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Asymptotic evolution of lipid vesicles
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Dynamics of lipid vesicles is governed by an equation that offers many challenging mathematical
problems, still not completely solved. In this paper we study vesicle dynamics by way of example.
In a two-dimensional setting, when the vesicle is imagined as a closed curve, we draw a comparison
with motion by curvature: it is shown that different decay laws govern the asymptotic relaxation to
a circle. Finally, when the vesicle is modelled as an axisymmetric, compact surface, we study its
relaxation to a sphere, to obtain the asymptotic shape and to illustrate the difficulties involved in
dealing with this kind of evolution.

Keywords: Evolution of lipid vesicles; asymptotic vesicle dynamics; motion by curvature.

1. Introduction

Over the past three decades, the methods of mathematical physics have been employed more
and more frequently to model many complex phenomena arising in biological systems. Among
the numerous applications, modelling the behaviour of biological membranes, especially lipid
membranes, clearly illustrates how these methods can lead to far-reaching results (see, for example,
the rather extensive review by Seifert [25]). Lipid membranes live in an aqueous environment
and are formed by amphiphilic molecules, also called amphiphiles, which owe their name to the
ambiguous nature of their interaction with water. Indeed, they have an hydrophilic head, which is
polar and can contain dipolar, ionic or zwitterionic groups, and an hydrophobic tail which consists
of one or several alkyl chains (see Chapter 2 of Petrov [20]). Thus, when amphiphiles are put
into a fluid environment, they tend to pack themselves forming bilayers, where the hydrophobic
tails are masked by the hydrophilic heads, so that the contact with water is reduced. Sometimes,
bilayers can bend forming closed membranes, called vesicles, where the contact between water and
the hydrophobic portions of the amphiphiles is minimized. Besides vesicles, there are several other
packings that are determined by many complex interactions: for a rather detailed description, see
Chapter 17 of Israelachvili’s book [13], for instance.

Here, we shall limit ourselves to consider vesicles, modelling them as compact surfaces in
the ordinary three-dimensional Euclidean space. This is a reasonable approximation, because the
thickness of the bilayer lies in the nanometre range, whereas the lateral dimensions of the vesicle
are in the micrometre range. Since the molecules that form the vesicle have no inclination to leave
it, the latter has a fixed area or, in other words, it is inextensible. It is also common in the literature
to consider the volume enclosed by the vesicle as fixed. This attitude is justified when the time scale
one is interested in is sufficiently small, as in the case of the thermal fluctuations of quasi-spherical
vesicles, but it is possible to consider the vesicle as permeable, if the time scale is longer. In this
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paper we will relax the constraint on the volume enclosed by a vesicle. The elastic properties of lipid
vesicles have been described variously starting from the basic model introduced by Canham [2],
which makes use of the following elastic free-energy functional:

Fel [S] := κ

2

∫
S

H2 dA, (1.1)

where S is the surface which represents the vesicle, H its total curvature, dA the area measure,
while κ is a constitutive elastic modulus, usually referred to as the bending rigidity. By determining
the critical points of Fel , subject to the geometric constraint expressing inexstensibility, it is possible
to find the equilibrium configurations taken by vesicles. Recently, more refined models have been
proposed which take into account at different levels of accuracy the fact that the surface constituting
the vesicle is not simply a flexible sheet, but is endowed with the bilayer structure. Nevertheless, the
simple model based on (1.1) is able to capture the salient aspects of vesicle behaviour. The statics of
vesicles has been explored thoroughly, and several rich catalogues of equilibrium shapes have been
produced, according to the different models employed to describe the elastic response of vesicles:
for some idea of the different approaches and results, see [5, 14, 27]. These catalogues have been
mainly obtained under the assumption that the equilibrium shape is axisymmetric, to render the
problem more tractable, and are based on numerical solutions of the equilibrium equation, since
only a few particular explicit solutions are known: some results in this direction can be found in
two papers by Ou-Yang [17, 18]. An equilibrium equation which does not rely on the symmetry
properties of the vesicles was obtained by Ou-Yang & Helfrich [19], and has been generalized by
Rosso & Virga [23], to encompass more general free-energy densities.

The interest in vesicle dynamics also arose long ago, since the paper by Schneider et al. [24]
concerning dynamical fluctuations of quasi-spherical vesicles made its appearance. In that paper,
as well as in its generalization by Milner & Safran [16], the force acting on the vesicle was
used to write the appropriate boundary conditions for the Stokes equation at the vesicle surface,
which is viewed as an interface separating two adiacent fluids. Since the dynamics of vesicles are
overdamped, and so inertial effects can be neglected, it is crucial to single out the various dissipative
mechanisms, establishing a hierarchy among them. In this perspective, Foltin [9] and Dörries &
Foltin [8] studied dynamics when the relevant dissipation is due to the internal friction between the
layers forming the vesicle, while Cai & Lubensky [1] considered the case where dissipation is due
only to the interaction with the ambient fluid. A third mechanism arises from permeation through
the membrane, but it seems to play a minor role (see [26]). When the size of the vesicles is in the
micrometre range, which is the case considered here, hydrodynamic dissipation is the prevailing
mechanism.

The dynamics of vesicles offers many formidable problems, because of the interactions with
the ambient fluid. No explicit solutions of the evolution equation for impermeable vesicles
derived by Seifert [26] are known, and analytical conclusions can be drawn only within particular
approximations. For instance, in [26] Seifert considers the coupling with the fluid motion, obtaining
a formal solution of the Stokes equation, which is then applied to study the deformations of a quasi-
spherical vesicle in the presence of a shear flow, by use of the Lamb approximation, through an
approach similar to that followed in [24]. A different avenue was followed by Rosso et al. [22],
who examined the evolution of vesicles in the presence of an adhesive potential. They derived the
evolution equations starting from a suitable dissipation principle, under the hypothesis that the fluid
environment acts uniquely as a source of dissipation. This approach is reminiscent of the Rouse
model adopted in polymer dynamics (see Section 4.1 of [7]) and introduced in the context of vesicle
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motion by Cai & Lubensky [1]. Though the analysis of Rosso et al. is focused essentially on vesicles
in two dimensions, they also derived the evolution equations for vesicles in three dimensions, for
general elastic free-energy density and adhesion potential.

This paper aims at drawing mathematicians’ attention towards a new class of evolving interfaces.
In particular, it illustrates by example the asymptotic dynamics of vesicles, also showing the
differences between this and the motion by curvature. To this aim, the paper is organized as
follows. Section 2 contains the main ideas underlying the evolution of vesicles. As remarked in [22],
this evolution shares many features with motion by Laplacian of curvature, introduced in surface
dissipation. On the other hand, deep differences exist with motion by curvature, as shown by the
asymptotic relaxation to a circle of a curve in two dimensions with normalized length. The decay
law in this is quite different from that obtained in [22] for two-dimensional vesicles. Furthermore, in
Sections 3 and 4 we study analytically the relaxation of a vesicle to a sphere, under the simplifying
assumption that during the evolution the vesicle’s shape stays axisymmetric. In this way, it is
possible to determine explicitly the relaxation times associated with the normal modes, avoiding
the need to compute the complete evolution. The mode corresponding to the longest relaxation
time yields the asymptotic shape through which the vesicle approaches the spherical equilibrium
solution. A similar, but much simpler, analysis was performed in [22] for the two-dimensional case,
and the results were used to support the outcomes of numerical simulations based on the complete
equations. In Section 3, the evolution equation is linearized by resort to a suitable parametrization
of axisymmetric vesicles near a sphere; then, in Section 4, we retrace the normal modes along with
their relaxation times, so that the asymptotic decay to a sphere can be studied in detail. Moreover,
similarities and differences with the two-dimensional case are briefly discussed. Although confined
to an ideal situation, this study sheds some light on the largely unexplored realm of vesicle dynamics
and also offers some guidance to numerical results relying on the complete evolution equation. In
Section 5, we summarize the results of the paper.

2. Vesicle dynamics against motion by curvature

In this section, we collect some result on the evolution equation for vesicles both in two and three
space dimensions. In the two-dimensional case we will stress some differences with motion by
curvature, both qualitatively and quantitatively. We first summarise the main ideas underlying the
study of vesicle dynamics, according to the approach followed by Rosso et al. [22]. To determine the
evolution equation, a dissipation principle has been used, which posits that the mechanical energy
stored in a control region containing the vesicle varies only because of dissipative effects. After
examining different contributions to the mechanical energy and to the dissipation, and a scrutiny of
their mutual relevance, it was possible to reduce the mechanical energy of the vesicle to its elastic
energy and the dissipation to that due to the interaction with the ambient fluid. This fluid is imagined
as motionless and not perturbed by the vesicle motion. On the other hand, it deforms the vesicle and
dissipates part of its energy. In the simple case when the vesicle does not interact with any adhesive
wall, and (1.1) is used to model the elastic energy, the evolution equation reduces to

κ∆s H − H

(
α0 − κ

2
H2

)
− 2κK H = γνvν. (2.1)

Here, H := σ1 + σ2 and K := σ1σ2 are, respectively, the total and the Gaussian curvature of the
vesicle, expressed in terms of its principal curvatures σ1 and σ2. The differential operator ∆s is the
surface Laplacian, or Laplace–Beltrami operator on the vesicle (see, for example, p. 84 of [15]),
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whereas the constant α0 is a Lagrange multiplier which accounts for the inextensibility constraint.
Finally, the coefficient γν is a phenomenological friction coefficient, which accounts for the energy
dissipated in the motion along the normal ν to the vesicle surface. We note that although (2.1) is
valid when the vesicle is permeable, adding a further multiplier µ(t) on the left-hand side of (2.1)
would make it suitable also for impermeable vesicles, as shown in [22]. In the two-dimensional case,
the vesicle is represented by a closed curve c whose length is fixed, and equation (2.1) becomes

κσ ′′ + σ

(
κ

2
σ 2 − α0

)
= −γνvν, (2.2)

where σ is the curvature of c and a prime has been used to denote differentiation with respect to
the arc length s along c. Since equations (2.1) and (2.2) depend on the second derivative of the
curvature, they resembles the motion by Laplacian of curvature, which has been studied in many
contexts (for an account, oriented to numerical applications, the reader is referred to [3]):

σ ′′ = vn . (2.3)

At variance with motion by curvature, equations (2.2) and (2.3) do not preserve convexity of a curve,
as was proved by means of numerical simulations in [22] and [4], respectively.

The equation governing motion by curvature can be written as

∂C

∂t
= βσν, (2.4)

where ν is the normal unit vector to the curve C and β is a constant factor whose dimensions are
[β] = [L2T −1]. This factor has been introduced to avoid using time scaling which is dimensionally
uncorrect. A theorem by Grayson [12] states that a solution of (2.4) exists up to a critical time T
and that, as t → T , it collapses to a point, with the limiting shape of a round circle. Although
motion by curvature does not preserve the length of curves, a comparison with (2.2) is still possible,
by adapting an argument of Gage [10]. Indeed, he noted that if the one-parameter family of curves
evolving according to motion by curvature is normalized by homothetic expansion in the plane,
so that each curve encloses area π , then the resulting family will converge to a circle (see p. 357
of [10]). We can follow the same line of thought and use a time-dependent scaling that renormalizes
the length of the curve to a fixed value L . To determine the correct choice of the scaling factor
λ(t), we need to know some details about the evolution in time of L0(t), the length of a curve Ct

according to (2.4). It has been proved by Gage that L0(t) evolves according to

L̇0(t) = −β

∫
Ct

σ 2 ds, (2.5)

where a dot stands for time differentiation. As a consequence, the scaling factor λ(t) must satisfy

λ(t)L = L0(t), (2.6)

which, by use of (2.5), gives

λ(t) = β

L

∫ T

t
dτ

∫
Cτ

σ 2 ds, (2.7)
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where T is the time needed to Ct to collapse to a point. The curvature of a curve evolving according
to (2.4) obeys the equation [11]

∂σ

∂t
= β

(
∂2σ

∂s2
+ σ 3

)
. (2.8)

The rescaling law (2.6) affects both the arc length s and the curvature σ , according to{
σ �→ σ := λσ

s �→ s := s

λ

(2.9)

so that by use of (2.8) we arrive at

∂σ

∂t
= 1

λ
λ̇σ + β

λ2

(
∂2σ

∂s2
+ σ 3

)
. (2.10)

Let us consider a curve whose scaled curvature σ does not differ much from that of a circle with
length L = 2π R:

σ(s, t) = 1

R
+ εu(s, t). (2.11)

Direct computations based on (2.6), (2.7) and (2.11), yield

λ(t) = β

R2

∫ T

t

1

λ(ξ)
dξ,

or
d

dt
λ2(t) = −2β

R2
,

up to second-order terms in ε. Here, we have noted that the closure of the curve requires∫ L
0 u(s, t) ds = 0. Thus, imposing λ(T ) = 0 we obtain

λ2 R2 = 2β(T − t)

which, once inserted in (2.10), yields

2(T − t)
∂σ

∂t
= −σ + R2

(
∂2σ

∂s2
+ σ 3

)
. (2.12)

It is useful to introduce a dimensionless time τ such that

dτ

dt
:= 1

T − t
, for t < T . (2.13)

In terms of this new variable, inserting (2.11) into (2.10) and retaining only first-order terms in ε,
we arrive at the linearized equation

2
∂u

∂τ
= −u + R2 ∂2u

∂s2
. (2.14)
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FIG. 1. Slowest mode in the decay of a two-dimensional vesicle to a circle.

Since we are only interested in determining the relaxation times, we consider the following ansatz:

un(s, τ ) = Tn(τ )vn(s),

with

cn(s) := αn sin
ns

R
+ βn cos

ns

R
. (2.15)

Inserting (2.15) into (2.14), we immediately obtain an equation for T (τ )

Ṫn(τ ) = −n2 + 1

2
Tn(τ ).

Geometrical considerations based on the four-vertex theorem—see Section 3 of [22]—lead us to
conclude that the lowest value of n which guarantees the closure of the curve is n = 2. Thus, the
asymptotic relaxation time is τ2 = 5

2 . If we recall (2.13), and impose τ = 0 when t = 0, we obtain

τ = −ln

(
1 − t

T

)

whence

T2(τ ) �→ T2(t) =
(

1 − t

T

)−5/2

.

This power-law decay is totally different from the exponential decay found in [22] on studying the
analogous problem for (2.2). This is a neat feature that distinguishes evolution of vesicles from
motion by curvature. Figure 1 shows three snapshots of the slowest mode in the decay of a vesicle
in two space dimensions, for increasing values of time: they clearly exhibit the evolution towards a
circular limit.

3. Asymptotic vesicle dynamics

Here, turning our attention back to a three-dimensional setting, we aim at illustrating the asymptotic
dynamics of a vesicle that is a slight perturbation of a sphere. Since the area has a fixed value A,
we take A = 4π R2, R being the radius of the asymptotic sphere. We assume that the vesicle stays
axisymmetric during the whole evolution. We begin by linearizing equation (2.1). The constant α0
is determined by requiring the normal component vν of the velocity field to satisfy∫

S
Hvν da = 0, (3.1)
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FIG. 2. The contour c generating an axisymmetric vesicle.

which is a necessary condition for A to stay constant. Indeed, if we decompose the velocity field
v as v = vs + vνν, where vs denotes the tangential component of v, inextensibility of the vesicle
requires

divsv = divsvs + Hvν = 0, (3.2)

and so, by integration on S and use of the surface-divergence theorem (see for example, p. 87
of [28]), we obtain condition (3.1). For completeness, we recall that the surface gradient of a scalar
field g defined on S is given by

∇s g := P∇g,

where P := I − ν ⊗ ν is the orthogonal projector on the local tangent plane to S. Similarly, the
surface gradient of a vector field u on S is defined as

∇su := ∇uP.

Finally, the surface divergence of a vector field is simply the trace of its surface gradient. Thus, we
can write ∆s g = divs∇s g.

Since we are concerned with evolution in an axisymmetric class, we only need to know the
motion of the contour c that generates the vesicle (see Figure 2).

Let s be the arc length along c and let r(s, t) be the distance from the symmetry axis of a point
lying on the contour. Since we are perturbing a sphere, we can set

r(s, t) = R sin
s

R
+ ε f (s, t), (3.3)

where ε is a small parameter, and f (s, t) an unknown function. The angle ϑ between the unit tangent
t to c and ex is related to r via the relation

cos ϑ(s, t) = r,s = cos
s

R
+ ε f,s, (3.4)
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where a comma denotes partial differentiation. To find the function ϑ(s, t), we define

ϑ(s, t) =: s

R
+ εu(s, t), (3.5)

for some function u. Evaluating cos ϑ by means of (3.5) and comparing the result with (3.4), we
obtain

u(s, t) = − f,s
sin s

R

. (3.6)

The apparent singularity at s = 0 is ruled out by requiring that f,s(0, t) vanishes at least as s, near
the pole s = 0. We note in passing that f (0, t) = 0, for consistency with (3.3). On the other hand,
we stress that, although the area of the vesicle is not allowed to change, the length of the contour
c does not have a prescribed value. In other words, on the perturbed shape s ranges in an interval
[0, sM ], where the upper limit sM is unknown, and has to be found by properly fixing the value of the
area. Later on, we shall see how to determine uM := u(sM , t) and how to circumvent the apparent
singularity in (3.6) when s = π , by resorting to the analytic solution of the linearized problem.

It is well known that the meridians and the parallels of an axisymmetric surface are its lines
of curvature. Standard computations based on (3.3) and (3.4) yield the corresponding values of the
principal curvatures σ1 and σ2,

σ1 := ϑ,s = 1

R
− ε

f,ss sin s
R − f,s

R cos s
R

sin2 s
R

+ o(ε)

σ2 := sin ϑ

r
= 1

R
− ε

[
f

R2 sin s
R

+ f,s cos s
R

R sin2 s
R

]
+ o(ε),

(3.7)

whence we readily obtain the expression of the total and the Gaussian curvature of the vesicle:

H := σ1 + σ2 = 2

R
− ε

[
f,ss

sin s
R

+ f

R2 sin s
R

]
+ o(ε)

K := σ1σ2 = 1

R2
− ε

[
f

R3 sin s
R

+ f,ss

R sin s
R

]
+ o(ε).

(3.8)

To proceed further, we need the expression of the surface Laplacian ∆s on the vesicle. By its
definition, and exploiting the axisymmetry of the vesicle we obtain

∆s := ∂2
ss + cos ϑ

r
∂s + 1

r2
∂2
ϕϕ,

where ϕ is the azimuthal angle. Since in (2.1) ∆s acts only on H , which is independent of ϕ, we
can ignore the last term in the expression of the surface Laplacian and so, by use of (3.3) and (3.4),
here we write

∆s = ∂2
ss + 1

R
cot

s

R
∂s + ε

[
f,s

R sin s
R

− f cos s
R

R2 sin 2 s
R

]
∂s + o(ε).

Since the zeroth order of H is constant we have, up to first-order terms in ε

∆s H = −ε

(
∂2

ss + cot
ϑ

R
∂s

)(
f,ss

sin s
R

+ f

R2 sin s
R

)
. (3.9)
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It is easy to show from equations (3.8) that 1
2 H3−2K H = o(ε), so that the linearized equation (2.1)

becomes

−Hα0 + ∆s H = −γν

κ
vν. (3.10)

To compute α0, we multiply (3.10) by H and integrate on the vesicle surface S: by recalling (3.1),
we easily obtain ∫

S
H∆s H da = α0

∫
S

H2 da. (3.11)

Moreover, by the identity
H∆s H = divs(H∇s H) − (∇s H)2,

and since S has no border and ∇s H is a tangential vector field, by the surface-divergence theorem
we conclude that ∫

S
divs(H∇s H) da = 0.

Thus, since H2 has a non-vanishing zeroth-order term, whereas ∇s H is first order in ε, α0 must have
a vanishing zeroth-order term: this conclusion can be obtained through a simple inspection of (2.1),
by requiring a sphere to be an equilibrium solution. Similarly, since (3.11) now reads as

−
∫
S
(∇s H)2 da = α0

∫
S

H2 da,

and the left-hand side is O(ε2), also the first-order correction to α0 must vanish. Thus, we can
recast (3.10) as

∆s H1 = −γν

κ
vν, (3.12)

H1 being the first-order correction to the total curvature H .
For later use, we now discuss the condition that f (s, t) must satisfy to obey the constraint on

the area of S. By Pappus’ theorem (see, for example, p. 101 of [6]), we can write this constraint as

4π R2 = 2π

∫ sM

0
r(s) ds, (3.13)

where, by use of (3.5), we can set sM = π R − εuM . By computing the integral in (3.13) with the
aid of (3.3), we have

−2π R2
[

cos
s

R

]∣∣∣∣
π R−εuM

0
+ 2πε

∫ π R

0
f (s, t) ds + o(ε) = 0.

Thus, up to first-order terms in ε, the perturbed vesicle has the same area as the sphere, provided
that ∫ π R

0
f (s, t) ds = 0. (3.14)
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To solve (3.12), we need another equation relating vν and H , and this can be done by determining
the evolution of H itself. As shown in [22],

∂ H

∂t
= (∇sν · ∇sv + divsa) , (3.15)

where the vector field a is defined as a := (∇sv)Tν and the superscript T denotes the transposition
operator. In the next section, we combine (3.15) with (3.12) to obtain a single equation involving
only H1.

4. Normal modes

The asymptotic dynamics of the vesicle is here resolved in its normal modes. To this aim, it
suffices to consider a reduced velocity field with no azimuthal component. This assumption, which
guarantees that the evolution preserves the axisymmetry, can be slightly relaxed, as shown later in
this section. For the time being, we restrict attention to velocity fields such that

v = vt t + vνν.

Direct computations show that

∇sv = vt∇st + t ⊗ ∇svt + vν∇sν + ν ⊗ ∇svν.

Here, the surface gradient ∇sν of the outer normal to S is expressed as (see, for example, p. 87
of [28])

∇sν = σ1t ⊗ t + σ2eϕ ⊗ eϕ

where eϕ is the unit tangent vector to the local parallel on S, oriented so that eϕ ∧ t = ν. By the
definition of total and Gaussian curvature we readily obtain that

∇sv · ∇sν = vν(H2 − 2K ) + vt∇st · ∇sν + σ1t · ∇svt . (4.1)

To compute the remaining terms in (3.15) and (4.1), it is expedient to introduce the Darboux
trihedron {t, ν, νs} along c, (see, for example, p. 261 of [6]) with νs := ν ∧ t = −eϕ . Darboux
formulae can be used to express the rate of variation along c of the vectors forming the Darboux
trihedron. In the general case they can be written as




dt
ds

= κgνs + κnν

dνs

ds
= −κgt − τgν

dν

ds
= −κnt + τgνs,

(4.2)

where κn and κg are, respectively, the normal and the geodesic curvature of c, whereas τg is its
geodesic torsion. In this case, the meridians of axisymmetric surfaces are both geodesics and lines
of curvature, and so along them κg = τg ≡ 0, while the normal curvature is just −σ1. Hence,
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equations (4.2) become 


dt
ds

= −σ1ν

deϕ

ds
= 0

dν

ds
= σ1t.

(4.3)

A Darboux trihedron can be defined also on a parallel as {eϕ, ν, νs}, where now νs := ν ∧eϕ =
t. In general, parallels are lines of curvature, but they are not geodesics, and so only the geodesic
torsion vanishes identically along them. If we introduce the curvilinear abscissa s along a parallel,
Darboux formulae along it read as 



deϕ

ds
= κgt − σ2ν

dt
ds

= −κgeϕ

dν

ds
= σ2eϕ .

(4.4)

Here, κg is the geodesic curvature of the local parallel.
By definition of surface gradient, we can recast (4.3) and (4.4), respectively, as


(∇st)t = −σ1ν

(∇seϕ)t = 0
(∇sν)t = σ1t,

(4.5)

and 


(∇seϕ)eϕ = κgt − σ2ν

(∇st)eϕ = −κgeϕ

(∇sν)eϕ = σ1t.

(4.6)

To obtain from these the expression for ∇st we need only observe that (∇st)Tt = 0, since t · t = 1,
and that (∇st)ν = 0. Hence, we obtain that

∇st = −κgeϕ ⊗ eϕ − σ1ν ⊗ t. (4.7)

Similarly, since eϕ · t = 0 and eϕ · eϕ = 1, equations (4.5)2, (4.6)1,2, and (4.7) yield

(∇seϕ) = −σ2ν ⊗ eϕ + κgt ⊗ eϕ. (4.8)

We are now in a position to recast (4.1) in the form

∇sv · ∇sν = vν(H2 − 2K ) − κgσ2vt + σ1t · ∇svt . (4.9)

Moreover,
a = −σ1vt t + ∇svν,
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whence it follows that

divsa = ∆svν + κgσ1vt − σ1t · ∇svt − (t · ∇sσ1)vt . (4.10)

By inserting (4.9) and (4.10) into (3.15), we have

∂ H

∂t
= ∆svν + vν(H2 − 2K ) + κg(σ1 − σ2)vt + (t · ∇sσ1)vt , (4.11)

which can be further simplified if we keep only first-order terms in ε. Indeed, by (3.12) we obtain
that vν is first-order in ε and so, by use of (3.2), we also conclude that divsvt is first-order in ε. Thus,
if we recall that both σ1 − σ2 and ∇sσ1 are first-order in ε, we obtain that

∂ H1

∂t
= ∆svν + 2

R2
vν,

where we have expanded H2 − 2K , keeping only the leading term. By substituting (3.12) into this
equation, we finally arrive to an evolution equation for H1 only:

∂ H1

∂t
= − κ

γν

(
∆2

s H1 + 2

R2
∆s H1

)
. (4.12)

It is possible to rescale (4.12), by introducing the following dimensionless variables: η := s
R , h1 =

RH1, τ := κt
γν R4 , and ψ(s, τ ) := f (s,τ )

R . Thus, we obtain

∂h1

∂τ
= −(∆2

ηh1 + 2∆ηh1), (4.13)

where ∆η := ∂2

∂η2 + cotη ∂
∂η

is the scaled surface Laplacian on a sphere, deprived of the azimuthal
component. It is now easy to compute the relaxation times by separating the variables: we set
h1(η, τ ) = T (τ )Y (η), with Y (η) an eigenfunction of the operator on the right-hand side of (4.13),
that is, any zonal spherical harmonic Y�,0(η) defined as

Y�,0(η) = P�(cos η) , � � 0,

where P� is the �th Legendre polynomial. Recalling that

∆ηY�,0(η) = −�(� + 1)Y�,0(η),

we readily prove that T (t) = e−t/t� , where we have reintroduced the original time variable t , and t�
is given by

t� := γν R4

κ(� − 1)�(� + 1)(� + 2)
. (4.14)

Apart from a different numerical prefactor, the relaxation times we have just found exhibit the
same dependence on both the vesicle size R and the constitutive parameters κ and γν as in the
two-dimensional case.
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The normal modes corresponding to � = 0 and � = 1 look singular, since they would correspond
to infinite relaxation times. However, these modes never occur, as they do not match the appropriate
boundary conditions. By use of (3.8)1 and proper scaling, for �th mode we can write

h1(η) = aY�,0(η) = − 1

sin η
(ψ,ηη + ψ),

where a is an arbitrary constant. By setting for simplicity a = −1, the equation for the perturbation
ψ becomes

ψ,ηη + ψ = Y�,0(η) sin η.

To determine ψ we can apply the method of variation of parameters obtaining, by repeated
integrations,

ψ(η) = α sin η + β cos η + sin η

∫ η

0
cos u sin uY�,0(u) du

− cos η

∫ η

0
sin2 uY�,0(u) du, (4.15)

where the constants α and β must be determined by imposing the boundary conditions ψ(0) = 0,
ψ ′(0) = 0: it is easy to see from (4.15) this is equivalent to enforce α = β = 0. If we integrate by
parts (3.14) using (4.15), we obtain∫ π

0
ψ(η) dη =

∫ π

0
sin η cos ηP�,0(cos η) dη

+
∫ π

0
sin ηP�,0(cos η) dη = 2

3
δ1� + 2δ0�,

because of the othogonality properties of spherical harmonics. Thus, (3.14) can be satisfied if and
only if � �= 0, 1.

To recover the asymptotic shape we need just to go back to (3.4), to obtain

�(η) := r(η)

R
=

∫ η

0
(cos u + εψ,u) du,

and

ζ(η) := z(η)

R
=

∫ η

0
(sin u − εψ,ucotu) du,

where z(η) is the distance of a point on c from the rotation axis. In obtaining the last formula we
have used the equation

sin ϑ(s) = sin
s

R
− ε f,scot

s

R
+ o(ε),

which readily follows from (3.5).
We finally compute the upper limit ηM for η. We note that, when η = ηM , the angle ϑ reaches

π and � vanishes. Thus, it follows from (3.5) that

ηM = π − εuM .
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FIG. 3. Slowest mode in the decay to a sphere.

Moreover, the vanishing of � at the pole ϑ = π implies

sin(π − εuM ) + εψ(ηM ) = 0,

whence, neglecting terms of order higher than one in ε, we get

uM = −ψ(π).

By (4.15) and the symmetry properties of Y�,0(u), it is easy to conclude that ψ(π) = 0, when
� > 2 is odd, and so these modes do not change the length of c, at least to the first order. Finally,
a straightforward computation and use of the orthogonality properties of spherical harmonics show
that ψ,η goes to zero, as η → π , whence the singularity in (3.6) at s = π R is ruled out. When � is
even, it is possible to show (see formula 1 on p. 197 of Prudnikov et al. [21]) that

ψ(π) =
∫ π

0
sin2 uY�,0(u) du = 2Γ 2( 3

2

)
3 F2

( 3
2 , −�, � + 1; 1, 3, 1

)
,

where Γ is the Euler gamma function, and 3 F2 is a hypergeometric function. In the simplest case
when � = 2 it is easy to compute ψ(π) = − π

16 , whence ηM = π(1 − ε
16 ). Thus, for any ε > 0,

the troublesome value ηM = π is never reached. Although the computations for higher even values
of � rapidly becomes involved, it is easy to show by use of (4.15), that ψ,η behaves like sin η when
η → π , so that no singularities arise in (3.6). The asymptotic shapes corresponding to � = 2 are
sketched in Figure 3, for increasing values of time.

The first image, in particular, suggests that the limiting shape has no equatorial symmetry, at
variance with the two-dimensional case. A possible explanation could be the change in the geometric
constraint on the profile c, which has no longer a fixed length.

To conclude this analysis, we have to prove that adding a non-zero component of the velocity
along the azimuthal direction does not change the properties of the asymptotic evolution. Let us
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consider the velocity field v = vϕeϕ . To preserve the axisymmetry of the vesicle, the function vϕ

must depend only on s, the arc length along the meridian. Then

∇sv = vϕ∇seϕ + eϕ ⊗ ∇svϕ

and, since vϕ depends only on s, ∇svϕ · eϕ = 0. Moreover, by (4.8), ∇seϕ · ∇sν = 0 and so we
conclude that

divsa = σ2vϕdivseϕ + eϕ · ∇s(σ2vϕ).

By use of (4.8), and observing that both vϕ and σ2 are independent of ϕ, we see that divsa vanishes
as well. This justifies neglecting the azimuthal component of the velocity field.

5. Conclusions

In this paper I illustrated a new kind of interface propagation arising in a biological context. I
outlined the main steps that led to the evolution equation and explored by example some qualitative
properties of its solutions. By studying the relaxation of a curve close to a circle and subject
to motion by curvature, I showed that this decay law differs substantially from that of a two-
dimensional vesicle. Finally, the asymptotic relaxation of an axisymmetric vesicle to a sphere was
studied analytically: it revealed some unexpected features of this motion, which might serve to guide
further studies, possibly numerical ones.
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