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Characterization of facet breaking for nonsmooth mean curvature
flow in the convex case
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We investigate the breaking and bending phenomena of a facet of a three-dimensional crystal which
evolves under crystalline mean curvature flow. We give necessary and sufficient conditions for a facet
to be calibrable, i.e. not to break or bend under the evolution process. We also give a criterion which
allows us to predict exactly where a subdivision of a non-calibrable facet takes place in the evolution
process.
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1. Introduction

Motion by crystalline mean curvature in three dimensions is an important example of geometric
evolution of solid sets. Besides its geometric interest, it finds applications in material sciences and
crystal growth: see, for instance, [6, 7, 16, 23]. Among the geometric flows by anisotropic mean
curvature, we say that the evolution is crystalline if the anisotropy φ is faceted, which means that
φ is a piecewise linear convex function or, equivalently, that the Wulff shape Wφ := {φ � 1} is a
polytope. It has been recently shown [3, 24] that a facet F of a polyhedron E evolving by crystalline
mean curvature can subdivide into two or more regions, or can even bend, creating a curved portion
on the surface ∂ E (see also [22] for numerical computations). In this paper we investigate these
phenomena for a generic nonsmooth anisotropy (including the crystalline ones) and give necessary
and sufficient conditions for a facet not to break or bend during the evolution. Moreover, in the
case of convex facets, we identify explicitly the velocity (denoted by κ E

φ ), and therefore we are able

to predict exactly where a subdivision will take place. κ E
φ is obtained as the solution of a global

variational problem on the whole of ∂ E [4], and is expected to coincide with the actual velocity of
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the crystalline evolution. This conjecture is strongly supported by the expression of the first variation
of the surface energy computed in [4].

It is remarkable that the analysis of facet breaking/bending phenomena turns out to be equivalent
to the study of a variational problem on a given facet F of ∂ E : more precisely, the sublevel sets of
κ E
φ in F are solutions of a prescribed anisotropic curvature problem with respect to an anisotropy

φ̃, which is a sort of two-dimensional restriction of the original anisotropy φ. Prescribed mean
curvature problems in the Euclidean case have been widely studied (see for instance [13, 15, 17])
also because of their connections with capillarity theory [8–10]. For the anisotropic case we refer
to [18–20]. As a consequence of these results and the results in [21, 24], it turns out that the
connected components of the level sets of κ E

φ lying inside F are portions of the boundary of the

corresponding two-dimensional Wulff shape {φ̃ � 1}. This fact is crucial in the present paper.

Let us describe more precisely the content of this paper. In Section 2 we introduce some notation.
In Section 3 we collect some definitions and results from [4] and [5] which are necessary in the
sequel. In particular, we recall the notion of Lipschitz φ-regular set (Definition 3.1): a Lipschitz
set E ⊂ R

3 is said to be Lipschitz φ-regular if ∂ E admits a Lipschitz intrinsic normal vector
field nφ . The φ-mean curvature κ E

φ is defined in (16), through a minimizer Nmin of the variational
problem (15) on vector fields on ∂ E . This variational problem is meaningful only for nonsmooth
φ. Indeed, when φ is smooth and strictly convex, κ E

φ simply reduces to divnφ ; for a nonsmooth φ,
this is in general not the case, and the variational problem (15) is necessary in order to naturally
define κ E

φ . By the results of [4] and [5], it follows that κ E
φ is bounded on ∂ E and has bounded

variation on the facets of ∂ E . In particular, the jump set of κ E
φ is well defined (on facets), and it

should identify the subdivision regions in the geometric evolution problem. In Definition 3.12 we
recall the notion of φ-calibrable facet, that is a facet F ⊂ ∂ E such that κ E

φ is constant on the interior
of F . Such facets are expected not to break or bend during the evolution process. In Section 4 we
localize the variational problem (15) on a facet F , see Propositions 4.5, 4.6 and Corollary 4.7. At
the basis of the localization argument there is a trace property of the class of φ-normal vector fields
having bounded divergence (the class Hdiv∞

ν,φ (∂ E)). In order to prove that the normal trace for such
a nonsmooth φ-normal vector field N on ∂ F from ‘both sides’ of ∂ F (with respect to the Lipschitz
manifold ∂ E) does not actually depend on N ∈ Hdiv∞

ν,φ (∂ E) and coincides with the function cF

defined in (8), we need some assumptions on the shape of ∂ E locally around F : essentially we
require that ∂ E meets transversally the facet F , see Proposition 4.3. In Section 5 we introduce and
study the anisotropic prescribed curvature problem on F , see Theorem 5.2. A first characterization
of φ-calibrable facets is given in Theorem 6.1 of Section 6; in the case of a crystalline and even
φ this result has been obtained in [24]. Here Theorem 6.1 is proved also in presence of a bounded
forcing term g. In Section 7 we prove that, under the assumption that F is convex and that E is
convex at F (which means that, locally around F , E lies on one side of the support plane HF

through F), then the sublevel sets of κ E
φ (restricted to F) are convex. In Section 8 we prove one of

the main results of the paper, namely a characterization of convex φ-calibrable facets which can be
concretely handled. More precisely (see Theorem 8.1) if E is convex at F and F is convex, then F
is φ-calibrable if and only if the φ̃-curvature of ∂ F is bounded by the quotient of the anisotropic
φ̃-perimeter of F with the measure of F (this quotient is the mean value of κ E

φ on F , see (41)).
In Section 9, under the assumptions that φ is crystalline, F is convex, and E is convex at F , we
precisely identify the sublevel sets of κ E

φ as union of all the φ̃-Wulff shapes with a given radius
contained in F , see Theorem 9.1. As a consequence we localize the subdivision region; moreover
(see Corollary 9.5) we obtain that κ E

φ is convex on F . This is an indication that convex sets remain
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convex under crystalline mean curvature flow. Finally, in Section 10 we apply the above results to
an explicit example, partially discussed in [3]. This is an example of convex polyhedral set (very
close to the Wulff shape) which has a non φ-calibrable facet and does not remain polyhedral under
crystalline mean curvature flow.

All results of Sections 5–9 refer to a Lipschitz φ-regular set (E, nφ), to a facet F corresponding

to a facet of the Wulff shape Wφ , and under the assumption that any N ∈ Hdiv∞
ν,φ (∂ E) has normal

trace on ∂ F coinciding with the function cF . The extension of the results of Sections 8 and 9 for
nonconvex facets F seems to be nontrivial, and deserves further investigation.

2. Notation

In the following we denote by · the Euclidean scalar product in R
3 and by | · | the Euclidean norm

of R
3. Given v ∈ R

3, we set v⊥ := {w ∈ R
3 : w · v = 0}. If ρ > 0 and x ∈ R

k , k = 2, 3, we set
Bρ(x) := {y ∈ R

k : |y − x | < ρ}.
Given two vectors v, w ∈ R

3 we denote by [v, w] (resp. ]v, w[) the closed (resp. open) segment
joining v and w. With the notation A � B we mean that the set A is compactly contained in B.

The symbol Hk denotes the k-dimensional Hausdorff measure in R
3, k ∈ {1, 2}. We often use

the symbol |B| to denote the H2 measure of B. When integrating on a plane of R
3, we will often use

the notation dx in place of dH2(x) for the integration measure. All sets and functions considered in
this paper are Borel measurable.

If A ⊂ R
k , k = 2, 3, we denote by 1A the characteristic function of A and by ∂ A the topological

boundary of A.
We say that A ⊂ R

k , k = 2, 3, is Lipschitz (or equivalently that ∂ A is Lipschitz) if, for any
x ∈ ∂ A, there exists ρ > 0 such that Bρ(x)∩∂ A is the graph of a Lipschitz function f and Bρ(x)∩A
is the subgraph of f (with respect to a suitable orthogonal coordinate system). By Lip(∂ A) (resp.
Lip(∂ A;Rh), h = 2, 3) we denote the class of all Lipschitz functions (resp. vector fields with values
in R

h) defined on ∂ A.
Let Ω ⊂ R

2 be a bounded open set. The space BV (Ω) is defined as the set of all functions
u ∈ L1(Ω) whose distributional gradient Du is a Radon measure with bounded total variation in Ω ,
i.e. |Du|(Ω) = ∫

Ω |Du| < +∞, see [14]. Ω will play the role, in most cases, of the interior of a
facet F of a Lipschitz set E ⊂ R

3.
We say that a set B ⊆ Ω is of finite perimeter in Ω if 1B ∈ BV (Ω). If B is of finite perimeter

in Ω , ∂∗B denotes the reduced boundary of B; ∂∗B is rectifiable and can be endowed with a
generalized exterior Euclidean unit normal ν̃B .

We recall the following result, which is a particular case of a theorem proved in [2].

THEOREM 2.1 Let Ω ⊂ R
2 be a bounded open set. Let u ∈ BV (Ω) and X ∈ L∞(Ω;R2) with

divX ∈ L2(Ω). Then the linear functional

(X, Du) : ϕ →−
∫
Ω

uϕ divX dx −
∫
Ω

u X · ∇ϕ dx, ϕ ∈ C1
c (Ω)

defines a Radon measure (still denoted by (X, Du)) and satisfies

|(X, Du)|(B) � ‖X‖L∞(Ω;R2)|Du|(B)

for any Borel set B ⊆ Ω . If in addition Ω is Lipschitz, then there is a function [X · ν̃Ω ] ∈ L∞(∂Ω)
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such that ‖[X · ν̃Ω ]‖L∞(∂Ω) � ‖X‖L∞(Ω;R2), and∫
Ω

u divX dx +
∫
Ω

θ(X, Du) d|Du| =
∫

∂Ω
[X · ν̃Ω ]u dH1 (1)

where θ(X, Du) ∈ L∞|Du|(Ω) denotes the density of (X, Du) with respect to |Du|.
The last part of Theorem 2.1 is still valid when Ω is a bounded open set which is locally Lipschitz

continuous up to a finite set of points in ∂Ω .

Finsler metrics and duality mappings. We indicate by φ : R3 → [0,+∞[ a Finsler metric on R
3,

i.e. a convex function satisfying the properties

φ(ξ) � Λ|ξ |, φ(aξ) = aφ(ξ), ξ ∈ R
3, a � 0, (2)

for a suitable constant Λ ∈ ]0,+∞[. The function φo : R3 → [0,+∞[ is defined as

φo(ξ∗) := sup{ξ∗ · ξ : φ(ξ) � 1}, (3)

and is the dual of φ. We set

Wo
φ := {ξ∗ ∈ R

3 : φo(ξ∗) � 1}, Wφ := {ξ ∈ R
3 : φ(ξ) � 1}.

By a facet of ∂Wφ (or of ∂Wo
φ) we always mean a two-dimensional facet.

We say that φ is crystalline if Wφ is a (convex) polytope. If φ is crystalline, then also Wo
φ is a

(convex) polytope. Wo
φ is sometimes called the Frank diagram and Wφ the Wulff shape.

By T and T o we denote the possibly multivalued duality mappings defined by

T (ξ) := 1
2 D−(φ(ξ))2, ξ ∈ R

3,

T o(ξ∗) := 1
2 D−(φo(ξ))2, ξ∗ ∈ R

3,
(4)

where D− denotes the subdifferential.

φ-distance function. Given a nonempty set E ⊂ R
3 and x ∈ R

3, we set

distφ(x, E) := inf
y∈E

φ(x − y), distφ(E, x) := inf
y∈E

φ(y − x),

d E
φ (x) := distφ(x, E)− distφ(R3 \ E, x).

If E ⊂ R
3 is Lipschitz, for H2 almost every x ∈ ∂ E we denote by νE (x) the outward unit Euclidean

normal to ∂ E at x . At each point x where d E
φ is differentiable, there holds ∇d E

φ (x) ∈ ∂Wo
φ ; we set

νE
φ (x) := ∇d E

φ (x) at those points x ∈ ∂ E . We have νE
φ (x) = νE (x)

φo(νE (x))
.

If E ⊂ R
3 is Lipschitz we define

Norφ(∂ E) := {N : ∂ E → R
3 : N (x) ∈ T o(νE

φ (x)) for H2a.e. x ∈ ∂ E}, (5)

Lipν,φ(∂ E) := Lip(∂ E;R3) ∩ Norφ(∂ E).
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Note that if N1, N2 ∈ Norφ(∂ E), then N1 − N2 is tangent, since N1 · νφ = 1 = N2 · νφ .
We also set dPφ to be the measure supported on ∂ E with density φo(νE ), i.e.

dPφ(B) :=
∫

B
φo(νE ) dH2, B ⊆ ∂ E .

If E is Lipschitz and ψ ∈ Lip(∂ E) we denote by ∇τψ the Euclidean tangential gradient of ψ on
∂ E and, if v ∈ Lip(∂ E;R3), we denote by divτ v the Euclidean tangential divergence of v. In the
following, whenever there is no risk of confusion, we do not indicate the dependence on E of the
unit normals νE and νE

φ , i.e. we set ν := νE and νφ := νE
φ .

DEFINITION 2.2 We say that F is a facet of ∂ E if F is the closure of a connected component of
the relative interior of ∂ E ∩ Tx∂ E for some x ∈ ∂ E such that the tangent plane Tx∂ E to ∂ E at x
exists.

If F is a facet of ∂ E , we denote by ∂ F (resp. int(F)) the relative boundary (resp. the relative
interior) of F . Let F be a facet of ∂ E ; we define ν(F) to be the outer unit normal to int(F) (i.e.
ν(F) := νE (x) for any x ∈ int(F) ⊂ ∂ E), we set νφ(F) := ν(F)

φo(νφ(F))
, and

W̃ F
φ := T o(νφ(F)).

We denote by HF the affine plane spanned by the facet F . Whenever necessary, we identify HF

with the plane parallel to HF and passing through the origin, and F with its orthogonal projection
on this latter plane.

Fix y ∈ int(W̃ F
φ ) and let τy W̃ F

φ := W̃ F
φ − y. Let φ̃y : HF → [0,+∞[ be the Finsler metric

on HF such that {φ̃y � 1} = τy W̃ F
φ . Define also sym(φ̃y) as the Finsler metric on HF such that

{sym(φ̃y) � 1} = −τy W̃ F
φ . The classes of Lipschitz φ̃y-regular sets and Lipschitz sym(φ̃y)-regular

sets do not depend on the choice of y. We accordingly often omit specifying the point y (thus
addressing, for instance, φ̃y-regularity as φ̃-regularity).

We denote by φ̃o the dual of φ̃. The maps T̃ , T̃ o are defined as in (4) with φ̃ in place of φ and
HF in place of R

3.
If ψ : HF → [0,+∞[ is a Finsler metric on HF and B is a finite perimeter subset of HF , we

denote by ν̃B
ψ the normalized outward unit normal ν̃B

ψ̃o (̃νB )
to ∂∗B. We use the symbol ν̃B

φ in place of

ν̃B
φ̃

. If there is no risk of confusion, we do not indicate the dependence on B of ν̃B and ν̃B
φ .

If ψ : HF → [0,+∞[ is a Finsler metric on HF and B ⊂ HF is Lipschitz, we set

Norψ(∂ B) := {Ñ : ∂ B → HF , Ñ (x) ∈ T̃ o (̃νψ(x)) for H1 a.e. x ∈ ∂ B}, (6)

Lip̃ν,ψ(∂ B) := Lip(∂ B; HF ) ∩ Norψ(∂ B). (7)

3. Preliminaries

In this section we collect some definitions and results taken from [4] and [5] which will be useful in
the sequel.

3.1 Lipschitz φ-regular sets

DEFINITION 3.1 Let E ⊆ R
3. We say that E is Lipschitz φ-regular if ∂ E is compact and Lipschitz

continuous and there exists a vector field nφ : ∂ E → R
3 with nφ ∈ Lipν,φ(∂ E).
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nφ is usually called a Cahn–Hoffman vector field; several different choices of nφ are usually
allowed for the same set E , due to the nonsmoothness of φ (notice for instance that if φ is crystalline
then T and T o are necessarily multivalued).

The standard example of Lipschitz φ-regular set is (Wφ, x).

Notation. Throughout the paper, the symbols E or (E, nφ) always denote a Lipschitz φ-regular set;
nφ will be a given selection in Lipν,φ(∂ E) as in Definition 3.1. The symbol F will always denote a
facet of ∂ E such that W̃ F

φ is a facet of Wφ .

DEFINITION 3.2 We say that E is convex (resp. concave) at F if there exists an open set U ⊂ R
3

such that F ⊂ U and F = E ∩ HF ∩U (resp. F = R3 \ E ∩ HF ∩U ).

THEOREM 3.3 F is locally Lipschitz, out of a finite set of points in ∂ F \ ∂∗F . Moreover, if E is
convex or concave at F , then F is Lipschitz.

DEFINITION 3.4 We define the trace function cF ∈ L∞(∂ F) as

cF (x) := nφ(x) · ν̃F (x) ∀x ∈ ∂∗F. (8)

The next result shows that cF is independent of the choice of nφ ∈ Lipν,φ(∂ E), but depends only
on F , on ∂ E locally around F , and on the geometry of Wφ . We say that ∂ E is weakly convex (resp.
weakly concave) at x ∈ ∂∗F if ν̃F (x) points outside (resp. inside) E .

LEMMA 3.5 Let η ∈ Lipν,φ(∂ E). Then, for any x ∈ ∂∗F we have

η(x) · ν̃F (x) = cF (x) =
{

max {p · ν̃F (x) : p ∈ W̃ F
φ } if ∂ E is weakly convex at x ,

min {p · ν̃F (x) : p ∈ W̃ F
φ } if ∂ E is weakly concave at x .

(9)

DEFINITION 3.6 Let ψ : HF → [0,+∞[ be a Finsler metric on HF . Let B ⊂ HF . We say that B
is Lipschitz ψ-regular if ∂ B is compact and Lipschitz continuous and there exists a vector field in
Lip̃ν,ψ(∂ B).

In the following proposition, y is any point in the interior of W̃ F
φ , see the discussion after

Definition 2.2.

PROPOSITION 3.7 If E is convex at F then (F, nφ − y) is Lipschitz φ̃-regular. If E is concave at
F , then (F, y − nφ) is Lipschitz sym(φ̃y)-regular.

In the next definition we prefer to keep the notation P̃φ instead of Pφ̃ .

DEFINITION 3.8 Let A be an open subset of HF . For any B ⊆ F , we set

P̃φ(B, A) := sup

{ ∫
B

divτ η dx : η ∈ C1
c (A; τy W̃ F

φ )

}
, (10)

P̃φ(B) := P̃φ(B, HF ). (11)

Notice that P̃φ(F) < +∞ by Theorem 3.3.
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3.2 φ-tangential divergence

Let us introduce the φ-tangential divergence for vector fields v ∈ L2(∂ E;R3) as bounded linear
operator on Lip(∂ E). Recall that (E, nφ) is Lipschitz φ-regular.

DEFINITION 3.9 Let v ∈ L2(∂ E;R3). We define divφ,nφ,τ v : Lip(∂ E) → R as follows: for any
ψ ∈ Lip(∂ E) we set

〈divφ,nφ,τ v, ψ〉 :=
∫

∂ E
ψ v · νφ divτ nφ dPφ −

∫
∂ E
[∇τψ − ∇τψ · nφ νφ] · v dPφ. (12)

Notice that, if X ∈ L2(∂ E;R3) is a tangent vector field, then

〈divφ,nφ,τ X, ψ〉 = −
∫

∂ E
∇τψ · X dPφ ∀ψ ∈ Lip(∂ E). (13)

We say that divφ,nφ,τ v is independent of the choice of nφ if, given η ∈ Lipν,φ(∂ E) then
〈divφ,nφ,τ v, ψ〉 = 〈divφ,η,τ v, ψ〉 for any ψ ∈ Lip(∂ E). When divφ,nφ,τ v is independent of the
choice of nφ , we simply set divφ,τ v := divφ,nφ,τ v. It turns out that if η ∈ Lipν,φ(∂ E) then
〈divφ,nφ,τ η, ψ〉 = ∫

∂ E ψ divτ η dPφ for any ψ ∈ Lip(∂ E). Moreover, if N ∈ Norφ(∂ E), then
divφ,nφ,τ N is independent of the choice of nφ and, on int(F), divφ,τ N coincides with divτ N (we
will accordingly use the notation divτ N in place of divφ,τ N on int(F)).

3.3 The minimum problem on ∂ E

We define

Hdiv
ν,φ(∂ E) := {N ∈ Norφ(∂ E) : divφ,τ N ∈ L2(∂ E)},

Hdiv∞
ν,φ (∂ E) := {N ∈ Norφ(∂ E) : divφ,τ N ∈ L∞(∂ E)}.

Let F : Hdiv
ν,φ(∂ E)→ [0,+∞[ be the functional defined as

F(N ) :=
∫

∂ E
(divφ,τ N )2 dPφ. (14)

The minimum problem

inf{F(N ) : N ∈ Hdiv
ν,φ(∂ E)} (15)

admits a solution and, if N1 and N2 are two minimizers, then divφ,τ N1(x) = divφ,τ N2(x) for H2

almost every x ∈ ∂ E .
Except for Section 6, in the following we denote by Nmin a solution of (15), and we set

κ E
φ := divφ,τ Nmin ∈ L2(∂ E). (16)

κ E
φ is the natural definition of φ-mean curvature of ∂ E . The following regularity results hold.

THEOREM 3.10 κ E
φ ∈ L∞(∂ E). Moreover κ E

φ ∈ BV (int(F)).
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We set
κmin(F) := ess inf

F
κ E
φ , κmax(F) := ess sup

F
κ E
φ ,

and for any λ ∈ R we define

Ω F
λ := {x ∈ int(F) : κ E

φ (x) < λ}, Θ F
λ := {x ∈ int(F) : κ E

φ (x) � λ}.

THEOREM 3.11 For every λ ∈ R the set Ω F
λ is a solution of the following variational problem:

inf{P̃φ(B, int(F))− λ|B| : (B \ Ω F
λ ) ∪ (Ω F

λ \ B) � int(F)}. (17)

Moreover, if λ �= 0, every connected component of int(F) ∩ ∂Ω F
λ is contained in a translated of

1
λ
∂W̃ F

φ , and has extrema on ∂ F . Same assertions hold for the sets Θ F
λ .

DEFINITION 3.12 We say that F is φ-calibrable if κ E
φ is constant on int(F).

The following technical result will be very useful in the sequel.

THEOREM 3.13 For any λ ∈ R we have

−θ(Nmin, D1Ω F
λ
)(x) = max{ p · ν̃Ω F

λ (x) : p ∈ W̃ F
φ } H1 a.e. x ∈ int(F) ∩ ∂∗Ω F

λ ,

−θ(Nmin, D1Θ F
λ
)(x) = max{ p · ν̃Θ F

λ (x) : p ∈ W̃ F
φ } H1 a.e. x ∈ int(F) ∩ ∂∗Θ F

λ ,

where θ(Nmin, ·) is given by Theorem 2.1.

We conclude this section with the following definition.

DEFINITION 3.14 If P ⊆ HF is Lipschitz φ̃-regular, we denote by κ̃ P
φ the φ̃-curvature of ∂ P ,

obtained by taking the divergence of a minimizer of a functional as in (14) with P in place of E and
φ̃ in place of φ.

4. Normal traces on ∂ F . Localized minimum problem on facets

The aim of this section is to extend the validity of the first equality in (9) under weaker regularity
assumptions on η. In doing this, however, we strengthen the regularity assumptions of ∂ E locally
around F . We miss the proof of the first equality of (9) for a facet F of a generic (Lipschitz φ-
regular) set and a generic N ∈ Hdiv∞

ν,φ (∂ E). We recall that, thanks to Theorems 2.1 and 3.3, any

N ∈ Hdiv∞
ν,φ (∂ E) admits a normal trace [N · ν̃F ] ∈ L∞(∂ F).

We begin with the simplest case, where we assume that ∂ F is locally the intersection of two
half-planes. This situation covers the case when E is polyhedron.

PROPOSITION 4.1 Let N ∈ Hdiv∞
ν,φ (∂ E). Assume that there exist x ∈ ∂ F and ρ > 0 such that

Bρ(x) ∩ ∂ E is the union of Bρ(x) ∩ F and Bρ(x) ∩ F1, where F1 ⊆ R
3 is a half-plane nonparallel

to HF . Then

[N · ν̃F ] = cF H1a.e. on Bρ(x) ∩ ∂ F. (18)
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FIG. 1. Case (i) of Proposition 4.1 (F2 := F).

Proof. Let N ∈ Hdiv∞
ν,φ (∂ E) and let χ be the tangent vector field defined by χ := N − nφ . Let

x ∈ Bρ(x) ∩ ∂ F be a Lebesgue point of [χ · ν̃F ]. Set F2 := F . Let l be a fixed positive number
small enough, and let 0 < ε � l. Let Rε := R1

ε ∪ R2
ε ⊂ Bρ(x) be the set ‘centred’ at x as in

Fig. 1, where we identify the rectangle R2
ε (resp. the rectangle R1

ε ) with [−ε, 0] × [−l, l] (resp.
[0, ε] × [−l, l]). We also sometimes identify the edges of the rectangles with their lengths.

To prove the assertion, it is enough to show that∫
{0}×[−l,l]

[χ · ν̃F ] dH1 = 0. (19)

Indeed, since (19) holds for any l small enough we deduce [χ · ν̃F ](x) = 0, and (18) follows
recalling (8).

Let δ be a positive number with δ � ε. For any y ∈ ∂ E define ψ(y) := 1
δ
dist(y, ∂ E \ Rε) ∧ 1.

Then ψ ∈ Lip(∂ E) and spt(ψ) ⊆ Rε .
Recalling that divφ,τ χ is a bounded function on ∂ E , it is immediate to check that∣∣∣∣ ∫

Rε

ψ divφ,τ χ dPφ

∣∣∣∣ = lO(ε),

∣∣∣∣ ∫
Ri

ε

ψ divτ χ dPφ

∣∣∣∣ = lO(ε), i = 1, 2. (20)

We also claim that ∫
Ri

ε

∇τψ · χ dPφ = lO(ε)+ O(ε), i = 1, 2. (21)

Indeed, from (20) we get

−
∫

R2
ε

∇τψ · χ dPφ = lO(ε)+
∫

R1
ε

∇τψ · χ dPφ. (22)

By general properties of Lipschitz φ-regular sets (see [5: Lemma 4.1 and Theorem 4.4]) it follows
that, if z ∈ Bρ(x) ∩ F1 ∩ F2, then nφ(z) ∈ W̃ F1

φ ∩ W̃ F2
φ , and ν̃Fi (z) belongs to the outward normal



424 G. BELLETTINI, M. NOVAGA & M. PAOLINI

cone to ∂W̃ Fi
φ at nφ(z). Therefore

ν̃Fi (z) · (p − nφ(z)) � 0 for any p ∈ W̃ Fi
φ , i = 1, 2. (23)

Given y ∈ Ri
ε , we denote by πi (y) ∈ [−l, l] the point of minimal distance of y from [−l, l]. Clearly

|y − πi (y)| = O(ε). Since nφ is Lipschitz continuous on ∂ E and N (y) ∈ W̃ F2
φ (resp. N (y) ∈ W̃ F1

φ )

for H2 almost every y ∈ F2 (resp. for H2 almost every y ∈ F1 ∩ ∂ E), using (23) we have, for
i = 1, 2 and y ∈ Fi ,

ν̃Fi (x) · χ(y) = ν̃Fi (x) · (N (y)− nφ(πi (y)))+ ν̃Fi (x) · (nφ(πi (y))− nφ(y))

= ν̃Fi (πi (y)) · (N (y)− nφ(πi (y)))+ ν̃Fi (x) · (nφ(πi (y))− nφ(y)))

� ν̃Fi (x) · (nφ(πi (y))− nφ(y)) = O(ε). (24)

Recalling the definition of ψ and the properties of the distance function, we have

−
∫

R2
ε

∇τψ · χ dPφ = 1

δ

∫
Aδ

ν̃F2(x) · χ dPφ + 1

δ

∫
Bδ

ν̃ p · χ dPφ, (25)

where Aδ := [−ε,−ε + δ] × [−l, l], Bδ := {y ∈ R2
ε \ Aδ : dist(y, ∂ E \ Rε) � δ}, and ν̃ p denotes

the outward unit normal to the level sets of ψ . A similar formula holds when R2
ε is replaced by R1

ε .
Therefore, using (24) and (25), we get

−
∫

Ri
ε

∇τψ · χ dPφ � lO(ε)+ O(ε), i = 1, 2. (26)

From (26) and (22) we deduce

lO(ε)+ O(ε) � −
∫

R2
ε

∇τψ · χ dPφ = lO(ε)+
∫

R1
ε

∇τψ · χ dPφ � lO(ε)+ O(ε),

which proves claim (21).
Using (20) and (1) we have

lO(ε) =
∫

R1
ε

ψ divτ χ dPφ = −
∫

R1
ε

∇τψ · χ dPφ +
∫

∂ R1
ε

ψ [χ · ν̃R1
ε ] dPφ. (27)

Observe that ψ vanishes on ∂ Rε and, when restricted to ∂ R1
ε , is nonzero only on the segment [−l, l],

and is equal to one on [−l + δ, l − δ]. Hence∫
∂ R1

ε

ψ [χ · ν̃R1
ε ] dPφ =

∫
[−l+δ,l−δ]

[χ · ν̃R1
ε ] dPφ + O(δ). (28)

Inserting (28) into (27) and using (21) we have∫
[−l+δ,l−δ]

[χ · ν̃R1
ε ] dPφ = lO(ε)+ O(ε)+ O(δ).

Letting first δ → 0+ and then ε → 0+, we get (19), and the proposition is proved. �
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We now extend the class of sets E for which Proposition 4.1 is valid. For any x ∈ ∂ E and ρ > 0
we let Eρ(x) := E−x

ρ
. Recall that (E, nφ) is a Lipschitz φ-regular set, and that νφ = νE

φ . We begin
with the following lemma on the structure of the blow-up of ∂ E .

LEMMA 4.2 Let x ∈ ∂ E . There exist a set E0 = E0(x) ⊂ R
3 and a sequence (ρn)n of positive

numbers converging to 0 such that

(a) 1Eρn (x) ⇀ 1E0 weakly in BVloc(R
3),

(b) ∂ E0 is an entire Lipschitz graph and nφ(x) ∈ T o(ν
E0
φ (y)) for H2 almost every y ∈ ∂ E0,

(c) E0 minimizes Pφ between all subsets of R
3 of finite perimeter which coincide with E0 out of

some ball.

In contrast with the Euclidean case, in general E0 is not a cone over x .

Proof. Point (a) is standard in the theory of finite-perimeter sets. Let us prove (b). Let x = 0
for simplicity. Let Π ⊂ R

3 be a plane and f : Π → R be a Lipschitz function such that ∂ E
coincide with the graph of f in a neighbourhood of 0. Then ∂ Eρ can be written (locally around 0)
as the graph of the Lipschitz function fρ(y) := f (ρy)

ρ
. Since fρ are equi-Lipschitz on any bounded

set, using the Ascoli-Arzelà theorem, fρ converges uniformly on compact subsets of Π (possibly
passing to a subsequence) to a Lipschitz function f0 whose subgraph is E0. We can also assume
that fρ converges to f0 weakly in H1

loc(Π ). By [5], Lemma 4.2, we have that for any R > 0

lim
ρ→0+

sup
y∈BR(0)∩∂∗Eρ

dist(ν
Eρ

φ (y), T (nφ(0))) = 0. (29)

Since T (nφ(0)) is a convex set and ν
Eρ

φ (· + fρ(·)νΠ ) converges to ν
E0
φ (· + f0(·)νΠ ) weakly in

L2
loc(Π ), from (29) it follows that

ν
E0
φ (y) ∈ T (nφ(0)) for H2 a.e. y ∈ ∂ E0.

It follows T o(ν
E0
φ (y)) ⊇ T o(int(T (nφ(0)))) ! nφ(0), and (b) is proved (note therefore that ∂ E0

admits a constant φ-normal vector field nφ(0)).
Let us prove (c). Let A ⊂ R

3 be a set of finite perimeter such that (E0 \ A)∪ (A \ E0) � BR :=
BR(0) for some R > 0. From the Gauss–Green theorem we get

0 =
∫

BR

divnφ(0) (1E0 − 1A) dx = (D1E0(BR)− D1A(BR)) · nφ(0)

� (D1E0(BR)) · nφ(0)− Pφ(A, BR),

where the last inequality follows from the inequality ν A · nφ(0) � φo(ν A). Since ν
E0
φ · nφ(0) = 1

on ∂∗E0, we obtain Pφ(A, BR) � Pφ(E0, BR), and (c) is proved. �
PROPOSITION 4.3 Assume that for H1 almost any x ∈ ∂∗F the boundary ∂ E0(x) of the blow-up
set E0(x) defined in Lemma 4.2 is the union of two closed nonparallel half-planes P1, P2, with P2
parallel to F . Assume also that the Lipschitz functions fρ in the proof of Lemma 4.2, converge to
f0 strongly in H1

loc(Π ), and that |D1 F−x
ρ
|(K ) → |D1P2 |(K ) for any compact set K contained in

the plane spanned by P2. Then, for any N ∈ Hdiv∞
ν,φ (∂ E) we have

[N · ν̃F ] = cF H1 a.e. on ∂ F. (30)
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Proof. Fix x ∈ ∂∗F and assume for simplicity x = 0. In a neighbourhood V of x = 0, the set E
coincides with the subgraph of a Lipschitz function f : Π → R. Up to a translation, we can assume
that 0 ∈ Π and f (0) = 0. Let also U := V ∩Π and π : R3 → Π be the orthogonal projection such
that π(y, f (y)) = y for y ∈ Π . For ρ > 0 we let Uρ := U/ρ, and we define Nρ ∈ L∞(Uρ;R3),
nρ ∈ Lip(Uρ;R3) and ξρ ∈ L∞(Uρ;R3) as

Nρ(y) := N (ρ(y, f (y))), nρ(y) := nφ(ρ(y, f (y))),

ξρ(y) := φo(−∇ fρ(y), 1)(Nρ(y)− nρ(y)),
(31)

where y ∈ Uρ . We divide the proof into four steps.

Step 1. We have div ξρ ∈ L∞(Uρ).

Indeed, for any function ψ ∈ C1
c (Uρ) we have, setting ψ̂ := ψ ◦ π ,∫

Uρ

ξρ(y) · ∇ψ(y) dy =
∫

Uρ

(Nρ(y)− nρ(y)) · ∇ψ(y)φo(−∇ fρ(y), 1) dy

=
∫

∂ Eρ∩(V/ρ)

(Nρ − nρ) · ∇ψ̂ dPφ

= 1

ρ2

∫
∂ E∩V

(N (x)− nφ(x)) · (∇ψ̂)(x/ρ) dPφ

= 1

ρ

∫
∂ E∩V

(N (x)− nφ(x)) · ∇(ψ̂(x/ρ)) dPφ.

Since N − nφ ∈ Hdiv∞
ν,φ (∂ E) is a tangent vector field, from the previous equality we deduce∫

Uρ

ξρ(y) · ∇ψ(y) dy � C

ρ

∫
∂ E
|ψ̂(x/ρ)| dPφ = Cρ‖ψ̂‖L1(∂ Eρ) � C̃ρ‖ψ‖L1(Uρ),

for some positive constant C , C̃ independent of ρ. This proves Step 1.

Step 2. Definition of ξ0.

Letting ρ → 0, up to a subsequence, we can assume that, for all n ∈ N, ξρ weakly* converges, in
Hdiv∞

ν,φ (Bn(0)∩Π ) to a divergence free vector field ξ0 ∈ Hdiv∞
ν,φ (Π ), that fρ converge to f0 ∈ Lip(Π )

uniformly on compact subsets of Π , strongly in H1
loc(Π ) (by assumption) and ∇ fρ → ∇ f0 almost

everywhere in Π .

Step 3. We have

ξ0(y) ∈ C0(y) := [T o(ν
E0
φ (y))− nφ(0)]φo(−∇ f0(y), 1) for a.e. y ∈ Π .

Indeed

ξρ(y) ∈ Cρ(y) := [T o(νφ(ρy, ρ f (y)))− nφ(ρy, ρ f (y))]φo(−∇ fρ(y), 1) for a.e. y ∈ Uρ.

From the upper semicontinuity of T o it follows that for almost every y ∈ Π⋂
ε>0

⋃
ρ<ε

Cρ(y) ⊆ C0(y).
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Since C0(y) is a convex set and ξρ ⇀ ξ0 weakly in L2
loc(Π ), it follows ξ0(y) ∈ C0(y) for almost

every y ∈ Π .

Step 4. Definition of N0.

For H2 almost every x ∈ ∂ E0 let us define

N0(x) := nφ(0)+ ξ0(π(x))

φo(−∇ f0(π(x)), 1)
.

Clearly, N0 ∈ T o(ν
E0
φ ); we now prove that N0 ∈ Hdiv∞

ν,φ (∂ E0). Indeed, since ξ0 ∈ Hdiv∞
ν,φ (Π ) and

divξ0 = 0, for any ψ ∈ Lip(∂ E0) with compact support, we have∫
∂ E0

(N0 − nφ(0)) · ∇ψ dPφ =
∫
Π

ξ0 · ∇(ψ ◦ π−1) dy = 0,

which implies N0 ∈ Hdiv∞
ν,φ (∂ E0) and divφ,τ N0 = 0.

We now conclude the proof of the proposition. Assume that x ∈ ∂∗F is a Lebesgue point for
[N · ν̃F ] on ∂ F . For simplicity we let x = 0. Recalling that ν̃P2 = ν̃F (0), by Proposition 4.1 we
have

[N0 · ν̃P2 ] = cF (0), H1a.e. on P1 ∩ P2.

To conclude it is enough to show

[N0 · ν̃P2 ] = [N · ν̃F ](0), H1a.e. on P1 ∩ P2. (32)

Let ψ ∈ C1
c (R3), 0 � ψ � 1 be a radially symmetric function such that ψ ≡ 1 in B1(0) and

spt(ψ) ⊂ B2(0). We have

[N · ν̃F ](0) = lim
ρ→0

1∫
∂ F ψ(x/ρ) dH1

∫
∂ F
[N · ν̃F ]ψ(x/ρ) dH1

= lim
ρ→0

1

ρ
∫
∂ F/ρ

ψ dH1

∫
∂ F
[N · ν̃F ]ψ(x/ρ) dH1

= lim
ρ→0

(
1

ρ
∫
∂ F/ρ

ψ dH1

∫
F

divτ Nψ(x/ρ) dx

+ 1

ρ2
∫
∂ F/ρ

ψ dH1

∫
F

N · ∇τψ(x/ρ) dx

)
= lim

ρ→0

1∫
∂ F/ρ

ψ dH1

∫
F/ρ

Nρ · ∇τψ dx

= 1∫
∂ P2

ψ dH1

∫
P2

N0 · ∇τψ dx = [N0 · ν̃P2 ],

where, in the first equality of the last line, we used the convergence assumption on ∂ F/ρ. The proof
of (32) is complete. �
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REMARK 4.4 Notice that any convex set E such that ∂ E \ F intersects F transversally verifies the
assumptions of Proposition 4.3.

ASSUMPTION In what follows, we will always assume that E and F are such that any vector field
N ∈ Hdiv∞

ν,φ (∂ E) verifies [N · ν̃F ] = cF on ∂ F (see the hypotheses in Propositions 4.1 and 4.3).

We let

Hdiv
ν,φ(F) := {N ∈ Norφ(F) : divτ N ∈ L2(F), [N · ν̃F ] = cF },

Hdiv∞
ν,φ (F) := {N ∈ Norφ(F) : divτ N ∈ L∞(F), [N · ν̃F ] = cF },

where Norφ(F) is as in (5) with ∂ E replaced by F , and we define the functional F(·, F) :
Hdiv

ν,φ(F)→ [0,+∞[ as

F(N , F) :=
∫

F
(divτ N )2 dPφ = φo(ν(F))

∫
F
(divτ N )2 dx . (33)

PROPOSITION 4.5 The minimum problem

inf{F(N , F) : N ∈ Hdiv
ν,φ(F)} (34)

admits a solution. Moreover, if N1 and N2 are two minimizers, then divτ N1(x) = divτ N2(x) for
H2 almost every x ∈ int(F).

Proof. Let C := {divτ N : N ∈ Hdiv
ν,φ(F), [N · ν̃F ] = cF }. Then C is a convex subset of L2(F).

Let us prove that C is closed in L2(F). Let fk := divτ Nk ∈ C be such that fk → f in L2(F)

as k → ∞. We have to prove that f ∈ C . Localizing the arguments of Proposition 6.1 in [4] to
the facet F , one can prove that f = divτ N , for some N ∈ L2(F;R3). It remains to check that
[N · ν̃F ] = cF . Let u ∈ C1(F); since [Nk · ν̃F ] = cF for any k, we have∫

F
udivτ Nk dx +

∫
F

Nk · ∇u dx =
∫

∂ F
cF u dH1, k ∈ N.

Noticing that supk ‖Nk‖L∞(F) < +∞, we may, possibly extracting a subsequence, pass to the limit
as k →∞, and we get ∫

F
udivτ N dx +

∫
F

N · ∇u dx =
∫

∂ F
cF u dH1.

As u ∈ C1(F) is arbitrary, we obtain that [N ·̃νF ] = cF . The existence of a (unique in the divergence)
minimizer of (34) is a standard consequence of minimization on convex sets of convex functionals
on Hilbert spaces. �

The following proposition, based on the trace property discussed in Propositions 4.1 and 4.3,
shows that the divergence of a solution to (34) is the divergence of Nmin restricted to F .

PROPOSITION 4.6 Nmin|F is a solution of (34).
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Proof. By our assumptions on E and F we have that [Nmin · ν̃F ] = cF on ∂ F . Assume by
contradiction that Nmin|F is not a solution of (34). Let η ∈ Hdiv∞

ν,φ (F) be a solution of (34), and
define

η :=
{

η on int(F),

Nmin on ∂ E \ F .

To reach a contradiction, it is enough to show that

divφ,τ η =
{

divτ η on int(F),

divφ,τ Nmin on ∂ E \ F ,
(35)

since this implies that F(η) < F(Nmin), thus violating the minimality of Nmin. Relation (35) is
equivalent to showing that

〈divφ,τ η, ψ〉 =
∫

F
ψ divτ η dPφ +

∫
∂ E\F

ψ divφ,τ Nmin dPφ ∀ψ ∈ Lip(∂ E). (36)

We first observe that [η · ν̃F ] = cF on ∂ F , hence∫
∂ F

ψ [(η − nφ) · ν̃F ] dH1 = 0. (37)

As η − nφ is a tangent vector field, (37) implies that∫
F

ψ divτ (η − nφ) dPφ = −
∫

F
∇τψ · (η − nφ) dPφ. (38)

Equality (38) holds also with Nmin in place of η; since, moreover, by (13)∫
∂ E

ψ divφ,τ (Nmin − nφ) dPφ = −
∫

∂ E
∇τψ · (Nmin − nφ) dPφ,

we deduce ∫
∂ E\F

ψ divφ,τ (Nmin − nφ) dPφ = −
∫

∂ E\F
∇τψ · (Nmin − nφ) dPφ. (39)

To conclude the proof, it is now enough to observe that (36) is equivalent to the sum of (38) and (39)
(recall that Nmin · νφ = η · νφ = 1). �

The following result is a consequence of Propositions 4.5, 4.6 and Theorem 3.10.

COROLLARY 4.7 If N is a solution of (34) then divτ N coincides with κ E
φ restricted to F , hence

belongs to L∞(F) ∩ BV (int(F)).

5. Prescribed anisotropic curvature problem on convex facets

The following result will be useful in the sequel.
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PROPOSITION 5.1 Assume that E is convex at F . Then for any λ ∈ [κmin(F), κmax(F)] we have∫
Ω F

λ

κ E
φ dx = P̃φ(Ω F

λ ),

∫
Θ F

λ

κ E
φ dx = P̃φ(Θ F

λ ). (40)

In particular ∫
F

κ E
φ dx = P̃φ(F). (41)

Proof. Let λ ∈ [κmin(F), κmax(F)]. We apply (1) with the choice Ω := int(F) (recall Theorem 3.3),
X := Nmin, u = 1Ω F

λ
, so that, being [Nmin · ν̃F ] = cF on ∂ F ,∫

Ω F
λ

κ E
φ dx = −

∫
int(F)∩∂∗Ω F

λ

θ(Nmin, D1Ω F
λ
) dH1 +

∫
∂ F
[Nmin · ν̃F ]1Ω F

λ
dH1.

Then the first equality in (40) follows, using a localization argument, from the definition of P̃φ ,
from Theorem 3.13 and from the expression of cF given by the second equality in (9) in the weakly
convex case (recall that, if E is convex at F , then ∂ E is weakly convex at any x ∈ ∂ F). The proof
of the second equality in (40) follows in a similar way. �

The following result is crucial to characterize φ-calibrable facets and extends the first
assertion of Theorem 3.11; it shows that the sets Ω F

λ solve a minimum problem which is the
anisotropic version of the so-called prescribed curvature problem: see for instance [9] and references
therein, [18–20].

Define
Gλ(B) := P̃φ(B)− λ|B|, B ⊆ F.

THEOREM 5.2 Assume that E is convex at F . Then for every λ ∈ [κmin(F), κmax(F)] the sets Ω F
λ

and Θ F
λ are solutions of the following variational problem:

inf{Gλ(B) : B ⊆ F}. (42)

In addition, if Ω̃ is a solution of (42) then

Ω F
λ ⊆ Ω̃ ⊆ Θ F

λ . (43)

Proof. For any B ⊆ F it holds

Gλ(B) �
∫

B
(κ E

φ − λ) dx . (44)

Since Ω F
λ = int(F) ∩ {κ E

φ − λ < 0}, if follows that∫
B
(κ E

φ − λ) dx �
∫
Ω F

λ

(κ E
φ − λ) dx . (45)

As E is convex at F , using Proposition 5.1, we get∫
Ω F

λ

(κ E
φ − λ) dx = P̃φ(Ω F

λ )− λ|Ω F
λ |. (46)
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From (44)–(46) it follows that Ω F
λ is a solution of (42). In a similar way one proves that Θ F

λ is also
a solution of (42).

Finally, let Ω̃ be another solution of (42). Then the equality must hold in (45) with B replaced
by Ω̃ . Similarly, the equality in (45) must hold with B replaced by Ω̃ and Ω F

λ replaced by Θ F
λ .

These observations imply (43). �

REMARK 5.3 Assume that E is convex at F . Then

κmin(F) � 2
√

π

|F | . (47)

Indeed, if λ is such that Ω F
λ �= ∅, then by the isoperimetric inequality (see for instance [11]) it

follows P̃φ(Ω F
λ ) � 2

√
π |Ω F

λ |. Therefore, by Theorem 5.2 we have

0 = Gλ(∅) � Gλ(Ω F
λ ) � 2

√
π |Ω F

λ | − λ|Ω F
λ |.

Hence

|F | � |Ω F
λ | �

4π

λ2
, (48)

which implies (47). Notice that from (48) it follows that Θ F
κmin(F) �= ∅, since Θ F

κmin(F) =⋂
λ>κmin(F) Ω

F
λ .

6. Characterization of general φ-calibrable facets

This is the only section of the paper where we consider also the presence of a forcing term g. We
also do not assume here any convexity-type assumption on E and F .

Let g ∈ L∞(∂ E); all results of Section 3.3 still hold [4], [5] when the functional F in (14) is
replaced by ∫

∂ E
(divφ,τ N − g)2 dPφ, N ∈ Hdiv

ν,φ(∂ E), (49)

provided we replace κ E
φ with d E

min − g, where d E
min := divφ,τNmin, Nmin a minimizer of (49).

Accordingly, the functional F(·, F) in (33) must be modified into∫
F
(divτ N − g)2 dPφ, N ∈ Hdiv

ν,φ(F). (50)

Again (see Corollary 4.7) if N is a minimizer of the functional in (50), then divτ N − g coincides
with d E

min − g restricted to F .
For any B ⊆ F we set

gB :=
1

|B|
∫

B
g dx .

We also define the constant VF as follows:

VF := 1

|F |
∫

∂ F
cF dH1 − gF .
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Notice that by the results of Sections 4 and by (1) (we recall that by Theorem 3.3 F is Lipschitz up
to a finite set of points) we have

VF = 1

|F |
∫

∂ F
[Nmin · ν̃F ] dH1 − gF =

1

|F |
∫

F
(d E

min − g) dx . (51)

If B has finite perimeter in HF , for x ∈ ∂∗B we define

cB(x) :=
{

max
{

p · ν̃B(x) : p ∈ W̃ F
φ

}
if x ∈ ∂∗B \ ∂ F

cF (x), otherwise.
(52)

A weaker form of the implication (i)⇒ (ii) of the following result was proved in [3].

THEOREM 6.1 The following two conditions are equivalent.

(i) F is φ-calibrable (i.e. d E
min − g is constant on int(F));

(ii) for any B ⊆ F of finite perimeter in HF there holds

1

|B|
∫

∂∗B
cB dH1 − gB � 1

|F |
∫

∂ F
cF dH1 − gF . (53)

Proof. (ii)⇒ (i). Suppose by contradiction that F is not φ-calibrable, i.e. d E
min− g is not constantly

equal to VF on int(F). It follows that Ω F
VF

= {d E
min − g < VF } ∩ int(F) is nonempty. By

Corollary 4.7, we can find λ < VF such that Ω F
λ

is a nonempty set of finite perimeter. Set for

simplicity Q := Ω F
λ

. From (1) we have∫
Q

d E
min dx = −

∫
int(F)∩∂∗Q

θ(Nmin, D1Q) dH1 +
∫

∂ F
[Nmin · ν̃F ]1Q dH1

= −
∫

int(F)∩∂∗Q
θ(Nmin, D1Q) dH1 +

∫
∂ F∩∂∗Q

[Nmin · ν̃F ] dH1.

Recalling Theorem 3.13 (which is still valid for Nmin [5]) and definition (52) of cQ , we have
−θ(Nmin, D1Q) = cQ on ∂∗Q∩ int(F); moreover [Nmin · ν̃F ] = cF = cQ on ∂ F ∩∂∗Q. Therefore∫

Q d E
min dx = ∫

∂∗Q cQ dH1. It follows, using (ii),

VF > λ >
1

|Q|
∫

Q
d E

min dx − gQ =
1

|Q|
∫

∂∗Q
cQ dH1 − gQ � VF , (54)

which is a contradiction.
(i)⇒ (ii). Let B ⊆ F be a set of finite perimeter in HF . If we integrate d E

min−g over B, using (1)
and (52), we get

VF = 1

|B|
∫

B
VF dx = − 1

|B|
∫

int(F)∩∂∗B
θ(Nmin, D1B) dH1

+ 1

|B|
∫

∂ F∩∂∗B
cF dH1 − gB � 1

|B|
∫

∂∗B
cB dH1 − gB,

which is (ii). �
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7. Convexity of the sets Ω F
λ and Θ F

λ

Our aim is to prove the following result.

THEOREM 7.1 Assume that E is convex at F and that F is convex. Then Ω F
λ is convex for any

λ > κmin(F), and Θ F
λ is convex for any λ � κmin(F).

In Corollary 9.5 we will prove a stronger result, namely that κ E
φ is (continuous and) convex

on F . We will prove Theorem 7.1 only for the sets Ω F
λ since the assertion on Θ F

λ follows from the
convexity of Ω F

λ and the equality

Θ F
λ =

⋂
µ>λ

Ω F
µ , ∀λ � κmin(F). (55)

To prove Theorem 7.1 we need some preliminary lemmas.

LEMMA 7.2 Assume that E is convex at F and that F is convex. Let λ > κmin(F). Then int(Ω F
λ )

consists of a finite union of convex open sets whose closures are pairwise disjoint.

Proof. Since Ω F
λ has finite perimeter, by [1] it follows that

int(Ω F
λ ) =

⋃
i∈I

Ci , P̃φ(Ω F
λ ) =

∑
i∈I

P̃φ(Ci ), (56)

where I is at most countable and Ci are nonempty open connected sets, pairwise disjoint. Observe
that each Ci is simply connected by Theorem 5.2, because filling the holes strictly decreases the
functional Gλ (we use here the property that, if E is convex at F , then λ > κmin(F) > 0, see (47)).
This fact, together with the property that ∂Ci has finite length, implies that ∂Ci is parametrizable in
a Lipschitz way by a closed Jordan curve. Let us show that Ci is convex for any i ∈ I . Let co(Ci )

be the (open) convex envelope of Ci , and assume by contradiction that co(Ci ) �= Ci for some i ∈ I .
It follows that the set A := ⋃

i∈I co(Ci ) properly contains Ω F
λ , hence |A| > |Ω F

λ |; moreover A is
contained in F , since F is convex. Parametrizing ∂Ci , we can use Jensen’s inequality to prove that
P̃φ(Ci ) � P̃φ(co(Ci )). Therefore, by (56)

P̃φ(Ω F
λ ) =

∑
i∈I

P̃φ(Ci ) �
∑
i∈I

P̃φ(co(Ci )) � P̃φ(A).

Hence Gλ(A) < Gλ(Ω F
λ ), which contradicts Theorem 5.2. It follows that each Ci is convex. In view

of the different scaling factors of P̃φ(·) and | · | it is easy to see that I is finite. Indeed, eliminating
the connected components with volume sufficiently small decreases the functional Gλ. It remains
to prove that Ci ∩ C j = ∅ for i �= j . Assume by contradiction that Ci ∩ C j �= ∅. By Jensen’s
inequality it follows again that Gλ strictly decreases by substituting Ci ∪ C j with co(Ci ∪ C j ), thus
contradicting Theorem 5.2. �

In the following lemma we prove that the part of ∂ F lying ‘above’ or ‘below’ a connected
component of int(F) ∩ Ω F

λ can be written as a graph on a segment [x, y], with possibly a ‘vertical’
part at x or at y, but not at x and at y, see Fig. 2.

LEMMA 7.3 Let F be convex. Let λ > 0 be such that Ω F
λ /∈ {∅, int(F)}. Denote by Σ the closure

of a connected component of int(F) ∩ ∂Ω F
λ , and set {x, y} := Σ ∩ ∂ F . Let ν̃Σ be the outward unit
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Wφ
F~

ΩF
λ

f

σ

x y
v

F

FIG. 2. Lemma 7.3: ∂ F is locally graph of a function f , possibly discontinuous at one extremum.

normal on [x, y] to the convex set bounded by Σ and [x, y] (when Σ = [x, y]we set ν̃Σ := −ν̃Ω F
λ ).

Then there exist a vector v such that v · ν̃Σ < 0 and a convex function f : [x, y] → Rv such that
either f (x) = 0 or f (y) = 0, and graph( f ) ∪ [x, x + f (x)] ∪ [y, y + f (y)] ⊆ ∂ F . A similar
statement holds for Θ F

λ .

Proof. Let Π := {w : (w − x) · ν̃Σ � 0}. Let τx , τy be the tangent unit vectors to ∂ F ∩ Π at
x and y respectively, pointing inside Π (τx and τy exist because F is convex). Let us prove that
τx and τy are ‘weakly convergent’, i.e. (τy − τx ) · (y − x) � 0. Assume by contradiction that
(τy − τx ) · (y − x) > 0. Choose ṽ, |̃v| = 1, such that τy · (y − x) > ṽ · (y − x) > τx · (y − x).
Let C be the (convex) connected component of Ω F

λ such that ∂C ⊃ Σ . It is easy to realize that we
can slightly translate C in the direction of ṽ still remaining inside F , and this translated set does not
intersect Ω F

λ \ C (recall Lemma 7.2). Precisely, there exists ε > 0 such that

sṽ + C ⊂ F, (Ω F
λ \ C) ∩ (sṽ + C) = ∅, ∀s ∈ ]0, ε[. (57)

Let us fix 0 < s1 < ε and define Ω̃ := (Ω F
λ \ C) ∪ (s1ṽ + C). Then Ω̃ is a minimum of Gλ which

does not contain Ω F
λ , contradicting (43).

It follows that (τy − τx ) · (y − x) � 0. This and the convexity of F imply that there are a unit
vector v and a convex function f : [x, y] → Rv such that ∂ F ∩ Π = graph( f ) ∪ [x, x + f (x)] ∪
[y, y + f (y)]. It remains to check that either f (x) = 0 or f (y) = 0. Indeed, if by contradiction
f (x) · v > 0 and f (y) · v > 0, then we can perform a slight translation of C in the direction of v

obtaining a contradiction, exactly as in the previous argument.
The assertion on Θ F

λ follows from similar considerations. �

REMARK 7.4 As Σ ⊆ F and Σ is contained in a translated of 1
λ

W̃ F
φ (Theorem 3.11), from

Lemma 7.3 it follows that Σ can be written as a graph of a convex function σ : [x, y] → Rv

such that σ(x) = σ(y) = 0.

We are now in the position to prove Theorem 7.1.

Proof. By Lemma 7.2, it is enough to show that Ω F
λ is connected. Assume by contradiction that

Ω F
λ has (at least) two connected components C , C ′ and let Σ ⊂ ∂C , x, y ∈ Σ , τx , τy , Π , v, f be



CHARACTERIZATION OF FACET BREAKING 435

as in Lemma 7.3 and its proof. We can assume, without loss of generality, that C ′ ⊂ (F \ C) ∩ Π .
In the same way, we can find Σ ′ ⊂ ∂C ′, x ′, y′ ∈ Σ ′, τx ′ , τy′ , Π ′ such that C ⊂ (F \ C ′) ∩ Π ′. By
Lemma 7.3 we have

(τy − τx ) · (y − x) � 0, (τy′ − τx ′) · (y′ − x ′) � 0. (58)

Since F is convex and C ⊂ (F \ C ′) ∩Π ′, from the first inequality in (58) it follows

(τy′ − τx ′) · (y′ − x ′) � 0.

Hence (τy′ − τx ′) · (y′ − x ′) = 0. In the same way we obtain (τy − τx ) · (y − x) = 0. It follows that
∂ F ∩ Π ∩ Π ′ is the union of two parallel segments, which implies f (x) · v > 0 and f (y) · v > 0,
contradicting Lemma 7.3. �

8. Characterization of φ-calibrable facets in the convex case

The aim of this section is to prove the following theorem, which is one of the main results of this
paper.

THEOREM 8.1 Assume that E is convex at F and that F is convex. Then F is φ-calibrable if and
only if

ess sup
∂ F

κ̃ F
φ � P̃φ(F)

|F | . (59)

Proof of the implication:

ess sup
∂ F

κ̃ F
φ � P̃φ(F)

|F | ⇒ F is φ-calibrable. (60)

We need the following local comparison lemma, whose proof (well known in the crystalline
case [12]) is omitted. Recall that, if λ > 0, the φ̃-curvature of 1

λ
W̃ F

φ is constantly equal to λ.

LEMMA 8.2 Let P ⊆ HF be a closed convex Lipschitz φ̃-regular set, let x ∈ ∂ P and λ > 0.
Assume that there exist a neighbourhood N (x) of x and a translated B 1

λ
of 1

λ
W̃ F

φ such that x ∈ ∂B 1
λ
,

and
P ⊇ N (x) ∩ B 1

λ
.

Then
ess inf

∂ P∩N (x)
κ̃ P
φ � λ.

Similarly, if
P ∩ N (x) ⊆ B 1

λ
,

then
ess sup

∂ P∩N (x)

κ̃ P
φ � λ.
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Assume by contradiction that (60) is false, i.e. F is not φ-calibrable. Since E is convex at F , by (41)
we have

1

|F |
∫

F
κ E
φ dx = P̃φ(F)

|F | .

Therefore we can pick λ > 0 with the following properties:

λ >
P̃φ(F)

|F | , Ω F
λ

/∈ {∅, int(F)
}
, Ω F

λ
of finite perimeter. (61)

Let Σ ⊂ ∂Ω F
λ

, x , y, v, Π be as in Lemma 7.3 and its proof. From Lemma 7.3 and Remark 7.4
it follows that there exist two convex functions f, σ : [x, y] → Rv such that f · v � σ · v,
Σ = graph(σ ) and Π ∩ ∂ F = graph( f ) ∪ [x, x + f (x)] ∪ [y, y + f (y)]. Let

M := {z ∈ [x, y] : f (z)− σ(z) = max[x,y]( f − σ)}.

We divide the proof into two cases.

Case 1. Assume that M ∩ ]x, y[ �= ∅.

Let z ∈ M ∩ ]x, y[. Then F is a convex set which is Lipschitz φ̃-regular by Proposition 3.7, and
is contained, locally in a neighbourhood of the point z+ f (z)v, in the set f (z)v+Ω F

λ
. Recall that, by

Theorem 3.11, we know that Σ is contained in a translated of 1
λ

W̃ F
λ

. Therefore, using Lemma 8.2,
it follows

ess sup
∂ F

κ̃ F
φ � λ. (62)

From (62) and the inequality in (61) it follows ess sup∂ F κ̃ F
φ >

P̃φ(F)

|F | , which contradicts (59).

Case 2. Assume that M ∩ ]x, y[ = ∅.

In this case we can suppose M = {x}, since by Lemma 7.3 if x ∈ M then f (x) �= σ(x) = 0
and f (y) = σ(y) = 0, which implies y /∈ M .

Define σε(·) := σ(· + ε(y − x)) on Iε := [x − ε(y − x), y − ε(y − x)]. If ε > 0 is sufficiently
small, the set Mε := {z ∈ Iε : f (z)− σε(z) = maxIε ( f − σε)} cannot intersect ∂ Iε . We now reason
as in Case 1 considering σε in place of σ and taking a point z′ ∈ Mε in place of z. The proof of (60)
is concluded.
Proof of the implication:

F is φ-calibrable ⇒ ess sup
∂ F

κ̃ F
φ � P̃φ(F)

|F | . (63)

We need some preliminaries. The following lemma is a sort of converse of Lemma 8.2. It concerns
the existence of an ‘obsculating’ Wulff shape. By definition, we set inf∅ = +∞.

LEMMA 8.3 Let P ⊆ HF be a closed convex Lipschitz φ̃-regular set. Let x ∈ ∂ P be a point of
differentiability of ∂ P and where κ̃ P

φ (x) exists. Define O(x) as the set of all R > 0 such that P is

locally contained, in a neighbourhood of x , in a translated BR of RW̃ F
φ with x ∈ ∂BR ; define also
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I (x) as the set of all r > 0 such that a translated Br of r W̃ F
φ with x ∈ ∂Br is locally contained, in a

neighbourhood of x , in P . Then

κ̃ P
φ (x) = (sup I (x))−1 = (inf O(x))−1.

Proof. The assertion is well known when φ̃ is smooth and strictly convex. Here, we shall give the
proof only in the crystalline case. Since P is Lipschitz φ̃-regular, there exists ñφ ∈ Lip(∂ P; HF )

with ñφ(x) ∈ T̃ o (̃νP
φ (x)) for H1 almost every x ∈ ∂ P . As P is also convex and φ is crystalline,

only two possibilities occur: either x is in the interior of an arc or of an edge where ñφ is constantly
equal to a vertex of W̃ F

φ or x is in the interior of an edge of L ⊂ ∂ P parallel to some edge l ⊂ ∂W̃ F
φ .

In the first case we have κ̃ P
φ (x) = 0, and since φ̃ is crystalline and ∂ P is differentiable at x , it is

immediate to check that O(x) = ∅ and I (x) = ]0,+∞[. In the second case we have κ̃ P
φ (x) = l

L ,
and I (x) = ]0, L/ l[, O(x) = ]L/ l,+∞[, which gives the assertion. �

The following lemma concerns minimizers of the functional Gλ computed on graphs of
functions u.

LEMMA 8.4 Let a, b ∈ R, a < b, λ > 0 and Gλ : H1
0 ([a, b])→ R be defined as

Gλ(u) :=
∫
[a,b]

φ̃o(−u′(s), 1)− λu(s) dH1(s). (64)

Assume that there exists a function uλ ∈ H1
0 ([a, b]) whose graph is contained in a translated of

1
λ
∂W̃ F

φ . Then uλ minimizes G in H1
0 ([a, b]).

Proof. Assume first that W̃ F
φ is smooth and strictly convex, and let φ̃o = φ̃o(ξ1, ξ2), (ξ1, ξ2) ∈

R
2 ) HF . Then the Euler equation associated to Gλ reads as

∂

∂s

(
∂φ̃o

∂ξ1
(−u′(s), 1)

)
= λ,

which is equivalent to

∂φ̃o

∂ξ1
(−u′(s), 1)) = λs + c, for some c ∈ R. (65)

Since the functional Gλ is strictly convex in H1
0 ([a, b]), if we prove that uλ solves (65), then

uλ minimizes Gλ in H1
0 ([a, b]). By assumption, there exists a point z̄ = (x̄, ȳ) ∈ R

2 such that
graph(uλ) ⊂ z̄ + 1

λ
∂W̃ F

φ . Letting ν̃λ
φ(s) := (−u′λ(s), 1)/φ̃o(−u′λ(s), 1) we have

∇φ̃o(−u′λ(s), 1) = T̃ o (̃νλ
φ(s)) = λ(s, uλ(s))− z̄ = (λs − x̄, λuλ(s)− ȳ)

which implies (65) with c = −x̄ . Then uλ minimizes Gλ on H1
0 ([a, b]).

Let us consider now a general Finsler metric φ. Choose a sequence of functions (φ̃o
k )k , with

φ̃o
k > φ̃o, which converges uniformly on compact subsets of R

2 to φ̃o and such that {φ̃o
k � 1} are

smooth and strictly convex. Let Gk be defined as Gλ with φ̃o replaced by φ̃o
k . The functionals Gk

converge uniformly, as k →+∞, to Gλ on bounded subsets of H1
0 ([a, b]). Since φ̃o

k > φ̃o, we can
find functions uk

λ ∈ H1
0 ([a, b]) whose graphs are contained in a translated of 1

λ
∂{φ̃k � 1}. By the

previous argument, uk
λ minimizes Gk on H1

0 ([a, b]). Since uk
λ → uλ in H1

0 ([a, b]) as k →+∞, we
obtain that uλ minimizes Gλ. �
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Let us now prove (63). Assume that F is φ-calibrable, so that

int(F) = Ω F
λ ∀λ > κmin(F), (66)

and suppose by contradiction that (59) does not hold. Let x ∈ ∂ F be a point where ∂ F is

differentiable, where there exists κ̃ F
φ (x) and κ̃ F

φ (x) >
P̃φ(F)

|F | . Choose

λ ∈
]

P̃φ(F)

|F | , κ̃ F
φ (x)

[
. (67)

By Lemma 8.3, there exist ρ > 0 and a translated B 1
λ

of 1
λ

W̃ F
φ such that x ∈ ∂B 1

λ
and

F ∩ Bρ(x) ⊆ B 1
λ
.

We divide the proof into three cases.

Case 1. Assume that T̃ o (̃νF
φ (x)) is a singleton.

In this case we have, for ρ > 0 sufficiently small,

∂ F ∩ ∂B 1
λ
∩ Bρ(x) = {x}.

Choose a unit vector v and ρ > 0 small enough such that ∂ F ∩ Bρ(x) and ∂B 1
λ
∩ Bρ(x) are

both graphs of two convex functions of class H1 along v, with F ∩ Bρ(x) and B 1
λ
∩ Bρ(x) as

corresponding subgraphs. Let Aδ := B 1
λ
− δv, for δ > 0 sufficiently small. Let {y1, y2} := ∂ F ∩

∂ Aδ . Denote by Π the half-plane containing v and with y1, y2 in its boundary. Then ∂ F ∩ Π
and ∂ Aδ ∩ Π are both graphs of two convex functions on [y1, y2] along v. Applying Lemma 8.4
(and a suitable change of coordinates) we have that, letting Hλ := (F \ Π ) ∪ (Aδ ∩ Π ), then
Gλ(Hλ) � Gλ(F). By (66) we have Gλ(F) = Gλ(Ω F

λ ). We deduce Gλ(Hλ) � Gλ(Ω F
λ ), and this

contradicts Theorem 5.2, since Hλ does not contain Ω F
λ .

Case 2. Assume that T̃ o (̃νF
φ (x)) is not a singleton and that ∂W̃ F

φ can be written as the graph of a

convex function (with respect to some direction) in a neighbourhood of T̃ o (̃νF
φ (x)).

Note that necessarily T̃ o (̃νF
φ (x)) is an edge of ∂W̃ F

φ . As F is a convex Lipschitz φ̃-regular set,

we have that x belongs to an edge L of ∂ F . Since we may avoid subsets of ∂ F with H1 zero measure
in the computation of the essential supremum, we can assume that x belongs to the interior of an
edge L of ∂ F . Reasoning as in Case 1, we can find a neighbourhood N (L) of L and a translated B 1

λ

of 1
λ
∂W̃ F

φ such that x ∈ ∂B 1
λ

and

F ∩ N (L) ⊆ B 1
λ
.

Possibly reducing N (L), we can also assume

∂ F ∩ ∂B 1
λ
∩ N (L) = L .

Noticing that ∂ F can be written as a graph of a convex function in a neighbourhood of L , we
conclude as in Case 1, making use of Lemma 8.4.
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FIG. 3. Case 3 of the proof of (63): W̃ F
φ is not locally graph around l.

Case 3. Assume that T̃ o (̃νF
φ (x)) is not a singleton and that ∂W̃ F

φ cannot be written as a graph in a

neighbourhood of T̃ o (̃νF
φ (x)), see Fig. 3.

Let L be the edge of ∂ F containing x in its interior, and denote by x1, x2 its extrema. We often
identify L with its length. We need the following lemma. We denote by y ∈ int(W̃ F

φ ) the point such

that φ̃ = φ̃y , see the comments after Definition 2.2.

LEMMA 8.5 Let µ > 0 and let C ⊂ HF be an open cone centred at µy. Then

P̃φ(µW̃ F
φ , C) = 2

µ
|C ∩ µW̃ F

φ |.

Proof. We take µ = 1, the general case follows by rescaling. For x ∈ ∂W̃ F
φ we have φ̃o (̃ν

W̃ F
φ (x)) =

ν̃
W̃ F

φ (x) · x , while for x ∈ ∂C \ {y} we have ν̃C (x) · x = 0. Therefore

P̃φ(W̃ F
φ , C) =

∫
C∩∂W̃ F

φ

φ̃o (̃ν
W̃ F

φ (x)) dH1 =
∫

∂(C∩W̃ F
φ )

ν̃
W̃ F

φ (x) · x dH1

=
∫

C∩W̃ F
φ

divx dx = 2|C ∩ W̃ F
φ |.

�

We now prove the assertion in Case 3. Let ε > 0; we denote by Fε the set of all points of F whose
(Euclidean) distance from the line passing through L is greater than ε > 0. We will prove that, if ε

is small enough, then

Gλ(Fε) < Gλ(F). (68)
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Denote by l the (length of the) edge of W̃ F
φ corresponding to L . We claim that

P̃φ(F)− P̃φ(Fε) = εl + o(ε). (69)

If ε is small enough, we can assume that F , in a neighbourhood of L coincides with a corresponding
portion of w + L

l W̃ F
φ for some w ∈ HF . Indeed, if we modify F locally around L into a new set

F ′ which coincides with a portion of a translated of L
l W̃ F

φ , then P̃φ(F ′) = P̃φ(F). Let y1, y2 be the
extrema of the edge of Fε parallel to L , let z1, z2 be the orthogonal projections of y1, y2 onto the
line passing through L and let δi , i ∈ {1, 2}, be equal to 0 if the point zi belongs to L and equal to
1 otherwise (see Fig. 3 where δ1 = 1 and δ2 = 0). Let O := w + L

l y, where φ̃ = φ̃y . Finally let
X1, X2 be the intersection of F with the triangles with vertices O, x1, z1 and O, x2, z2 respectively,
let Y1, Y2 be the intersection of F with the triangles with vertices O, z1, y1 and O, z2, y2 respectively,
and let Z1, Z2 be the quadrilaterals with vertices O, x1, z1, y1 and O, x2, z2, y2.

Notice that 2(|Y1| + |Y2|) = Lε + o(ε) since |Y1|, |Y2| have a basis with length |yi − zi | = ε

and the sum of their heights is |y1 − y2| = L + O(ε). Recalling the observation that F coincides
with a portion of a translated of L

l W̃ F
φ locally around L , we can apply Lemma 8.5 with µ := L

l to
the cones containing Xi and Yi , i = 1, 2 and we obtain

P̃φ(F)− P̃φ(Fε) = 2l

L
(|Z1| + |Z2| − δ1|X1| − δ2|X2|)+ o(ε)

= 2l

L
(|Y1| + |Y2|)+ o(ε) = εl + o(ε),

where we have used the fact that the area of the triangles x1 y1z1, x2 y2z2 is of order o(ε). The proof
of (69) is complete.

Observe now that

|F | − |Fε | = εL + o(ε). (70)

Moreover, by (67) we have that the φ̃ curvature of L , which is l
L , is strictly larger than λ, hence

λL − l < 0. Using (69) and (70) we have

Gλ(Fε) = P̃φ(Fε)− λ|Fε |
= P̃φ(F)− εl + o(ε)− λ(|F | − εL + o(ε))

= Gλ(F)+ ε(λL − l)+ o(ε) < 0

for ε > 0 small enough. This gives (68). From (68) we deduce that F is not a minimizer of Gλ and
this fact, coupled with (66), contradicts Theorem 5.2. The proof of Case 3, and therefore the proof
of the implication (63), is complete.

9. Characterization of the sets Ω F
λ and Θ F

λ in the convex case

Given a set A ⊆ F and r > 0, we set

A−r := {x ∈ F : distφ̃(R2 \ A, x) > r}, A+r := {x ∈ F : distφ̃(x, A) < r},
Ar− := {x ∈ F : distφ̃(R2 \ A, x) � r}, Ar+ := {x ∈ F : distφ̃(x, A) � r},
A±r := (A−r )+r Ar± := (Ar−)r+.
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Notice that

A±r =
⋃
{Br : Br ⊆ int(A) is a translated of r W̃ F

φ },
Ar± =

⋃
{Br : Br ⊆ A is a translated of r W̃ F

φ }.
(71)

Moreover A±r ⊆ int(A), Ar± ⊆ A, and r < ρ implies A±r ⊇ A±ρ and Ar± ⊇ Aρ
±. Note also that

∂ A±r ∩ ∂ F �= ∅ and ∂ Ar± ∩ ∂ F �= ∅.
The aim of this section is to prove the following result, which exactly identifies the sublevels of

κ E
φ on int(F).

THEOREM 9.1 Let φ be crystalline. Assume that E is convex at F and that F is convex. Then

int(Ω F
λ ) = F±1

λ

∀λ > κmin(F), (72)

Θ F
λ = F

1
λ± ∀λ � κmin(F). (73)

In general, it may happen that, for some λ < κmin(F), the sets F±1
λ

are nonempty, whereas the sets

Ω F
λ are obviously empty: see Section 10 for a concrete example of this phenomenon.

To prove Theorem 9.1 we need some preliminary lemmas.

LEMMA 9.2 Let P ⊂ HF be a Lipschitz φ̃-regular closed convex set and let λ > 0. Then

ess sup
∂ P

κ̃ P
φ � λ⇒ P = P

1
λ± .

Proof. We divide the proof into two steps.

Step 1. Let us prove that P
1
λ± �= ∅.

Fix µ > λ and let x ∈ ∂ P be a point where ∂ P is differentiable and there exists κ̃ P
φ (x) < µ.

Since Pρ
± =

⋂
r<ρ Pr±, it is enough to show that B 1

µ
is contained in P . Indeed, in this case P

1
µ

± �= ∅,

and we conclude by compactness, letting µ→ λ, that P
1
λ± �= ∅.

By Lemma 8.3, there exist an open neighbourhood N (x) of x and a translated B 1
µ

of 1
µ

W̃ F
φ such

that x ∈ ∂B 1
µ

and N (x) ∩ B 1
µ
⊆ P .

Assume by contradiction that B 1
µ

is not contained in P . So B 1
µ

is locally (around x) but not

globally contained in P . The connected component Γ of ∂ P\int(B 1
µ
) containing x is homeomorphic

to the interval [0, 1]. Then Γ \{x} = Λ1∪Λ2, where Λi are two arcs, whose interior parts are pairwise
disjoint, having x as the common extremum. There are only two possible cases.

Case 1. One of these two arcs, say Λ1, can be written as the union of a (possibly empty) segment
and the graph of a convex function with respect to a suitable orthogonal coordinate system.
Reasoning exactly as in the proof of (60) of Theorem 8.1 (with F replaced by P and Ω F

λ
replaced by

B 1
µ

) we deduce that there exists a point y ∈ Λ1 such that κ̃ P
φ (y) � µ > λ, which is a contradiction.
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B

FIG. 4. The set B 1
µ

locally but not globally contained in P .

Case 2. Both Λ1 and Λ2 are union of two segments and the graph of a convex function which is
not continuous at the extrema.

We are in the situation depicted in Fig. 4, where ∂ P contains two parallel segments l1, l2, and B 1
µ

is ‘tangent’ to one of them, say l1, from inside, and int(B 1
µ
) intersects l2. We now slightly translate

B 1
µ

in the direction of ν̃P (x) (i.e. toward the left in Fig. 4) in such a way that the interior part of the

new translated set intersects both l1 and l2. Reasoning as in the proof of (60) of Theorem 8.1, we
conclude as in Case 1. The proof of Step 1 is complete.

Step 2. Let us prove that P = P
1
λ± .

Assume by contradiction that P
1
λ± is strictly contained in P . This implies that P

1
µ

± is strictly

contained in P for some µ > λ. Let A be a connected component of int(P) \ P
1
µ

± and let Σ :=
∂ A ∩ ∂ P

1
µ

± . Recalling (71) with r = 1/µ and using the fact that P
1
µ

± is convex, it follows that Σ is
contained in a translated of 1

µ
W̃ F

φ . Recalling again (71) and the fact that F is convex, with similar

arguments as in Lemma 7.3, it follows that both ∂ A \ Σ and Σ can be written as graphs (in the
same direction) of two convex functions f , σ respectively, such that f can be discontinuous in at
most one of the extrema. We can reason again as in the proof of (60) of Theorem 8.1 obtaining a
contradiction as in Step 1. �

The following lemma proves that there is a point x in the boundary of a convex not Lipschitz φ̃-
regular set P with the following property: P is, locally around x , contained in any (translated of the)
φ̃-Wulff shape with the proper radius and having x in its boundary. Heuristically, the φ̃-curvature of
∂ P at x is +∞.

LEMMA 9.3 Let φ̃ be crystalline. Let P ⊂ HF be a compact convex set which is not Lipschitz
φ̃-regular. Then we can find a point x ∈ ∂ P having the following property: for any λ > 0 there exist
ρ > 0 and a translated B 1

λ
of 1

λ
W̃ F

φ such that x ∈ ∂B 1
λ

and P ∩ Bρ(x) ⊆ B 1
λ
.
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Proof. Since P is convex and φ̃ is crystalline, P is Lipschitz φ̃-regular if and only if any edge of
∂W̃ F

φ has a corresponding parallel edge of ∂ P . Therefore, if P is not Lipschitz φ̃-regular there exist

a point x ∈ ∂ P and a straight line s parallel to some edge of ∂W̃ F
φ such that s ∩ ∂ P = {x}. One can

verify that x satisfies the thesis. �

LEMMA 9.4 Let φ̃ be crystalline. Let λ > κmin(F). Then Ω F
λ is Lipschitz φ̃-regular and

ess sup
∂Ω F

λ

κ̃
Ω F

λ

φ � λ. (74)

Similarly, if λ � κmin(F), then Θ F
λ is Lipschitz φ̃-regular and

ess sup
∂Θ F

λ

κ̃
Θ F

λ

φ � λ. (75)

Proof. Let us prove that Ω F
λ verifies the assertions. Let λ > κmin(F). By Theorem 7.1 we know

that Ω F
λ is a convex subset of F . We argue by contradiction. If Ω F

λ is Lipschitz φ̃-regular and

ess sup∂Ω F
λ

κ̃
Ω F

λ

φ > λ, then by Lemma 8.3 there exist x ∈ ∂Ω F
λ , a neighbourhood N (x) of x and a

translated B 1
λ

of 1
λ

W̃ F
φ such that x ∈ ∂B 1

λ
and B 1

λ
⊇ N (x) ∩ Ω F

λ . We then reach a contradiction

reasoning as in the proof of (63) of Theorem 8.1.
Assume now that Ω F

λ is not Lipschitz φ̃-regular. We apply Lemma 9.3 and we reach a
contradiction as in the previous case.

Finally, the assertions on Θ F
λ follow from the assertions on Ω F

λ and (55). �

We are now in the position to prove Theorem 9.1.
We will prove Theorem 9.1 only for the sets Θ F

λ , since the assertion on Ω F
λ follows then from

the equality Ω F
λ =

⋃
µ<λ Θ F

µ .

Fix λ � κmin(F). From Lemma 9.4 we have that Θ F
λ is Lipschitz φ̃-regular and (75) holds.

Therefore, from Lemma 9.2 we have Θ F
λ = (

Θ F
λ

) 1
λ±. Since Θ F

λ ⊆ F we have Θ
F
λ ⊆ F

1
λ± , which

proves that F
1
λ± is not empty.

Assume by contradiction that Θ F
λ is strictly contained in F

1
λ± . Let Σ ⊆ ∂Θ F

λ , {x, y} := Σ ∩ ∂ F ,

Π be as in Lemma 7.3 such that Σ ∩ int(F
1
λ± ) �= ∅. By Lemma 9.2 and Lemma 9.4, there exists a

translated B1
1
λ

of 1
λ

W̃ F
φ such that B1

1
λ

⊆ Θ F
λ and Σ ⊂ ∂B1

1
λ

. Moreover, by definition of F
1
λ± , there

exists a translated B2
1
λ

⊆ F of 1
λ

W̃ F
φ such that B2

1
λ

∩ (F \Θ F
λ ) ∩ Π �= ∅. Since F is convex it must

contain the convex combination of B1
1
λ

and B2
1
λ

, which implies that ∂ F ∩Π cannot be written as the

graph of a (convex) function over [x, y], which is continuous at one extreme, and this contradicts
Lemma 7.3. The proof of Theorem 9.1 is concluded.

The following result suggests that, at least initially, convex sets remain convex during the
evolution by crystalline mean curvature.

COROLLARY 9.5 The function κ E
φ is continuous and convex on F .
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Proof. Thanks to Theorem 9.1, we have (int(F) ∩ ∂Ω F
λ )

⋂
int(F) ∩ ∂Ω F

µ ) = ∅ for λ �= µ, which
implies that κ E

φ is continuous on F .

Let us prove that κ E
φ is convex on F . Let x, y ∈ F , and let λ := κ E

φ (x), µ := κ E
φ (y). We have

to prove that x+y
2 ∈ Θ F

λ+µ
2

. If λ = µ the assertion follows from the convexity of Θ F
λ (Theorem 7.1),

so we can assume λ > µ. Since x ∈ Θ F
λ and y ∈ Θ F

µ , by Theorem 9.1 there exist zx , zy ∈ F such
that

x ∈ zx + 1

λ
W̃ F

φ ⊆ F, y ∈ zy + 1

µ
W̃ F

φ ⊆ F.

Using the convexity of F we observe that

x + y

2
∈ zx + zy

2
+ λ+ µ

2λµ
W̃ F

φ ⊆ F.

Therefore x+y
2 ∈ F

λ+µ
2λµ

± . Since 2
λ+µ

� λ+µ
2λµ

, we have x+y
2 ∈ F

2
λ+µ

± = Θ F
λ+µ

2

, where the last equality

follows again by Theorem 9.1. �

The assumption that φ is crystalline in Theorem 9.1 is necessary because we apply Lemma 9.3,
where it is required that φ̃ is crystalline. We expect that Lemma 9.3 is still valid for a generic φ̃, and
therefore that Theorem 9.1 is still valid for a generic anisotropy φ.

10. An example of a convex set with non φ-calibrable facets

We show an example of Lipschitz φ-regular set, partially discussed in [3]. We justify the
computation of the ‘velocity’ κ E

φ given in [3] and the subsequent crystalline mean curvature
evolution. This flow shows that the frontal facet Fε of E , for ε in a suitable range, bends inside
E at the initial time [22]. In this example we make use of both Theorems 6.1 and 8.1: we could
avoid the use of these two results together, but we find it interesting to apply both of them.

Let Wφ ⊂ R
3 be the prism with hexagonal basis in Fig. 5; the apothem of the hexagon has

unit length. Let also E be the convex Lipschitz φ-regular set as depicted in Fig. 5. The apothem
of the frontal hexagonal facet Fε of E has unit length. Notice that E satisfies the assumptions of
Proposition 4.1.

PROPOSITION 10.1 Let ε := 7−√42 ∈ ]0, 1[. Then Fε is φ-calibrable if and only if ε ∈ [ε, 1].
Proof. Let us prove that if Fε is φ-calibrable, then ε ∈ [ε, 1]. Given ε ∈ [0, 1] we have |Fε | =

1√
3
(7− ε2), P̃φ(Fε) =

∫
∂ Fε

cFε dH1 = H1(∂ Fε) = 2√
3
(7− ε). Hence

VFε :=
P̃φ(Fε)

|Fε | = 2(7− ε)

7− ε2
� 2, ∀ε ∈ [0, 1]. (76)

The function ε → VFε is strictly convex on [0, 1], with VF0 = VF1 = 2, and attains its minimum
for ε = ε, with value VFε

= (7+√42)/7 < 2. In particular

VFε
< VFε and Fε ⊂ Fε ∀ε ∈ ]0, ε[.

Hence, by Theorem 6.1 (here g = 0), the facet Fε is not φ-calibrable for any ε ∈ ]0, ε[.
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Fε

qp

ε
ε

l’

T Wφ

E

1

FIG. 5. For ε ∈ ]0, ε[ the frontal facet Fε ⊂ ∂ E is not φ-calibrable. The dotted line l ′ separates the region where κ E
φ is

constant from the region T where κ E
φ is continuous but not constant.

Let us now prove that if ε ∈ [ε, 1] then Fε is φ-calibrable. Thanks to Theorem 8.1 and (76), it
is enough to prove that

ess sup
∂ Fε

κ̃
Fε

φ � 2(7− ε)

7− ε2
∀ε ∈ [ε, 1]. (77)

Denote by [p, q] the shortest edge of ∂ Fε , see Fig. 5. Observe that the supremum of κ̃
Fε

φ is attained

on l and is equal to 2√
3|p−q| (recall that the length of the edges of W̃ Fε

φ is 2√
3

). In addition 2√
3|p−q| =

1
ε
. Since 1

ε
� 2(7−ε)

7−ε2 for any ε ∈ [ε, 1], (77) follows. �

Proposition 10.1 identifies κ E
φ on the frontal facet Fε and on its opposite one. Since, by [3:

Lemma 5.1] all remaining facets of E are φ-calibrable, we can compute explicitly κ E
φ on the whole

of ∂ E .
We finally observe that, given ε ∈ ]0, ε[, we have κmin(Fε) = 7+√42

7 , hence Ω Fε

λ = ∅ for any

λ � 7+√42
7 , whereas F±1

λ

�= ∅ for any λ ∈ ]1, 7+√42
7 ].
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