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Configurational balances via variational arguments
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A simple variational argument is presented, yielding the balances of configurational forces both in
bulk and at a singular surface in the context of finite elasticity. It is shown that the former balance
is equivalent to the bulk balance of standard forces and that the latter balance has instead a physical
content which is partly independent of the balance of standard forces at the singular surface.
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1. Introduction

‘Configurational forces are related to the integrity of a body’s material structure and perform work in
the transfer of material and the evolution of material structures such as defects and phase interfaces.’
([9], p. 9). These forces and their balance laws play a central role in describing the dynamics of such
physical systems as solid/solid phase interfaces, solidification fronts and cracks.

In this paper I present a variational argument that, in statics, yields the balance of configurational
forces for an elastic body, both in bulk and at a singular surface. On the way, I illustrate similarities
and differences with the classic variational argument yielding the corresponding bulk and jump
balances of standard forces. I briefly touch on three concepts—two in continuum mechanics, the
force on a defect and the Gibbs function, and one in analysis, the Noether theorem—all related to
the Eshelby tensor, the stress measure that enters into the formulation of configurational balances.

The question whether configurational and standard balances are just different forms of
statements having the same physical content has been asked ever since configurational forces and
their balances where first introduced—in an essentially variational manner—by Eshelby in his
pioneering work of the 1950s [3–5]. Although it is clear today to all knowledgeable researchers
in continuum physics and materials science that the answer is generally negative (which makes for
the interest in configurational forces both from the foundational point of view and in applications),
the question is still often asked.

This paper is an updated version of an earlier educational manuscript [15]. In the simplest
context of finite elasticity and for a discontinuity in the material organization modelled by an
immobile, unstructured singular surface, it is shown that the bulk balances of configurational and
standard forces are indeed equivalent, but that there is more to the jump balance of configurational
forces than a rephrasing of the jump balance of standard forces: the additional information is carried
by the so-called Maxwell relation at the singular surface. The reason for this is to be found in
the different types of variations of the energy functional that yield the two sets of balances: while
standard balances follow from standard variations of the current shape of the body, leaving the
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reference shape fixed, configurational balances follow from the stationarity of the energy functional
with respect to variations of the reference shape, leaving the current shape fixed.

The Maxwell relation describes, in the reference shape, the equilibrium of an unstructured
singular surface as is determined by the adjacent parts of the body; the variations used mimic a
virtual motion of the separating surface due to growth of one part at the expenses of the other. When
the separating surface is given thermomechanical structure, other terms may enter the equilibrium
relation through a variational approach. Yet no variational principle can handle dynamical situations
with general forms of dissipation. The Maxwell relation, however generalized, represents the
static version of a balance law for configurational forces that cannot be derived as a stationarity
condition [9].

2. Preliminaries

Let X be the typical point of a regularly open, bounded region Ω of R
3, the reference placement of

a continuous body that for convenience we identify pointwise with Ω ; and let D denote the gradient
operator. For f (X) a deformation of Ω , we write F for DX f , g(x) for the inverse of f at x = f (X),
and G for Dx g = F−1, and we note that

GF = 1, FG = 1̄, (2.1)

where 1 and 1̄ are the identity mappings in the reference placement Ω and in the current placement
Ω = f (Ω). For ζ i a system of convected curvilinear coordinates, F and G can be represented
as F = ēi ⊗ ei , G = ei ⊗ ēi , where ei = X,i and ei = DXζ i are, respectively, the covariant
and contravariant base vectors in the reference copy Ref of the Euclidean three-space where Ω is
placed, while ēi = x,i and ēi = Dxζ

i are the corresponding base vectors for the copy Cur where
Ω is placed. These representations easily yield, among other things, the relations (2.1), where it is
understood that 1 = ei ⊗ ei , 1̄ = ēi ⊗ ēi . We also set F∗ := (det F)F−T , so that

F∗ = (det G)−1GT , G∗ = (det F)−1FT , G∗F∗ = 1, F∗G∗ = 1̄. (2.2)

We introduce σ(a, b, A), a function on R
3 × R

3 × Lin, and interpret

σ̂ (X) = σ(X, f (X), F(X)), X ∈ Ω , (2.3)

as the stored energy per unit volume of the reference placement when the elastic body Ω undergoes
the deformation f . Moreover, we define

σ̄ (a, b, A) := (det A) σ (b, a, A−1), (2.4)

and interpret

σ̌ (x) := σ̄ (x, g(x), G(x)), x ∈ Ω , (2.5)

as the stored energy per unit volume of the current placement.
We shall be using the stress measures

S := ∂3σ (2.6)
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(the Piola stress; ∂i denotes differentiation with respect to the i th argument, keeping the other
arguments fixed), and

B := ∂3σ̄ (2.7)

(no name!) and we shall discuss the role and the interpretation of the Eshelby tensor

C = σ1 − FT S (2.8)

(see [3–5] and references therein; see also [10] and [18]). Eshelby called energy–momentum tensor
the construct

C̃ := σ1 − HT S = C − S,

where H = DX u is the gradient of the displacement field u(X) := f (X) − X.)
As is well known, the Cauchy stress T is related to the Piola stress by the formulae

T = SG∗, S = TF∗. (2.9)

Similarly, it follows from (2.4) that

B = CG∗, C = BF∗; (2.10)

moreover,

T = σ̄ 1̄ − GT B. (2.11)

(Note that switching the reference and current placements induces a one-to-one switch of the
elements occupying the same place in the lists {F, F∗, S, C} and {G, G∗, B, T}.)

3. The Eshelby operators

Let a singular surface S exist in the reference placement of the continuous body Ω . In a typical
application, S is interpreted as a sharp, coherent phase interface, and thermomechanical structure is
assigned to it, but here such complications are ignored. It is enough to assume that S is a smooth,
oriented surface, that all deformations are continuous across S, and that the deformation gradient,
the stored energy and the stress measures are smooth up to S from either side, although each of
these fields may suffer a jump discontinuity across S.

Consider the energy functional

L{ f } =
∫
Ω

σ(X, f (X), DX f (X)) dv (3.1)

and a standard class of smooth variations h(X) that vanish near the boundary ∂Ω of Ω . (A vector
field defined over the closure of Ω is said to vanish near ∂Ω if it vanishes over the intersection of
the closure of Ω with a neighbourhood of ∂Ω [6: Section 8].) Then,

δL{ f }[h] =
(

d

dε
L{ f + εh}

)
ε=0

=
∫
Ω

l · h dv +
∫
S

l′ · h da, (3.2)
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where the Euler–Lagrange operator associated to L consists of two parts l and l′, namely

l := ∂2σ − Div S (3.3)

in bulk (that is, away from S) and

l′ := [S]ν (3.4)

on the singular surface (here ν is the continuous unit normal field that orients S).
If we now define the Eshelby operator in bulk to be

m := ∂1σ − Div C, (3.5)

it is not difficult to verify the identity

m + FT l = 0 (3.6)

(see formula (2.3) of Ericksen [2]). An important consequence of (3.6) is that, if f is an equilibrium
deformation, i.e. if the functional (3.1) is stationary at f and hence the balance of standard forces
in bulk

l = 0 (3.7)

holds at f , then the balance of configurational forces in bulk

m = 0 (3.8)

holds at f as well (and conversely). Thus,

within a purely variational framework appropriate for elastostatics, the balances of standard and
configurational forces in bulk may be regarded as consequences of one and the same physical
requirement, namely, the stationarity of the energy integral at equilibria.

(This is perhaps the right place to throw in some semantics. In a fully variational approach
such as the one I am using, the concept of force is of course not primitive, be a force standard
(a somewhat psychological, subjective qualifier) or configurational (a qualifier used for historical
reasons, to which some authors prefer material); in addition, a force balance is nothing more than
a stationarity condition. An expression like ‘standard force balance’ is ambiguous, because it can
be unfolded equally well both as ‘balance of standard forces’ (≡ standard-force balance) and as
‘standard balance of forces’ (≡ standard force-balance): after all, there are stationarity conditions
that appear to be more standard than others. However, the second alternative would leave room for
awkward constructs like ‘standard balance of configurational forces’; this is why I prefer the first.)

Note that the stationarity of the functional (3.1) implies, besides the bulk balance (3.7) of
standard forces, the jump condition

[S]ν = 0 on S, (3.9)

a relation that expresses the balance of standard forces at the singular surface.
At this point one may ask whether m is the bulk part of the Euler–Lagrange operator of some

functional and, in the affirmative case, what form the associated jump part should have; and whether
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a formally stated configurational balance at the singular surface would have a physical meaning
independent of (3.9).

With a view towards answering these questions, we introduce the functional

L̄{g} =
∫
Ω

σ̄ (x, g(x), Dx g(x)) dv̄ (3.10)

(note that, for g = f −1, L{ f } = L̄{g}). When we perform the variation of L̄ with respect to a class
of smooth variations v(x) that vanish near the boundary ∂Ω of Ω , we obtain

δL̄{g}[v] =
∫
Ω

l̄ · v dv̄ +
∫
S̄

l̄′ · v dā, (3.11)

where

l̄ := ∂2σ̄ − div B, l̄′ := [B]ν, (3.12)

and where ν is the unit outward normal to S̄, the current shape of S.
Now, by (2.4),

∂2σ̄ (b, a, A) = (det A) ∂1σ(a, b, A), (3.13)

and hence

∂2σ̄ = (det F)−1∂1σ. (3.14)

Moreover, for L a spatial tensor field, we have that

div L = (det F)−1Div (LF∗), (3.15)

and hence, due to the first of (2.10) and the first of (2.2),

div B = (det F)−1Div C. (3.16)

Thus, (3.12), (3.14), and (3.16) imply that

l̄ = (det F)−1m. (3.17)

On the other hand,

ν dā = F∗ν da, [F∗]ν = 0. (3.18)

(The second of these relations follows from a well known kinematical jump condition due to
Hadamard, [F] = a ⊗ ν: Hadamard’s relation implies the continuity across S of the tangential
derivatives of f —and these determine the cofactor F∗ of F—while a is the amplitude of the jump
at S of the normal derivative ∂ν f = Fν of f .)

Consequently, with the use also of the second of (2.10), we find that

l̄′ = |F∗ν|−1m′. (3.19)
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Interestingly, m is proportional to l̄ through the volume Jacobian, and m′ to l̄′ through the surface
Jacobian.

With (3.17), (3.19), the third of (2.2), and the first of (2.10), the varied functional (3.11) can be
written as

δL{ f }[w] =
∫
Ω

m · w dv +
∫
S

m′ · w da, m′ := [C]ν, (3.20)

where w(X) = v( f (X)). Note that, by definition, a deformation f maps the boundary of Ω into the
boundary of its image f (Ω) under f . Therefore, w vanishes near ∂Ω , because v vanishes near ∂Ω .

We conclude that, with respect to the indicated class of variations, the Euler–Lagrange operator
associated to the energy functional consists of the pair (m, m′) of Eshelby operators, with the bulk
part m as in (3.5) and the jump part m′ defined in terms of the Eshelby tensor C by the second
of (3.20). Formally, the stationarity of this integral implies, besides (3.8) in bulk, the jump condition

[C]ν = 0 on S. (3.21)

We refer to this last relation as the balance of configurational forces at the singular surface.
(Variations of the reference shape that leave the current shape fixed are used in [12] to exploit
a mixed variational principle in finite elasticity in the absence of a singular surface. The use of
interchanging the roles of the reference and current shapes in elasticity had been indicated by Shield
as early as in 1967 [17].) Together,

the configurational force balances (3.8) and (3.21) express the physical requirement that the energy
integral be stationary in a virtual motion emanating from the reference placement, the current
equilibrium placement being kept fixed.

We have shown that the bulk balances (3.7) and (3.8) are equivalent. It is important to realize
that the jump balances (3.9) and (3.21) generally are not.

The continuity at the singular surface of the standard traction Sν does imply the continuity
of the tangential component of the configurational traction Cν. Indeed, at a point of the singular
surface S where the normal is ν, the following relationship between the constructs [C]ν and [S]ν
holds identically with respect to the choice of the tangent vector τ:

τ · [C]ν = Fτ · [S]ν. (3.22)

Hence, if (3.9) holds,

τ · [C]ν = 0. (3.23)

The content of (3.21) independent of (3.9) is

ν · [C]ν = 0 : (3.24)

the normal component of the configurational traction is continuous at the singular surface.
Interestingly, (3.24) can be casted in a form called the Maxwell relation:

[σ ] = [Fν · Sν]. (3.25)
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Conversely, if (3.21) holds, then (3.22) implies that τ · [S]ν = 0 for each vector τ = Fτ tangent
to S̄. Hence, in this case, the independent content of (3.9) is, for ν the normal to S̄, ν · [S]ν = 0, an
expression of the continuity at the singular surface of the normal component of the standard traction
Sν.

The interested reader is referred to [7, 9, 10] for a number of generalizations and applications
that obtain when configurational forces and their balances are considered in a general, non-
strictly-variational context and, moreover, the singular surface S is given a peculiar kinematic and
constitutive structure. Other works having direct relevance, albeit to a variable extent, to the matters
treated here are [1, 8, 11, 13].

4. The Eshelby tensor and related concepts in continuum mechanics and analysis

4.1 Eshelby tensor and the force on a a defect

For Π any part (≡ subbody) of Ω that does not intersect S, the bulk balance of configurational
forces can be written as ∫

Π
∂1σ dv −

∫
∂Π

Cn da = 0, Π ⊂ Ω . (4.1)

The accepted interpretation in materials science is that a material inhomogeneity (a ‘defect’) induces
a lattice distortion that is balanced by the configurational tractions described by the Eshelby tensor
C:

− ∫
Ω ∂1σ dv ≡ the body force that makes up for the lattice distortion in the referential part Π ;

+ ∫
∂Π Cn da ≡ the force on the defect embedded into Π .

4.2 Eshelby tensor and the Gibbs function

In a thermomechanical context, the free energy Ψ := ε −ηθ , with ε ≡ internal energy, η ≡ entropy
and θ ≡ temperature, replaces for the stored energy σ in the definition of the Eshelby tensor:

C = Ψ1 − FT S. (4.2)

For a thermoelastic fluid, in particular, the free energy has the form

Ψ = φ(det F, θ) − ηθ, (4.3)

the Piola stress is

S = (∂1φ)F∗, (4.4)

and the Cauchy stress is a pressure

T = −π 1̄, π := −∂1φ (4.5)

(see (2.6) and the first of (2.9), respectively). Consequently, the Eshelby tensor takes the form

C = ψ1, ψ := Ψ + π det F ≡ Gibbs chemical potential. (4.6)

(ψ is also called the free enthalpy.) Thus, for materials of arbitrary response symmetry, the Eshelby
tensor may be seen as a generalization of the scalar chemical potential of fluids ( [18], p. 280). One
may argue that a tensorial concept is needed whenever the material response depends on orientation,
as is generally the case for materials that are not fluids. In fact, whenever the stress is a pressure, the
Eshelby tensor takes the form (4.6)1 in all materials.
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4.3 Eshelby tensor and the Noether Theorem

Recall from Section 2 that Ref and Cur denote two copies of the Euclidean three-space where
the continuous body Ω is placed. Consider an s-parameter group G of Lie transformations of the
Cartesian product Ref × Cur of the reference and current spaces into itself:

Y = Y(X, x; ε), y = y(X, x; ε), (4.7)

such that

Y(X, x; 0) = X, y(X, x; 0) = x, (4.8)

and let

h = ∂εY|ε=0 , g = ∂εy|ε=0 (4.9)

be the infinitesimal generators of G.
Given a deformation f of Ω , we have from the first of (4.7) that, for each fixed parameter-vector

ε, the mapping

Y(X, ε) := Y(X, f (X); ε) (4.10)

has an inverse X(Y, ε). Thus, we may use the second of (4.7) to define the mapping

ȳ(Y, ε) := y(X, f (X(Y, ε)); ε). (4.11)

The integral L{ f } is invariant under the action of G if, for each deformation f , for each part
Π ⊂ Ω and for each choice of ε, it so happens that∫

Π (ε)

σ (Y, ȳ(Y, ε), DY ȳ(Y, ε)) dv(Y) =
∫
Π

σ(X, f (X), DX f (X)) dv(X), (4.12)

where Π (ε) = Y(Π , ε). By localization, (4.12) is equivalent to

σ(Y, ȳ(Y, ε), DY ȳ(Y, ε)) det(DX Y(X, ε)) = σ(X, f (X), DX f (X)), (4.13)

for Y = Y(X, ε) and for all (X, ε). Thus, the invariance of L under the s-parameter group G implies
that the following s Noetherian identities hold:

DXσ · h + Dxσ · g + DFσ · (Grad h − F Grad g) + σ Div h = 0. (4.14)

(Here h = h(X, x(X)) et sim. One can arrive at (4.14) also through less stringent a
notion of invariance; namely, one can term L infinitesimally invariant under G whenever
Dε(σ (Y, ȳ, DY ȳ) det(DX Y))|ε=0 = 0.) In view of our previous definitions and, in particular, of (3.6),
it is not difficult to write (4.14) in a perspicuous form that features the pair of the Piola stress S and
the equilibrium operator l, the Eshelby pair (C, m) and the pair (h, g) of the infinitesimal generators
of the symmetry group of the basic integral. This form is

l · g + m · h + Div (ST g + CT h) = 0. (4.15)
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From (4.15) we read off the Noether theorem:

let the integral L be invariant under the action of an s-parameter group G of Lie transformations of
Ref × Cur in itself. Then, for h, g the infinitesimal generators of G, each deformation that renders
L stationary satisfies also the s conservation laws

Div (ST g + CT h) = 0. (4.16)

(For a thorough discussion in modern terms of this theorem, which was proved by Emmy Noether
in 1918, see [14], especially Section 4.4.)

Familiar examples are the one-parameter groups of the translational spatial symmetries:{
h = 0, g = q ≡ a constant vector,

Y = X, y = x + ε q; (4.17)

and of the rotational spatial symmetries:{
h = 0, g = Wx, W ≡ a constant skew-symmetric tensor

Y = X, y = x + (Q(ε) − 1̄)x, Q(ε) = exp (ε W).
(4.18)

The conservation laws associated with (4.17) and (4.18) are, respectively,

Div S = 0, (4.19)

and

(SFT − x ⊗ Div S) ≡ a symmetric tensor. (4.20)

Note that, while equations (3.3) and (3.7) combine to give ∂2σ −Div S = 0, translational invariance
rules out any dependence of σ on its second argument, whence (4.19). Other familiar examples
obtain by writing down groups of material symmetries and deducing the associated conservation
laws; mixed symmetries are less frequented [16].

To sum up, the typical use of the Noether theorem is as follows. Suppose a hyperelastic
constitutive class is chosen together with its presumed symmetries, the latter being specified by
an s-parameter group of invariance transformations of Ref × Cur into itself. Necessarily, then, all
admissible deformation have to satisfy a system of s identities involving the constitutive mapping
and the infinitesimal generators of the group. From these identities, a system of s conservation laws
is deduced, which are satisfied by all equilibrium deformations.
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