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A simple model of a living cell which undergoes processes of growth and dissolution is described
as a free boundary problem for a system of two reaction—diffusion equations; the condition on the
free boundary is of the Stefan type. The special case of radially symmetric cells was studied in earlier
work. This paper is concerned with the existence of symmetry-breaking stationary solutions, i.e. with
solutions which are not radially symmetric. It is proved, in the two-dimensional case, that there exist
branches of non-radial stationary solutions bifurcating from radially symmetric solutions; indeed,
for any mode [, [ > 2, there exists a unique bifurcation branch whose free boundary has the form
r=R;+¢ecoslf + 2,122 &1y (6), |e| small, with A, (0) orthogonal to cos 6.
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1. The model

We denote a variable point in R2 by x = (x1, x2) or, in polar coordinates, by (r, ). Consider the
following free boundary problem: find a two-dimensional bounded domain {2 and functions © and
u defined, respectively, in R2 and {2, such that

Au=Xou  inR? (1.1)
w=1logr(l+o(l)) asr = |x| — oo, (1.2)
w is continuously differentiable across 942, (1.3)
—Au=pu in {2, (1.4)
u=20 on {2, (1.5)
ou

8_n+'B=O on df? (B > 0). (1.6)

Here X, denotes the characteristic function of {2; we shall sometimes use the notation

wt=plgng.  wo=ulg
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The above system is a two-dimensional version of a stationary ‘protocell’; the concept of a
protocell was introduced in [8] and [9] and it attempts to capture some of the average physical
and chemical properties of growth and dissolution of a living cell. The function p represents the
nutrient concentration in the entire space with a given source at oo, and the function u is defined as
C — C*, where C is the concentration of the fluid-like building material of the cell, and C* is the
equilibrium concentration of the building material, so that u vanishes at the cell’s boundary 9 (2. The
cell feeds on the nutrients in accordance with (1.4). Dissolution of the cell, at the rate 8 across the
boundary, represents waste removal through the cell. Actually, the model studied in [8] and [9] is
somewhat different, and equally motivated, but the present version is mathematically a little simpler.
It is easy to check that for any B > 0 there exists a unique radial solution

po= pu(r), u=u(r), 2={r <R}

and, in fact, R = 1/8. The purpose of this paper is to prove that there exist also non-radial solutions.
We shall prove that for any integer [ > 2 there exists a unique radius » = R(; which is a bifurcation
point of a family of analytic symmetry-breaking solutions with free boundary

o0
r = Ry +¢ecoslf + Za"xln(e) (1.7)
n=2
and
> 1
B=PBo+Y &"Bn <,310 = R_> (1.8)
n=2 0

The fact that § depends on ¢ is a common feature of all bifurcation problems: one parameter of
the system (in our case, ) is always dependent on the e-parameter of the bifurcating family of
solutions.

The corresponding solution u;, uf, u; of (1.1)-(1.6) are also analytic in (r, 0, ¢) in their
respect regions, up to the boundary. Each bifurcation branch is uniquely determined under the
following assumptions:

u and p are even functions in 9, (1.9)
2 21
/ u(r,0,e)cosfdd =0, / u(r,0,¢e)cosfdd =0, (1.10)
0 0
2
/ An(@) cosmB dd = 0 forn >2 and m=1,1. (1.11)
0

Note that the orthogonality of A1, (0) to cos [6 for n > 2 is achieved by a choice of the bifurcation
parameter. If this condition is not satisfied for the expansions (1.7), (1.8), then by setting

o0 2w
¢ =e+ Z e"A)  where A} = / Ain(0) cos 6 do,
n=2 0
we obtain a new family of solutions with

r=Ro+ecoslf+ Y ()@, B=po+ ) () Pu

n=2 n=2
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and (r,0,¢) = u@r,0,¢8),u(r,0,&) = u(r, 0, ) for which all the conditions in (1.9)—(1.11) are
satisfied.
The general theory of bifurcation (see, for instance, [6] and [7]) deals with problems of the form

F(,u)=0 (1.12)

where A is a real parameter (like the parameter § in our case) and u varies in a fixed Banach space
X. Suppose for simplicity that F' (A, 0) = 0 for all A € R. A bifurcation point (A, 0) is a point for
which there exists a one-parameter family of nontrivial solutions A = A(¢), v = u(e) of (1.12) with
A(0) = Ap, u(0) = 0. The Liapunov—Schmidt procedure reduces the construction of a bifurcation
branch from the infinite-dimensional Banach space X to a finite-dimensional space:

Suppose F(A, u) maps u € X into a Banach space Y such that X C Y, and F is smooth. Set

0F (Ao, 0
Lo— (20,0)

» (1.13)

and assume that Lg is a Fredholm operator with index zero. Denote its null space by A (so that
n = dimA < o0) and its range by Ry. Denote by P the projection of Y into A" and by Q the
projection of Y into Rg. If we decompose u into Pu + Qu and project (1.12) into Ro and N, we
get the equations

KO, v,¥) = QF(,v+v) =0, (1.14)
PFOLv+1¢)=0 (1.15)

where v = Pu and ¥ = Qu. This set of equations is equivalent to the single equation (1.12).
Noting that K (19, 0,0) = 0 and dK (A9, 0,0)/9% = QL is an isomorphism from QX to QY, we
can apply an implicit function theorem to (1.14) and thus solve for ¥ = ¥ (X, v). We then substitute
¥ into (1.15) and get the Liapunov—Schmidt bifurcation equation

PFOLv+y(h,v) =0, (1.16)

which is a system of n equations; for more details see, for instance, [6, 7].

The above scheme cannot be directly applied to the problem (1.1)—(1.6) since the spaces X and
Y will vary in ¢ in a way which is unknown in advance (as it will depend on the free boundary).
Nevertheless, by making a change of variables which maps the free boundary into a fixed boundary,
we can state our problem within the framework of the generalized bifurcation theory. The system
of PDEs that we obtain in this way, however, has a non-standard structure. As a result, establishing
an implicit function theorem requires lengthy and delicate analysis. This will be done in Sections 6
and 7 in the analytic case, i.e. in the case of solution with power expansion in £. We refer the reader
to Remark 6.1 which explains the strategy for establishing the implicit function theorem.

The method we use to establish the existence of analytic bifurcation branches is based on the
recent approach by Friedman & Reitich [5] who established the existence of analytic bifurcation
branches for a free boundary problem modelling tumour growth. However, the system (1.1)—(1.6)
presents new difficulties due to the following facts: (a) the present system of three PDEs (for
wt, ™, u) is more complicated than the system of two PDEs studied in [5]; (b) the present set
of free boundary conditions does not allow as strong a priori bounds as in [5] needed to estimate,
by induction, the coefficients in the series expansion for the solution.
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Because of (a) we shall require some new properties of zeros of quotients of Bessel functions
I, (x) (stated in Appendix A). Because of both (a) and (b), the inductive process (in Section 7) is
far more delicate than in [5].

The structure of the paper is as follows. In Section 2 we write down the radial solution of
(1.1)—(1.6). In Section 3 we consider the linearized (stationary) problem about the radial solution of
(1.1)—(1.6) with free boundary r = R + € cos /6 (I > 2) and prove that it has a non-trivial solution
if and only if R = Rq; where Ry is the unique solution of

Io(Ro) Li(Ror) 1+

= (1.17)
Li(Ro) li—1(Ror) 21
In Section 4 we formally expand the solution of (1.1)—(1.6) into series
= po(r) + Y _ " un(r, 0), (1.18)
n>1
w=uo(r) + Y _ &"un(r,0), (1.19)
n>1

with the free boundary and g as in (1.7), (1.8), where (uo(r), uo(r),{r < Rgy}) is a radial
solution of (1.1)—(1.6). We prove that, subject to the complementary conditions (1.9)—(1.11), the
ns Un, Mn, Bi,n—1 are uniquely determined by induction. To prove convergence of the formal series,
however, we need to use another approach.

In Section 5 we transform the free boundary bifurcation problem to one with fixed boundary by
the change of variables

’ r

r' = .
Ry +ecoslo + Zn>2 " A (0)

For the new system we write down formal series

= oGy + Y " Halr, 6),
n>1

u =1+ Z e"u,(r', ),

n>1

with the free boundary and 8 as in (1.7), (1.8). Here again the coefficients [i,, iy, Ain, Br.n—1
are uniquely determined by induction. However, in contrast with the situation in Section 4, the
nonlinear structure of the inductive formulae which define the [i,, i, and A;,, B;.,—1 is much
simpler (although the formulae look more complicated). This fact enables us to derive good enough
estimates on [y, Uy, An, B1.n—1 for establishing convergence. The proof of convergence is given in
Section 7. Several fundamental estimates needed for this proof are derived in Section 6. The proof
in Section 7 requires also some calculus-type estimates on the derivatives of a composite function
D(f1(x), ..., fx(x)) in terms of derivatives of both @ (u1, ..., ux) (in the us) and the f;(x) (in x).
These estimates are proved in Appendix B. In Section 8 we state the main theorem asserting the
existence, uniqueness and analyticity (in (x, €)) of the symmetry-breaking bifurcation branches of
solutions of (1.1)—(1.6).
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2. Radial solutions

We seek stationary solutions ((r), u(r), R) of the system

Ap = Xir<ryt for 0<r < oo,

w(r) =logr + const. + O(1/r), r — 00,
w is continuously differentiable across r = R,
Au=—pn if r <R,

u(R) =0,

W' (R)+ B =0.

The general solution of this system is given by

logr 4+ Alp(R) — log R, r>R
u(r) =
Mo(r), r<R

147

@2.1)
2.2)
2.3)
(2.4)
2.5)
(2.6)

where A is a constant. Since p'(r) is continuous across r = R, 1/R = AI(;(R) = Al (R), so that

A =1/(RI1(R)). By (2.4), u(r) + wu(r) is harmonic in {r < R}, so that u + p = const., or

up = —pp = —Ay(r) = —Ali(r),

which implies that u(r) = Aer I1(¢§)d& and B = —u/(R) = 1/R. We summarize as follows.

THEOREM 2.1 For any 8 > 0 there exists a unique radially symmetric solution of (2.1)—(2.6),

given by
logr + fo(R) —logR, r>R
_ RI(R)
H =0 noo) —r
’ r\ ’
RI|(R)
o /Rz 4 = DR = Io)
u(r)_Rll(R) i 1(6)d§ = RIR)
Rzé.

In what follows we use the notation

[vlr=r = [VI(R) = v(R+0) —v(R —0).

Q2.7)

2.8)

(2.9)

REMARK 2.1 In the time-dependent version of the protocell model [3], the differential equation

for u is
cuy — Au =

where c is a positive number, and the Stefan free boundary condition is

Vy=—— —B.
n anﬂ
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By the method developed in [3] one can prove that for any initial data for u, there exists a unique
radially symmetric solution wu(r, t), u(r, t), {r < R(¢)} to this problem for all #+ > 0, and, if c is
sufficiently small,

< Ce™™ vVt > 0,

R(t) — l
B

where C, o are some positive constants.

3. The linearized problem

We want to construct non-radially symmetric stationary solutions of (1.1)—(1.6). To do this we first
need to find the bifurcation points R = Ry, i.e. the values R = Ry for which the linearized system
of (1.1)—(1.6) about the radially symmetric solution

(o (r), uo(r), Ro)

has a non-trivial solution. The linearization can be made for any mode / > 2 and it corresponds to
a perturbation of the free boundary of the form r = Ry + €(aj cosl0 + a; sinl6). By a translation
6 — 0 + 6p and a scaling of ¢ we may take, without loss of generality,

r=Ro+er(0), A1(0) = coslH. (3.1)
Writing

w(r, 0) = pno(r) +ep (r)A1(6),
u(r,0) = ug(r) + euy(r)r1(0),

we easily derive a system of equations and boundary conditions for w1, u1:

2
Apy — SH1 = Xir<Ro} 1, 0<r < oo, (3.2)
w1 = 0(1) asr — 0o, (3.3)
[1]1(Ro) = 0, (3.4
o 9% 0
— [(R —— |[(Rg) =0 3.5
[ar]< 0)+[8r2 (Ro) (3.5)
and
12
r
0
ur + %(Ro) =0 if r=Ry, (3.7
r
dug N 9%u (Ry) = 0 i R (3.8)
_— _— = 1 r = 5 .
or arz 0 0
recall that
0 (Ro) = —f = ——
ar 0T Ry’
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From (3.2), (3.3) we get
ui(ry=AL(r) if r < Ry, ui(r) = Br=l if r>Ro
where A, B are constants. From (3.2), (3.6) we see that the function T = 1 (r) + u; (r) satisfies
Tr,—i—lTr—éT:O if r < Ry,
r r
and therefore T = Cr!, where C is a constant. Thus
uy(r) = Crl — AL (r).
The boundary conditions (3.4), (3.5), (3.7), (3.8) then become

BRy' — AL(Ry) =0, (3.9)
- Io(Ro)
— BIR'"™' — AIl(Ry) = ——2—, (3.10)
0 ! Rol1(Ro)
1
— AlI(Ro) + CR, = —, (3.11)
Ro
_ 1o(Ro) 1
—AIl(R))+ CIRN ' = 22— (3.12)
! 0 Roli(Ro) R}
and it remains to find Ry such that this system has a non-trivial solution (A, B, C).
Using (A.3)—(A.5), the condition on Ry reduces to
Io(R I;(R [+1
o(Ro) Li(Ro) I+ (3.13)

Ii(Ro) I-1(Ro) 21
We now apply Theorem A.1 to conclude the following theorem.

THEOREM 3.1 The linearized system for mode / has a non-trivial solution if and only if Ry is the
unique solution Ry = R, of (3.13).

From the previous formulae we find that the solution w1 (r), u1(r) is given by

[+1
—%Réﬁlr_l if r> Ry
wi(r) = IF1 L) (3.14)
——— 7 if r<R
21 Roli(Ro)
I—1 I+1 L)

= if Ro. 3.15
ni = R 2 Rol(ky T G-19)

REMARK 3.1 For! =1, (3.13) holds for all 0 < Ry < oc. The reason is that the problem (1.1)—
(1.6) is invariant under translation. By translating the centre of the free boundary from x = (0, 0)
to x = (0, ¢), the solution changes and its new free boundary satisfies

r=R0+scos0+O(£2) as & — 0.

Since this situation is trivial, we shall not consider the bifurcation associated to [ = 1. On the other
hand, if / > 2, the solutions with free boundary given by (1.7), as ¢ — 0, are not radially symmetric
with respect to any centre.
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Our goal is to prove that about each bifurcation point (w1, u1, Ro;), there is a bifurcation branch
of (symmetry-breaking) analytic solutions with free boundary given by (1.7) and 8 = B(¢) given
by (1.8).

4. Formal solution

We seek to find symmetry-breaking solutions initiating at Ro; with free boundary

~

r=Ro+ f®) = f(®)  where Ry= Ry, [3>2. 4.1)

Note that the boundary condition du/dn + 8 = 0 can be written in the form

~odu  FO)u | [
f(9)8r f~(9) 89+ﬂ f<@)+ (f'©)-=0. 4.2)

~

Since u(f(@), 6) = 0, we have urf/ 4+ up = 0Oonr = f(0) and, consequently, the boundary
condition (4.2) can also be written in the form

ou Ry +
g o+ f
ar

=0. (4.3)

JRo+ 2+ f7

In this section we describe a natural formal approach to computing the coefficients in the power
series expansions of the bifurcation solutions given by (1.7), (1.8) and (1.18), (1.19). Howeyver, as
was shown in [5], this approach, surprisingly, is not a good one for actually proving convergence,
even for very simple elliptic problems with prescribed boundary that depends analytically on
a parameter ¢. Therefore, in what follows we shall use another scheme developed in proving
convergence; this latter scheme looks more complicated but is nevertheless much easier to work
with.

The reason we have included the formal approach of this section in our paper is that it enables
us to reduce the compatibility condition which determines the S, to a much simpler formula than
does the scheme of the subsequent sections. This compatibility condition is based on Lemma 4.2
and is established in Theorem 4.3; it will be used to prove the assertion A # 0 of Lemma 7.1.

In determining (inductively) the coefficients Ay, (i, Uy, in the expansions (1.7), (1.18), (1.19),
only powers of cos/f to order <m will occur. Hence these coefficients will be finite linear
combinations of cos jl/6 with j < m. We can therefore write (1.7) and (1.18), (1.19) more explicitly
in the form

o0 m
r=Ro+ Y ") Tmjcosjlo =Ry + f(0.¢e), (4.4)
m=1 j=0
o0 m
w= po(r) + Z " Z [imj (r) cos j16, (4.5)
m=1 j=0
o m
u=uy(r) + Z g™ Zumj(r) cos jl6. (4.6)

m=1 j=0
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From the differential equation (1.3) we get, form > 1,

j212
Aﬂmj - 2 Mmj = X{r<Ro}l1/mj, 4.7
so that
Apjlj(r) if r < Ry,
i (7) :ijr_fl it r> Ry, “48)

where A, By, are constants.
From the differential equations (1.1), (1.4) we find that (u,j + ;) cos jI0 is harmonic in
{r < Ry} so that

Uj(r) = Cojrt — AL (r) if < Ro, (4.9)

where Cy,; is a constant.

We now wish to determine the constants A, Byj, Cinj, Tmj and By, 1 so that the boundary
conditions (1.3), (1.5), (1.6) are satisfied.

Proceeding by induction we assume that these coefficients have already been determined for
m < n, and we shall proceed to determine them for m = n.

Setting
n m
£.(6) = Ry + Z g™ Z Tpj cOS jl6), (4.10)
m=1 =0
the condition (1.3) becomes
n m .
[0)=p0) + Y €™ D (Bujr ™' — A Ljt(r)}r=,0) €08 jlO = 0, 4.11)
m=1 j=0

d o - - . —ji- ,
[a—} + Z P Z{—(]l)ijr Il — A Iy ()} r= 0 c0s jl6 = 0. (4.12)
"dr=f0) m=1 =0

The boundary condition (1.5) gives
n m .
wo(M)lr=fo0) + Y ™ Y ACmjr?" = ApjLji ()} =, 0) cos j16 = 0. (4.13)
m=1 j=0

Finally, the boundary condition (1.6), written in the form (4.3), becomes

n

m
+ D&Y {GDConjr T = A1y (r) o=, 0) c05 IO
r=H®)  w=1  j=0

n . 1 ~
! <ﬂ°+n§f ﬁm)\/ TF O OF "

dug(r)
or

(4.14)
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Using the fact that [ug](Rg) = [%](Ro) = 0, we find from (4.11), (4.12), by equating the
coefficients of ¢” cos j/6, that

—jl
BujRy " — AujLji(Ro) = F,;, (4.15)

2
. —jl-1 9°o
— (D Ba Ry ™ — Anj I (Ro) + rnj[—arz i|(R0) = F,fj, (4.16)

where Fnl/., Fnz/' are determined by the inductive assumption, i.e. they are given in terms of the
Amks Bmks Cimks Tk, Bm—1 for m < n — 1; the parameter S,—1, however, has not yet been
determined.
Similarly, from (4.13) we obtain, using the relations ug(Rg) = 0, dug/dr(Rg) = —Bp =
—1/Ro,
Anjl; R~ Lo = F3
—Anjlji(Ro) + anR() - R()Tnj = Fnj’ 4.17)
where F n3/. is determined by the inductive assumption, i.e. it is given in terms of Ak, Bk, Cimk, Tmk
and B,—1 form <n — 1.
Finally, from (4.14) we get

3%uo(Ro)

=4 _ 4
o = Fuj = Budjo=F,

nj’

—AnjLjt(Ro) + GDCuj R ™" + 10 (4.18)

where f: is given by the inductive assumption as the preceding Fr’; e The coefficients matrix of the
linear system (4.15)—(4.18), for fixed j, is

—I1(Ro) Ry 0 0
oy jl— 9“0
—I%(Ro) (—jDRy™H 0 [W}(Ro)
Ty = il
—1j1(Ro) 0 R} ~Ro
2
o\ pjl=1  07uo(Ro)
- }I(RO) 0 DRy N
Noting that
9% 0 Io(Ro) 9%uo(Ro) 1
= — R = —, = =— —0, 4.19
* [3r2 ]( v Rol1(Ro) v ar? R2 * (4-19)

and using (A.3), (A.4), we easily obtain, for m = jl, the formula

Im—l(RO) <IO(R0) Im(RO) _ m + 1)

det7,,, =2m 3
R; I (Ro) In—1(Ro) ~ 2m

Using Theorem A.2 we conclude as follows.
THEOREM 4.1 There holds:

detTj; #0 if j #1; detT; = 0.
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Equation det 7; = 0 is just (3.13), the solvability condition for the linearized problem. Equation
detTj; # O for j # 1 implies the solvability of the equations for the coefficients in (4.4)—(4.6) for
any j # 1. Thus it remains to solve the system (4.15)—(4.18) in case j = 1. Here we shall need to
use the parameter 8,_| to ensure solvability.

REMARK 4.1 For n = 2 mode [ terms do not appear in the Fr?j and thus the system (4.15)—(4.18)
has a unique solution. However, in this special case, we necessarily have that f; = 0. Indeed, if
n = 1then F, ! i = =0, F 2 =0,F 3J =0and F 4/ = 0, and since the linearized solution is of mode /,
also A1j = Byj = Clj = 11; = 0if j = 0. Equation (4.18) then implies that 8; = 0. This fact can
also be proved in another way. Denote by (2, the domain bounded by r = Rg + & cosl0 + O(g?).

Then
,3/ 1=—/ /Au—/u
30 !28”

where i = po(r) + eu1 (r) cos 16 + O(g2). Since
/ 1 =27 Ry + O(&?), / u(r) = / 1o(r) + O(e?),
382 {2 20
writing 8 = Bo + €1 + O(e?) we get
(Bo + eB1 + O(%) (21 Ry + O(c?)) = / 1o(r) + O(e?)

2

which implies that 81 = 0.
Introducing the vector notation

1
Anj Fnj
F2
B, .
X, = nj F.: = n
nj an ’ nj Fé ’
Tnj F

nj
we can write the system (4.15)—(4.18) for j = 1 in the form
11 Xn1 = Fp. (4.20)

This system is solvable if and only if the augmented matrix has the same rank as 77, i.e. if and only
if

Fl, R(;ll 0o

det Fnjl I R )
Fnl 0 RO "Ry
F 0 IR, vy

Adding [/ Ry times the first row to the second row and (—I)/Rg times the third row to the fourth
row, the above condition reduces to

+F -«
Ry " nl
det s I+1 =0
<_R_0Fnl + Fnl -«

(here we used the definitions of «, y in (4.19)). Thus we have the following lemma.
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LEMMA 4.2 The system (4.20) has a solution if and only if

I+1 [ l

(? —a) (R—OF,}1 +F,$1> +a<— R—OF,EI +F;‘1) =0. (4.21)
0

We want to prove that 8,1 can be uniquely determined so that (4.21) holds. We first have to

examine how B,_; enters into X, _1 ;. It clearly appears only in the last equation for X, _1 o (see
(4.18) with n replaced by n — 1):

0
0
ToXn—-1,0 = Fu—1,0 — Bn-1 0
1
We can therefore write
Xp-1.0 =Xn-1.0+ Xn-1.0 (4.22)
where ?n—l,o does not depend on §,_1, and, setting
At A
- B,_1 - - B
X,10=1]2" = Bu_1X, X=\|2]1,
n—1,0 Cnfl ﬁn 1 C
Tyn-1 T

there holds: TopX = —(0, 0, 0, 1)”. One can easily compute that

T g o®) g iR RO(I&(R(» _
I (Ro) I (Ro) I (Ro)

1), T=-R}. (4.23)

We now return to (4.20) and write
F, = ﬁnl +Fnl,3n—1a (424)

where F,; and F» are independent of B,_1. We need to compute Fy,; = (fl P, 74)T.
To do that we write (see (4.10))

fn(@) = Ry + ecoslh + T+ 0(82) = Ro+ g(9) (4.25)
where T,—1 = t,—1,0. Then

g =¢cosld + & '7,_| +0(e?),

4.26
(g)> =2¢"coslf - T,_1 + O(e?), (9)F = 0(e?) (k = 3). 2

Here O(g?) does not depend explicitly on T,,_1 and terms of order £”*! have been discarded; these
conventions are also used in what follows.
We also have

(f)F = RS+ kRE'e" T, + kRS e cos 16 + O(e?) + Oz(e"), 4.27)
(f) " =Ry — kR e 17,01 — kR ¥ e cos 16 + O(e?) + O=(e"), (4.28)



SYMMETRY-BREAKING BIFURCATION FOR A STEFAN PROBLEM 155

where Oz(¢") may depend on T,_.
From (4.26) we obtain
In(P)lr=4,0) = In(Ro) + I,(Ro)e" ' Ty + I, (Ro)e cos [0 + O(e?) + Oz(e"),  (4.29)
L (M)r=f0) = 1, (Ro) + L (Ro)e" ™' Ty + I,(Ro)e cos 10 + O(e?) + Oz (e"). (4.30)

We proceed to compute the first component F of F_,,l . For this we need to identify in (4.11) the
terms of the form Ae” cos 6 where A depends only on A,,_1, B,—1, C—1, Tp—1; all other terms are

E

irrelevant and will be collectively designated by *-- - .
Using (4.26) we find that the first term on the left-hand side of (4.11) is of the form

1 ,[9%uo 321 _
[Mo]r:ﬁl(g) = Egzl:v}(RO) + - = [W](RO)S}" coslf - Tn—1+---. (4313)

Using (4.28) we see that from the series Y &™ ijr’ﬂ cos jl0 we can get " cosl6 - T,,_ only
if m = 1 and (necessarily) j = 1. We thus get

—FB“&J’ coslf -T,_1. (4.31b)

0

The coefficient B,_; does not come with &"coslf. Similarly, using (4.29) we get from
—> &™) Anjlji(r)cos jl the term

—1I/(Ro)A11€" coslO - Tp_j. (4.31c)
We also observe that A,,_; appears whenm = n — 1, j = 0 in the form
—&" cosl0 - Ay_1I{(Ro). 4.31d)
Combining (4.31a)—(4.31d) we conclude that

-1 _ l _
—F =7, ( —o— WB” — I[(R())A]]) — A,_111(Rp). 4.32)
0

Next we consider (4.12). From the first term or the left-hand side we get

33
[TM*O] (Ro)e" coslf - Tp_,. (4.33a)

From the sum of the B,,; we can get ¢" coslf - T,_1 only if m = 1 and j = 1; the resulting term is

141
#13”8" cos 10 - T,_1. (4.33b)

0

From the sum of the Amjlj/j we get " coslf - T,_j only if m = 1 and j = 1. Using (4.30) we find
that this gives the term

—1I/'(Ro)A116" coslf - Tp_y. (4.33c)
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Finally, A,,_1 appears (when m = n — 1, j = 0) in the form
—&" coslf - A,_1 - I{(Ro). (4.33d)
Combining (4.33a)—(4.33d) we see that

— 8 II+1 _
—F2=?n1{[ - }( 0+ B —1;’<R0>An} — R 1 1] (Ro). (4.34)
0

Next, by the same analysis as for (4.11), from the first term in (4.13) we obtain

82
2 (Ro)e coslf -T,_1,

and from the remaining terms we obtain
ClllR(l)_len coslf -T,_1, —I/(Rp)A11€" coslO - Ty, —&" cosl - Ay_1I)(Ro),
so that
—F =T, 1ly + CnlRE ™ = /(Ro)Autl = Au—1 1y (Ro). (435)

Finally we consider (4.14). Computations as above show that we collect the terms

3

d
10 (Ro)e cosl6 - Ty (4.362)
ar3

from dug/dr and

I — 1)C1 RS e coslf -Tyor,  —I/'(RO)A11€"coslO - Ty,  —I{(Ro)e" coslf - A,_y

(4.36b)

from the double sum in (4.14).
Since f’(8) does not contain 7,1, {1+ (f'(8)/f(6))*}~/? does not contain terms of the form
const. " coslO - T,_1. From (4.14) it then follows that

—4 93ug _ —
—F =T, l{mmo) +1( = DCHRG? - 1/’<R0>Au} — Au-1 [ (Ro). (4.37)

We shall next compute more explicitly the coefficients F , making use of the formula

[+1 1 I+1 [—1 1
Al = ——F—————, 1=-——R{", Cii=———7
21 Rol;(Rp) 21 21 R0+

which follow from (3.14), (3.15) (after using also (3.13)).
Dropping the independent variable Ry in the various Bessel functions, we find that the coefficient

_ . =1,
of T,_1in F is equal to

Iy n ,A1]+ [ Bij = Iy _I,l+1 1 _ [ l+1Rl_1
Roly Rgl Rol; ' 2 Rol REFL 21 70

I [+1 [
= —0 _— + Il/ + —I] = O
Roli  2IRol; Ry
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by (A.3) and (3.13). Thus, by (4.32),
_1 J—
F =1L(RyA,_1. (4.38)

. _ . =4,
The coefficient of 7,1 in —F " is equal to

93 1o I(1+1) )
[—M}(Ro) + ——"Bi —Anl/

8’»3 R(l)+2
It 1 Id+DI+1 I+1 I
-0 l+hi+l R(l)_1 + L (by direct computation)
R2I,  Ro R2 21 2l Ryl
It 1 d+D>21 I+1 1 141 12
SR O Ly 1+—) Gy @A)
Ry Ro 2 Ry 2l RjIL;  2IRo R;

Iy [—11 I+1 , l l —-11
- ) - - ) Il + _I[
R011 2l Ro 2Rolll Ry 2 R()
by (A.3) and (3.13). Hence

= 3 Re Ro Th—1+ Il(RO)An 1. (4.39)

. — . =3,
Next, the coefficient of T,,_1 in —F" is equal to

1 I 1 l=1 4 I1+1
RZ Roh) " RGFU 20 70 T 2IRy

I() I+1 , [
— |1 —1I; ) =0,
"Rl T 2IRol; ( 1+ ’)

by (A.3) and (3.13), so that

F’ = L(Ro)An_1. (4.40)
Finally, the coefficient of 7,,_; in ~Flis equal to
%(Ro) +10 - DCHRY? — Anl)
- a3u0(R0) -2t RIOIH 0 l%ﬁ
= _R% - Rio + RZZOII ;¢ _21)21%8 + 12;;; [(1 + 1%) - %} (by (A.1))
(e Gy e L) )

-1 -1
RS 2l Ry
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by (3.13).
We conclude that
F el N ek S s I} (Ro) (4.41)
=—|— - — (T, _ . .
RS 21R, n—1 n—141RQ
Since, by (4.23),
B _Rolf(Ro)_
n—1= IO(RO) n—1,

we can rewrite (4.39) and (4.41) in the form

— [ 1-1 IRy _

" _[_ 2 To(Ro) “l(RO)}AnI’ (4.42)
—4  [[2-1 1-1]RoI}(Ry) =, _
! _{[ R _21R0] To(Ro) +’1(R0)}An1- (4.43)

Substituting (4.38), (4.42), (4.40) and (4.43) into the solvability condition (4.21) and using the
relation I{ = Ip — I1/Ro, we get

A(Ro)Bn—1 = Fy (4.44)

where I?n depends only on Ay, Byj, Cpj, Tmj, Bm—1 form <n — 1, and

I—1 20+ 1) [ I}(R I+1/L(R)\?
i = o2 (0 ) - Gam) 1) e

We now prove the following theorem.

THEOREM 4.3
A(Rp) < 0. (4.46)

Consequently, equation (4.44) defines 8,1 uniquely in terms of A,,j, Binj, Cinj, Tmj and By, 1
for all m < n — 1. Thus the asymptotic expansion can be developed for all n, and it is easy to see
that it formally defines a solution to the free boundary problem up to any order of precision &”".

PROOF OF THEOREM 4.1 Introduce the functions

I 1
vy = 0 Gy = AW
Ln—1(x) Ip(x)
By (A.1)-(A.3) we find that
, ,  2m—1 , s 1
Vi+ Vo4 V=1, G+G+-G=1. (4.47)
X

so that

Vi) G'(x) G(x)i(v(x)) -0 (4.48)

Vix) Gkx) V) dx\Gx)



SYMMETRY-BREAKING BIFURCATION FOR A STEFAN PROBLEM 159

by Theorem A.1. Substituting V’, G’ from (4.47) into this inequality, and using (3.13), we find that,

atx = Ry,
1 2m — 1 1 1
O<|—=-V-— —=—-G— -
\% X G X
_ 2m 1 m+1G 2m — 1 1 1
" \m+1G 2m X G X
_m—11 m—lG 2(m —1)
" m+1G 2m x
—11 1 2 1
ol mi g 2mED ol
m+1G 2m X
so that A(Rp) < 0. O

REMARK 4.2 The mode / solution is uniquely determined up to a multiple of a special solution
of the homogeneous system (4.15)—(4.18). It follows that by imposing the condition 7,; = 0 (i.e.

f02” An(@)coslfdd = 0) we get a unique solution to (4.15)—(4.18). We have thus proved the
following theorem.

THEOREM 4.4 There exists a unique formal power series solution (4.4)—(4.6), (1.8) of (1.1)—(1.6)
subject to the conditions (1.9)—(1.11).

5. A change of variables

There is a serious difficulty in proving directly that the power series of the formal solution asserted
in Theorem 4.4 is convergent (see [5]). We therefore proceed indirectly, by first transforming the
free boundary problem into a problem in a fixed domain. We perform the change of variables

r'=r/(Ro+ f(,¢), (5.1

under which the original problem is reduced to a problem in a disc {r’ < 1}. For simplicity, we shall
still use r for the new variable (instead of ') and set

= Rt 7@ P

where

[O,8) = &%), (5.2)

j=1
and

2 19 1 92 19
;C(D):m‘F Joo 1

ror  r2902 Ro+ fror
2fs 1 92 2f2 18 ;9
Ro+ frodor  (Ro+ f)2ror  (Ro+ f)?ar?

(5.3)
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Then, in the new coordinates, the system becomes
LD = Xy<1y(Ro + f)*w  in {r < oo}, (5.4)
L(D)u = (Ry + f)zu in{r <1}, (5.5)

with the boundary conditions

u=~0 onr =1, (5.6)
(1] = [a—“} =0 onr=1, (5.7)
or
2
Ou (Ro+ /) =0 onr=1l. (5.8)

ar R+ 2+ [V

As before, we seek solutions of the form

o0
w=uo(r)+ Y eluj(r.0), (5.9)
j=1
0 .
= po(r) + el 6), (5.10)
j=1
0 .
f(0.8)=Ro+ecoslt + > &), (5.11)
=2
o0 .
B=Po+ ) &'p). (5.12)
Jj=1
The zeroth-order solution in the new variables is given by
Io(Ror)
W for r<1
o = { Ko 1( 0)0 0 , (5.13)
logr + —— for r>1
s Ro11(Ro)
1 1
ug(r) = / I (Ro&) d& for r <1, (5.14)
1 (Ro) Jr
where By = 1/Ry. Clearly
0 I (R 1
o _NIiRor) 1 =) s (5.15)
or 11 (Ro) r
d I (R
duo _ _BRor) sy 1) (5.16)
or 11 (Ro)

Substituting (5.2) and (5.9)—(5.12) into the system (5.4), (5.5), (5.8) we find that
(Uns Un, An, Br) satisfy the following system:

1 1 oo .
Apy — X{r<1}(R2Mn + 2R o) — E)\n,(?@;v = Fln(r, 0) n Rz, 5.17)
1 1 du .
Aty + (Rt + 2Rhnpto) = hngo~ = = F'(r0)  in{r <1}, (5.18)
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where R = Ry = Ry, with the boundary conditions

9
[Mn]z[ “"}:0 onr=1, (5.19)
or
u, =0 onr =1, (5.20)
duy 1 3n
S BR+ —hy=FM©®)  onr=l. (5.21)
ar R

The FJ" depend only on the w,,, un, Ay, Bm form < n.

By reversing the mapping
r

r> —-—
Ro+ f(0,¢)

and using the results of Section 4 we can deduce that the system (5.17)—(5.21) has a solution which
is even in 6.

In the next section we prove general lemmas which will enable us (in Section 7) to derive bounds
for the system (5.17)—(5.21) that ensure convergence of the power series (5.9)—(5.12).

6. Fundamental lemmas

We introduce the norm

9*N
962

9ZN
ar?

1

r

BzN' 1

N = 1N+ ~|2Y | +
HE(BY) = r|or arag| 12

L%(B1)

where B is the unit ball in R?. This rather unusual norm is related to the form of the operators in
(5.8), (5.9), and will be very useful. It is easily seen that

”N”HZ(B]) < C”N”H}(Bl)- (6.1)

As proved in [5], if N = 0 on d B| and

21 2

Ncosfdo = Nsin6do =0,
0 0

then also
INI 28 < CINIB28))- (6.2)

The condition N = 0 on d B; may actually be dropped by applying the last inequality to N — Ny
where ANy = 0in By, No = N on 9 By, and then estimating ”NOHHE(BI) using the expansion of Ny
into a series } , yy amr"™ e’

Consider the system for M = M (r,0), U = U(r, 0), A = A(0):

1 10
AM = X<} (R*M + 2R Apo) = Z Aoo~—> = F'(r.6)  inE2, (63)
r r
5 1 1 duyg 5 .
AU + (R°M 4+ 2R A o) — EAOG_B— = F*(r,0) in{r < 1}, (6.4)
r r
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with the boundary conditions

M
[M] = |:—] =0 onr =1, (6.5)
ar
U=0 onr =1, (6.6)
AU 1
— +BR+—-A=F@®) onr=1, 6.7)
ar R

where $ is a given real number.

REMARK 6.1 (Relation to bifurcation theory.) As in general bifurcation theory, let us write

u=uo(r)+ e,
w=po(r) + e,
f:Ro—i-sX (X:cosl@—i—sxl)

B=po+eB

and split the system (5.4)—(5.8) analogously to (1.14), (1.15). We write the analogue of (1.14) in
the form

nu,p)=F (6.8)

where U = (u, ﬁ,i); F actually depends on U. The implicit function theorem requires the
invertibility of (6.8) in certain Banach spaces. As a step toward establishing this fact, we need to
prove that, for any F in a suitable Banach space B there is a unique properly normalized solution
U of (6.8) in a Banach space B;, and

1Ullg, < ClIF5,. (6.9)

The Banach space B1, in our case, turns out to be very complicated. It includes norms such as (6.12)
below and corresponding norms of 6-derivatives to all orders with appropriate weights. For clarity,
we shall state (in this section) the estimate (6.9) just for the norm (6.12). The class of functions F
is described in Lemma 6.4, and consists of a linear combination of several subspaces of functions,
dealt with separately in Lemmas 6.1-6.3. ~

With Lemma 6.4 at hand we shall proceed in Section 7 to invert the problem (6.8) (for F
which is a nonlinear function of U). This inversion, however, is not straightforward. It requires a
compatibility result (Lemma 7.1). It also requires a delicate examination of the coefficients of 8, as
they appear in the equations that determine u, 1, n+1, Ant1-

The analysis of Section 7 is written in the form of inductive estimates on u,, iy, fu, Bu—1 and
all their 6-derivatives. The end result could probably be formulated as a rather complicated analytic
implicit function theorem (involving the aggregate {u,, un, fu, Bu—1:n = 1,2,3,...}, but such a
formulation seems less useful than the more direct approach of the inductive estimates. The final
conclusion is that there exists an analytic branch of solutions in the transformed variables. The
authors are not aware of any analytic implicit function theorem in Banach spaces which applies to
the present problem.
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LEMMA 6.1 Set R = Ry = Ry and let F/ be even functions of 6 such that F! € LZ(R?), F? ¢
L*(By), F* € H'?(3B)),

2 2
/ Fl(r,0)cosmb do =0, / F2(r,0) cosm0 do = 0,
0 0 (6.10)

2
/ F3@)cosmbdd =0  form = 1,1,
0
and, forr > 1,

1 1
F'(r,0) = = F°©0) + S F''(r,0),
r r
o (6.11)
/ F'%0)do =0, IFM ) 2R\ s,) < oo
0
Set
NFI = F 28, + 1F 208, + 1F M 2@y + 1F2 12y + 1 L g2@s,)- (6.12)
Then there exists a unique solution (M, U, A) of (6.3)—(6.7), even in 6, such that

2 2
M(r,0)cosm6do =0, / U(r,0)cosm6do =0,
0 0
o (6.13)
A@)cosmbdo =0 form=1,1,
0
and the following estimates hold:
M — My| + 13(M — My) N 1M 92(M — M) N 19*M
0 r ar r 060 ar? r draf L2(B))
2 I (R)
+IIM+U - C20||H2(Bl) + 114+ BR ||H3/2(2?B|) +|C20 — BR IZ(R) =1 < CIIFII,
1
(6.14)
and
Sf|tam| |8°M| |13*M
L — |+ = < ClIFII, (6.15)
r or ar r droo LZ(RZ\Bl)
where Cypg is a constant,
Moy = MV )+ MP () forr < 1, (6.16)
and
Ao [ Ip(R I (R
MOy = 20 o(Rr)  rli(Rr) 7 6.17)
R | Ip(R) I (R
Io(Rr)
(1 0
M =C , 6.18
o (1) 207 ®) (6.18)
1 2
Ay = —/ A6)do,
2 0

and C is a constant independent of .
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We recall that the norms H* for k which is not as integer can be defined either by the Fourier
transform, or by interpolation [1].

It is worth pointing out that the first term on the left-hand side of (6.14) is not the H,2 norm of
M — My, as the pure second-order 6 derivative is missing. Note, also, that on the left-hand side of
(6.15) there is a weight r2 inside the L2-norm; this is enabled by the factor 1/ r2in (6.11).

REMARK 6.2 It may look rather surprising that A + SR? has one more derivative than F3, since
this is not apparent from the boundary condition (6.7). The reason for this gain of one derivative is
roughly the following: equation (6.3) suggests that the regularity of M is the same as the regularity
of A. Since M + U satisfies a ‘nice’ Poisson equation, dU /dr is ‘likely’ to have the same regularity
as IM/dr atr = 1, 1i.e. as Ag. Thus (6.7) is in some sense a pseudo-differential operator of the first
order for A, and thus should have one more derivative than F>.

Proof. By the assumptions on the F/ we can write

Flrn@)= Y Fi()cosmp,  j=1.2,
m#l,m#l

F3 @)= Y_ F,cosmo.
m#1l,m#l

Furthermore, for r > 1,
1 1 10 11
F,@r) = r_2(F’" + F, (),

where

1 2
ElN = —/ F'%0)cosmodod  iftm>2, F,°=0,
T Jo
1 2
Fllor) = ;/O F''(r,0) cos m6 do it m>2, (6.19)

1 2
F'oy=— [ F"r0)d
0 2 0 ’ .

In view of (6.13) the solution A, M, U must have the form

A= )" Aycosmd, (6.20)
m#£1,m#l
M = Z M, (r) cos m0, 6.21)
m#l,m#l
U= Y Un(r)cosmo. 6.22)
m#l,m#l
Then (M,,, Uy, Ay) satisfy
1 2 1 19
My, + ~M;, — sz — X <1y (R* My + 2R Ay p0) + mz/lm ;‘0 Fl inR%L  (6.23)
r r
1 m? 1, 1auo )
u,+-U, — zUm—i—(RM + 2R A, o) + m/l e =F, for r <1, (6.24)
r r
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with the boundary conditions

oM,
[M,,,]:[ ’"}:o on r=1, (6.25)
or
U,=0 on r=1, (6.26)
aU, 1
8—m + EAm + BRS0 = F,f; on r=1. (6.27)
-

The general solution of (6.23) can be written in the form

My =MD +MP + M, (6.28)

where M,;l) corresponds to the general homogeneous solution, namely

M — {C]mlm(Rr) for r<1 6.29)

Copr—™ for r>1.

M,Sf) corresponds to an inhomogeneous solution involving F,}l (r), and M,(,,3) corresponds to an
inhomogeneous solution involving A,. Writing M,(nz) = gn(r)ln(Rr) for r < 1 and M,(nz) =
gm(r)r~™ for r > 1, we derive a first-order ODE for g/, (r) which can be readily solved by
integration. This leads to

1 s
d
—Im(Rr)/ %/ e (RT)F) (7) de for <1
M — r SLp(Rs) Jo (6.30)
m 1 r ) : 00 F](T) .
——/s”k ds/ 1 dr for r > 1.
yim 1 P .L-mfl

Finally, recalling (5.13) and (5.15), a solution M,g? ) is obtained by replacing, in (6.30), F”ll (r) by

A m?
ZIO(R}’) — R—I] (Rr) for r < 1,
r

11(1§)
1
—%—2/1,” for r > 1.
r
This yields, forr > 1,
A r 0 2 A 1
MO = _'"f s2m—1ds/ 2 _dr = —’”<1 - —> for m > 2,
o J s Rt R rm (6.31)

M (r) =0.

To compute M,gf) (r) for r < 1, we use Theorem A.3:

Ap In(Rr) (1 d Rs 1
M) == 11((Rr)) e (SRS)/O = In@{m* 1) = 20h()} dr
_ Aw In(Rr) ' Rs

"2 (R) (R
SR LB ) PRey | ks R mRS)

— [2(Rs) I (Rs) — 11(RS)1m+1(RS)]} ds,
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so that
A_m Im (Rr) B
R L(R)

L) _ o) _ 2
1 (r) 5 (r) r’

1
B, (r) =[ [1(Rs) {m - (Rs)[IO(RS) - I’”“(RS)]}ds it m>2. (6.33)

MO (r) = o (1) for m > 2, (6.32)

where, in view of the relations

In(Rs) Ii(Rs)  In(Rs)

The same formula is valid for m = 0 with

Bo(r) = — /1 ds “ Erﬂ(r)dr =— /1 L(r)z[ﬂ(r) — I} (0] ”
) siBRsy Jo RO ~ ). Rsi2(Rs) 0 R

1 2 1
= —/ (Rs)|:1 — Ilz(Rs)] ds = —s h1(Rs)
. I2(Rs) Io(Rs)

-
or
_Ii(R) rll(RV)

Io(R) ~ Io(Rr)
The second and third equalities above can be verified by differentiating the right-hand sides and
using the relations (x/1(x))" = xIo(x), I(x) = I1(x). In particular, we conclude that (6.17) is
valid.

We next add equations (6.23) and (6.24) to get

By(r) =

(6.34)

" 1 / m2 1 2
which leads to

1 K
ds
Up =—M, + C3pr™ — r”’/ yoE fo " E) (v) + Fa(v)]dr. (6.35)
r

We divide the rest of the proof of the lemma into six steps.

Step 1. Solving the system for (C1,,, Com, C3ms A/ R).

Substituting the expressions for M,,, U, from (6.28), (6.35) into the boundary conditions
(6.25)—(6.27), we find, after using the relation (A.5), that

CimIm(R) = Copm, (636)

CimRI' (R) + ! /l t1,(RT)FL(7)dr + A’”[ + R<IO(R) I’”“(R))}
miL,, m m —|m -
: I.(R) Jo R L(R)  In(R)
o) 1
— mCo 4 2y / Fn® 4o (6.37)
R 1 ‘L'm_1
Con = Capy, (6.38)

1 A
mCsy +f " FL (o) + F2(0)]de + 7’” + 8moBR
0

A © Fl(r)
= —mCopm + %m - /1 r’i_l dr + F,fl. (6.39)
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Using (6.36) and (6.38) to eliminate Cy,, and C3,,, we obtain a system of equations for Cy,, and
Ay /R which, after using (A.3), takes the form:

c Rly—1(R) Ay (IO(R) Im—l(R))
m———m— + —R -
I (R) R 11 (R) I (R)
__[CERO Lt |
= —/1 ) dr — Im(R)/O I, (RT)F, (7)dr, (6.40)

A
Can2m + —2 (1 = m) = Fyy = 5,08 R
1 o) Fl
_f "HEL (1) + F2(r)] dr — / ’fn(fl) dr. (6.41)
1 T

0

Since R = Ry, the determinant of the coefficients matrix of (6.40), (6.41) is

In1(R) _, T0(R)
In(R) I1(R)

R |:(m +1) i| #0 by Theorem A.2,

and, consequently, the system (6.23)—(6.27) has a unique solution (Cy,,, Copy, Cap, A/ R).

REMARK 6.3 If m = 0 then the quantity
A_[m +R(10<R> ~ Im_1<R>)}
R L(R)  In(R)

in (6.37) (which is the expression for BM,(,,3) /or at r = R) should be replaced by the expression
By(1)Io(R)/11(R), which is equal to

@R<10(R) B 11(R)>
R \L({R) I(R))

This implies that, in (6.40), if m = O then I,,_1(R)/I,(R) should be replaced by 11 (R)/Ip(R).

Step 2. Estimating || A + BRI y3/2(3,)-
By (A.2), I,,(R)/I,—1(R) < R/2m — 0 as m — oo. Hence by (A.5),

Lioit(R) _ Luwi(R)  2m 2m
= + -~ — for large m,
In(R) In(R) R R

so that T}, ~ 2m? for m large. It is also clear from (A.4) that R}, (R)/I,(R) ~ m, and from (A.6)
that

In(Rv) _
In(R)

™ uniformly in 7, 0<t<l. (6.42)
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Using these relations in (6.40), (6.41), we find that form > 2, m # [,

Fl V(R
( +|sz|)<6”f () dr‘+ /0 Im((Rt))F,},(t)rdt

+|F3,I+‘/ T (FL(v) + F2(r)rdt

0
o0 12, pl 0 gr \1/2

<C / [F,(T)]*Tdr /z2m+1dr+/ _— (6.43)
0 0 1 -,:2m—l

1/2 1 1/2
+C|F |+c<[ [F2(0))t dt) </ rzm'Hdr)
0

<i(||F1|| + P2 )+ CIF;)
S 2 W2 ®?) mIlL2(By) ml:

Consider now the case m = 0. By (6.19),

oo 1 2 00 Fll(‘[ 9)
Fl(r)d — —— " drdg| < C|IF" .
‘/; T 0(1') T 27[/0 /1\ . T ‘ || ”Lz(Rz\Bl)

Recall also that M 3 s computed from (6.20), which means that in (6 40) we replace the quantity

Iy,—1(R)/I,,(R) by I1(R)/Io(R) (see Remark 6.3). Solving (6.41) for 0 + B and then substituting
this into (6.40) and observing that

c RI, BR <10 11) Rll[ ﬁR(ﬂ 1>]
20 Iy L Iy Iy 20 I1

we get
R|+|C R I (R) 1)< cF} Fl F? F>
—+/3 20— B 2w Y|S Fg 2y + 1E 2 w2\sy) + 1 Fo 1l L2,y + [F5D-
1
(6.44)
The estimates (6.43) imply that
Y omAalF < C [Z (IEn 1 2y + 1 Fll725,) + D mIFal® 1 (6.45)
m#l mz
and, together with (6.44),
1A = Aoll 3oy < CAF 2@y + 1F I p2sy) + 1F Igs,),
Ao 3R
4 BR|+|Co — ﬁR( -1 (6.46)
’ R (R

< CUF N2,y + IF M 2@as,) + 1F2 128, + 1F 1 m28,)-

Step 3. Estimating M1,
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For the regionr > 1,ifm > 2,

00 9 2 ) 92 2
mz‘/l I:rEM,S)(r)} rdr—}—/l [rzmM,(nl)(r)} rdr

o0
< Cm*|Co? / rrdr < CmlFpP + CUI o, + 1Falltap ), (6.47)
1
which implies the bound
||rM ”LZ(RZ\Bl) + ||rM ro ||L2 RZ\BI) + ||r Mrr ||L2 RZ\Bl)
5 C(”F ”LZ(RZ) + ||F ||L2(Bl)) + C”F ||Hl/2(aBl)- (6.48)

Next we consider a bound on MY for r < 1. Since Cy,,, = Com/1n(R), we have, by (6.29) and
(6.42),

i "1 (Lu(Rr)\?
4 (1) 712 4 2 m
m /0 r_4[Mm M rdr < m™|Cypl /0 pr ( Im(R)) rdr

1
< Cm*|Cop? / P dr < CmlFpl 4 CUIF, 12 gy + 1 Flla )0
0

if m > 2, where the last inequality follows by (6.43). Also, by (A.3)—(A.5) we easily verify that

In (1)

d
‘_Im(r) <Cm
ar

d 2 L (1)
, ‘3210’ Cm? 2

so that

) 1 1 P " 1 32 m 2
m /0 r2|:3 M, (r)] rdr+/ I:mMm (r):| rdr

I (Rr)
< Cm*|Com? / (1 (R)) rdr < CmIFn31|2+C(||F,}1||i2(R2)+||F;i||i2(31))’

if m > 2. Thus, altogether,

1
MO — M O 2es,y < CUF 28y + 1F 20, + 1F M 1 2@208,)
+ 1 F2 N 208y + 1P L 120my)- (6.49)

Step 4. Estimating M ®.
Forr < 1, M® = M (r) cos m# satisfies

AMP —R*MP =F' B, MP =0  ondB.
By elliptic L? estimates, | M| y25,) < C[|F']l 2(p,, so that, by (6.1)

IMP 28,y < CIF N 125, (6.50)
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To estimate M@ (r, ) in r > 1, we use (6.30) and (6.19). We can then write M@ = M@0
M@,

M. 0) =" MI(r) cosmb,
MY, 0) = ZM,Efl)(r)cos me,

where
FlO FlO 1
20 2 1 .
M151 )(r)___f " / m+1 __W(l_r—m> if m>2’
M7 =0,
Fll(‘l,')
1) _ 2m—1
e i =
Hence

2 [0 . 00 2 97 0) 2 C 102 10,2
m /1 (rEMm (r)) rdr+/] (r mMm (”)) rdr§%|Fm| S CIE, T,

and this allows us to deduce that
I M3 L2 g2y, + Irm G l2@2yg + 1P2MGO I 2@y 8y) < CIF Pl 28, (6.51)

Next, by direct computation (m = 0 is included in the computation)

F”(‘L’) o0 Fll(.L.)
20 2m—1 m—1 m
M r) = m-H/ / rm+1 -r /r rm+1 dr,

m@m + 1) - 1/ F”(r) rm72/°° F,})(z)d N El(r)

ym+2 m+l1 ¢+l r2

M(21)( )= —

Therefore, for all m > 0,

‘(m+1)riM,<n21>(r) +|r? 2M<2”(r)
11 oo 11

. {m(m+1)/ m— 1/ | Fy ilﬂd +(m+1),,m/ wdfﬂml(m}.
m r T

We proceed to estimate the terms on the right-hand side by the method used in [5: Lemma 8.1]. We

can write
m(m+ 1) §2m—1 *© |F“(T)|
p .L—m+l

1 o) Fl] min(r,t)
_ I’I’l(m + ) / | mﬂJ(:)' s2m71ds dr
T’ 1
cmn A D[R @I R @l
S m ot om pooTm

rm+l ’

r 11
< (mr: Uf |F,;,1(r)|rm—1dr+(m+1)r’"/ Fn @1, (6.52)
1 r
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(notice that the left-hand side of the last inequality is 0 when m = 0) so that, for all m > 0,

8r2
Fll
<c{rﬂm/ |Fn111(t)|r”“1dt+(m+1)rm/ | (I)ld +|F“()|}
1 r

= C(Qim + Qam + |ELL (). (6.53)

2
‘(m + l)r M(ZI)(r) M,(nﬂ)(r)‘

It remains to estimate L2 norms of Q1,, and Qo,y,. Substituting T = r& into the integrand of 9y,

we get
00 1/2
[ /1 |sz(r)|2rdr}
00 00 Fll 2 1/2
=(m+ 1)|:/; r2m</; 7rmflgfilrd§> rdri|
Fll 1/2
=oen [7( [ ) v

00 0o 1/2 de
<(m+1) / ( / |FIN ey ?r dr) (by Minkowski’s inequality)

;;:m—&-l

1/2 d&
(m—l—l)/ (/ F”(r)|2rdr) g =T/

1/2
g(/ |F,},1(r)|2rdr) )
1

Similarly, for m > 2 (notice that Q19 = 0),

e} 1/2 © 1 1 2 1/2
[ [ 10w dr} =m[ / m( / F#(ré)rm—‘s'"—lrds) rdr]
1 1T 1/r
) 1 2 1/2
:m[/ </ Fnlf(ré)ém_ld§> rdr:|
1 1/r

1 oo 1/2
m f < / |FL (r§)|2X{,§>1}rdr> gm~1ds  (by Minkowski’s inequality)
0 1

1 o 1/2 m oo 172
=m/ (/ |F,,111(r)|2rdr> Em2dE < < |Fnl11(r)|21:dr) )
0 1

-1
Substituting these estimates into (6.53), we obtain, for all m > 0,

e} o0 2
/ |:(m + Dr— M(21)(r):| rdr+ f [ M(Zl)(r) rdr < |F,},1 (7)|?t dr.
1 1
(6.54)

N

This implies that

Ir MV 2 @25,y + I M, IILz(Rz\Bl)-I-Hr MGV 2@apy < CIF M 2@ap,)-  (655)



172 A. FRIEDMAN, B. HU, & J. J. L. VELAZQUEZ

Combining this inequality with (6.51), we get

2
||”Mr(2)||L2(R2\Bl) + ||”Mr(9)||L2(R2\B]) + ||”2Mr(3)||L2(R2\31)
< CUF N 20m,) + 1P 228, (6.56)

Step 5. Estimating M3,
Using (6.31) we see that, for r > 1, the term with m = 0 disappears, whereas if m > 2,

00 P 2 00 32 2
m2/ |:ra—M,$l3)(r)i| rdr~|—/ |:r2—M,(n3)(r)i| rdr < cm?
1 r 1

2
Am

ar?

Therefore, by (6.45),

3
I M 2@ s,y + M 2 @es) + 1P M 2@,

< C(IF 2@y + 1 F2 28y + 1P 12 m,)- (6.57)
Forr <1,
A Ln(Rr)
MBIy =2 2 B,(r).
m () R IR m (1)

Each M,(n3) is a power series in » which does not contain a first-order term. Consequently,

3) 22703
10M 0°M [ A
3
<|M,&1)|+‘; B;H Brgn )éCTm for r <1,
for each m > 0 (C depends on m). For m large, since Rs I’;‘;égg) = O(%) (by (A.6)), we have
Al 1P\ C|A ClA
|M,,(13)|<Cm| m|/ r sds — | m|(r2_rm)< | m|r2.
R J, \s R R
Next,
0 o) Am / ;
—M, = (RIL,(Rr)Bp(r) + In(Rr)B,,(r))

ar "™ T RIIR)
m

~ RL(R)

{RI,;l(Rr)Bm(r) + 11(Rr)<—m +Rr|:10(Rr) _ Im+1(Rr)j|>}.

I (Rr) I,(Rr)
Using the relations

@) m (RO m B
L@y - 'R Lk = & TOW Bain(Rr) =0,

which follow by(A.6), we find that

m
o7 M RI,(R) < — 7Im(Rr)Bm(r) —mI1(Rr) + O(l))

Ay m2 1rm1Rd ok o .
_Rh(R)(T/, o [1(Rs) ds —m I (Rr) + <>) (by (6.33),
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so that, by integration by parts,

) A 2 1 .m—1 2
—MP =" ( m / ! — RI{(Rs)ds — " LRy 11(Rr)+0(1)>.
- m—1 m—1

ar " RIL(R)\m—1 sm
Thus 5 A
‘a—rM,(,?) < C%(mrm_l +1).

Finally, by a similar (but longer) computation, we get the bound

A
| ;”' Mm% ™2 4+ 1).

’—M(%)

It follows that, uniformly in m,

2

1 2
(m+1)3/ (MG (M1Prdr + (m + 1)2 / [ <3>(r)] rdr+/ [%MS)(;’)} rdr
r

An [?
<Cm+1)3 |2
(m+1) R
Hence
MO M(3)|Jr 19M® — M(3)) 19M©
or r 00
BZ(MG) _ (()3)) 192M®
- <CIA-4 . 6.58
ar? r 0rdf ) L2(B)) ” oll sy (09

Recall that the right-hand side was already estimated in (6.46).
Step 6. Estimating M + U.
By (6.35),
My, + Uy = Cappt™ — " Py,

where r™P,, can be estimated by elliptic estimates and (6.2) in the same way as M,(,,z) inr < 1.
Using also the fact that Co,, = C3,, and the bound (6.43), we conclude that

M+ U — Cooll g2(p,)

is bounded by the right-hand side of (6.14).

Collecting (6.44), (6.46), (6.49), (6.50) and (6.58), the proof of (6.14) is complete, and
collecting (6.47), (6.48), (6.56) and (6.57), the proof of (6.15) also follows.

Uniqueness is a by-product of the proof. Actually, for uniqueness we need only to require that
the solution is even in @, that it satisfies (6.13), and that the left-hand sides of (6.14) and (6.15) are
finite. ([

In estimating the derivatives of w,, u,, A, inductively from the system (5.17)—(5.21), we need to
have good enough estimates on the terms which appear in the F/" so that we can apply Lemma 6.1.
But some of the terms in F1*, F2" involve 892Am for m < n, whereas we only have H 3/2 estimates
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on the A,,s. This means that the assumption made in Lemma 6.1 that F 1 g2 belong to L? is too
restrictive for estimating solutions corresponding to the right-hand side terms of F!, F? which
involve the Bezkm. Fortunately, these terms have a very special structure, to which the next lemma
can be applied.

LEMMA 6.2 Suppose that F!, F? are even functions of 6 such that (6.10) holds and
1 9 1
F'(r,0) = @G (r, 0) for r<l,

0 0 0
Fl(r,e)zﬁGl(r,9)+—<&) for r >1,

36\ r? (6.59)

0
F(r,0) = %Gz(r, 0) for r <1,
F3(6) =0, g =0,

where G1, G2, g are odd functions in # which do not contain modes 1 and / terms, with
J1(G) =Gl 2,y + G2y + 177G I 2@y + 1P G 22\ 8)

+1G? I 125, + 17 G2l 128,y < 00, (6.60)
L (G) =G (1—, ')||H1/2(331) +11G1 (14, ')||Hl/2(aB,) + ||g||H1/2(aBI) < Q.

Then there exists a unique solution (M, A, U) of (6.3)—(6.7) which is even in 0 and satisfies (6.13)
and the following inequalities:

1Al + | M]] + LOM + el + Lo
H32(3By) L*(By) r or or? rorab |/ |2,
19(M +U) 32(M + U) 19%(M +U) (6.61)
M+U - ~ 9r30
+ 1M+ Ullp2p, + H <'r ar ‘ + 9r2 r o 9rao L2(By)
< C(J1(G) + 1 (G)),
S(|1aM M 19°M
L2127 oM Z
r or or2 rordl |/ 2w\ p))
< C(J1(G) + D(G)). (6.62)

REMARK 6.4 It would appear more consistent with the statement of Lemma 6.1 to replace G' (r, 6)
by G!(r, 0)/r* for r > 1, and similarly change

21 1
"Gl 2w\, to G l2w2\B,) etc
However, the present notation is more convenient for the subsequent applications of the lemma.

Proof. Proceeding as in the proof of Lemma 6.1, we can solve M D MDD MO M+ U, A as
before. Since F!, F? are no longer in L2, we are forced to estimate the integrals in (6.43) in a
different way. Since F> = 0, = 0, mode 0 terms also do not appear; by (6.10) also no modes 1
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and [/ appear in the solution, and thus we need to consider only modes m > 2, m # [. In particular,
My(r) =0, M(g3)(r) = 0 and therefore Cyy = 0.

Step 1. Estimate for M.

Forr > 1,

1 2
El(r) = ;/0 F(r,0) cosmo

_ 2 1
— (G (r,0) + &> sinm0df = —m |:G,1n(r) + —zgm], (6.63)
T 0 r
so that, if m > 3,
e
‘—F <1+>+—2f "L Ee)dr
m 0 2
= m[G (1+)+8m]—f2 r m<5Gm(r)—r—3gm)dr
o[ 5 2 1/2 00 12
<3|Grln(1+)+gm|+3|:</ |:r8_Gm(r)i| rdr) +2|gn1|]<f r_zmrdr>
1 r 1
6 0
<3G, (10| + 91l + —75 =G (1) , (6.64)
r L2(R?\By)
whereas if m = 2,
X EL)
1 rm_l ||F2 ||L2(R2\Bl) 2(”G (”)”LZ (R2\By) + 1g2). (6.65)

Similarly, forallr < 1,m > 2,

1
‘ f In(RD) 1) '
0 Im(R)

I (Rr) YT Lu(RT) 9
Fl(1-) - rdt | —F'(r)dr
/ Ly (R) fo </0 I, (R) >3r "

C 1
< —|F,L(1—)|+—/ e
m m Jo

0 1
—F,(r)|dr

ar

0 1
r—G,,(r) (6.66)
ar

m'/2 L2(By)

We can estimate fol " (Fnl, (r) + F,fl (7))t dr in the same manner. Substituting these estimates into
the first inequality in (6.43) and recalling that 3 = 0, we get

(
m
R

+ |c2m|) <C(IGLUD)] + Igml)
c (6.67)
+ ml/2

+
L2(R2\By)

0
r—Gp,(r)

r

0
ra—er(r)

L%(B1) }
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Using this estimate (instead of (6.43)), we can then follow the proof of (6.45)—(6.49) and derive the

bounds

1Al g32a8,) < CUIPGHI 28,y + IFGHI2@®2 8,y + 1G A+ ) g1208,)
HIG A= I yr@s,) + gl gi2ws,)
1
lr M0 2oy gy + ”rM}EG)”LZ(RZ\Bl) + 1M 2@\ gy
< C(IIrGHig2es,) + PGl 2@, + 1G A+ M g2@s,)
+1G A= M gr@s,y + I8l g2ws,))-
and

IMP N g2s,) <C(IrGH 28, + G 2@ 5, + 1G (L ) 1238,
+ ||g||Hl/2(331)).

Step 2. Estimate for M®.
Let W be the solution of

AW — R*W =G'(r,6) in B, W=0 ondB.

Then

By elliptic estimates and (6.2),
IWlg28,) < CUIW I g2s,) < CIGl2eg,)-
A direct computation shows that the function ¢(r, 8) = r W, satisfies
Ap — R*p =rG! +2w,, + %W, + %Wee =G in By,
¢ =G'(1,0) on 0B,
and, by (6.2) and (6.72),
1611228,y < CUG 1128,y + 171G} I 12(8,)-
Therefore, by L? elliptic estimates for the Neumann boundary value problem and by (6.2),

CllrWell g2y = Cliell m2(sy)

||rWr||Hr2(31) <
< CUIG 28,y + PG 2y + 1G A=, Il 1258,

(6.68)

(6.69)

(6.70)

(6.71)

(6.72)

(6.73)
(6.74)

(6.75)
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One can readily check that

1

1 2
1M 2,y + 1M 128,y + H -M? + —Mr(e)
r L%(B)) r L%(B))
1 1 1 1
SCL|r|l =We —Wr)rg + || =W — (rWi)eo
r L2(By) r L2(By) r L2(By) r L2(By)
< CUG 2, + 1rGHI2m,) + 1G A= Il g12@8,)- (6.76)

where the second inequality is a consequence of (6.72) and (6.75).
Next we estimate M ® for r > 1. We use the formula (6.30), as before. Let

1
Elor) = r—zF,}f + FM),

1 2 _ 2
ol —— f g () cosmodo = = f g(0)sinmb do = —mg,y, (6.77)
T Jo T Jo

1 2 —-m 2
Elr) = ;/0 G4 (r, 0) cosm d§ = 7/0 G'(r,0)sinmb do = —mG. (r).

We can then write M@ = M@0 + M) where

M (r.0) = > M3 (r) cosmé, M (r.0) =" M3V (r) cosmé,
m>=2 m>=2

1 [e'e) FlO FlO 1
(20) _ 2m—1 s -
Mm (r)= Fm /1 s / .L,m+l m2 (1 rm)’

1 F”(r)
M&Ql)(r)z_r_m‘/; sZm 1/ e

As before, we have

2 oo 9 2 2 * 232 2 2 c 10,2 2
m /1 <r§M,(nO)(r)> rdr+/1 <r men())(r)) rdr < E|Fm°| < Cmlgml?,

so that

and

MO 2 gy + MG 2 gy + 172 MEO N 25y < Cliglmirgs,)-  (6.78)

Next, by direct computation as in the previous lemma,

9 m [T, F“(r) _ F“(r)
a—rM;fl)(r):m—Hf §2m 1/ gy — " 1/ gy dr, (6.79)
N r

ﬁM(Zl)(},)_ mm+ 1) " - 1/ Fal (@

gr2-m rm+2 Tn— om—1

11
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By integration by parts, we obtain, for m > 3,

o0 Fll 2—m 1 [e'e) 9
/ m () dr = = F“(r) + —_ rz_m—Fnlll(t) dr
p

rm—1 m—2 -2 T
m m x5 9
:_m_2 2 mG ()_ 2 _L.Z mEG}n(t)d‘L
g2m—1 F“(t)
P r’” !
__m [T (s)ds—L §2n= 1/ —G 1 () de
m—2J m—2
m d
4[G,ln<1>—r'"+2G,L<r>]+m2_ Z /1 "G (D dr
m g2m=1
- d
— / (‘L') T.

Substituting these equalities into (6.79), (6.80) we find that the O(m®) order terms of rG,ln (r) in
IMEV (r)/9r and O(m") order terms of Gl (r)in 32M2V (r) /3r? cancel out, and we obtain

ol
‘mraM,ffl)(r) +|r a — (21)(r)
<C / o= 1/ 2G| de 4 mr /oo 2| 261 o) de
rm ot ™ r ot "
0
+ = rm+2 = G(0)|dr + =G, () + 117G, (r)|}
r 1

= C(Qim + Qom + Q3 + r—mG},,<1> +1r2GL D).

The same computation as in (6.52) yields the estimate Qp,, < Q2 + Q3. Following the same
procedure as in Lemma 6.1, we obtain

9 2
‘E3EG,1”(7:) tdr. (6.81)

/ [Qom (1)]*r dr + / [Qam(M)]*rdr < C /
1 1 1

Thl]S, f0r m > 3,

C{m[G,‘n(l)]z—i-/ IIZG,ln(t)|2tdr+/ 3
1 1

For m = 2, |F2“(r)| = 2|G%(r)|, and we just have to slightly modify the above proof in order to
derive the same inequality. Summing over m > 2, we deduce that

0 1
—G,(7)

2
T dr}. (6.82)
ot

21
lr MV 2 gvsy) + 1M 2@y + 1P2MED ] 2@ 8))
SCUG A+, Mgir@s, + IFPPG 2@ g, + 177 Gl 2@25,))- (6.83)
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Step 3. Estimate for M),

The estimate for M3 proceeds as in (6.58) with || A — Ag|| ;3,2 replaced by || Al| y3/2.

Step 4. Estimate for M + U.

This is similar to the estimate in Lemma 6.1, but using the technique in Step 2 of this lemma for
estimating M@ inr < 1.

Combining the above estimates, the proof of the lemma is complete. (I

We next consider the case of mode / only, namely
F'(r,0) = F'(r)coslo  for r <1,
1 1
F'(r,0) = 5 F/°cosl6 + = F'" (r) cos 16, for r>1, (6.84)
r r

FX(r,0) = F}(r)coslo  for r <1,  F3@) = F/coslf.

As before, we obtain a linear system of equations for (Cy;, Co;, C3;, A;/R). Since in this case the
determinant of the coefficients matrix of (6.40), (6.41) (with m = [) is zero, this system can be
solved if and only if the following compatibility condition is satisfied:

RI_1(R o pl 1 !
RI-1(R) —/ ’l(? dr — f tI(RT)F) (v) dt
det L1 (R) 1T I (R) Jo 0
! I4+1y 1 2 OOFll(f) .
21, F,3—/ T THEN ) + F (t)}dr—/ ——dr
0 1 T

The solution is unique up to a multiple by a homogeneous solution. Hence, if we impose the
condition A; = O then the solution of (6.40), (6.41) is unique. For later references we state the
following lemma.

LEMMA 6.3 For the data (6.84) (mode /) a solution which is even in 6 exists if and only if

LR [ Fl(©) u ! |
<2l —R )/1 dr + LR /(; tl(RT)F; (t)dt

I (R) 7l-1
L_1(R) 1
+R lIzER) |:Fl3 _/0 HE o) + Flz(t)}dr] _o. 655)

and the solution is uniquely determined by the condition 4; = 0.
The next lemma summarizes Lemmas 6.1-6.3.

LEMMA 6.4 Assume that in (6.3),(6.4), Fi = Fi + Fi + fj, where fj, FJ and fj satisfy the
assumptions of Lemmas 6.1-6.3, respectively, i.e.

(a) IE j' and F/ do not contain modes 1 and [; Fj cgl_ltains mode / only.
(b) F/ satisfies the conditions of Lemma 6.1 and F/ satisfies the conditions of Lemma 6.2.

If the compatibility condition (6.85) is satisfied for the F , then there exists a unique solution
(M, U, A) which is even in 6, satisfies the condition A; = 0 and can be decomposed into a sum of
three parts, satisfying, respectively, the properties asserted in Lemmas 6.1-6.3.

REMARK 6.5 If we differentiate the equations (6.3)—(6.7) in 6, we get an equation which is exactly
the same except that the solutions will be odd in € and we need to work with Fourier sine series. The
conclusion in Lemmas 6.1-6.4 are still valid (with the estimates and the right-hand sides replaced
by their 0-derivative). If we differentiate in 6 a second time, the solutions will become even in 6 and
Lemmas 6.1-6.4 can again be directly applied.
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7. Convergence

In this section we estimate inductively the (u,, u,, Ay, Bn—1). We denote the mode k of F Jn in
(5.17), (5.18), (5.21) by ijn. By Lemma 6.4 the system (5.17)—(5.21) can be uniquely solved for
any mode k, k # . For mode [ the system can be solved if and only if the compatibility condition
(6.85) is satisfied. This condition will take the form AB,_; = F, where F, is determined by the
Ws, Us, g, Bs—1 for s < n and, as the next lemma shows, A # 0 and A is independent of n.

LEMMA 7.1 The expression

- _ Rl R (% R 2 ! o
AzaﬂanZI R I;(R) )/1 -1 dt—‘r[l(R)/o th(RT)F;"(r) dt

1_ (R) n ! n n
R ’IIER) [Fﬁ —/0 UM (2) + F? (r)}dt“ (7.1)

is independent of n and is nonzero.

Proof. The compatibility condition is invariant under the change of variable (5.1). Therefore the
assertion that A # 0 (which is equivalent to the statement that the compatibility condition (6.85)
holds for some choice of 8, 1) follows from Theorem 4.3. We next proceed to derive an expression
for A which, although very complicated, shows that it is independent of n (this fact does not follow
from Theorem 4.3). We begin by writing explicit formulae for F/". Substituting (5.2), (5.9)—(5.12)
into (5.4), (5.5), (5.8), we find that (j1,,, U, An, Bn) = (M, U, A, B) satisfy (6.3)—(6.7) with F/ =
FJ" defined as the " order terms in the following expansion:

19 2 92 29
ZE”F”‘: _Jes +@ o Jo Ko | 290
R+f R)rar R+ 02 " ror

n>1
_ Jfoo Zgnlal/«n_ 2 fo Zg,,lazﬂn
R+f 51 ror R+ f&f rodor
Z (3 Hen 28,“11)
(R+f)2 n>1 r or
— X<y ((2Rf + /DY fzuo), (7.2)
n>1
Sty gy = - S0 0 ) 2 18t )
n>1 R+fn>1 r or R-|-fn>1 r 909r
TP N (Pt ) | 200G+ ) .
(R+ f)2 n>1 ar? r or ’ :
(R+ f)? } 1
— )= e'p [ —R|—-=f (7.4)
;; (; ) [(R+ /)2 + f211/2 R

Con'sider the system for ((t,—1, Un—1, An—1), Whose solution is given in Section 6 (Lemma 6.4)
with F/ = FJ"—1 The solution depends on S,_1 only through its zero mode (see (6.36)—(6.39)
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with 8 = B,—1 and note that §,,08 = 0 if m > 0). We need to find the exphclt dependence of the
FJ" on Bu_1. We therefore first solve the system (6.36)—(6.39) with F, = F." ', m = 0 and
B = Bn,—1. By Remark 6.2, if m = 0 then [,,,_; in (6.37) is replaced by /. Solving (6 40), (6.41)
and (6.36), (6.38), we find

An 1 IBn 1R+ --

2
() _ 1) +
IF(R)

n—1 __ R Ig(R) _ )
o —’3"110(R)<112(R) AR

—1 n—1
C’210 =C310 =:3n—1R<

s

where ‘---’ refers to terms independent of S,_j. Then, from the formula for M = p,_; in
Lemma 6.4 (or actually the special case stated as Lemma 6.1),

ACT1 Io(Rr) 9 A
o1 = Io(R 10 0 B 0
e R T T P8, R
2
_ RIg(Rr) {1% (R IR Bo(r)}
Io(R) | I} (R) 11 (R)
_ RIR)Io(Rr)  Rr
= Ilz(R) R I (Rr) for r <1, (7.5)
d d I2(R) .
aﬁn—_]“”_l = 6)/3”—_1C20 L R(I%(R) — 1) forr > 1 (since Mé3) =0), (7.6)
( tup)) = ——0Ch 1 = R(Ig(R) - 1) forr <1 (7.7)
aﬂn—l Mn—1 n—1) = a,Bn_l 30 — IIZ(R) s .
1 a9 ol 9

= A= Al = _R2 (7.8)
g:Of 8.311—1 " 3/3,,_1 0

Clearly, the px, ux, Ar donot depend on B, if k < n — 1. Since the right-hand sides of (7.6), (7.7)
are constants, we find from

(n— 1) 8fp_y den—!

Fln( ) 8 8”
8:811 1 I’l’ 8,811 188n

that the only nonzero contribution comes from the first term

( oo fee)l@_ Joof  10uo

(the right-hand side of (7.2))

R+ f ror  RR+f)r or’
Hence
9 g gy = A1) 19po drn—1(0)
9Bn—1 RZ r 3r 03B._1

1 12
- —x/{(e)r—2 = M(Q)r—z for r> 1. (7.9)
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Similarly,
9 1 2
——(F"(r,0) + F"'(r,0))
8,Bn—l
1 o 9" . .
= — (the right-hand side of (7.3)) =0 for r < 1. (7.10)
n! 8,3;17] ag" e=0

A direct computation shows that

1 9 9"
_ F3n 0) = —
aIBn—l n! 8,811—1 ae

(the right-hand side of (7.4))
e=0

0
8ﬂn—l

=2) + Bi AN =21(0) — R*B1. (7.11)

Finally, for r < 1,
] I o9 o"
— F"r,0)=— o
0Bn-1 n! 0,1 0e" |
_A(O) 1000 84n—1(6)  A[O)1 B3 dppi
T R2 r dr 9Bn_i R roB,-1 or
dpn— Ohn—1(0 On—1(0
—|:2R)»1(9) Hn—1 n—1(0) L()}

(the right-hand side of (7.2))
0

+ 2R r,0)———= +2A1(0
op, T ARmE T = 2 @no 0T

where the expression in brackets comes from the coefficient of X,y in (7.2). Using (7.6), (7.8)
we get

2 F"(r, 0)
8,31171 '
. p 10uo // 1 0 [ Ip(R)Ip(Rr) r
_ RIy(R)Io(Rr) B Rr 3 2
2R)»1(9)|: Ilz(R) IR Il(RI”)] + 2Ry (r, 0) + 2R o (r)r1(0).
2 2
_ )u](@){l I1(Rr) + l_|:R10(1§)11(Rr) _ Rr]()(Rr)i|
R AT LR
o[ R Io(R)  Rr LR
R|: IIZ(R) (R 11(RV)j| 2R 2 —RII(R) + 2R ,bLo(r)}, (7.12)

where in the last equality we have also used (3.14). Substituting (7.9)—(7.12) into (7.1), we conclude
that

1 2 2
A= (ZZ_RII—I(R>),+ [?;)/ rIg(Rr){l h(Rr) | Z_[RIO(R)Il(Rr) ~ RrIO(Rr):|
! 0

I(R) AT IR ETT 1(R)
RIy(R)Io(Rr) Rr 3l+l I (Rr) 2 } I_1(R)
- - Rl 2 dr —
R[ 2(R) 11(R>I‘(Rr)] R Ruyry TR0 A= R
(7.13)

which is independent of n. O



SYMMETRY-BREAKING BIFURCATION FOR A STEFAN PROBLEM 183

REMARK 7.1 As was already stated before, for the solution (u,, iy, An, Bu—1) constructed by
using Lemmas 6.4, 7.1, the mode / component is not unique, for we can add to it any multiple
of (w1, uy, A1). We shall henceforth fix this multiple uniquely by the condition

2
/ A (B)coslf =0 for n>2. (7.14)
0
This normalization is not necessarily the same as the normalization in Remark 4.2, because the
methods of construction of the solution are different.

We shall say that a linear function space X with norm || || x has the algebra property if, whenever
f, g belong to X, also fg belongs to X and

Ifellx < Cllflixllglx

where C is a constant independent of f, g. In what follows we shall need the algebra property in a
more general sense, whereby g belongs to one space X1, and f belongs to another space, X», and

Ifglx, < Cliglx, I flx,-

In order to estimate the F /" we need to have the algebra property for the various terms in the
FJ/" The spaces L2(B;) or H'/2(By) are not suitable for this purpose. Noticing that the functions
defining F/ in (7.2)—(7.4) have the form g(0)¢(r, 6), it is convenient to work with the norm

WOl = 3 13 %Yl

0<j<m, 0<k<n

where m, n are integers; notice that this definition is a little different from the usual Sobolev norm
since, for example, 1/ factor is not present in the 83 derivative. We shall need on one occasion to
also use the norm

1/2
1 G )32 = 1Y (Ol 10 + 185" (r, Dlly1-

The following estimates are well known (see, for example, [1]).

LEMMA 7.2
18O, Oy gy < lglarayleC. Ollyor g, for k=1, (7.15)
lg@h @ as@oB) < IgIlms@B) 12l HS (9B)) for s>1/2, (7.16)
||§0(1, 9)||Hm+1/2(331) < C||(p(r, 9)”W21,m+l(31) for m 2 O (717)

The first two inequalities provide the algebra properties needed to estimate the F/". These
inequalities are also valid if Bj is replaced by R? \ Bj.
Let Hy, H, B and I" be positive constants > 1 and set

HOHVL—I Bk

E(.k)=K—5—-5 for n>0 k=0 (7.18)
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with the following convention:
H"'=1 if n=0, n*=1 if n=0 k=1 if k=0.

We inductively assume that, for 1 < s < n,

I

1
3% (s — u?(r))‘ + |af (;ar(us - M?(ﬂ))‘

1
+ ag(—ara@us>‘ + |09 (s — M?(r))D . < EG b, (7.19)
r wy! (By)
1 1
r2( O pus| + ag<—a,us> + aé;(—a,a@us)‘ + (0882 s )‘ < E(s, k), (7.20)
r r Wy (R2\By)
k k 1
89 (ms +us)| + 89 ;8r(ﬂs + uy)
1
+ az;(—ara@(us + u))‘ + (3507 (s + uy) )H < E(s, k), (7.21)
r w3 (By)
I (us + B RY) < E(s, k), (7.22)
H52(8B))
|Bs| < T'E(s, 0) (7.23)
where 110 (r) is defined in (6.16)—(6.18) with A0 = Ag = o 02” As(0)do in (6.17), and C5, = Ca

in (6.18) is defined by (6.36)—(6.39) with F/ = FJs:

(7.24)

o M[rli(Rr)  Io(Rr) s To(RD)
BERIT® T @ T T @

Note that (7.23) implies that
3/2
18532200y + BRIy 5, < CEGs. k).

For s = 1, 2, the solutions (us, us, As) are given in terms of the explicit analytic functions and
the estimates (7.19)—(7.23) are valid if we choose Hj to be large enoughand H > 1, I > 1.

We proceed to establish the estimates (7.19)—(7.23) for s = n assuming n > 3 and H, I" large
enough (independent of n).

In proving these estimates we shall use several lemmas which deal with estimating derivatives
of composite functions; these lemmas are stated and proved in Appendix B.

Step 1. Estimating F /"
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We need to estimate F/+" for j =1, 2, 3. To estimate F3" we rewrite (7.4) as

_ Z ng3m

m>1

m (R+ f)? }
= m —_ R —_
(gf P ) [[(R + 2+ A

m (R+f)2 i| 1|: (R+f)2 ]
= m — R — _R—
<an>28 ’ )[[(R+f)2+f92]l/2 TRLRT 2+ /
= ZSle,m -I-Zstz,m. (7.25)

We can write

f

| =

(R +8)? 1 2 i +2)
—“R-f=—24 00 Y g,
2 1 £271)2 J
[(R+&)?2+¢2Y 2R 1<i+j <00
where q;; are constants such that
la;j] < AgA'™/.
Note that [% - R] starts with ¢ order terms and [% —R-—f ] starts with

&2 order terms. Since the terms involving orders >n in the right-hand sides do not appear among the
terms of F/"*, we may replace them by 0 when estimating F/"". By (7.23), |B,—1| < E(n—1,0) <
%E(n, 0). Using also (7.23) and applying (B.11) of Lemma B.4 and Lemma B.1 to the Q; ,, terms,
we obtain

cn
195 Quall oz, <~ B, ). (7.26)
Using (7.22) and applying (B.12) of Lemma B.4 to the O, terms, we also get
)
105 Qa.nll 3233y < — B b, (7.27)
so that
c)
195 F>" |32y < —p— B, k). (7.28)

We next estimate the terms in (7.2) and (7.3) contributing to F'" and F!"" + F>" Forr > 1,
we can write

_ fw  fe\limo S} (3% zaﬂ)_ <_ fo ﬁ)i
( R+f+R>r8r+(R+f)2 o2 Trar )" R+7 R r2 ],
w1l 9
EZE r_zﬁgm(e);
fo

note that ( — =4 %) starts with £2 order terms. Applying (B.12) of Lemma B.4, we obtain

R+f
c()
1058nll wom) <~ B, k). (7.29)
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Similarly,

fee n 1 Oin 2f9 L 182 Pn 92 ,un 28;/,,1
2 <" ror Z>: r a60r (R+f)22

n>1 n>1 r ar

gL e aun 1omwn\ _ _fo Zg,,la%
roor (R—i—f)2 r ar R—l—fn r 000r

+f
|: n>1 >1
Z G L, 9)+Zs K (r, 0).

Using (7.20), (7.22) and Lemmas B.1, B.4, we obtain

c)
39k 1 2qk ~1
I|r 808an||W31(R2\31) + IIr 80 G”|IW21'3/2(R2\B ) < H

_cur
B < ( )E(n k). (7.31)

——E(n, k) (7.30)

2qk
I 80Kn||W01

This completes the estimate for F!” in the region r > 1. The estimate for F!* and F-"* 4 F2"
in the region r < 1 can be carried out in a similar way. Using the equations of w,, u,, A, and the
equations obtained by differentiation k£ + 1 times in 6, we can apply Lemma 6.4 and Remark 6.4 to
conclude that

C
[the left-hand sides of (7.19)—(7.22) for s = n] < %E( k) for k>0. (7.32)

Note that the part of Lemma 6.4 which is based on Lemma 6.2 is used in handling % 8ns % G,ll and
similar terms from F1" in {r > 1} as well as from F” in {r < 1}, whereas the part based on
Lemma 6.1 is used in handling K,, and similar terms from F I in {r > 1}.

Step 2. Estimating B,.

Recall that 8, is determined by equation (6.85) with Flj =F lj ntl for j = 1,2, 3 (only mode [
terms enter into the compatibility condition).

The coefficient for B, in (6.85) is given by (7.13), which is independent of n and # O.
Consequently, B, is estimated by those terms in Fj /"1 which do not depend on B,,. We denote
these terms by F/ e F/ ol _ Fl’ ntl
with

(a) 1?13,n+1.

|g,=0. We need to estimate these terms and we begin



SYMMETRY-BREAKING BIFURCATION FOR A STEFAN PROBLEM 187

By (7.25),
_ Z SmF3m
m>1 Bn=0
= (Z gmﬁm) <Z € ﬂm) >a T (Z € ﬂm) 17 Z aij€' (fo)*
m>=2 1<i+j<oo

1 12 . .
—erz—i_ % Do aE (Y
1<i+j<oo =0

= [P Y P+ D P+ Y Pa Y i, (03

Clearly, the second, third, and the fifth sum are products of at least three series. Thus, by
Lemmas B.1 and B.4, using also the embedding inequality || g||r~ < Clig|lgs fors > 1/2,

c) c)
(P2 nttl + [P3nri| + |7)5,n+1|]ﬁn:0 < ?E(n +1,0) < —E(n 0). (7.34)

Next, by Remark 7.1, the A,,(8) for m > 2 do not contain mode / terms. Therefore, the only term
in Y &™Py , of order &"*! and of mode  is given by B,11(9); hence, | Py 41 lg,=0 = 0.
Finally,

n—1

1
Pant1 = YY) /; 09 An+1—k 09 Ak,
so that, by the inductive assumptions and Lemma B.1,

c
|Paniil S E(+1,0) < CE(n,0). (7.35)

Combining these estimates, we conclude that
~ c(r
|EP 4 Bl < [c + %}E(n 0). (7.36)

(b) j}‘l n+l + fZ n+1

Clearly, F! et + F2 = L ELatl L F2et cos 16 d6.

To estlmate the contrlbutlon from the first term in the right-hand side of (7.3) we multiply by
cos 6 and integrate over 6, 0 < 6 < 2r; in this way we obtain the coefficients of mode / terms.
Next we integrate by parts to reduce the derivative 892 f. We get

2w 2
2 10
R+ f 2 o
0 m2=1

0 = 7 ar

_/2” b nglia(um ) o6 do
o RA+f ] r or

=—J1+ - J3.
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We also expand

= |

1 1 Z =H"
Ref R R R
Now recall that fy is independent of I" (but f depends on I'). As we substitute the expansion of
1/(R + f) into the Ji, we observe that whenever a factor f* appears in a particular term, it comes

in a product of at least three series in ¢, each with no zero-order term. We can therefore apply
Lemma B.1 and the inductive assumptions to get, at 8,, = 0, the bound

co\ e

where C( depends only on Hp. There remain only the terms which do not depend on f and they
come as product of two series. Using the inductive assumption we can bound them, at 8, = 0, by
CE(n, 0). We thus conclude that the coefficient of mode / in £”*! of the first term in the right-hand
side of (7.3) is bounded, at 8, = 0, by

c
C+——=|EMn,0). (7.37)
H
The other terms in the right-hand side of (7.3) can be estimated in a similar manner. Thus
1
~ ~ cr
R w4 B ol ar < [C + %}Em 0). (7.38)
0
© F" My, r > 1
1'?11’”+1 in the region » > 1 can be handled as in (b), except for the first two terms in (7.2), which
give
1 2w 1 ] 2 1
—/ S Y (AR cosl@d@:—/ ~ I G as
7 Jo R+f R)r%*j, 7 Jo R+f R)r?
l 2w
= JoJ_ Gn10 a9

7Rrr )y f+R

We write fy f/(f + R) in the form fg f/R+ - - -, where the *- - -’ refers to terms which are products
of at least three series for which we can apply Lemma B.4 to get an extra 1/H factor. The remaining
term is

l 2 / 2 _
IS im0 do = Joll = JO) 10 a0 +
7Rr?2 Jo R T Rr? Jy R T Rr? Jy

/ 2
fo % sin 6 do,

(7.39)

where fy = % 02” f(0)d6. Since fp is independent of I" and f — fy can be estimated in the L?

norm by the 6 derivatives of f, the coefficient of £”*! cos @ in the first term in the right-hand side
of (7.39), at 8, = 0, is bounded by

C
ZE(0+1.0)=CE®.0).
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To estimate the coefficient of £”T! cos /6 in the second term, note that by (7.14),

2 2

fosinl0do = 8/ )‘/1 (0)sinl6 dO = —mle.
0 0
It follows that this coefficient is equal to
ﬂ
- R2,2 An0

where A, is the zero mode of X,, and, by (7.22), |A,0| < E(n, 0) if B, = 0. Thus, the second term
on the right-hand side of (7.39) does not contribute anything to F; ll’"+l. In summary,

/oo i+l |I’;ll,n+1 (0)|dr < |:C + %}E(n, 0). (7.40)
1

@ F"" o), r < 1.

The estimate for I::I]’”Jr] in r < 1 is the most difficult, since some of the derivatives of w,

involve B,. The terms that arise as the product of three series are treated in a same way as before.
The remaining terms come from

foof Vo | 7 (0o 2000) 2 5 1 Pt
R2 r or R?

ar?2 r or R & rodgor
foo R 7o n 2
—72;8 ;W—ZRJCZ€ Mn = 1o
n>1 n>1
_(fof Yomo S5 (9ro 13m0 _ﬁzgnlazﬂn
R? ol Or R2\ 9r2 r or R r d00r

n>1

- (% anl%)g “2RE Y e — 20

n>1 rodr n>1
= Zele,m + ZemRz,m + Zstlm + ZemR4,m + ngRS”” + Zst&m.

The &"*! terms in the series Y "Ry, and 3" ™R3, are estimated by the inductive assumptions
independently of I". Thus, as before,

[IR2.n411l + ||R3,n+1||]/3n=0 < CE(n,0),

where the norm || - || is defined in (7.37). The series Y ¢™ R, can be treated in a same way as in
part (c):

[ 19

—/ M 22 cos/6 df

T Jo R? o Or

I 1duo (¥ . Ifo 1m0 27 . .
= —=-— 0 0) — 10d0 + ————— 16 do,
Rixr or Jo@Lf(O) — folsin + Rixr or ) £ sin
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where the estimate for the first term is independent of I" whereas the coefficient of £”*! cos /0 from
the second term is zero when we set 8, = 0.
To estimate the coefficient of mode / in R4 ,11]g,=0 We write

tm = [ (7, 0) — 1 ()1 + 1S (7). (7.41)

Then the series corresponding to w, (r, 0) — M% (r) (in Y_ R4, m) can be treated as before, as product
of two series, using Lemma B.1 and inductive assumption; since 9, (itm; — MgJ is independent of ',
we get the bound C E (n, 0). Thus, it remains to estimate the coefficient of " cos 16 in

1au0
_<ﬁ> E 8m_M when ’8’1 — O’
R/, > 7 or

mz

where ,u?n (r) is defined as in (7.24) and the constant C5, is estimated by (6.14) with A = A,,,, M =
Um, U = uy, B = Bm. Again, since f — ei1(0) has no mode [/ terms, the / mode in the coefficient
of &" of the above series is

127 3@\ 10u0 1 aud
7 Jo R r dr Rr Or

and, at 8, = 0, this yields

1 dno @ [rli(Rr)  Io(Rr) . 9 Io(Rr)
Rr R or| Li(R) Io(R) 205, Io(R)

where A, (the zero mode of A,) and C;O are bounded, at 8, = 0, by CE(n, 0) (by Lemma 6.1).
We conclude that

Rgnp1 cosl0 do < CE(n,0).

lgnzo

Consider next Y e™Rs . If we decompose w,, as in (7.41), then the part corresponding to
Um — u% can be treated similarly to (7.39) (with fp replaced by u,, — M%)- Thus, it remains to
estimate the coefficient of £”*! cos 6 in

‘271

“2Rf ) ", at fy=0,
which is equal to —2RpL2 at B, = 0. As before, if 5, = 0, then
Il < C(anol + C5h) < CE(n, 0),

so that
2

Rs.n+1c0s10 d@‘ < CE(n,0).
0

Consider, finally, Y ¢™Rg ;. Writing

2= = fo) +2(f — fo)fo+ f3,
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the terms (f — fo)2 and (f — fo) fo can be treated as before and we obtain the bound C E (n, 0) on
the coefficient of £"11 cos 6. Since f02 is a constant, it has no mode / terms and thus, altogether,

Re6,n+1coslO db < CEM,0).

’ 2
/3" =0

Combining all these estimates, the compatibility condition for 8, yields

148, < [c + %F)}E(n 0), (7.42)

where A was defined in Lemma 7.1, and |Z| >c>0.
Choosing I" and H such that

o) _

1
1, max{l,—}(C+1)<F (7.43)
H c

(for the C(I") that appear in both (7.42) and (7.32)) we conclude that (7.23) holds for s = n and
then, by (7.32), also (7.19)—(7.22) hold for s = n.
This completes the induction proof.

REMARK 7.2 Having proved (7.19)—(7.22) for all s, we get (with I" now ﬁxed) |A?| < CE(s,0)
(from (7.22), (7.23)) and |C3,| < CE(s, 0) (by (6.47) applied with F/ = F/*, B = B, Cyo =
C;O). Then also | ,u?| < CE(s, 0), by (7.25). Consequently (7.19)—(7.22) are valid after deleting
the ug and B, terms from the left-hand sides, and changing H to a larger number in the right-hand
sides, if necessary.

Using Remark 7.2, we conclude with the following theorem.

THEOREM 7.3 There exists a solution of (5.4)—(5.8) of the form (5.2), (5.9)—(5.12) where the
series are convergent for |¢| < &g, for some g9 > 0, and define analytic functions in (0, ) for
le] < &9, 0 < 6 < 2m; the solution is unique under the assumption that it is even in 6, it contains
no mode 1 terms, and

2
/ An (@) coslOdd =0 (n > 2).
0

8. Bifurcation branches of analytic solutions for the original problem

The estimates (7.19)—(7.22) can be extended to include derivatives with respect to r to any order,
namely

HOHn—l Bk
7035 tenlyyo1 (g, < — 53— (K +m)! -5 DoD™,
HOHn—l Bk
70" 85 tn 01 o g,y < ——3— (k +m)l = Do D™ 8.1)
HOHn—l Bk

m am qk m
|l 0. aeunntl(Bl) < T(k+m)!k—2DoD .
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The proof is by induction on m. For m = 1, 2 this was already proved in (7.19), (7.20) (if we
choose D > B). Suppose now that (8.1) is true for all m < j. To prove it for m = j we apply

r Drj_zDg to equations (6.3), (6.4) with M = u,,, U = u,, A = A, and then move all the terms to
the right-hand side, except for r/ D] Dlg Un, to get

i DI Dk, = r' D} > DEF" + Xy <1y D] T DEIR? 1y + 2R 110]

+ %rf D%‘ZG%)D’Q‘“M —r Dﬁ‘zD’g(%Drun> — Dﬂ‘z(rizD{;“M).
From (7.2)—(7.4) we find that the terms in F'!" are of the form to which Lemma B.5 can be applied.
Thus these terms can be estimated in the same way as in Section 7: namely, we consider Dy F In
as a function to which we apply successive r-derivatives and use Lemma B.5 and the induction
assumption on j. Similarly, other terms can be estimated using induction. We remark here that
in the last term, which involves D§+2D{ _zun, we ‘lose’ two @ derivatives, but we ‘gain’ two r-
derivatives; the (k + m)! factor together with the choice D >> B enable us to carry out the induction
for u,, and similarly for u,,.

The estimates in (8.1) show that u is analytic in (x, €) if 0 < |x| < 1, |e]| < g for some gy > 0,
andin 1 < |x|, |e|] < gp and u is analytic in (x, ) if 0 < |x| < 1, |g] < &g, for some ¢gp; recall that
the free boundary is analytic in (0, ¢) if 0 < 6 < 27, |¢| < &p.

These facts allow us to reverse the mapping (5.1) and obtain well defined analytic functions

p(x, &), u(x, &)

and free boundary r = Ry + f (6, ¢) in the original variables, which satisfy the system (1.1)—(1.6)
with f as in (1.8); more precisely,

wh (x, &) is analytic in (x, &) for |x| > Ry + f(8, €), le| < e,
U (x, ¢) is analytic in (x, €) for 0 < |x| < Ros + f (6, &), lel < ep

and these functions can actually be extended analytically into some 8p-neighbourhood of the free
boundary where §j is a positive number independent of ¢; here we use the uniform estimates on the
derivatives in the L°°-norm (which follow by (8.1) and the Sobolev embedding).

It is now easy to extend both ™ and ™ as analytic functions in (x, €) also in a neighbourhood
of x = 0, as in [5]. Indeed, since ;™ is bounded in 0 < |x| < 1/2, we can represent it in the form

G 0
L (x, 6) =f| —(x—y)u—(y,e)dsy—/ Gl =)o) dS,

x|=5 On |x|=5
for0 < |x] <8 (8 < 1/2) where G is a fundamental solution of A — 1. The right-hand side provides
the analytic extension of u™ (x, €) to |x| < §, || < &o. Next, since u™ (x, &) + u(x, &) is harmonic
and bounded in 0 < |x| < 1/2, we can similarly extend it to x| < 8, |¢| < &g, and thus conclude
that the function u(x, €) also has analytic extension to |x| < §, |e] < &o.
We have thus completed the proof of the following theorem, which is the main result of this
paper.

THEOREM 8.1 For any integer [ > 2 there exists a family of solutions of (1.1)—(1.6) with free
boundary r = Ry + f (6, €) where

f(,¢e) =¢ecosld + 0O(&?).
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The solution u,u,r = Ry + f(0, ¢), B has the form (1.18), (1.19), (1.7), (1.8) and the series
converge and define analytic function in (x, €) for i, u and in (0, ¢) for f; more precisely

wh (x, &) is analytic in [x| > Ro; — 8o, le| < eo,

W (x, €) and u(x, ) are analytic in |x| < Ro; + o, le] < &g,

for some g9 > 0, 89 > 0; furthermore, the solution is even in & and satisfies the conditions (1.9)—
(1.11). Finally, Rq; and the solution with all the above propertied are unique.
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Appendix A. Some facts about Bessel functions

We collect several facts about the Bessel functions I,,,(x) for m > 0, x > 0. We recall that I,,,(x)
satisfies the differential equation

1 2
() + 17, 6) = <1+%>Im(x):0 (A1)
and is given by
N /2

k=0
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Furthermore,
’ m
I, (x) + ;Im(x) = Ip-1(x), m 21, (A.3)
m
I, (x) — ;Im(x) = Ip+1(x), (A4)
so that
2m
Lyn—1(x) — m+1(x) = 71m(x)’ m 2= 1. (AS)

We also recall [10: p. 225] the relation

I, (x) = L(ﬁ> (1+0<l)) m = 00 (A.6)
2mm \ 2m m

uniformly in x in any bounded set.
We finally state three recent results.

THEOREM A.1 ([4]) Foranym > 2,

i(lo(X) Iy (x)
dx \ 11 (x) Iy —1(x)

THEOREM A.2 ([4]) For any m > 2 there exists a unique positive solution x = x,, of the equation

)>0 for 0<x < oo.

Io(x) In(x)  m+1
Li(x) Ly—1(x)  2m

and
X] < X if 2<l<m.
THEOREM A.3 ([5]) The following identity holds for any m > 2:

L P 1) () = 25T0() ()1 ds — 2
X 0 X

e

I I (x) + [ I (x) — I () Iy (X)] =
(A.

~

)

Appendix B. Some lemmas on analyticity

In this section we establish norm estimates on the derivatives of composite functions of the same
type as appeared in [1] and [5: Section 9].
Throughout this section we assume that the norm || - || satisfies the property

Ifgll < NI gl (B.1)

LEMMA B.1 Suppose

Bt HoH™! (k2 =1ifk = 0) (B.2)
R = 1 = .
k2 m?2

1 .
[t
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forallm > 1,0 <k < K, 1 <i <gq and set

(i (z)(g)gm> i Wl(6)e™ (g=1,2,3,...).

=

Then

for r m>q,0<k<K. (B.3)

BX HyH™ ! [48H,\ ™!
o] < &0 (%)

m? H

Proof. First, we have
m—1 m—1
1 1 2 1
Z 2 2= Z 2 T T3 ;T m3 3
= k*(m — k) = \m k m’k  m*(m — k) (m k)
m—1 00 1
1 1 m dx
<% (et ) <7 {g—z 20+ }
6
_2

2 (2 2 2 2
:—2{—+—[1+ln(m—l]} —{—-i— (1+ln2)}
m 6

m 6 m?

(B.4)

The estimate (B.3) is valid for ¢ = 1, by assumption. We proceed by induction from g — 1 to g.
By (B.4), we also have (recall the convention k2 =1ifk =0)

i 12 +mz*‘ L8 E5)
kA — k)2 m? K2(m — k)2 = m? :
Note that
m—q+1 . @
W@ = Y WiZ.@w @),
j=1
and
" &1 1 k=1, (@)
q q q
k!aQW m(0) = Z 2(;1_ m— l)y39 J
]:
Therefore
! Bl HoH" 1" (48Ho\*™> B*! HoHI™!
ol < L raTr (1) e
k! i l (m—1j) H (k=1 J

q—1 m—q+1

12":1
H 48 (m—])2 2 2(k—=12

(by (B.4) and (B.5)).

_ B HyH™=! (48Hy\ ™!
S k2 om? H
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Taking w (@) = w2 @) = - - = WP (@) = wy(0) in Lemma B.1, we get
LEMMA B.2 Suppose

Bk H()Hm 1 ) )
k'aewm(Q) T (k =11fk=0)

forallm > 1,0 < k < K and set

(Zwm(e)e) Z @)™ (g=1,2,3,...).
m=1

Then

2 H

k m—1
[gtwso] < B0 ()

LEMMA B.3 Consider the formal power series

fw,0) = Z Fun@)w™,

m=1

w(d, &) = Z Wiy (0)6™

and set
o0
F0.8) = flw(®.e),0]1 =) Fu(®)s".
o
Suppose that
1, | B* 1, B HyH™!
| <= [t <
hold forallm > 1l and all0 < k < K and H/A > 96H). Then
1 Bk HOHm—l
k'ae § 16A0k—27 for m 2 1.

Proof. Using the notation from previous lemmas, we have

m
F, = quw,’;.
g=1

Thus

(B.6)

(B.8)

(B.9)
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We now estimate

m k 1 k—I m—1 q—1
B B HoH 48 H,
—1 0 0
<ZZ Oq 12'(](_1)2 m2 ( H )

1 k
| b5
: g=11=0

8AoB¥ HyH™ ! &

1
o ;24—1 (by (B.5))

AoB* HyH™ !
K2 m2

=16

The above lemma extends to double power series.

LEMMA B.4 Consider the formal power series

fa,y.0= Y fiy@)x'y,

1<i+j<o0

o
wi(0,8) = Y w)(O)e",

m=1

o
w0, 8) = Y wPO)",
m=1

and set

F@,¢) = flwi1(0,¢), w(0,¢),0] = Z F,(0)e™.
m=1

Suppose that

< f—fﬂ;ﬂ i=1,2. (B.10)
m

.. Bk 1 .
< AgA™ 1k_2’ Hﬁagwfﬁ)

1 k
Hﬁaefij
hold forallm > 1,i + j > l andallk > Oand H/A > 96H,. Then

Bk HOHm—l
<32 Ago Mo

el (B.11)

Uog
|55

If, furthermore,

f10(0) = fo1(0) =0,

i.e. the series for f starts with second-order terms, then

k 2 -2
BY HiH"

<32 48A0k—2 "

(B.12)

1 k
|5

Similarly, if the series for f starts with mth order terms, then there is an extra (48 Hy/ H )’”’1 factor
in the resulting estimates (right-hand side of (B.11)).



198 A. FRIEDMAN, B. HU, & J. J. L. VELAZQUEZ

Proof. We write

m=1

m=i+j

Then by Lemma B.1,

| o BS HoH™ ™" (48Ho \™*/™!
T
Since o
Fn@®= > fi@F,"®)
I1<i+j<m
we then have
1 @)
tranl < T _Elino]lgtt
H"' 1<iy<mi=0 11 (k=D
<y ZA z+j—1il B HOH'"—1<48HO>"+-'1
1<i+j<m =0 ? (k _Z)Z m? H
Bk H()Hm 1 1 i+j—1
<8405 ——>— Y. |3 (by (B.5))
kK2 m — 2
1<i+j<m
Bk H()Hm 1
=32-Ag—5—F—
k2 m?

In the case f19(0) = fo1(08) =0, i + j is at least 2 for the nonvanishing terms and there is an extra
factor 48 Hy/H factor. Similarly if i + j starts with m, then we get the extra factor (48 Hy/H)" .
O

In the next lemma, we use two norms, || - || x, for functions g(@) and || - || x, for functions f(r, 6).
LEMMA B.5 Suppose that the norms || - ||x, and || - || x, satisfy the following algebra property:
lg@) f(r,)lx, < C*ligllx, 1 flx,-

Assume that

' 'Bk HoH™! ) .
|}aewm(9)|}x1 <k.k—27 k*=1 if k=0) (B.14)
forallm > 1,0 < k < K and fixed i, and
Pk Bk H()Hm 1
10, 0g um (r, D x, < (k+i)!— 2 (B.15)

Set

(i w,n(9)8m> (i U (1, 9)8’”) = i Un(r,0)e™.
m=1 m=2

m=1
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Then

. _ BY HyH™ ! /48H,
8,95 Un(r, 6] ., <SCk+0) o5 T( o )

Proof. The proof is almost the same as that for Lemma B.1. Note that

m—1
Un(r,0) =Y wj(0)u(r, 0),

j=1
and
) m—1 k k )
3oy Un(r,0) = > <z> A wm— (03505 u;(r, 0).
j=1 1=0
Therefore

30U, (r, 0)

H (k +i)! X

k
- C* k <l> Bl HOHm—j—l Bk—l H()Hj_l
S Z<k+z> 2 m— 7 hk-D2 j2

48Hy\ 1 =)
< C*B*HoH™! —
0 H )48 Z

1 &1
(m_])Z_ZZ_Z _1)2

The proof is complete.
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(B.16)



