. (7.32)

Note that the part of Lemma 6.4 which is based on Lemma 6.2 is used in handling ∂
∂θ

gn , ∂
∂θ

G1
n and

similar terms from F1,n in {r > 1} as well as from F1,n in {r < 1}, whereas the part based on
Lemma 6.1 is used in handling Kn and similar terms from F1n in {r > 1}.

Step 2. Estimating βn .

Recall that βn is determined by equation (6.85) with F j
l = F j,n+1

l for j = 1, 2, 3 (only mode l
terms enter into the compatibility condition).

The coefficient for βn in (6.85) is given by (7.13), which is independent of n and �= 0.
Consequently, βn is estimated by those terms in F j,n+1

l which do not depend on βn . We denote

these terms by F̃ j,n+1
l , i.e. F̃ j,n+1

l = F j,n+1
l |βn=0. We need to estimate these terms and we begin

with
(a) F̃3,n+1

l .
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By (7.25),

−
∑
m�1

εm F3m
∣∣∣∣
βn=0

=
(∑

m�2

εmβm

)
f −

(∑
m�2

εmβm

)
f 2
θ

2R
+

(∑
m�2

εmβm

)
f 2
θ

∑
1�i+ j<∞

ai jξ
i ( fθ )

2 j

− 1

2R2
f 2
θ + f 2

θ

R

∑
1�i+ j<∞

ai jξ
i ( fθ )

2 j


βn=0

≡
[∑

εmP1,m +
∑

εmP2,m +
∑

εmP3,m +
∑

εmP4,m +
∑

εmP5,m

]
βn=0

. (7.33)

Clearly, the second, third, and the fifth sum are products of at least three series. Thus, by
Lemmas B.1 and B.4, using also the embedding inequality ‖g‖L∞ � C‖g‖Hs for s > 1/2,[|P2,n+1| + |P3,n+1| + |P5,n+1|

]
βn=0 � C(Γ )

H2
E(n + 1, 0) � C(Γ )

H
E(n, 0). (7.34)

Next, by Remark 7.1, the λm(θ) for m � 2 do not contain mode l terms. Therefore, the only term
in

∑
εmP1,m of order εn+1 and of mode l is given by βnλ1(θ); hence, |P1,n+1|βn=0 = 0.

Finally,

P4,n+1 = − 1

2R2

n−1∑
k=2

∂θλn+1−k∂θλk,

so that, by the inductive assumptions and Lemma B.1,

|P4,n+1| � C

H
E(n + 1, 0) � C E(n, 0). (7.35)

Combining these estimates, we conclude that

|F̃3,n+1
l + βn| �

[
C + C(Γ )

H

]
E(n, 0). (7.36)

(b) F̃1,n+1
l + F̃2,n+1

l .

Clearly, F̃1,n+1
l + F̃2,n+1

l = 1
π

∫ 2π

0 (F̃1,n+1 + F̃2,n+1) cos lθ dθ .
To estimate the contribution from the first term in the right-hand side of (7.3) we multiply by

cos lθ and integrate over θ , 0 � θ � 2π ; in this way we obtain the coefficients of mode l terms.
Next we integrate by parts to reduce the derivative ∂2

θ f . We get

−
∫ 2π

0

2 fθ
R + f

∑
m�1

εm 1

r

∂2(µm + um)

∂θ∂r
cos lθ dθ

+
∫ 2π

0

2 f 2
θ

(R + f )2

∑
m�1

εm 1

r

∂(µm + um)

∂r
cos lθ dθ

−
∫ 2π

0

fθ
R + f

∑
m�1

εm 1

r

∂(µm + um)

∂r
cos lθ dθ

≡ − J1 + J2 − J3.
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We also expand
1

R + f
= 1

R
− 1

R

∑
m�1

(− f )m

Rm
.

Now recall that fθ is independent of Γ (but f depends on Γ ). As we substitute the expansion of
1/(R + f ) into the Jk , we observe that whenever a factor f k appears in a particular term, it comes
in a product of at least three series in ε, each with no zero-order term. We can therefore apply
Lemma B.1 and the inductive assumptions to get, at βn = 0, the bound

C0

(
C0

H

)k−1 C(Γ )

H
E(n, 0)

where C0 depends only on H0. There remain only the terms which do not depend on f and they
come as product of two series. Using the inductive assumption we can bound them, at βn = 0, by
C E(n, 0). We thus conclude that the coefficient of mode l in εn+1 of the first term in the right-hand
side of (7.3) is bounded, at βn = 0, by[

C + C(Γ )

H

]
E(n, 0). (7.37)

The other terms in the right-hand side of (7.3) can be estimated in a similar manner. Thus∫ 1

0
τ l+1|F̃1,n+1

l (τ ) + F̃2,n+1
l (τ )| dτ �

[
C + C(Γ )

H

]
E(n, 0). (7.38)

(c) F̃1,n+1
l (r), r > 1.

F̃1,n+1
l in the region r > 1 can be handled as in (b), except for the first two terms in (7.2), which

give

1

π

∫ 2π

0

[(
− fθ

R + f
+ fθ

R

)
1

r2

]
θ

cos lθ dθ = l

π

∫ 2π

0

[(
− fθ

R + f
+ fθ

R

)
1

r2

]
sin lθ dθ

= l

π Rr2

∫ 2π

0

fθ f

f + R
sin lθ dθ.

We write fθ f/( f + R) in the form fθ f/R +· · · , where the ‘· · · ’ refers to terms which are products
of at least three series for which we can apply Lemma B.4 to get an extra 1/H factor. The remaining
term is

l

π Rr2

∫ 2π

0

fθ f

R
sin lθ dθ = l

π Rr2

∫ 2π

0

fθ ( f − f0)

R
sin lθ dθ + l f0

π Rr2

∫ 2π

0

fθ
R

sin lθ dθ,

(7.39)

where f0 = 1
2π

∫ 2π

0 f (θ) dθ . Since fθ is independent of Γ and f − f0 can be estimated in the L2

norm by the θ derivatives of f , the coefficient of εn+1 cos lθ in the first term in the right-hand side
of (7.39), at βn = 0, is bounded by

C

H
E(n + 1, 0) = C E(n, 0).
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To estimate the coefficient of εn+1 cos lθ in the second term, note that by (7.14),∫ 2π

0
fθ sin lθ dθ = ε

∫ 2π

0
λ′

1(θ) sin lθ dθ = −πlε.

It follows that this coefficient is equal to

− l2

R2r2
λn0

where λn0 is the zero mode of λn and, by (7.22), |λn0| � E(n, 0) if βn = 0. Thus, the second term
on the right-hand side of (7.39) does not contribute anything to F̃1,n+1

l . In summary,∫ ∞

1
τ−l+1|F̃1,n+1

l (τ )| dτ �
[

C + C(Γ )

H

]
E(n, 0). (7.40)

(d) F̃1,n+1
l (r), r < 1.

The estimate for F̃1,n+1
l in r < 1 is the most difficult, since some of the derivatives of µn

involve βn . The terms that arise as the product of three series are treated in a same way as before.
The remaining terms come from

fθθ f

R2

1

r

∂µ0

∂r
+ f 2

θ

R2

(
∂2µ0

∂r2
+ 2

r

∂µ0

∂r

)
− 2 fθ

R

∑
n�1

εn 1

r

∂2µn

∂θ∂r

− fθθ

R

∑
n�1

εn 1

r

∂µn

∂r
− 2R f

∑
n�1

εnµn − f 2µ0

=
(

fθ f

R2

)
θ

1

r

∂µ0

∂r
+ f 2

θ

R2

(
∂2µ0

∂r2
+ 1

r

∂µ0

∂r

)
− fθ

R

∑
n�1

εn 1

r

∂2µn

∂θ∂r

−
(

fθ
R

∑
n�1

εn 1

r

∂µn

∂r

)
θ

− 2R f
∑
n�1

εnµn − f 2µ0

≡
∑

εmR1,m +
∑

εmR2,m +
∑

εmR3,m +
∑

εmR4,m +
∑

εmR5,m +
∑

εmR6,m .

The εn+1 terms in the series
∑

εmR2,m and
∑

εmR3,m are estimated by the inductive assumptions
independently of Γ . Thus, as before,[‖R2,n+1‖ + ‖R3,n+1‖

]
βn=0 � C E(n, 0),

where the norm ‖ · ‖ is defined in (7.37). The series
∑

εmR1,m can be treated in a same way as in
part (c):

1

π

∫ 2π

0

(
fθ f

R2

)
θ

1

r

∂µ0

∂r
cos lθ dθ

= l

R2π

1

r

∂µ0

∂r

∫ 2π

0
fθ (θ)[ f (θ) − f0] sin lθ dθ + l f0

R2π

1

r

∂µ0

∂r

∫ 2π

0
fθ sin lθ dθ,
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where the estimate for the first term is independent of Γ whereas the coefficient of εn+1 cos lθ from
the second term is zero when we set βn = 0.

To estimate the coefficient of mode l in R4,n+1|βn=0 we write

µm = [µm(r, θ) − µ0
m(r)] + µ0

m(r). (7.41)

Then the series corresponding to µm(r, θ)−µ0
m(r) (in

∑
R4,m) can be treated as before, as product

of two series, using Lemma B.1 and inductive assumption; since ∂r (µm − µ0
m) is independent of Γ ,

we get the bound C E(n, 0). Thus, it remains to estimate the coefficient of εn+1 cos lθ in

−
(

fθ
R

)
θ

∑
m�1

εm 1

r

∂µ0
m(r)

∂r
when βn = 0,

where µ0
m(r) is defined as in (7.24) and the constant Cm

20 is estimated by (6.14) with Λ = λm, M =
µm, U = um, β = βm . Again, since f − ελ1(θ) has no mode l terms, the l mode in the coefficient
of εn of the above series is

− 1

π

∫ 2π

0

(
λ′

1(θ)

R

)′ 1
r

∂µ0
n(r)

∂r
cos lθ dθ = l2 1

Rr

∂µ0
n(r)

∂r

and, at βn = 0, this yields

l2

Rr

λn0

R

∂

∂r

[
r I1(Rr)

I1(R)
− I0(Rr)

I0(R)

]
+ Cn

20
∂

∂r

I0(Rr)

I0(R)

where λn0 (the zero mode of λn) and Cn
20 are bounded, at βn = 0, by C E(n, 0) (by Lemma 6.1).

We conclude that ∣∣∣∣ ∫ 2π

0
R4,n+1 cos lθ dθ

∣∣∣∣
βn=0

� C E(n, 0).

Consider next
∑

εmR5,m . If we decompose µm as in (7.41), then the part corresponding to
µm − µ0

m can be treated similarly to (7.39) (with fθ replaced by µm − µ0
m). Thus, it remains to

estimate the coefficient of εn+1 cos lθ in

−2R f
∑

εmµ0
m at βn = 0,

which is equal to −2Rµ0
n at βn = 0. As before, if βn = 0, then

|µ0
n| � C(|λn0| + |Cn

20|) � C E(n, 0),

so that ∣∣∣∣ ∫ 2π

0
R5,n+1 cos lθ dθ

∣∣∣∣ � C E(n, 0).

Consider, finally,
∑

εmR6,m . Writing

f 2 = ( f − f0)
2 + 2( f − f0) f0 + f 2

0 ,
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the terms ( f − f0)
2 and ( f − f0) f0 can be treated as before and we obtain the bound C E(n, 0) on

the coefficient of εn+1 cos lθ . Since f 2
0 is a constant, it has no mode l terms and thus, altogether,∣∣∣∣ ∫ 2π

0
R6,n+1 cos lθ dθ

∣∣∣∣
βn=0

� C E(n, 0).

Combining all these estimates, the compatibility condition for βn yields

|Λ̃βn| �
[

C + C(Γ )

H

]
E(n, 0), (7.42)

where Λ̃ was defined in Lemma 7.1, and |Λ̃| � c > 0.
Choosing Γ and H such that

C(Γ )

H
� 1, max

{
1,

1

c

}
(C + 1) � Γ (7.43)

(for the C(Γ ) that appear in both (7.42) and (7.32)) we conclude that (7.23) holds for s = n and
then, by (7.32), also (7.19)–(7.22) hold for s = n.

This completes the induction proof.

REMARK 7.2 Having proved (7.19)–(7.22) for all s, we get (with Γ now fixed) |λ0
s | � C E(s, 0)

(from (7.22), (7.23)) and |Cs
20| � C E(s, 0) (by (6.47) applied with F j = F j,s , β = βs , C20 =

Cs
20). Then also |µ0

s | � C E(s, 0), by (7.25). Consequently (7.19)–(7.22) are valid after deleting
the µ0

n and βn terms from the left-hand sides, and changing H to a larger number in the right-hand
sides, if necessary.

Using Remark 7.2, we conclude with the following theorem.

THEOREM 7.3 There exists a solution of (5.4)–(5.8) of the form (5.2), (5.9)–(5.12) where the
series are convergent for |ε| � ε0, for some ε0 > 0, and define analytic functions in (θ, ε) for
|ε| � ε0, 0 � θ � 2π ; the solution is unique under the assumption that it is even in θ , it contains
no mode 1 terms, and ∫ 2π

0
λn(θ) cos lθ dθ = 0 (n � 2).

8. Bifurcation branches of analytic solutions for the original problem

The estimates (7.19)–(7.22) can be extended to include derivatives with respect to r to any order,
namely

‖rm∂m
r ∂k

θ µn‖W 0,1
2 (B1)

� H0 Hn−1

n2
(k + m)! Bk

k2
D0 Dm,

‖rm∂m
r ∂k

θ µn‖W 0,1
2 (Rn\B1)

� H0 Hn−1

n2
(k + m)! Bk

k2
D0 Dm .

‖rm∂m
r ∂k

θ un‖W 0,1
2 (B1)

� H0 Hn−1

n2
(k + m)! Bk

k2
D0 Dm .

(8.1)
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The proof is by induction on m. For m = 1, 2 this was already proved in (7.19), (7.20) (if we
choose D � B). Suppose now that (8.1) is true for all m < j . To prove it for m = j we apply
r j D j−2

r Dk
θ to equations (6.3), (6.4) with M = µn , U = un , Λ = λn and then move all the terms to

the right-hand side, except for r j D j
r Dk

θµn , to get

r j D j
r Dk

θµn = r j D j−2
r Dk

θ F1n + χ{r<1}r j D j−2
r Dk

θ [R2µn + 2Rλnµ0]
+ 1

R
r j D j−2

r

(
1

r

∂µ0

∂r

)
Dk+2

θ λn − r j D j−2
r Dk

θ

(
1

r
Drµn

)
− r j D j−2

r

(
1

r2
Dk+2

θ µn

)
.

From (7.2)–(7.4) we find that the terms in F1n are of the form to which Lemma B.5 can be applied.
Thus these terms can be estimated in the same way as in Section 7: namely, we consider Dn

θ F1n

as a function to which we apply successive r-derivatives and use Lemma B.5 and the induction
assumption on j . Similarly, other terms can be estimated using induction. We remark here that
in the last term, which involves Dk+2

θ D j−2
r µn , we ‘lose’ two θ derivatives, but we ‘gain’ two r -

derivatives; the (k + m)! factor together with the choice D � B enable us to carry out the induction
for µn , and similarly for un .

The estimates in (8.1) show that µ is analytic in (x, ε) if 0 < |x | � 1, |ε| � ε0 for some ε0 > 0,
and in 1 � |x |, |ε| � ε0 and u is analytic in (x, ε) if 0 < |x | � 1, |ε| � ε0, for some ε0; recall that
the free boundary is analytic in (θ, ε) if 0 � θ � 2π, |ε| � ε0.

These facts allow us to reverse the mapping (5.1) and obtain well defined analytic functions

µ(x, ε), u(x, ε)

and free boundary r = R0l + f (θ, ε) in the original variables, which satisfy the system (1.1)–(1.6)

with β as in (1.8); more precisely,

µ+(x, ε) is analytic in (x, ε) for |x | � R0l + f (θ, ε), |ε| � ε0,

µ−(x, ε) is analytic in (x, ε) for 0 < |x | � R0l + f (θ, ε), |ε| � ε0

and these functions can actually be extended analytically into some δ0-neighbourhood of the free
boundary where δ0 is a positive number independent of ε; here we use the uniform estimates on the
derivatives in the L∞-norm (which follow by (8.1) and the Sobolev embedding).

It is now easy to extend both µ− and u− as analytic functions in (x, ε) also in a neighbourhood
of x = 0, as in [5]. Indeed, since µ− is bounded in 0 < |x | � 1/2, we can represent it in the form

µ−(x, ε) =
∫

|x |=δ

∂G

∂n
(x − y)µ−(y, ε) dSy −

∫
|x |=δ

G(x − y)
∂

∂n
µ−(y, ε) dSy

for 0 < |x | � δ (δ < 1/2) where G is a fundamental solution of ∆−1. The right-hand side provides
the analytic extension of µ−(x, ε) to |x | � δ, |ε| � ε0. Next, since µ−(x, ε) + u(x, ε) is harmonic
and bounded in 0 < |x | � 1/2, we can similarly extend it to |x | � δ, |ε| � ε0, and thus conclude
that the function u(x, ε) also has analytic extension to |x | � δ, |ε| � ε0.

We have thus completed the proof of the following theorem, which is the main result of this
paper.

THEOREM 8.1 For any integer l � 2 there exists a family of solutions of (1.1)–(1.6) with free
boundary r = R0l + f (θ, ε) where

f (θ, ε) = ε cos lθ + O(ε2).
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The solution µ, u, r = R0l + f (θ, ε), β has the form (1.18), (1.19), (1.7), (1.8) and the series
converge and define analytic function in (x, ε) for µ, u and in (θ, ε) for f ; more precisely

µ+(x, ε) is analytic in |x | � R0l − δ0, |ε| � ε0,

µ−(x, ε) and u(x, ε) are analytic in |x | � R0l + δ0, |ε| � ε0,

for some ε0 > 0, δ0 > 0; furthermore, the solution is even in θ and satisfies the conditions (1.9)–
(1.11). Finally, R0l and the solution with all the above propertied are unique.
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Appendix A. Some facts about Bessel functions

We collect several facts about the Bessel functions Im(x) for m � 0, x � 0. We recall that Im(x)

satisfies the differential equation

I ′′
m(x) + 1

r
I ′
m(x) −

(
1 + m2

x2

)
Im(x) = 0 (A.1)

and is given by

Im(x) =
∞∑

k=0

(x/2)m+2k

k!Γ (m + k + 1)
. (A.2)
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Furthermore,

I ′
m(x) + m

x
Im(x) = Im−1(x), m � 1, (A.3)

I ′
m(x) − m

x
Im(x) = Im+1(x), (A.4)

so that

Im−1(x) − Im+1(x) = 2m

x
Im(x), m � 1. (A.5)

We also recall [10: p. 225] the relation

Im(x) =
√

1

2mπ

(
ex

2m

)m(
1 + O

(
1

m

))
m → ∞ (A.6)

uniformly in x in any bounded set.
We finally state three recent results.

THEOREM A.1 ( [4]) For any m � 2,

d

dx

(
I0(x)

I1(x)

Im(x)

Im−1(x)

)
> 0 for 0 < x < ∞.

THEOREM A.2 ( [4]) For any m � 2 there exists a unique positive solution x = xm of the equation

I0(x)

I1(x)

Im(x)

Im−1(x)
= m + 1

2m
,

and
xl < xm if 2 � l � m.

THEOREM A.3 ( [5]) The following identity holds for any m � 2:

1

x2

∫ x

0
[m2 I1(s)Im(s) − 2s I0(s)Im(s)] ds − m − 2

x
I1(x)Im(x) + [I2(x)Im(x) − I1(x)Im+1(x)] ≡ 0.

(A.7)

Appendix B. Some lemmas on analyticity

In this section we establish norm estimates on the derivatives of composite functions of the same
type as appeared in [1] and [5: Section 9].

Throughout this section we assume that the norm ‖ · ‖ satisfies the property

‖ f g‖ � ‖ f ‖ ‖g‖. (B.1)

LEMMA B.1 Suppose∥∥∥∥ 1

k!∂
k
θ w(i)

m (θ)

∥∥∥∥ � Bk

k2

H0 Hm−1

m2
(k2 = 1 if k = 0) (B.2)
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for all m � 1, 0 � k � K , 1 � i � q and set

q∏
i=1

( ∞∑
m=1

w(i)
m (θ)εm

)
=

∞∑
m=q

W q
m(θ)εm (q = 1, 2, 3, . . . ).

Then ∥∥∥∥ 1

k!∂
k
θ W q

m(θ)

∥∥∥∥ � Bk

k2

H0 Hm−1

m2

(
48H0

H

)q−1

for m � q, 0 � k � K . (B.3)

Proof. First, we have

m−1∑
k=1

1

k2(m − k)2
=

m−1∑
k=1

(
1

m2k2
+ 2

m3k
+ 1

m2(m − k)2
+ 2

m3(m − k)3

)

� 2
m−1∑
k=1

(
1

m2k2
+ 2

m3k

)
<

2

m2

{ ∞∑
k=1

1

k2
+ 2

m2

(
1 +

∫ m−1

1

dx

x

)}

= 2

m2

{
π2

6
+ 2

m
[1 + ln(m − 1]

}
� 2

m2

{
π2

6
+ 2

3
(1 + ln 2)

}
<

6

m2
. (B.4)

The estimate (B.3) is valid for q = 1, by assumption. We proceed by induction from q − 1 to q.
By (B.4), we also have (recall the convention k2 = 1 if k = 0)

m∑
k=0

1

k2(m − k)2
= 2

m2
+

m−1∑
k=1

1

k2(m − k)2
� 8

m2
. (B.5)

Note that

W q
m(θ) =

m−q+1∑
j=1

W q−1
m− j (θ)w

(q)
j (θ),

and
1

k!∂
k
θ W q

m(θ) =
m−q+1∑

j=1

k∑
l=0

1

l!∂
l
θ W q−1

m− j
1

(k − l)!∂
k−l
θ w

(q)
j .

Therefore∥∥∥∥ 1

k!∂
k
θ W q

m(θ)

∥∥∥∥ �
m−q+1∑

j=1

k∑
l=0

Bl

l2

H0 Hm− j−1

(m − j)2

(
48H0

H

)q−2 Bk−l

(k − l)2

H0 H j−1

j2

� Bk H0 Hm−1
(

48H0

H

)q−1 1

48

m−q+1∑
j=1

1

(m − j)2

1

j2

k∑
l=0

1

l2

1

(k − l)2

� Bk

k2

H0 Hm−1

m2

(
48H0

H

)q−1

(by (B.4) and (B.5)).

�
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Taking w
(1)
m (θ) = w

(2)
m (θ) = · · · = w

(q)
m (θ) = wm(θ) in Lemma B.1, we get

LEMMA B.2 Suppose∥∥∥∥ 1

k!∂
k
θ wm(θ)

∥∥∥∥ � Bk

k2

H0 Hm−1

m2
(k2 = 1 if k = 0) (B.6)

for all m � 1, 0 � k � K and set( ∞∑
m=1

wm(θ)εm

)q

=
∞∑

m=q

W q
m(θ)εm (q = 1, 2, 3, . . . ).

Then ∥∥∥∥ 1

k!∂
k
θ W q

m(θ)

∥∥∥∥ � Bk

k2

H0 Hm−1

m2

(
48H0

H

)q−1

for m � q, 0 � k � K . (B.7)

LEMMA B.3 Consider the formal power series

f (w, θ) =
∞∑

m=1

fm(θ)wm,

w(θ, ε) =
∞∑

m=1

wm(θ)εm

and set

F(θ, ε) = f [w(θ, ε), θ ] =
∞∑

m=1

Fm(θ)εm .

Suppose that ∥∥∥∥ 1

k!∂
k
θ fm

∥∥∥∥ � A0 Am−1 Bk

k2
,

∥∥∥∥ 1

k!∂
k
θ wm

∥∥∥∥ � Bk

k2

H0 Hm−1

m2
(B.8)

hold for all m � 1 and all 0 � k � K and H/A � 96H0. Then∥∥∥∥ 1

k!∂
k
θ Fm

∥∥∥∥ � 16A0
Bk

k2

H0 Hm−1

m2
for m � 1. (B.9)

Proof. Using the notation from previous lemmas, we have

Fm =
m∑

q=1

fq W q
m .

Thus
1

k!∂
k
θ Fm =

m∑
q=1

k∑
l=0

1

l!∂
l
θ fq

1

(k − l)!∂
k−l
θ W q

m .
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We now estimate∥∥∥∥ 1

k!∂
k
θ Fm

∥∥∥∥ �
m∑

q=1

k∑
l=0

A0 Aq−1 Bl

l2
· Bk−l

(k − l)2

H0 Hm−1

m2

(
48H0

H

)q−1

� 8A0 Bk

k2
· H0 Hm−1

m2

∞∑
q=1

1

2q−1
(by (B.5))

= 16
A0 Bk

k2
· H0 Hm−1

m2
.

�

The above lemma extends to double power series.

LEMMA B.4 Consider the formal power series

f (x, y, θ) =
∑

1�i+ j<∞
fi j (θ)xi y j ,

w1(θ, ε) =
∞∑

m=1

w(1)
m (θ)εm,

w2(θ, ε) =
∞∑

m=1

w(2)
m (θ)εm,

and set

F(θ, ε) = f [w1(θ, ε), w2(θ, ε), θ ] =
∞∑

m=1

Fm(θ)εm .

Suppose that∥∥∥∥ 1

k!∂
k
θ fi j

∥∥∥∥ � A0 Ai+ j−1 Bk

k2
,

∥∥∥∥ 1

k!∂
k
θ w(i)

m

∥∥∥∥ � Bk

k2

H0 Hm−1

m2
, i = 1, 2. (B.10)

hold for all m � 1, i + j � 1 and all k � 0 and H/A � 96H0. Then∥∥∥∥ 1

k!∂
k
θ Fm

∥∥∥∥ � 32 · A0
Bk

k2

H0 Hm−1

m2
. (B.11)

If, furthermore,
f10(θ) ≡ f01(θ) ≡ 0,

i.e. the series for f starts with second-order terms, then∥∥∥∥ 1

k!∂
k
θ Fm

∥∥∥∥ � 32 · 48A0
Bk

k2

H2
0 Hm−2

m2
. (B.12)

Similarly, if the series for f starts with mth order terms, then there is an extra (48H0/H)m−1 factor
in the resulting estimates (right-hand side of (B.11)).
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Proof. We write ( ∞∑
m=1

w(1)
m (θ)εm

)i ( ∞∑
m=1

w(2)
m (θ)εm

) j

=
∞∑

m=i+ j

F (i, j)
m (θ)εm .

Then by Lemma B.1, ∥∥∥∥ 1

k!∂
k
θ F (i, j)

m

∥∥∥∥ � Bk

k2

H0 Hm−1

m2

(
48H0

H

)i+ j−1

. (B.13)

Since
Fm(θ) =

∑
1�i+ j�m

fi j (θ)F (i, j)
m (θ),

we then have∥∥∥∥ 1

k!∂
k
θ Fm(θ)

∥∥∥∥ �
∑

1�i+ j�m

k∑
l=0

∥∥∥∥ 1

l!∂
l
θ fi j (θ)

∥∥∥∥∥∥∥∥ 1

(k − l)!∂
k−l
θ F (i, j)

m

∥∥∥∥
�

∑
1�i+ j�m

k∑
l=0

A0 Ai+ j−1 Bl

l2

Bk−l

(k − l)2

H0 Hm−1

m2

(
48H0

H

)i+ j−1

� 8A0
Bk

k2

H0 Hm−1

m2

∑
1�i+ j�m

(
1

2

)i+ j−1

(by (B.5))

= 32 · A0
Bk

k2

H0 Hm−1

m2
.

In the case f10(θ) ≡ f01(θ) ≡ 0, i + j is at least 2 for the nonvanishing terms and there is an extra
factor 48H0/H factor. Similarly if i + j starts with m, then we get the extra factor (48H0/H)m−1.
�

In the next lemma, we use two norms, ‖·‖X1 for functions g(θ) and ‖·‖X2 for functions f (r, θ).

LEMMA B.5 Suppose that the norms ‖ · ‖X1 and ‖ · ‖X2 satisfy the following algebra property:

‖g(θ) f (r, θ)‖X2 � C∗‖g‖X1‖ f ‖X2 .

Assume that ∥∥∂k
θ wm(θ)

∥∥
X1

� k! Bk

k2

H0 Hm−1

m2
(k2 = 1 if k = 0) (B.14)

for all m � 1, 0 � k � K and fixed i , and

‖∂ i
r∂

k
θ um(r, θ)‖X2 � (k + i)! Bk

k2

H0 Hm−1

m2
. (B.15)

Set ( ∞∑
m=1

wm(θ)εm

) ( ∞∑
m=1

um(r, θ)εm

)
=

∞∑
m=2

Um(r, θ)εm .
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Then∥∥∂ i
r∂

k
θ Um(r, θ)

∥∥
X2

� C∗(k + i)! Bk

k2

H0 Hm−1

m2

(
48H0

H

)
for m � 2, 0 � k � K . (B.16)

Proof. The proof is almost the same as that for Lemma B.1. Note that

Um(r, θ) =
m−1∑
j=1

wm− j (θ)u j (r, θ),

and

∂ i
r∂

k
θ Um(r, θ) =

m−1∑
j=1

k∑
l=0

(
k
l

)
∂ l
θwm− j (θ)∂ i

r∂
k−l
θ u j (r, θ).

Therefore ∥∥∥∥ 1

(k + i)!∂
i
r∂

k
θ Um(r, θ)

∥∥∥∥
X2

� C∗
m−1∑
j=1

k∑
l=0

(
k
l

)
(

k + i
l

) Bl

l2

H0 Hm− j−1

(m − j)2

Bk−l

(k − l)2

H0 H j−1

j2

� C∗ Bk H0 Hm−1
(

48H0

H

)
1

48

m−1∑
j=1

1

(m − j)2

1

j2

k∑
l=0

1

l2

1

(k − l)2

� C∗ Bk

k2

H0 Hm−1

m2

(
48H0

H

)
.

The proof is complete. �


