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Unidirectional steady flow of a viscoelastic fluid with a free surface
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We study the steady flow of a second grade fluid down an open inclined channel. We formulate the
mathematical problem, a mixed boundary value problem for the Laplacian with an unknown free
boundary described by a nonlinear second-order ODE, and prove existence of a unique solution for
small data using a contraction argument.
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1. Introduction

The problem of a stationary flow of a viscous incompressible fluid with a free boundary has been
the subject of numerous papers: see, for example, [1, 5, 7, 8, 12, 13] and references therein. For most
of these works the method of reasoning to find the velocity field v and the unknown free boundary φ

can be reduced to the following steps: (1) find an equilibrium solution (v0, φ0), often corresponding
to the ‘zero data’ solution; (2) linearize around (v0, φ0) and write the equations for the perturbation
(ṽ, φ̃), i.e. v = v0 + ṽ, φ = φ0 + φ̃; (3) define a change of coordinates that transforms the domain
with the free boundary Ωφ into a fixed domain Ω0 corresponding to the equilibrium solution and
(4) solve (for small data) the coupled equations for the pair (ṽ, φ̃) in Ω0 by a fixed-point argument.

Here, we shall study a free boundary problem corresponding to the steady flow of an
incompressible, homogeneous viscoelastic fluid down an inclined open infinite straight channel.
The data of the problem are the inclination of the channel bed, the atmospheric pressure at the
free boundary and the velocity flux over the channel bed cross section. For the model under
consideration—the (Rivlin–Ericksen) fluid of second-grade—it makes sense to assume that the flow
is rectilinear. Let us point out that also in a straight pipe with an arbitrary smooth cross section
the equations of motion of the second-grade fluid admit solutions in which the velocity field is of
Poiseuille type, cf. [9] and also [6, 16]. The hypothesis that the flow is rectilinear leads at each
cross section, say Ωφ , to a coupled problem composed of a mixed boundary value problem for the
Laplacian and of a nonlinear second-order ODE for the free boundary. This problem differs from
the corresponding Navier–Stokes problem since additional nonlinear terms are present in the ODE.
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FIG. 1. Flow down an inclined channel.

Consequently, there is no hope, not even in the case when the channel bed is of a simple shape, of
finding an (almost) explicit solution in an integral form as can be done for the Navier–Stokes fluid,
cf. [4].

In this paper, we analyse the solvability of the coupled problem at each cross section Ωφ when
the contact points where the fluid meets the channel bed are known, the case in which the flux
condition becomes redundant. In a forthcoming work [15] we shall consider the problem with
contact points that are not known a priori and show that for any given flux and for a small enough
inclination of the channel bed, there exists a solution to the coupled set of equations that corresponds
to a (unique) small perturbation of the equilibrium solution. Let us point out that in this case the
transformation of coordinates becomes rather more complicated.

The paper is organized as follows. In Section 2, we introduce the physical formulation of the
problem and present the corresponding mathematical model. In Section 3, we define and study
the transformation of coordinates from Ωφ into a fixed domain Ω0. The main result, the existence
of a unique solution for small data, is formulated and proven in Section 4 by means of a fixed-
point argument. Finally, Sections 5 and 6 are devoted to the study of a boundary value problem
for the Laplacian and to the analysis of a nonlinear second-order ODE, respectively, which are the
ingredients for the proof of the main theorem.

2. The physical problem and the mathematical model

Consider the flow of an incompressible Rivlin–Ericksen fluid of second grade down an infinite
inclined open channel Π . Let us denote by B the wetted part of the channel bed and by S the fluid
surface with unit outward normal vector n. Assume that the channel bed forms an angle β with the
horizontal line and that the axis of the channel is parallel to the z-axis, see Fig. 1.

The equations of motion governing the stationary flow of an incompressible fluid are

ρv · ∇v+ ∇ p = ρf+ ∇ · TE , ∇ · v = 0, in Π (1)

with v denoting the velocity field, p the hydrostatic pressure, TE the extra-stress tensor
(T = −pI+ TE is the usual Cauchy stress), f the external body force and ρ the constant density of
the fluid.

In an incompressible Rivlin–Ericksen fluid of second grade the extra-stress tensor TE is related
to kinematic variables by [10]

TE = ηA1(v)+ α1A2(v)+ α2A2
1(v), (2)
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where A1(v) and A2(v) denote the first two Rivlin–Ericksen tensors defined by

A1(v) = ∇v+ (∇v)T ,

A2(v) = (v · ∇)A1(v)+ A1(v)∇v+ (∇v)T A1(v),
(3)

and η, α1 and α2 stand for material constants. For the second grade fluid to be consistent with
thermodynamics, the material constants must satisfy, cf. [2],

η � 0, α1 � 0, α1 + α2 = 0. (4)

The constitutive relation (2) together with the equations (1) lead to the following set of equations
for (v, p): {

−η∆v− α1v · ∇∆v+ ∇ p = ρf+ ∇ · N(v)

∇ · v = 0
in Π (5)

with the nonlinear term N(v) given by

N(v) = α1(∇v)T A1(v)− ρv⊗ v,

and where we have taken into account the thermodynamical restriction (4)3. As the boundary
conditions are concerned, at the wetted part of the channel bed we assume the adherence condition

v = 0 on B (6)

and at the free surface S the usual kinematic and dynamic conditions, respectively (see, for
example, [13])

v · n = 0 and Tn− σ K n = p0n on S, (7)

where K = K (x, y, z) denotes the mean curvature of S, σ is the surface tension coefficient and p0
a given exterior pressure. Finally, to complete the formulation (5)–(7), we impose the flux condition∫

Σ
v ds = Φ, (8)

where Σ denotes an arbitrary cross section of Π and Φ ∈ R stands for a prescribed flux.
In an infinite straight cylinder with an arbitrary smooth cross section, the second-grade fluid

equations (5), complemented with appropriate boundary and flux conditions, admit a solution having
a flow pattern of Poiseuille type, cf. [9], so it is reasonable also here to look for a velocity field in
the form

v = (0, 0, w(x, y)). (9)

Let B and Γ stand, respectively, for the intersection of the wetted part of the channel bed and the
fluid surface with the xy-plane and suppose that the channel bed cross section is given by a smooth
function y = f (x), see Fig. 2.
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FIG. 2. Cross section of the channel.

Assume that the flow is driven (only) by the gravitational force, hence f = ∇G with
G = g(−y cos β + z sin β), where g is the (constant) acceleration of gravity and suppose,
furthermore, that the pressure function has the form

p = p(x, y). (10)

Substituting (9) and (10) into (5), yields
∂x p = α1

2 ∂x |∇(x,y)w|2 + α1∂xw ∆(x,y)w

∂y p = α1
2 ∂y |∇(x,y)w|2 + α1∂yw ∆(x,y)w − ρg cos β

−η∆(x,y)w = ρg sin β

(11)

and from (11) one readily obtains

p = α1

2
|∇(x,y)w|2 + α1ρg sin β

η
w − ρg cos βy + pc, (12)

where pc ∈ R.
Next, let us consider the boundary conditions. We denote by n = (n1, n2, 0) the unit normal

vector to the free surface and choose a tangential vector of the form

τ = 1√
2
(n2,−n1, 1).

Taking the scalar product of (7)2 with τ , one easily obtains the following Neumann condition for
w:

∂w

∂n
= α1

η
(((∂yw)2 − (∂xw)2) n1n2 + ∂xw ∂yw (n2

1 − n2
2)) = −√2

α1

η

∂w

∂n

∂w

∂τ
on Γ

that naturally leads to the homogeneous condition ∂w
∂n = 0 on Γ . Observe also that (7)1 is

automatically satisfied and that condition (6) reduces to

w = 0 on B.
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On the other hand, taking the scalar product of (7)2 with n, we obtain the equation for the
unknown free surface S

σ K (x, y, z) = (−p + n · TE n− p0)|S . (13)

Assuming that the free boundary Γ at the channel bed cross section is described by y = φ(x),
condition (13) takes the form of the following ordinary differential equation for φ(x):

σ
φ′′

(1+ φ′2) 3
2

=
(

α1

∣∣∣∣∂w

∂n

∣∣∣∣2

− p − p0

)∣∣∣∣
y=φ(x)

. (14)

(Observe that here we have tacitly assumed that the fluid stays always below the surface Γ .) The
boundary conditions for (14) are obtained by assuming that the fluid surface cross section Γ and
the wetted channel bed cross section B meet at the contact points (−a, f (−a)) and (a, f (a)),
with f (−a) = f (a). Note that, by fixing the contact points, we have made the flux condition (8)
redundant and, in fact, it will be absent from our formulation.

Now, at the free boundary given by y = φ(x), one may write

n = 1√
1+ φ′2

(−φ′, 1, 0),

and, hence, the problem is to determine (φ, w) satisfying

−∆w = ρg sin β

η
in Ωφ

w = 0 on B

∂w/∂n = 0 on φ
φ′′

(1+φ′2)
3
2
= h(wφ, wφ, φ) on (−a, a)

φ(−a) = φ(a) = f (a)

(15)

with

Ωψ = {(x, y) ∈ R
2 : −a < x < a, f (x) < y < ψ(x)},

h(u, v, ψ) = − α1

2σ
|∇uψ |2 − α1ρg sin β

ση
vψ + ρg cos β

σ
ψ − ρg cos β

σ
p0, (16)

uψ = u(x, ψ(x)),

where we have redefined p0 and dropped the subscripts ·(x,y) since all the functions depend at most
on x and y.

3. The transformation of coordinates

We shall show in Section 4 that, for small data, problem (15) admits a unique solution. The proof is
achieved using Banach’s fixed point theorem and an essential ingredient are estimates that require
the comparison of functions. The functions to be compared must be defined in the same domain
and, hence, we are led to introduce the reference domain

Ω0 = {(z1, z2) ∈ R
2 : −a < z1 < a, f (z1) < z2 < f (a)}.
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Now, using a transformation of coordinates Fφ : Ωφ → Ω0 defined by the expression

(x, y) �−→ (z1, z2) =
(

x,
f (a)− f (x)

φ(x)− f (x)
(y − f (x))+ f (x)

)
, (17)

we can shift to Ω0 from any domain of the type Ωφ . In order to simplify the computations that follow
let us introduce the functions, defined in the interval (−a, a),

s(ξ) = f (a)− f (ξ)

φ(ξ)− f (ξ)
(18)

and

q(ξ) = φ(ξ)− f (a)

φ(ξ)− f (ξ)
f (ξ)

so that
z1 = x, z2 = s(x)y + q(x)

and, by inversion,

x = z1, y = 1

s(z1)
[z2 − q(z1)].

It will also be useful in the sequel to work with the function defined in Ω0 by

r(ξ1, ξ2) = s′(ξ1)

s(ξ1)
[ξ2 − q(ξ1)] + q ′(ξ1). (19)

From now on, we assume that the function y = f (x) that defines the channel bed is regular
and symmetric with respect to the y-axis, monotone increasing for x > 0 and such that f (0) = 0.
Furthermore, we assume that

0 � f (x) � f (a)

a2
x2, ∀x ∈ [−a, a]. (20)

LEMMA 3.1 Given φ ∈ C2[−a, a] such that φ(a) = φ(−a) = f (a) and

‖φ − f (a)‖C0 + ‖φ′‖C1 � f (a)

2a
,

the functions s and r defined by (18) and (19) are, respectively, of class C2[−a, a] and C1(Ω0)

(after being appropriately defined at ±a and ∂Ω0). Moreover, it holds that

‖s‖C2 + ‖r‖C1 � c‖ f ‖C2 . (21)

Proof. Both functions s and r can be shown to be well defined at ξ1 = ±a and (ξ1, ξ2) =
(±a, f (a)) respectively, together with some of their derivatives (it is obvious how to extend r to the
other points in ∂Ω0). Let us show this, for example, for r and s; the case of the derivatives is similar,
although somehow more technical. Letting m(ξ1) = f (a)− f (ξ1) and n(ξ1) = φ(ξ1)− f (ξ1), we
can write

r = m′n − mn′

mn

[
ξ2 + f

(
m

n
− 1

)]
− f ′

(
m

n
− 1

)
− f

(
m′n − mn′

n2

)
=

(
m′

m
− n′

n

)
(ξ2 − f )− f ′

(
m

n
− 1

)
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and so in the limit we get

lim
ξ1→a

ξ2→ f (a)

r(ξ1, ξ2) = φ′(a) f ′(a)

φ′(a)− f ′(a)
. (22)

For s one easily gets

lim
ξ1→a

s(ξ1) = f ′(a)

f ′(a)− φ′(a)
. (23)

Concerning the interior, assumption (20) implies in particular that

φ(ξ1)− f (ξ1) � f (a)

2a2
(a − ξ1)(a + 2ξ1), ∀ξ1 ∈ (0, a).

Hence, observing that since from (20) it also follows that

| f ′(a)| � 2
f (a)

a
,

one has | f ′(a)− φ′(a)| � 3 f (a)
2 and concludes, after a simple computation, that

|s(ξ1)| � 2a
f ′(a)

f (a)
, ∀ξ1 ∈ [0, a].

A similar estimate can be obtained in [−a, 0]. On the other hand, it is easy to see that

f (a)− ξ2 � (a − ξ1) | f ′(±a)|, 0 < ξ1 < a, f (ξ1) < ξ2 < f (a)

and similarly in the other half of Ω0. Using this, together with (20), in (19) yields the estimate

max
(ξ1,ξ2)∈Ω0

|r(ξ1, ξ2)| � c

( [ f ′(a)]2
f (a)

+ | f ′(a)|
)

,

where we have also taken into account that

| f ′(ξ1)| � | f ′(±a)|, ∀ξ1 ∈ [−a, a].
The derivatives of s and r can be estimated analogously. �

4. The existence result

In this section we prove our main theorem, namely the existence of a unique solution to problem (15)
under the assumptions stated below.

(A1) f is a regular, even function such that f (0) = 0, f ′(x) > 0, for x > 0, and (20) holds.
(A2) p0 = f (a)+ δ, δ � 1.

(A3) ∃β0 > 0, β0 � 1 : 0 < |β| � β0 <
π

2
.
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THEOREM 4.1 Under assumptions (A1)–(A3), problem (15) admits a unique solution (φ, w) ∈
C2[−a, a] × W 2,p(Ωφ), provided p > 2 is such that

tan

(
πp

4(p − 1)

)
> ± f ′(±a). (24)

Proof. We apply the contraction mapping principle of Banach to an operator T : X×Y −→ X×Y ,
where the Banach spaces X and Y are

X = {ψ̃ ∈ C2[−a, a] : ψ̃(±a) = 0}
and Y = W 2,p(Ω0). We define a closed ball in X × Y by

B� = {(ψ̃, u) ∈ X × Y : ‖ψ̃‖C2 + ‖u‖2,p � �}.
The operator T is defined as follows. Given (ψ̃, u) ∈ X × Y , let ψ = ψ̃ + f (a) and consider

the transformation of coordinates Fψ associated with ψ and defined in the previous section by (17).
The boundary value problem 

−∆û = ρg sin β

η
in Ωψ

û = 0 on B
∂ û

∂n
= 0 on ψ

(25)

is transformed, using Fψ and F−1
ψ , into the following problem in Ω0:

Av = ρg sin β

η
in Ω0

v = 0 on B

N v = 0 on Γ0.

(26)

To the free boundary now corresponds the straight line

Γ0 = {(z1, z2) : −a < z1 < a, z2 = f (a)}
and the new differential operators are given by

Av = −
[
∂2v

∂z2
1

+ (r2 + s2)
∂2v

∂z2
2

]
− 2r

∂2v

∂z1∂z2
−

(
∂r

∂z1
+ r

∂r

∂z2

)
∂v

∂z2

and

N v = (1+ ψ ′2)−
1
2

[
− ψ ′ ∂v

∂z1
+ (s − ψ ′r)

∂v

∂z2

]
where s and r , that are defined in (18) and (19), obviously depend on ψ . In fact, observe that the
derivatives read, in new coordinates,

∂

∂x
= ∂

∂z1

∂z1

∂x
+ ∂

∂z2

∂z2

∂x
= ∂

∂z1
+ r(z1, z2)

∂

∂z2
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and
∂

∂y
= ∂

∂z2

∂z2

∂y
= s(z1)

∂

∂z2

and the second derivatives

∂2

∂x2
= ∂2

∂z2
1

+
(

∂r

∂z1
+ r

∂r

∂z2

)
∂

∂z2
+ 2r

∂2

∂z1∂z2
+ r2 ∂2

∂z2
2

and
∂2

∂2 y
= s2 ∂2

∂z2
2

.

We solve problem (26) in Section 5 (cf. Lemma 5.1) and obtain a unique function v ∈ W 2,p(Ω0).
Note that condition (29) in Lemma 5.1 can be satisfied for sufficiently small � in view of
assumption (24). It is obvious that v = û ◦ F−1

ψ , i.e. û = v ◦ Fψ .
With v at hand, we consider the ODE for ϕ (recall the definition of h from Section 2)

ϕ′′

(1+ ϕ′2)3/2
= h(u ◦ Fψ, v ◦ Fψ, ψ) (27)

with the boundary conditions

ϕ(−a) = ϕ(a) = f (a) (28)

and solve it in Section 6 (cf. Lemma 6.1) obtaining a unique solution ϕ ∈ C2[−a, a].
Next, we set ϕ̃ = ϕ − f (a) and finally define the mapping T by

T (ψ̃, u) = (ϕ̃, v).

It is apparent that the definition is unambiguous. On the other hand, from estimates (30) and (38),
see Lemmas 5.1 and 6.1, it follows that T maps the ball B� into itself, provided β0, δ, � � 1 are
chosen small enough. Moreover, again for small enough β0, δ and �, Lemmas 5.2 and 6.2 guarantee
the existence of a constant γ < 1 such that

‖T (ψ̃1, u1)− T (ψ̃2, u2)‖X×Y � γ ‖(ψ̃1, u1)− (ψ̃2, u2)‖X×Y .

Therefore, one concludes from Banach’s contraction principle that T possesses a unique fixed-point
T (ψ̃∗, u∗) = (ψ̃∗, u∗). Then the pair

(φ, w) = (ψ̃∗ + f (a), u∗ ◦ F(ψ̃∗+ f (a)))

is the unique solution of problem (15). �

5. Analysis of the BVP

In this section we analyse the boundary value problem (26) and prove the existence and uniqueness
of a weak solution and establish the estimates needed for the use of the fixed-point theorem.
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LEMMA 5.1 Given u ∈ W 2,p(Ω0) and φ ∈ C2[−a, a] satisfying the assumptions of Lemma 3.1,
problem (26) (with φ in place of ψ) admits a unique solution v ∈ W 2,p(Ω0) provided

φ′(±a) ≷
f ′(±a)∓ tan

( πp
4(p−1)

)
1± f ′(±a) tan

( πp
4(p−1)

) . (29)

Moreover, the following estimate holds:

‖v‖2,p � c sin β0 (30)

REMARK 5.1 Note that with φ we define s and r in (26) through (18) and (19).

Proof. To show that the problem has a unique solution, we use well known results from elliptic
theory [3]. Observe that the operator A can be written in the form

Av =
2∑

i, j=1

∂

∂zi

(
ai, j

∂v

∂z j

)
+

2∑
i=1

ai
∂v

∂zi

with 
a1,1 = −1

a1,2 = a2,1 = −r

a2,2 = −r2 − s2

and


a1 = ∂r

∂z2

a2 = r
∂r

∂z2
.

The operator is strongly elliptic since, for a certain α > 0,

a1,1ξ
2
1 + 2a1,2ξ1ξ2 + a2,2ξ

2
2 < −α|ξ |2, ∀ξ = (ξ1, ξ2) ∈ R

2 \ {0}.
In fact, this is equivalent to

(ξ1 + rξ2)
2 + s2ξ2

2 > α(ξ2
1 + ξ2

2 )

and dividing by ξ2
1 (the case ξ1 = 0 is trivial) and putting ζ = ξ2/ξ1, to

(r2 + s2 − α)ζ 2 + 2rζ + (1− α) > 0, ∀ζ �= 0.

Standard computations show that this holds provided

α � r2 + s2 and α2 − (r2 + s2 + 1)α + s2 < 0

and a sufficient condition is that

∃ A, B, C > 0 : A � s2 � B and r2 � C.

We clearly see that these conditions hold due to (23), the fact that a similar conclusion is valid for
z1 → −a, and the remark that the continuous function s2 > 0 (it is obvious that it never vanishes),
properly redefined at z1 = −a and z1 = a, attains its minimum A > 0 and maximum B > 0 in
the compact [−a, a]. A reasoning of this type (using (22)) can also be made to conclude for the
existence of C > 0 such that r2 � C .

We could now apply classical results from elliptic theory to obtain existence and uniqueness of a
solution v ∈ W 2,p(Ω0) if it were not for the lack of smoothness at the contact points pa = (a, f (a))
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and p−a = (−a, f (a)). To overcome this difficulty, we consider the problem in a neighbourhood
of, say, pa

Ωδ = Ω0 ∩ V(pa, δ), 0 < δ � 1.

We linearize problem (26) by freezing the coefficients of the operator A and N and neglect the
terms containing the lower-order derivatives. The freezing is performed by taking the limit of the
coefficients as pa is approached. Owing to (22) and (23) this leads to the linear operators

A0 ≡ − ∂2

∂z2
1

− κ1
∂2

∂z2
2

− 2κ2
∂2

∂z1∂z2

and

N0 ≡ −φ′(a)(1+ [φ′(a)]2)− 1
2

∂

∂z1
+√

κ1
∂

∂z2

where

κ1 = [ f ′(a)]2([φ′(a)]2 + 1)

[ f ′(a)− φ′(a)]2 and κ2 = f ′(a) φ′(a)

φ′(a)− f ′(a)
.

We next perform a change of variables defined by

[
z̃1
z̃2

]
=

 1 0

− κ2√
κ1 − κ2

2

1√
κ1 − κ2

2

 [
z1
z2

]
+

 −a

−a φ′(a)− f (a)
f ′(a)− φ′(a)

f ′(a)

 (31)

and obtain in the new coordinates (z̃1, z̃2), taking into account that

− κ2√
κ1 − κ2

2
= φ′(a),

a problem for the Laplace operator in Ω̃δ , where

Ω̃δ =
{
(z̃1, z̃2) : −δ < z̃1 < 0,

φ′(a) z̃1 + f ′(a)− φ′(a)

f ′(a)
( f (z̃1 + a)− f (a)) < z̃2 < φ′(a) z̃1

}
.

Note that the origin of coordinates is now placed on pa . As far as the differential operator N0 on the
boundary is concerned, in view of the relations

∂

∂z1
= ∂

∂ z̃1
+ φ′(a)

∂

∂ z̃2

∂

∂z2
= f ′(a)

f ′(a)− φ′(a)

∂

∂ z̃2
,

one has in the new coordinates

Ñ0 ũ = 1√
1+ φ′2(a)

(
− φ′(a)

∂ ũ

∂ z̃1
+ ∂ ũ

∂ z̃2

)
.
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Since, in the neighbourhood of pa , Γ0 now corresponds to the line

Γ̃0 := {(z̃1, z̃2) : z̃2 = φ′(a) z̃1},
one easily sees that Ñ0 ũ = ∇(z̃1,z̃2) ũ · ñ on Γ̃0, where

ñ = 1√
1+ φ′2(a)

(−φ′(a), 1)

is the unit normal vector on Γ̃0. Hence, the problem reduces to a Dirichlet–Neumann problem for
the Laplacian and one can use the results of [3] (see, in particular, Corollary 4.4.3.8) to conclude
that this problem has a unique W 2,p-solution provided the angle ω̃ at the contact point in Ω̃δ satisfies
the relation

ω̃ <
πp

4(p − 1)
. (32)

On the other hand, since

lim
z̃1→0

d

dz̃1

[
φ′(a) z̃1 + f ′(a)− φ′(a)

f ′(a)
( f (z̃1 + a)− f (a))

]
= f ′(a),

one concludes that the change of variables (31) transforms the contact angle ω = arctan f ′(a) in Ωδ

into the original contact angle arctan f ′(a)− arctan φ′(a) in Ω . Thus, we get

ω̃ = arctan f ′(a)− arctan φ′(a)

and using this in (32) we obtain condition (29) at a. Similarly, one obtains the condition at −a.
Finally, estimate (30) can be proven directly. �

In the next result we estimate the norm of the difference of two solutions in terms of the
differences of the data. Note that it is possible to choose c < 1 if the data is small.

LEMMA 5.2 Let vi ∈ W 2,p(Ω0), i = 1, 2 denote two solutions of (26) corresponding to φi ∈
C2[−a, a], i = 1, 2, respectively. Moreover, assume that φi , i = 1, 2 satisfy the assumptions of
Lemma 3.1. Then the following estimate holds:

‖v1 − v2‖2,p � c ‖φ1 − φ2‖C2 , (33)

for some positive constant c = c(β0, ‖ f ‖C2).

Proof. Let si and ri be the auxiliary functions (see definitions (18) and (19)) associated with φi ,
i = 1, 2. The difference v = v1 − v2 satisfies the following boundary value problem:

A(r1, s1) v = F(v2, r1, r2, s1, s2) in Ω0

v = 0 on B

N (r1, s1, φ1) v = J (v2, r1, r2, s1, s2, φ1, φ2) on Γ0

(34)
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where

F(v2, r1, r2, s1, s2) = −(r(r1 + r2)+ s(s1 + s2))
∂2v2

∂z2
2

+ 2r
∂2v2

∂z1∂z2

+
(

∂r

∂z1
+ r

∂r1

∂z2
+ r2

∂r

∂z2

)
∂v2

∂z2

and

J (v2, r1, r2, s1, s2, φ1, φ2) = N (r2, s2, φ2) v2 −N (r1, s1, φ1) v2

with r = r1− r2 and s = s1− s2. Taking the proof of Lemma 5.1 and the results of [3] into account,

we are left to prove that F ∈ L p(Ω0) and J ∈ W 1− 1
p ,p

(Γ0).
We start with the differences s = s1 − s2 and r = r1 − r2. One may write them in the form

r = n2(n′1 − n′2)− (n1 − n2)n′2
n1n2

( f − z2)+ f ′m n1 − n2

n1n2

s = m
n2 − n1

n1n2
= s1 s2

φ2 − φ1

m
,

where m(z1) = f (a)− f (z1), i = 1, 2 and ni (z1) = φi (z1)− f (z1), i = 1, 2. One readily obtains
the estimate

max
z1∈[−a,a]

∣∣∣∣φ2(z1)− φ1(z1)

m(z1)

∣∣∣∣ � a

f (a)
‖φ′2 − φ′1‖C0

and concludes that

max
(z1,z2)∈Ω0

|r(z1, z2)| � c
| f ′(a)|2
[ f (a)]2

(
1+ | f ′(a)|

f (a)

)2

‖φ′2 − φ′1‖C0

max
z1∈[−a,a] |s(z1)| � c

| f ′(a)|
f (a)2

(
1+ | f ′(a)|

f (a)

)
‖φ′2 − φ′1‖C0 .

(35)

We have used Lemma 3.1 and, in particular, the fact that

lim
z1→a

s(z1) = − f ′(a)(φ′2(a)− φ′1(a))

(φ′2(a)− f ′(a))(φ′1(a)− f ′(a))

lim
z1→a

z2→ f (a)

r(z1, z2) = [ f ′(a)]2(φ′2(a)− φ′1(a))

(φ′2(a)− f ′(a))(φ′1(a)− f ′(a))
.

Estimating the derivatives of s and r in a similar fashion leads to

‖s‖C1 + ‖r‖C1 � c ‖φ′2 − φ′1‖C1 , c = c(‖ f ‖C2).

Since by Sobolev embeddings it holds ui ∈ C1(Ω0), i = 1, 2, one obtains the estimates

‖F(v2, r1, r2, s1, s2)‖p � c ‖v2‖2,p ‖φ1 − φ2‖C2
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and

‖J (v2, r1, r2, s1, s2, φ1, φ2)‖1− 1
p ,p,Γ0

� c ‖v2‖2,p‖φ1 − φ2‖C2 ,

where, in view of Lemma 3.1, both constants c depend only on ‖ f ‖C2 .
Now, from Lemma 5.1 one finally concludes the existence of a unique solution v ∈ W 2,p(Ω0)

to (34) satisfying the estimate (33). �

6. Analysis of the ODE

In this final section we treat the ordinary differential equation for the free surface (27) with the
boundary conditions (28). We rewrite the boundary value problem in the form{

−ϕ′′ + A(x)ϕ = H(x)+ A(x)p0, −a < x < a

ϕ(−a) = ϕ(a) = f (a)
(36)

where

A(x) = gρ cos β

σ
(1+ φ′2)

3
2 > 0

and

H(x) = α1

2σ
(1+ φ′2)

3
2 |∇uφ |2 + α1(1+ φ′2)

3
2

gρ sin β

ησ
vφ

with qφ = q ◦Fφ . It is clear that the functions uφ and vφ which are defined in Ωφ , are here evaluated
at y = φ(x).

LEMMA 6.1 Let φ ∈ C2[−a, a] and u, v ∈ W 2,p(Ω0) be given. Problem (36) admits a unique
solution ϕ ∈ C2[−a, a]. Moreover, if

‖φ‖C2[−a,a] + ‖u‖2,p � ε (37)

and ε � 1 is chosen sufficiently small, then the following estimate holds:

‖ϕ − f (a)‖C0[−a,a] + ‖ϕ′‖C1[−a,a] � C(δ + δε + ε2 + (1+ ε) sin β0 ‖v‖2,p). (38)

Proof. By classical results on ODEs it follows that (36) has a unique C2 solution. In fact, the
assumptions on φ, u and v, the geometrical properties of our two-dimensional domain and Sobolev’s
embedding theorem (recall that p > 2) imply that A and H are continuous functions on [−a, a],
which together with the fact that A is positive is enough to guarantee the result.

To obtain the estimates, observe that letting ψ(x) = ϕ(x)− f (a) and taking (A2) into account,
problem (36) transforms into{

−ψ ′′ + A(x)ψ = H(x)+ δ A(x), −a < x < a

ψ(−a) = ψ(a) = 0.
(39)
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Hence, we have the estimate

‖ψ‖C2[−a,a] � C (‖H‖C0[−a,a] + δ ‖A‖C0[−a,a]).

In order to estimate H , let us point out that

‖(∇uφ)|y=φ(x)‖C0[−a,a] � C ‖u‖C1 max
x∈[−a,a] |∇F

2
φ |y=φ(x),

where Fφ = (F1
φ,F2

φ) is the mapping defined by (17). Therefore, in view of (37), Lemma 3.1 and
Sobolev’s embedding theorem, one obtains

‖(∇uφ)|y=φ(x)‖C0[−a,a] � C ‖u‖2,p � C ε.

Now, one easily concludes that

‖H‖C0[−a,a] � C (ε2 + (1+ ε) sin β0‖v‖2,p)

and

‖A‖C0[−a,a] � C (1+ ε),

where we have used (37) and the fact that ε � 1. The conclusion is now obvious. �

LEMMA 6.2 Let φ1, φ2 ∈ C2[−a, a] and u1, u2, v1, v2 ∈ W 2,p(Ω0) be given. If

‖φi‖C2 + ‖ui‖2,p � ε, i = 1, 2 (40)

and ε � 1 is chosen sufficiently small, then the following estimate holds:

‖ϕ1 − ϕ2‖C2 � C ((δ + ε + ε‖v1‖2,p) ‖φ1 − φ2‖C2 + ε ‖u1 − u2‖2,p + sin β0 ‖v1 − v2‖2,p),

(41)

where ϕ1 (respectively ϕ2) is the unique solution to problem (36) corresponding to the data
φ1, u1, v1 (respectively φ2, u2, v2).

Proof. Let ψi (x) = ϕi (x)− f (a), i = 1, 2 be two solutions and

ψ(x) = ψ1(x)− ψ2(x) = ϕ1(x)− ϕ2(x).

We then have that

−ψ ′′ + A1(x)ψ = H1(x)− H2(x)+ (A1(x)− A2(x)) (δ − ψ2(x))

and consequently

‖ψ‖C2 � C [‖H1 − H2‖C0 + ‖A1 − A2‖C0 ‖ψ2‖C2 + δ ‖A1 − A2‖C0 ].
Now

A1 − A2 = C[(1+ φ1
′2)

3
2 − (1+ φ2

′2)
3
2 ] = f 3

1 − f 3
2
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with fi = 3
√

C
√

1+ φi
′2, hence

A1 − A2 = f 2
1 − f 2

2

f1 + f2
( f 2

1 + f1 f2 + f 2
2 )

= (φ1
′ + φ2

′)(φ1
′2 + φ1

′φ2
′ + φ2

′2)
(1+ φ1

′2) 1
2 + (1+ φ2

′2) 1
2

(φ1
′ − φ2

′)

and

‖A1 − A2‖C0 � C ε3 ‖φ1 − φ2‖C1 . (42)

On the other hand, setting ui
φi
= ui ◦ Fφi , i = 1, 2, one gets

‖(∇u1
φ1

)|y=φ1(x) − (∇u2
φ2

)|y=φ2(x)‖C0[−a,a]
� C ‖u1 − u2‖C1 max

x∈[−a,a] |∇F
2
φ1
|y=φ1(x)

+‖u2‖C1 max
x∈[−a,a] |(∇F

2
φ1

)|y=φ1(x) − (∇F2
φ2

)|y=φ2(x)|.

Observing that

(∇Fφ)(x, φ(x)) =
[

1 0
r(z1, f (a)) s(z1)

]
and taking estimates (35) of Lemma 5.2 into account, one obtains

max
x∈[−a,a] |(∇F

2
φ1

)|y=φ1(x) − (∇F2
φ2

)|y=φ2(x)| � C ‖φ1 − φ2‖C1 .

Therefore, for ε � 1 sufficiently small, one easily concludes that

‖H1 − H2‖C0 � C((1+ ‖v1‖C0)ε
2‖φ1 − φ2‖C1 + ε‖u1 − u2‖C1

+ sin β0 ‖v1 − v2‖C0),

which together with (42) and Sobolev’s embedding theorem gives the desired estimate. �
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