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Metastability in a flame front evolution equation
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A weakly nonlinear parabolic equation pertinent to the flame front dynamics subject to the buoyancy
effect, and to a statistical description of biological evolution is considered. In the context of
combustion it is shown that the parabolic interface occurring in upward propagating flames in vertical
channels may actually be merely quasi-equilibrium transient states which eventually collapse to a
stable configuration in which the flame tip slides along the channel wall.
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1. Introduction

The premixed flame can be considered to be a self-sustained wave of an exothermic chemical
reaction propagating through a reactive gas mixture. It is a classical case of a free interface system.
Indeed, in the flame, the bulk of the heat release normally occurs in a narrow layer, the reaction zone.
This zone separates the cold combustible mixture from hot combustion products. The width of the
reaction zone is often much smaller than the typical length scale of the underlying flow field. This
leads one to consider classically the flame as a geometric interface. The dynamics and geometry of
this surface are strongly coupled with those of the background gas flow.

The main motivation of the present study is a certain dynamic phenomenon occurring in
premixed gas flames in vertical tubes subject to the buoyancy effect.

Thermal expansion of a gas accompanying flame propagation makes the latter sensitive to
external acceleration. In upward propagating flames, the cold (denser) mixture is superimposed
over the hot (less dense) combustion products. Hence, the plane flame front separating the cold
and hot gases is subjected to the classical effect of Rayleigh–Taylor instability. (In combustion, in
contradistinction to the Rayleigh–Taylor problem, the interface is permeable, since here the gas has
a nonzero normal velocity relative to the flame front.) As a result, the flame front becomes convex
toward the cold gas [17, 22] (Fig. 1).

As is known from many experimental observations, upward propagating flames often assume a
characteristic shape with the tip of the paraboloid located somewhere near the channel’s centerline
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FIG. 1. An upward propagating methane–air flame in a 5.1 cm diameter tube. Adapted from a Schlieren photograph presented
in [22].

(compare Fig. 1). Flames where the tip slides along the channel’s wall have also been observed [21],
however, this type of flame configuration has received less attention. Upward flame propagation,
thus, may occur through different but seemingly stable geometrical realizations. The present study is
intended to give a better understanding of the pertinent nonlinear phenomenology, which transpires
to be rather interesting.

As a mathematical model we shall employ the weakly nonlinear flame interface evolution
equation similar to that proposed by Rakib and Sivashinsky [18]. In Appendix B, we specify the
framework of approximation and carry out the formal derivation of the equation—which appears
here for the first time. Within the framework of the one-dimensional slab geometry, which will be
discussed here, this equation reads

Ft − 1
2Ub F2

x = DM Fxx + γ g

2Ub
(F − 〈F〉). (1.1)

Here y = F(x, t) is the perturbation of the planar flame front y = Ubt ;

〈F〉 = 1

L

∫ L

0
F(x, t) dx

is the space average over the gap between vertical walls x = 0 and x = L . The walls are assumed to
be thermally insulating. Hence, (1.1) should be solved subject to the adiabatic boundary conditions

Fx (t, 0) = Fx (t, L) = 0. (1.2)

Here Ub is the flame speed relative to the burned gas; g is acceleration due to gravity; γ =
(ρu − ρb)/ρu is the thermal expansion parameter; ρu, ρb are densities of the unburned (cold) and
burned (hot) gas, respectively; DM = Dth[ 1

2β(Le−1)−1] is the Markstein diffusivity; Dth, thermal
diffusivity of the mixture; β is the Zeldovich number and Le is the Lewis number assumed to be
high enough to ensure the positive sign of DM .

Equation (1.1) was derived within the framework of the Boussinesq-type model for flame–
buoyancy interaction which neglects density variation everywhere but in the external forcing term.
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The weakly nonlinear dynamics described by (1.1) corresponds to the limit

U 2
b /γ gL 	 1, (1.3)

which is easily attainable in many realistic situations.
For example, at L = 5 cm, Ub = 500 cm s−1, g = 1000 cm s−2, γ = 0.8, the left-hand side

of (1.3) comes to 62.5.
In non-dimensional formulation the problem (1.1), (1.2) may be written as

Φτ − 1
2Φ2

ξ = εΦξξ + Φ − 〈Φ〉 ,
Φξ (0, τ ) = Φξ (1, τ ) = 0,

(1.4)

where
ξ = x/L , τ = γ gt/2Ub, ε = 2DMUb/γ gL2.

Problem (1.4) admits a basic planar solution, Φ = const, which, however, becomes unstable at
ε < ε0 = π−2 
 0.10. For many experimentally typical situations ε is significantly smaller than ε0.
For example, at L = 5 cm, Ub = 500 cm s−1, DM = 0.1 cm2 s−1, γ = 0.8, (1.4) yields ε = 0.05.

The numerical simulations conducted with the above system show the following basic trends in
the flame dynamics [13].

At ε � ε0 any initial perturbation rapidly leads to an equilibrium solution where the flame slope
appears as a monotonic function of ξ .

At ε � ε0 the final result is qualitatively the same as for ε � ε0. However, depending on
the initial conditions, the character of the transient behavior here may be markedly different for
a rather wide class of initial data. At the early stage of its development the solution is rapidly
attracted to some intermediate state where the flame assumes a somewhat asymmetric parabolic
shape (Fig. 2a). The subsequent evolution occurs at a low rate which may become even extremely
slow, provided ε is small enough (Fig. 2c). In the process of this quasi-steady development the tip
of the parabola gradually moves towards one of the walls. As it comes close enough to the wall the
rate of flame evolution again increases. The final equilibrium state is formed when the tip touches
the wall (Fig. 2b).

As is shown in the present communication, the above numerical observations are not accidental
but indeed reflect the genuine nature of the pertinent dynamics.

It is worth mentioning that apart from the context of premixed gas combustion, equation (1.4)
also arises in the statistical description of biological evolution, where (−Φ) plays the role of the
system’s scaled entropy (Φ ∼ ln f ), f being the distribution function [9: equation (1.17.4)].

2. Description of the main results

In (1.4), we set
u = −Φξ .

We thus obtain the equation (and setting x instead of ξ )

ut − εuxx + uux − u = 0 for x ∈ (0, 1), t > 0 (2.1)

together with

u(t, 0) = u(t, 1) = 0 (2.2)

u(0, x) = u0(x). (2.3)
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FIG. 2. Numerical simulation of the initial-boundary value problem (1.4) at Φ(ξ, 0) = 0.01(ξ −0.3) exp[100(ξ −0.3)2] and
ε = 0.0115. (a) Quasi-equilibrium solution Φ(ξ, τ ) at τ = 22. (b) Equilibrium solution Φ(ξ, τ ) at τ = 132. (c) Temporal
evolution of the flame speed V (τ ) = 1

2 〈Φ2
ξ 〉.
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Nonlinear equations of Burgers’ type have been well studied (see e.g. [10, 16], the book [20] and
references therein). Notice, however, that differing from the classical Burgers’ case, here there is a
term −u in the equation. It turns out that for asymptotic behavior—which is the object of the study
here—this term plays an essential role.

In the following, we will essentially discuss our results in the framework of (2.1). These can be
immediately translated into results for (1.4). It is worthwhile to keep in mind that when u(·, t) is
close to linear, then Φ is close to a parabola. The top of this parabola corresponds with the point
where u vanishes. In particular, when u does not change sign, then Φ is monotonic and the top of
the parabola is at one of the endpoints.

We start this section with a description of our results. For the sake of simplicity, we will consider
initial data which change sign at most once (other types of initial data could be studied as well, using
the methods of this paper).

The goal of this work is to analyse the long-time dynamics of this equation when ε > 0 is very
small, but fixed. Of particular interest is to describe the motion of the point a(t) where u vanishes
in (0, 1): u(t, a(t)) = 0. This point will be called ‘the interface’ and corresponds to the top of the
parabola.

We assume in the following that the initial datum u0 is a continuous function which vanishes
at x = 0 and x = 1. We then say that u0 is in C0

0 . Hence, there exists a unique classical solution
u(t, x) of (2.1)–(2.3).

The first part of our study concerns the stationary solutions, i.e. the solutions f = f (x) of the
ODE boundary value problem, {

ε f
′′ − f f ′ + f = 0 in (0, 1),

f (0) = f (1) = 0.
(2.4)

The first theorem gives a complete description of solutions of (2.4).

THEOREM 1 There exists no nontrivial solution (i.e. f �≡ 0) of (2.4) when ε � π−2. For every ε,
0 < ε < π−2, there exists a unique positive solution f +ε . Likewise, there exists a unique negative
solution f −ε . For any ε > 0 such that ε < (2π)−2, there also exist two solutions f +1,ε and f −1,ε which

have one zero in (0, 1). These solutions are determined uniquely by this property and ( f +1,ε)
′(0) > 0

and ( f −1,ε)
′(0) < 0.

REMARK. Here and below we call a solution f positive (negative) if f (x) > 0 ( f (x) < 0) for all
x ∈ (0, 1).

The next result is about the behavior of these solutions when ε → 0.

THEOREM 2

(i) The solutions f +ε ≡ fε converge uniformly on compact sets of [0, 1) to the function
ϕ+(x) ≡ x as ε ↘ 0. Moreover, there exists some positive α > 0 such that

f ′ε(0) = 1 − O(e−α/ε), | f ′ε(1)| = O

(
1

ε

)
.

(ii) As ε → 0, the solution f +1,ε converges uniformly on compact sets of [0, 1
2 ) ∪ ( 1

2 , 1] to the

function ϕ+
1 defined by ϕ+

1 (x) = x for x < 1
2 and ϕ+

1 (x) = x − 1 for 1
2 < x � 1. Lastly, the

solution f −1,ε converges uniformly on compact sets of (0, 1) to the function ϕ−
1 (x) = x − 1

2 .
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FIG. 3. Different classes of initial data.

We shall consider the stability properties of these stationary solutions with respect to the
evolution problem (2.1)–(2.3). They have very different behaviors. For small ε > 0, the solutions
f +ε and f −ε will be shown to be stable and f +1,ε and f −1,ε are unstable. The most interesting case is

that of f −1,ε which turns out to be unstable but exhibits a metastable behavior.
This brings us to the evolution problem. We consider three different classes of initial data

(Fig. 3):

• u0 is of type A means that u0 > 0 in (0, 1) (or that u0 < 0 in (0, 1)).

• u0 is of type B means that u < 0 in (0, a0), u > 0 in (a0, 1).

• Lastly, u0 is of type C refers to the case u > 0 in (0, a0) and u < 0 in (a0, 1).

In order to understand the behavior when ε > 0 is small, we start with the discussion of the case
when ε = 0: that is, of the first-order hyperbolic equation


Ut + UUx − U = 0 in (0, 1)

U (t, 0) = U (t, 1) = 0

U (0, x) = u0(x).

(2.5)

Since we intend to use (2.5) as a limit of (2.1)–(2.3) when ε → 0, we consider viscosity solutions
of (2.5) as it is classically defined. Furthermore, because of the special boundary condition appearing
in (2.5), it is easy to derive (2.5) from a Cauchy problem set on the whole line by extending the
solution anti-symmetrically and periodically.

For (2.5) as well, we consider all three cases of initial data A, B and C. We focus mainly on case
B which is the most delicate.

From the work of Lyberopoulos [11], we can infer that U (t, x) has a limit ϕ(x) as t ↗ +∞.
Using the equation it is easily seen that ϕ is piecewise linear with ϕ′(x) = 1 at almost every point,
but ϕ may have jumps inside (0, 1). By the maximum principle it follows that if u0 does not change
sign more than once, then neither does U (t, x) for all t > 0. Hence, it follows that for the initial
data that we consider here, U (t, x) converges to one of the following four limits when t ↗∞:

ϕ+(x) = x (2.6)

ϕ−(x) = x − 1 (2.7)

ϕ−
1 (x; a) = x − a for some 0 < a < 1 (2.8)

ϕ+
1 (x) =

{
x for 0 < x < 1

2

x − 1 for 1
2 < x < 1.

(2.9)
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In fact, one can be more precise in cases A and B. If u0 > 0 or u0 < 0 (case A), then U (t, x)

converges to ϕ+ or to ϕ− respectively. In case B, one can further show that U (t, x) converges to a
function ϕ−

1 (x; a0). In the last case, case C, the solution may converge to either ϕ+, ϕ− or to ϕ+
1

(but not to ϕ−
1 ).

The preceding description allows us to understand the limiting behavior (as t → ∞) of the
solution of problem (2.1)–(2.3), with viscosity ε > 0, for small ε > 0. We first state the results for
case B which is the one of interest here since it exhibits the metastable behavior.

Our first result shows that u(t, x) eventually becomes close to the linear function.

THEOREM 3 Suppose u0 satisfies condition B. Then, for any (arbitrarily small) δ > 0 and 0 < γ <
1
2 , there is a time T and ε0 > 0 depending on γ and δ such that for ε < ε0∣∣uε(T, x)− (x − a0)

∣∣ < δ

for all x ∈ [γ, 1 − γ ].
This theorem rests on the fact that, for small ε > 0, uε is close to a viscosity solution of (2.5).
Once the solution uε is close to this line (x − a0) for t = T , uε will stay close to it for an

exponentially long interval of time. Hence, even though x − a0 is close to an unstable solution
of (2.1), it exhibits a metastable character on exponential long intervals of time. Here is the precise
result.

We denote by aε(t), 0 < t , the curve of zeros of uε(t, ·) in the interval (0, 1)

uε

(
t, aε(t)

) = 0, 0 < aε(t) < 1. (2.10)

THEOREM 4 Suppose u0 satisfies condition B. Fix some η ∈ (0, min[a0, 1 − a0]) and let δ be any
small positive number less than min{(a0 − η), (1 − a0 − η)}. Then there are constants α > 0 and
ε0 > 0 such that for all ε < ε0∣∣aε(t)− a0

∣∣ < δ/2 for all 0 � t � Tε := eα/ε (2.11)

and ∣∣uε(t, x)− (x − a0)
∣∣ � δ for all x ∈ [η, 1 − η]

and all t, T � t � Tε (2.12)

where T is defined in Theorem 3.

THEOREM 5 Let u0 satisfy condition B with a0 ∈ (0, 1
2 ). Then for all ε small enough, uε(t, x) →

f +ε (x) as t →∞. If a0 ∈ ( 1
2 , 1) then uε(t, x) → f −ε (x).

THEOREM 6 Let u0 satisfy condition A. Then if u0 > 0 in (0, 1), uε(t, x) → f +ε (x) as t → ∞
and uε(t, x) → f −ε (x) if u0 < 0 in (0, 1).

COROLLARY The trivial solution of problem (3.1), (3.2) f ≡ 0 is unstable.

Theorem 3 will be proved in Section 7 and Theorems 4, 5 and 6 in Section 8.
The results presented in this paper were announced in [4]. The linearized stability properties of

stationary solutions will be the subject of a separate study.
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There are several works dealing with metastable behavior in various evolution equations starting
with the paper of Carr and Pego [7]. We now briefly indicate some of these previous works.

In [7] the Allen–Cahn equation is considered and it is proved that the solution moves
exponentially slow to its equilibrium state. The approach they used is based on spectral methods.
In [1] the slow motion for the Cahn–Hilliard equation is studied by a similar method to that used
in [7].

A different approach was suggested in [6] for the Allen–Cahn equation. These authors use the
energy method and construct the appropriate Lyapunov functional. The same method was used in [5]
for the Cahn–Hilliard equation. In the last two papers mentioned above it is proved that the solution
changes slowly in time of order ε−m .

In the paper [8], the system of Cahn–Hilliard equations is considered. By the improved version
of [6] it is proved that if the initial data are close to equilibrium the solution changes exponentially
slow. There have also been several works dealing with this type of question relying on formal
asymptotic methods in connection with our and mathematically related problems. We refer in
particular to the papers of Laforgue and O’Malley [12], Ward and Reyna [25] and Sun and
Ward [23].

3. Stationary solutions

We consider, in this section, the stationary problem

− ε f ′′ + f f ′ − f = 0 on (0, 1) (3.1)

f (0) = f (1) = 0 (3.2)

where ε > 0 is a fixed parameter. We will start with the analysis of positive solutions. The set of all
solutions, including the ones which change sign will be described in Section 5.

For positive solutions, our main result is the following.

THEOREM 3.1 For ε � π−2 there is no nontrivial solution (i.e. with f �≡ 0) of (3.1), (3.2). For any
ε, 0 < ε < π−2, there exists a positive solution of (3.1), (3.2).

A necessary condition for the existence of solutions f which are nontrivial (i.e. f �≡ 0) is easily
obtained multiplying the (3.1) by f and integrating by parts which yields

ε

∫ 1

0
( f ′)2 =

∫ 1

0
f 2 � 1

π2

∫ 1

0
( f ′)2. (3.3)

The right-hand side inequality in (3.3) is just the Poincaré–Sobolev inequality in H1
0 (0, 1). Hence,

ε � 1
π2 is a necessary condition. Suppose now that ε = 1

π2 . This implies that in (3.3) the inequality
is an equality and hence that f (x) = C sin(πx) for some constant C . A direct computation in the
equation then shows that C = 0. Therefore, we find that ε < π−2 is a necessary condition.

Denote by N the operator N f = −ε f ′′ + f f ′ − f . The function v = x satisfies Nv � 0,
i.e. v is a supersolution. Moreover, for any α � 1

π
(1 − επ2) the function w = α sin πx satisfies

Nw = α sin πx(επ2 + απ cos πx − 1) � α sin πx(επ2 + απ − 1) � 0, i.e. w is a subsolution. It
is obvious that for α as above, α sin πx � x , hence there exists a positive solution for ε < 1

π2 .
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4. Uniqueness of positive solutions

This section is devoted to the proof of the following result.

THEOREM 4.1 For any ε > 0, (ε < π−2) the positive solution f of{
−ε f ′′ + f f ′ − f = 0, f > 0 in (0, 1)

f (0) = f (1) = 0
(2.4)

is unique.

With the change of variables f (x) = 1
λ
v(λx) and λ = 1√

ε
, the equation is transformed into

{
−v′′ + vv′ − v = 0, on (0, λ), v > 0,

v(0) = v(λ) = 0.
(4.1)

Hence, it suffices to show that the solution of (4.1) is unique. To this end, we consider the initial
value problem {

−v′′ + vv′ − v = 0, x > 0,

v(0) = 0, v′(0) = α.
(4.2)

It is easily seen that for any α, 0 < α < 1, the solution v = vα(x) of (4.2) has a first zero which we
denote by x = L(α) > 0, i.e. v > 0 on (0, L(α)) and v(0) = v(L(α)) = 0. To prove our claim,
i.e. the uniqueness for (4.1)—implying uniqueness for (2.3)—it suffices to prove the following
proposition.

PROPOSITION 4.2 The function L(α) is strictly increasing with respect to α ∈ (0, 1).

We now proceed to prove this proposition. Consider a solution v of (4.2). It is easily seen
(compare the arguments in the next section) that v is concave and that there exists a unique
a = a(α) ∈ (0, L(α)) such that v′ > 0 on (0, a), v′(a) = 0 and v′ < 0 on (a, L). We denote
L = L(α), a = a(α). We let m = mα := max vα = vα(aα). We make the change of variables
s = v(x), x = x(s), which is defined separately on the two monotone branches (0, m) → (0, a)

and (0, m) → (a, L), and p = p(s) = v′(x(s)). Writing the equation for p and integrating it leads
to the explicit relation

p + ln(1 − p) = s2

2
− m2

2
(4.3)

(indeed p = p(m) = 0). Let us denote by p+(s) (resp. p−(s)) the expression of p corresponding
to the branch x(s) ∈ (0, a) (resp. (a, L)) so that p+(s) ∈ (0, 1), p−(s) < 0.

From (4.3), we have the expression m = m(α). A straightforward computation shows that m as
a function of α is strictly increasing. We can now use m as a parameter instead of α and it will be
enough to show that, as a function of m, L is strictly increasing. Let us now compute this function.

Since x ′(s) = 1
p(s) , we see that

a = x(m) = x(m)− x(0) =
∫ m

0

1

p+(s)
ds.
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Let us denote by g+(t) the function defined by

g+(t) = p ⇔ p + ln(1 − p) = −t. (4.4)

This function g+ is defined on R
+ with values in [0,1). Thus, from (4.3) we see that

a(m) =
∫ m

0

1

g+(m2

2 − s2

2 )
ds. (4.5)

Likewise, we can compute, using the second branch, i.e. p−(s), the quantity L(m) − a(m). We
get

L(m) − a(m) =
∫ m

0

−1

p−(s)
ds =

∫ m

0

1

g−(m2

2 − s2

2 )
ds (4.6)

where the function g−(t) is defined by

g−(t) = p ⇔ p − ln(1 + p) = t and g : R
+ → R

+. (4.7)

Therefore, by (4.5) and (4.6) we get

L(m) =
∫ m

0

[
1

g+
(m2

2 − s2

2

) + 1

g−
(m2

2 − s2

2

)
]

ds. (4.8)

Let us make a change of variable t = 1 − s2

m2 in (4.8). This yields

L(m) = 1

2

∫ 1

0

[
m

g+(m2t/2)
+ m

g−(m2t/2)

]
dt√
1 − t

. (4.9)

Therefore, to complete our proof, it suffices to show that for each fixed t > 0, the function

m �→ m

(
1

g+(m2t/2)
+ 1

g−(m2t/2)

)
(4.10)

is monotonic. We fix t > 0. Taking as a new variable τ = m2t/2, we see that the monotonicity
of (4.10) is the same as the monotonicity of the function

τ �→
√

τ

g+(τ )
+

√
τ

g−(τ )
:= H(τ ). (4.11)

For the sake of convenience let us denote x(τ ) = g+(τ ) and y(τ ) = g−(τ ). Recall that

−x − ln(1 − x) = τ

y − ln(1 + y) = τ

H(τ ) = √
τ
(

1
x(τ )

+ 1
y(τ )

)
.

(4.12)

The proof is completed by showing that the function H(τ ) is monotonic. This is carried out in
Appendix A.
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5. Behavior of stationary solutions for small ε

In this section, we describe the limiting behavior, as ε ↘ 0, for the stationary solutions of
problem (3.1), (3.2).

We denote by fε the positive solution, that is{
−ε f ′′ε + fε f ′ε − fε = 0, fε > 0 in (0, 1)

fε(0) = 0, fε(1) = 0.
(5.1)

It will be enough to describe the behavior of this positive solution. Indeed, as we shall see, one
derives from it the behavior of all other solutions making use of symmetries and scalings in the
problem.

The proof of Theorem 2 will be decomposed into a series of properties.

PROPOSITION 5.1 The positive solution fε satisfies f ′ε(x) � 1, 0 < f (x) � x , f ′′ε (x) � 0 for x in
(0, 1).

Proof. Since any linear function h(x) = µx with µ � 1 is a supersolution, it follows from the
uniqueness of the positive solution that fε(x) � x , ∀ x ∈ [0, 1]. In particular, this implies that
f ′ε(0) � 1; we also know that f ′ε(1) < 0 < 1. If f ′ε reaches an interior maximum > 1 at a point say
x0 ∈ (0, 1), then f ′ε(x0) > 1, and it would follow from the equation that

ε f ′′ε (x0) = fε(x0)( f ′ε(x0) − 1) > 0

which is impossible. Hence, f ′ε � 1 in (0, 1). From the equation it then follows that f ′′ε � 0 in
(0, 1). �

PROPOSITION 5.2 The solution fε depends in a monotonic non-increasing fashion on ε > 0. That
is, if 0 < ε < ε0, then

0 < fε0 � fε in (0, 1).

When ε → 0, fε converges to x in (0, 1) pointwise.

Proof. Since f ′′ε0
� 0, we see that if 0 < ε < ε0, then fε0 is a subsolution of (5.1). Since there is

a larger supersolution (e.g. h(x) = x), it follows from uniqueness that fε0 < fε. Therefore, when
ε ↘ 0, fε(x) converges pointwise to some limit f (x) satisfying f (x) � x in (0, 1). Let us now
prove that f (x) = x . In fact, we will show that fε(x) converges to x as ε ↘ 0, uniformly on
compact sets of [0, 1), hence with a boundary layer behavior at 1.

To this end, let us construct a subsolution g of (5.1) for small enough ε > 0. Let a and λ be
given numbers in (0, 1)—which can be arbitrarily close to 1. Let b = (1 − a)/2. Define a function
gλ,a by setting

gλ,a(x) =




λx for x ∈ [0, a]
γ (x) for a � x � b
λa

1−b (1 − x) for x ∈ [b, 1]
where γ is a C2 function on [1, b] such that γ (a) = γ (b) = λa, γ ′(a) = λ, γ ′(b) = − λa

−b ,
γ ′′(a) = γ ′′(b) = 0 and γ ′′(x) � 0, ∀ x ∈ [a, b].

Then, the function g is of class C2 and it is straightforward to see that for given λ < 1 and
a < 1, gλ,a is a subsolution of (5.1) provided ε > 0 is small enough.



372 H. BERESTYCKI, S. KAMIN & G. SIVASHINSKY

Therefore, since x is a supersolution and gλ,a(x) � x it follows from uniqueness of the positive
solution that

gλ,a(x) � fε(x) � x for small enough ε > 0. (5.2)

Since λ and a can be chosen arbitrarily close to 1, (5.2) implies that fε(x) ↗ x uniformly on
compact sets of [0, 1). �

In order to derive further properties, it is convenient to make a classical transformation of (5.1)
which reduces it to a first-order equation in the same way as in Section 3.

In the interval [0, 1], uε has a unique maximum at some point aε, 0 < aε < 1. Denote mε =
fε(aε). We take as a new unknown the function p = f ′ε , with the new variable s = fε. The equation
then reads for p = p(s):

−εp′ p + s(p − 1) = 0 (5.3)

with p(0) = f ′ε(0) and p(mε) = 0.

PROPOSITION 5.3 For some positive constants α, A, β and β ′, the solution fε satisfies for small
enough ε,

0 < 1 − f ′ε(x) � Ae−
α
ε , ∀x ∈ [

0, 1
2

]
and − β ′

ε
� f ′ε(1) � −β

ε
.

Proof. A simple integration of (5.3) from 0 to mε yields

−εp(0) + ε ln
1

1 − p(0)
= m2

ε

2
.

Since mε ↗ 1, we see that 0 < 1 − f ′ε(0) = 1 − p(0) � Ae−α/ε for some positive A and α (α
can be chosen close to 1

2 ). Actually, the same proof shows that for any η ∈ (0, 1), there are positive
constants A and α such that

0 < 1 − f ′ε(x) � Ae−
α
ε , ∀ x ∈ [0, 1 − η].

Consequently, we see that for all η ∈ (0, 1),

0 < x − fε(x) � Ae−
α
ε , ∀ x ∈ [0, 1 − η].

Next, we can also invert the function f from [0, mε] to [aε, 1] this time. Let us denote t the new
variable. The same equation (5.3) holds for q = f ′ε as a function of t . An integration of (5.3) for q
from mε to 0 yields

−εq(0)+ ε ln

(
1

1 − q(0)

)
= m2

ε

2
. (5.4)

But, now, q(0) = f ′ε(1) < 0. From (5.4) we infer that εq(0) → − 1
2 that is limε↘0 ε f ′ε(1) = − 1

2 .
Notice that since f ′′ε � 0, this implies that there is some constant C > 0 such that

Supx∈[0,1]
∣∣ f ′ε(x)

∣∣ � C

ε
. (5.5)

As a consequence of Proposition 5.2 one gets that if ε0 > ε, then f ′ε0
(0) < f ′ε(0). �
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From the previous study we can now infer the behavior of other types of solutions.
Consider the negative solution f −ε . Clearly, it is obtained from the positive solution of f +ε by the

following change of variables f −ε (x) = − f +ε (1 − x). Therefore f −ε converges to x − 1 uniformly
on compact sets of (0, 1).

Let us now consider the positive solution f +ε (x; a, b) of the problem{
−ε f ′′ + f f ′ − f = 0 x ∈ (a, b)

f (a) = f (b) = 0
(5.6)

for all a < b. This solution is obtained from f +ε by scaling and shifting. Namely

f +ε (x; 0, b) = b f +
ε̃

(
x

b

)
, ε̃ = ε

b2
, x ∈ [0, b] (5.7)

f +ε (x; a, b) = f +ε (x − a; 0, b − a), x ∈ [a, b]. (5.8)

Similarly we define f −ε (x; a, b) to be the negative solution of (5.6) in the interval (a, b).

PROPOSITION 5.4 The positive solution fε(x; 0, b) depends in a monotonic increasing fashion on
b.

Proof. Let b ∈ (0, 1). The function h(x) defined by h(x) = fε(x; 0, b) if x ∈ [0, b] and h(x) = 0
if x ∈ [b, 1] is a subsolution of the problem (3.1), (3.2). Since h(x) � x it follows from the
uniqueness of fε that h(x) � fε, hence fε(x; 0, b) � fε(x) for all x ∈ (0, b). By the same reason
fε(x; 0, b1) < fε(x; 0, b2) if b1 < b2. �

COROLLARY 5.5 If 0 < a < b < 1 then

d f +ε (x; 0, a)

dx

∣∣∣
x=0

<
d f +ε (x; 0, b)

dx

∣∣∣
x=0

(5.9)

and if 0 < b − a < c − b then

d f −ε (x; a, b)

dx

∣∣∣
x=b

<
d f +(x; b, c)

dx

∣∣∣
x=b

. (5.10)

Next we define the solutions f +1,ε and f −1,ε. Let

f +1,ε(x) =
{

f +ε
(
x; 0, 1

2

)
x ∈ [0, 1

2 ]
f −ε

(
x; 1

2 , 1
)

x ∈ [ 1
2 , 1])

and

f −1,ε(x) =
{

f −ε
(
x; 0, 1

2

)
x ∈ [0, 1

2 ]
f +ε

(
x; 1

2 , 1
)

x ∈ [ 1
2 , 1].

From Proposition 5.2 we infer the limiting behaviors of f +1,ε and f −1,ε. The function f +1,ε

converges to the function

ϕ+
1 (x) =

{
x if 0 � x < 1

2

x − 1 if 1
2 < x � 1.



374 H. BERESTYCKI, S. KAMIN & G. SIVASHINSKY

The convergence is uniform in [0, 1]\{1/2}. Likewise, f −1,ε converges to the function ϕ−
1 (x) = x− 1

2 ,
uniformly on compact sets of (0, 1).

Theorem 1 now follows from Theorems 3.1, 4.1 and the definitions of f +1,ε and f −1,ε. Theorem 2
follows from Propositions 5.2, 5.3 and these definitions. �

Similar statements are straightforward to derive for all other stationary solutions.

6. Nonlinear stability

We now study the stability of stationary solutions of (2.1), (2.2). In Section 8, we will further study
the asymptotic behavior of the solutions of (2.1)–(2.3), with general initial data. To these ends we
construct here various weak sub- and supersolutions of problem (2.4).

The concept of supersolution was already used in the proof of Proposition 3.1. Let us recall the
definition of weak sub- and supersolution in the space H1(0, 1).

DEFINITION 6.1 A function v ∈ H1[0, 1] is a subsolution (respectively supersolution) of
problem (2.4) if v(0), v(1) � 0 (respectively v(0), v(1) � 0) and

∫ 1

0
[εv′ϕ′ + (vv′ − v)ϕ] � 0 (resp. � 0) (6.1)

for all test functions ϕ ∈ C1[0, 1] such that ϕ � 0 in [0,1] and ϕ(0) = ϕ(1) = 0.

We now use the solutions f +ε (x; a, b) and f −ε (x; a, b) which have been defined and discussed
in Section 5. Recall that f +ε (x; a, b) is the solution of (3.1) on (a, b) which vanishes at a and b.

Let us now define some functions which will serve as sub- and supersolutions:

v1(x) = Cx + δ, with parameters C > 1, δ > 0, (6.2)

v2(x) =
{

f +ε (x; a, b) if x ∈ [a, b]
0 if x ∈ [0, 1]\(a, b)

(6.3)

v3(x) =
{

f −ε (x; a, b) if x ∈ [a, b]
0 if x ∈ [0, 1]\(a, b)

(6.4)

for some parameters a, b such that 0 < a < b < 1;

v4(x) =




f −ε (x; a, b) if x ∈ [a, b]
f +ε (x; b, c) if x ∈ [b, c]
0 if x ∈ [c, 1]

(6.5)

for v4, the parameters are such that a � 0, 0 < b < c � 1, b − a � c − b;

v5(x) =




f −ε (x; 0, a) if x ∈ [0, a)

f +ε (x; a, b) if x ∈ [a, b)

f −ε (x; b, 1) if x ∈ [b, 1]
(6.6)

for v5, we take parameters such that 0 < a, b < 1 and 0 < a < b − a, 1 − b < b − a.
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FIG. 4. Profile of v3(x).

PROPOSITION 6.2 The functions v1(x) and v3(x) are supersolutions, v2(x), v4(x) and v5(x) are
subsolutions of (2.4).

Proof. Consider the operator Nv = −εv′′ + vv′ − v. Then, Nv1 = (Cx + δ)(C − 1) > 0 and
v1(0), v1(1) � 0. Thus v1(x) is a (classical) supersolution.

We only detail the proof for the function v3(x); the remaining cases are very similar. Note that v3
is actually a solution of the equation Lv = 0 separately in each of the three intervals: (0, a), (a, b)

and (b, a). The derivative v′3 is discontinuous at the points x = a and x = b. At these points the
following inequalities hold: v′3(a + 0) − v′3(a − 0) = v′3(a + 0) < 0 and v′3(b + 0) − v′3(b − 0) =
−v′3(b − 0) < 0 (Fig. 4).

Therefore, for any test function ϕ � 0 in (a, b) with ϕ(a) = ϕ(b) = 0, we find that∫ 1

0

[
εv′3ϕ′ + (v3v

′
3 − v3)ϕ

]
dx = −εϕ′(a)v′3(a + 0)+ εϕ′(b)v′3(b − 0) � 0 (6.7)

and hence v3(x) is a supersolution. �
Next we state a useful result about the evolution problem when starting from a sub- or a

supersolution.

PROPOSITION 6.3 Suppose that v(x) is a subsolution (respectively, supersolution) of (2.4) in the
weak sense of Definition 6.1. Let u(t, x) be the solution of (2.1)–(2.3) with u0 = v. Then for t ↗∞
the solution converges monotonically to a stationary solution f (x) of (2.1), (2.2), u(t, x) ↗ f (x)

(u(t, x) ↘ f (x)) and f (x) is a solution of (2.4).

This result is well known for classical subsolutions (supersolutions). A similar proof for v ∈ H1

follows the lines of [2, 19].
Let us now turn to the question of nonlinear stability of stationary solutions. By stability we

mean that the solution u(t, x) of the parabolic equation (2.1) is stable with respect to perturbations
of initial data. Actually, we will prove a weak form of stability. Our main result is the following
theorem.



376 H. BERESTYCKI, S. KAMIN & G. SIVASHINSKY

THEOREM 6.4 The stationary solutions f +ε and f −ε are stable and f +1,ε and f −1,ε are unstable.

Proof. Let v1(t, x) be the solution of (2.1), (2.2) and v1(0, x) = v1(x), where v1(x) is defined
by (6.2). By Propositions 6.2 and 6.3 the solution v1(t, x) decreases with respect to t . The limit
function when t ↗ ∞ obviously exists and is equal to the unique positive solution f +ε of (2.4).
On the other hand, the function v5(x), defined by (6.6), is a subsolution of (2.4). Let v5(t, x) be
the solution of (2.1), (2.2) with that initial condition, i.e. v5(0, x) = v5(x). Then v5(t, x) increases
as t ↗ ∞ and converges to some limit function f (x). This function is a stationary solution and
if a and 1 − b are small enough f (x) = f +ε (as there is no other stationary solution satisfying
f � v5(x)).

Let u(t, x) be the solution of (2.1), (2.2) with v5(x) � u(0, x) � v1(x) for some constants a,
b, C and δ. By the maximum principle, v5(t, x) � u(t, x) � v1(t, x), thus u(t, x) → f +ε (x) as
t →∞ and the stability of f +ε follows. The stability of f −ε is proved in a similar way.

To prove the instability of f −1 we note that if a = 0, 0 < b < 1
2 , c = 1, then by Proposition 5.4,

f −1,ε(x) � v4(x), where v4(x) is defined in (6.5). Let v4(t, x) be the solution of (2.1), (2.2) and

v4(0, x) = v4(x). Then v4(t, x) ↗ f +ε (x) as t → ∞. This proves the instability of f −1,ε, because

v4(x) → f −1,ε(x) as b → 1
2 . The proof of instability of f +1,ε(x) is similar. �

7. Finite-time Behavior of solution for small ε

Let Q = {(x, t) : 0 < x < 1, t ∈ R
+} and uε be the solution of (2.1)–(2.3). It turns out to be

convenient to formulate the problem in the real line so as to use some known results. Hence, we
consider the Cauchy problem in S = {(x, t) : x ∈ R, t ∈ R

+}. Extend the function u0(x) to the
whole real line by requiring it to be odd about x = 0 and periodic with period 2. Namely, u0 is first
extended to (−1, 1) by setting u0(x) = −u0(−x) for x ∈ [−1, 0], and then to all of R by letting
u0(x) = u0(x + 2), ∀x ∈ R.

Let uε be the solution of

ut − εuxx + uux − u = 0 in S (7.1)

and

uε(0, x) = u0(x), x ∈ R. (7.2)

By the uniqueness of the solution of the Cauchy problem (7.1), (7.2) we have uε(t, 0) = uε(t, 1) =
0. Therefore uε(t, x) = uε(t, x) for x ∈ [0, 1]. In this section we use uε for uε. As is known [10, 16],
in the limit of vanishing viscosity, when ε → 0,

uε(t, x) → U (t, x) as ε → 0, (7.3)

where U (t, x) is the entropy solution of the first-order equation

Ut + UUx − U = 0 (7.4)

satisfying

U (0, x) = u0(x). (7.5)
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Note that, in addition, here U (as well as uε) satisfies the boundary condition

U (t, 0) = U (t, 1) = 0.

Therefore it is a solution of the boundary value problem. This might appear surprising at first sight as
such boundary value problems are usually not well posed in the framework of first-order equations.
But here, due to the special structure of the equation and the fact that u takes on 0 boundary
conditions, we are able to obtain a solution of this problem.

The convergence in (7.3) is in L1
loc. It was recently proved in the series of papers [14, 15, 24] that

in fact the convergence in (7.3) is uniform away from shock waves. More precisely, the following
result holds.

PROPOSITION 7.1 [14]. Suppose u0(x) ∈ L∞(R) and there exists M > 0 such that, for all x, y,
x �= y,

u0(x)− u0(y)

x − y
� M < ∞.

Let uε(t, x) be the solution of (7.1) in S with initial condition uε(0, x) = u0(x), x ∈ R, and U (t, x)

be the entropy solution of (7.4), (7.5) in S. Then, as ε → 0, and away from the shock waves,
uε → U in C0

loc. That is, the convergence is uniform on any compact set K in S which does not
contain shock waves.

As already defined in Section 2, we distinguish four types of initial data:

Type A: u0(x) > 0 x ∈ (0, 1)

Type A′: u0(x) < 0 x ∈ (0, 1)

Type B: u0(x) < 0 for x ∈ (0, a), u0(x) > 0 for x ∈ (a, 1), for some a, 0 < a < 1
Type C: u0(x) > 0 for x ∈ (0, a), u0(x) < 0 for x ∈ (a, 1), for some a, 0 < a < 1.

Compare the pictures for cases A, B and C in Section 2 (Fig. 3).
The asymptotic behavior of solutions U (t, x) for some classes of first-order hyperbolic

equations has been studied by Lyberopoulos [11]. We now precisely state the version of the result
of [11] which we will use here. It concerns the special class of initial data u0(x) which has at most
one sign change.

PROPOSITION 7.2 [11]. Suppose that u0(x) changes sign at most once in (0,1). Then, the limiting
behavior of U (t, x) as t →∞ is given by either one of the following four kinds.

(i) U (t, x) = x − a + o(1) 0 < x < 1, for some a ∈ (0, 1),

(ii) U (t, x) =
{

x + o(1) 0 � x < 1
2

x − 1 + o(1) 1
2 < x � 1

(iii) U (t, x) = x + o(1) 0 � x < 1
(iv) U (t, x) = x − 1 + o(1) 0 < x � 1.

Using Proposition 7.2 we prove

THEOREM 7.3 Let u0(x) be an initial datum which changes sign at most once. Then, depending on
the type of initial data, the asymptotic behavior of U (t, x) is given by (iii) in case A, (iv) in case A′,
(i) in case B, and lastly, (ii), (iii) or (iv) in case C. The limits are uniform respectively on compact
sets of [0, 1) in case A, of (0, 1] in case A′, of (0, 1) in case B and of [0, 1]\{ 1

2

}
in case (ii).



378 H. BERESTYCKI, S. KAMIN & G. SIVASHINSKY

Proof. The cases A or A′ are straightforward, using the maximum principle. Let us now consider
case B.

CASE B. We first require the following result.

LEMMA 7.4 Suppose U0(x) satisfies condition B. Then, U (t, a) = 0 for all t � 0. Furthermore,
for some small γ > 0, U (t, x) is continuous for x ∈ (a − γ, a + γ ), t > 0.

For the proof we use the construction of the entropy solution by characteristic curves. Solving
the system

dt

dτ
= 1,

dx

dτ
= U,

dU

dτ
= U,

we find that the characteristic curve which starts at t = 0, x = a is vertical, U (t, a) = 0, and the
characteristic curves which are near this one are going out. Actually, the only reason for U (t, a) to
be different from zero may be the appearance of a shock wave at x = a. But the velocity of such
a shock is equal to ds

dt = u1+u2
2 where u1 and u2 are the limits of U from both sides of the shock

(compare [20]). Thus the shock waves may move only to the right if a < x < 1 and to the left if
0 < x < a and no shock wave can reach x = a. Therefore U (t, x) is continuous for |x − a| < γ

for some small enough γ > 0 and U (t, a) = 0, for all t > 0. From Lemma 7.4 and Proposition 7.2,
case B then follows.

CASE C. We show that (i) is not possible. By contradiction, suppose that U (t, x) satisfies (i). Then,
as it is proved in [11], U (t, x) should be continuous at the point x = a for all t and U (t, a) = 0.
Using the construction of the entropy solution as in Lemma 7.4, we obtain that the characteristic
curves that begin at x �= a, t = 0 do not cross the line x = a. Therefore U (t, x0) has the same
sign as u0(x0) for x0 close to a, x0 �= a. Thus (i) cannot occur. Next (ii) can appear only under the
condition

∫ 1
0 u0(x) dx = 0 (see [11]). Actually, one can construct examples in which all these cases

occur. �

REMARK. Suppose that u0(x) satisfies condition B and in addition the condition

u0(x) is monotone increasing near x = a. (7.6)

Then, for some small enough γ ∈ (0, 1), U (t, x) is a continuous function for all t large enough and
x ∈ (γ, 1 − γ ). The proof is the same as for Lemma 7.4. Construction of the entropy solution by
characteristic curves shows that for large t the shocks may concentrate only near x = 0 and x = 1.

Next we consider the behavior of uε(t, x) for large t . The most interesting is case B in which
metastable behavior appears.

THEOREM 7.5 Suppose u0(x) satisfies condition B. Then for any arbitrary small numbers γ and δ

there exist T = T (γ, δ) and ε̃ = ε̃(T ) such that for any ε � ε̃,

uε(T, x) < x − a + δ for x ∈ [γ, 1] (7.7)

uε(T, x) > x − a − δ for x ∈ [0, 1 − γ ]. (7.8)

Proof. Let γ and δ be some small fixed numbers. First suppose u0(x) satisfies (7.6). Then by the
previous Remark and Proposition 7.1 there exists T1 such that uε(t, x) → U (t, x) as ε → 0 and the
convergence is uniform on any compact K ⊂ [γ, 1 − γ ] × [T1,∞).
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Choose now T2 � T1 such that |U (t, x) − (x − a)| < δ/2 for x ∈ [γ, 1 − γ ] and t � T2. The
existence of T2 is ensured by Theorem 7.3 for the case B. From this, it follows that for any T � T2
there exists ε = ε0(T ) such that for x ∈ [γ, 1 − γ ]

|uε(T, x)− (x − a)| < δ

for ε � ε0(T ).
Next we require some refined estimates on the behavior of uε near the boundary points x = 0

and x = 1: that is, we consider the behavior of uε(t, x) for x ∈ [0, γ ] ∪ [1− γ, 1]. For this purpose
we use as a barrier the function

V (t, x) = α(x − a − δ/2)et

αet + 1 − α
, 0 < x < a,

where α is a constant such that α > 1. Indeed, this function V (t, x) is a solution of (2.1).
Furthermore,

V (0, x) = α(x − a − δ/2) < u0(x), for x ∈ [0, a], if α is large enough,

V (t, 0) < 0 = uε(t, 0) and V (t, a) = − αδ/2

α + (1 − α)e−t
< −δ/2 for α > 1.

Let t → ∞. Then V (t, x) → x − a − δ/2. Let T3 � T2 be sufficiently large so that for all t � T3,
V (T3, x) > x − a − δ.

Next choose ε1 = ε1(T3) so small that uε(t, a) > −δ/2 for 0 � t � T3 and ε � ε1. This is
possible because U (t, a) = 0 and U (t, x) is continuous at x = 0. Then by comparing uε and V ,
both solutions of (2.1), in the strip x ∈ [0, a], 0 � t � T3 we get

uε(T3, x) � V (T3, x) > x − a − δ, x ∈ [0, a].
Finally, we choose T (γ, δ) = T3 and ε̃(T ) = min{ε1(T3), ε0(T3)}. Thus (7.7) is proved under the
assumption (7.6).

To prove (7.8) we use

V1(t, x) = β(x − a + δ/2)et

βet + 1 − β
, a < x < 1

with β large enough.
To remove condition (7.6) we construct the function ũ0(x) such that ũ0(a) = 0, ũ0(x) � u0(x),

ũ0(0) = ũ0(1) = 0, ũ0(x) satisfies (7.6) and condition B. Then the corresponding solution of (2.1),
ũε(t, x) satisfies (7.7). By the comparison principle uε(t, x) � ũε(t, x) and therefore (7.7) also
holds for uε(t, x). Similarly, it can be shown that (7.8) holds for some T . As a corollary of
Theorem 7.5 one gets Theorem 3 of Section 2. �

Next, for case B, we fix T such that inequalities (7.7), (7.8) are satisfied. Let ε1 be fixed. In
the next section we show that, for ε � ε1 small enough, uε(t, x) → f +ε (x) as t → ∞. But this
convergence happens exponentially slow. This will be described in more detail below.

Case C will not be considered here. We just mention that the limit behavior (ii) of Proposition 7.2
is not stable.
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8. Large-time metastable behavior

In this section we mainly study the behavior of the solution uε for the case B. As we proved in the
previous section there exists T such that for all ε small enough uε(T, x) satisfies the estimates (7.10)
and (7.11). Let aε(t) be the curve defined by

uε(t, aε(t)) = 0. (8.1)

We now prove that the curve aε(t) is almost vertical for an exponentially long interval of time. It
will also be proved below that if aε(0) < 1

2 , then for ε small enough the separation point x = aε(t)
eventually moves to the left, that is limt→∞ aε(t) = 0 and uε(t, x) → f +ε (x), for all x ∈ [0, 1)

as t → ∞. However, the separation remains near the point a = aε(0) for an exponentially long
period of time, hence giving rise to a metastable behavior. If aε(0) > 1

2 then uε(t, x) → f −ε (x) and
aε(t) → 1 as ε → 0. We begin with the next proposition.

PROPOSITION 8.1 Let 0 < γ < a, and suppose that{
u0(x) < 0 on (0, γ ),

u0(x) � x − a on [γ, 1]. (8.2)

Then for any fixed δ ∈ (0, a − γ ) there exists α > 0 such that for all ε small enough

aε(t) > a − δ for 0 � t � Tε = O
(
e

α
ε
)
.

The proof will be divided into several lemmas. First we introduce some notation. Let δ be some
given number δ ∈ (0, a − γ ). Let a1 = a − δ > γ and a2 = a − δ

2 . The first step is to construct a
supersolution.

Let f −2ε(x; a1, a2) be the negative solution of the problem{
2ε f ′′ = f ( f ′ − 1) in (a1, a2)

f (a1) = f (a2) = 0.
(8.3)

We also define the functions

Fε(x) =
{

f −2ε(x; a1, a2) on [a1, a2]
(x − a2) f ′2ε(a2; a1, a2) on (a2, 1] (8.4)

and

v(t, x) = vε(t, x) = Fε(x)+ K t x ∈ [a1, 1] (8.5)

where K = Ae−
β
ε and the constants A > 0 and β > 0 will be chosen later.

It follows from the properties of f −2ε described in Section 5 that under the assumptions (8.2) for
ε0 small enough and ε � ε0

u0(x) � vε(0, x) = Fε(x) on [a1, 1] (8.6)

(compare Fig. 5).
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FIG. 5. Profile of Fε(x).

We suppose now that ε � ε0 and use the notation f = f −2ε(x; a1, a2) and F = Fε.
Next we consider the continuous curve s(t) defined on some time interval [0, t∗] by the

conditions.

F(s(t)) = −2K t, s(0) = a1, s(t) > a1. (8.7)

Note that Fε(
a1+a2

2 ) → a1+a2
2 − a2 = a1−a2

2 as ε → 0. Therefore for t < K− 1
2 , we have

Fε

(
a1 + a2

2

)
+ 2K t <

a1 − a2

2
+ η + 2

√
K < 0

for some positive η and for ε small enough. On the other hand Fε(a1)+ 2K t = 2K t > 0 for t > 0.

Therefore s(t) <
a1+a2

2 for all ε small enough and t � K− 1
2 . Hence, s is defined at least on the

time interval [0, K− 1
2 ].

Note that for x ∈ (s(t), a1+a2
2 ), t ∈ (0, K− 1

2 ),

f (x)+ 2K t = Fε(x)+ 2K t < 0. (8.8)

Finally, we define the domain D (Fig. 6):

D = {
(t, x); 0 < t < K− 1

2 , s(t) < x < 1
}
. (8.9)

LEMMA 8.2 There exist A > 0 and β > 0 such that Lvε � 0 in D, where vε is defined by (8.5)
and D by (8.9).
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FIG. 6. Domain D.

Proof. For v = vε, we have

Lv = vt − εvxx + vvx − v = K − εF ′′ + (F + K t)(F ′ − 1). (8.10)

Applying Proposition 5.3 to f = f −2ε(x; a1, a2) we get for x ∈ (
a1+a2

2 , a2) and small enough ε

0 < 1 − f ′ � Be−
β
ε , 0 � f ′′ � Be−

β
ε (8.11)

for some positive constants B and β. In view of (8.4) and (8.11), there exists A so large that for
x ∈ [ a1+a2

2 , 1]

|εF ′′| + (|F | + 1)(1 − F ′) � Ae−
β
ε . (8.12)

Assume ε is small enough so that Ae−
β
ε < 1. Now set

K = Ae−
β
ε < 1. (8.13)

Then by (8.10) and (8.12) we obtain that for 0 < t < K− 1
2 and x ∈ (

a1+a2
2 , 1)

Lv � 0. (8.14)

It remains to show that (8.14) is also satisfied for all x ∈ (s(t), a1+a2
2 ). Using (8.3) and (8.10) we

obtain that for x ∈ (a1,
a1+a2

2 ), Lv = K− 1
2 f ( f ′−1)+( f +K t)( f ′−1) = K+( 1

2 f +K t)( f ′−1).
Hence in order to show that Lv � 0 for x ∈ (s(t), a1+a2

2 ) it is enough to observe that f ′ < 1 and
by (8.8), 1

2 f + K t < 0. Thus Lemma 8.2 is proved. �
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LEMMA 8.3 Suppose

u0(x) � −hx

b
for 0 � x � b < a (8.15)

with some positive constants h and b. Moreover, suppose that for 0 � t � T

u(t, b) � −h, u(t, 0) = 0. (8.16)

Then for 0 � x � b and 0 � t � T

u(t, x) � −h
x

b
. (8.17)

The proof follows from the fact that if w(x) = −hx/b, then Lw = hx
b (1 + h

b ) > 0 and
w(x) � u0(x), w(0) = u(t, 0), w(b) � u(t, b).

LEMMA 8.4 Assume that conditions (8.2) are satisfied. Then, u(t, s(t)) < 0, for all ε small enough
and t � 1√

A
eβ/2ε, where A and β are defined by (8.11), (8.12) and s(t) by (8.7).

Proof. Without loss of generality we may assume that u′0(0) < 0. Otherwise we may consider a
smaller domain and use the comparison principle.

Let v = vε be defined by (8.5). Obviously u(0, s(0)) = u0(a1) < 0 = v(0, s(0)). Let t̃ be the

maximal t such that t � K− 1
2 and

u(t, s(t)) � v(t, s(t)) = −K t. (8.18)

We prove that t̃ = K− 1
2 . Suppose on the contrary that

t̃ < K− 1
2 and u(t̃, s(t̃)) = v(t̃, s(t̃)) = −K t̃ > −√K . (8.19)

We may now apply the comparison principle to u and v in the domain

D0 = {s(t) � x � 1, 0 � t � t̃} ⊂ D.

By Lemma 8.2 we have Lv � 0 in D0. Moreover u(t, 1) = 0 � v(t, 1). Therefore by (8.6)
and (8.18)

u(t, x) � v(t, x) in D0.

Hence for t � t̃ and all ε small enough

u

(
t,

a1 + a2

2

)
� v

(
t,

a1 + a2

2

)
= K t + f

(
a1 + a2

2

)
<
√

K + f

(
a1 + a2

2

)
� −h

where h > 0 is some constant. Since u0 < 0 on (0, a) and u′0(0) < 0, we may choose h small
enough to get

u0(x) < −h
2x

a1 + a2
for x ∈

(
0,

a1 + a2

2

)
.
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Now we apply Lemma 8.3 with b = a1+a2
2 and obtain

u(t̃, s(t̃)) � −hs(t̃)
2

a1 + a2
� − 2ha1

a1 + a2
. (8.20)

On the other hand, by (8.19)

u(t̃, s(t̃)) > −√K = −√Ae−
β
2ε . (8.21)

The contradiction between (8.20) and (8.21) for ε small enough proves that u(t, s(t)) � v(t, s(t)) <

0 for all t � K− 1
2 . Thus Lemma 8.4 is proved. �

Proposition 8.1 now follows from (8.1), (8.7) and Lemma 8.4.

COROLLARY 8.5 Let γ < 1 − a and suppose that

u0(x) > 0 on (1 − γ, 1)

u0(x) � x − a on (0, 1 − γ ].
Then for any fixed δ ∈ (0, 1 − γ − a) there exists α > 0 such that for all ε small enough

aε(t) < a + δ for 0 � t � Tε = O
(
e

α
ε
)
.

Proof. Let w(t, x) = −u(t, 1− x). Then w satisfies the same equation (2.1), w(0, x) = −u(0, 1−
x) � x − (1 − a) for x ∈ [γ, 1] and w(0, x) < 0 for x ∈ (0, γ ). Applying Proposition 8.5 to
wε(t, x) one gets 1 − aε(t) > 1 − a − δ and hence aε(t) < a + δ. �

Proof of Theorem 4. Let η, δ be fixed numbers satisfying the conditions of Theorem 4. By
Theorem 7.5 there exist T = T (δ, η) and ε0 such that for all ε � ε0

uε(T, x) < x − a0 + δ

4
, if x ∈

(
η

4
, 1

)

uε(T, x) > x − a0 − δ

4
, if x ∈

(
0, 1 − η

4

)
.

Moreover, the maximum principle yields

uε(T, x) < 0, if x ∈
(

0,
η

4

)

uε(T, x) > 0, if x ∈
(

1 − η

4
, 1

)
.

Now we introduce τ = t − T1 and apply Proposition 8.1 with a = a0 − δ
4 , γ = η

4 . From these
inequalities, we obtain that there exists α > 0 such that for all ε small enough,

aε(t) > a0 − δ

2
for T � t � T + T1,ε = O

(
e

α
ε
)
. (8.22)
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Similarly, and with the aid of Corollary 8.5, we get

aε(t) < a0 + δ

2
for T � t � T + T2,ε = O

(
e

α
ε
)
. (8.23)

From (8.22) and (8.23) follows (2.11) with Tε = T + min{T1,ε, T2,ε}. It remains to prove (2.12).
For this purpose we use sub- and supersolutions of initial boundary value problems with
u|t=T = uε(T, x), T � t � Tε and with boundary conditions equal to those of uε:
w1(x) = x − (a0 − δ) is a supersolution for x ∈ [a0 − δ, 1], t ∈ [T, Tε];
w2(x) = x − (a0 + δ) is a subsolution for x ∈ [0, a0 + δ], t ∈ [T, Tε];
w3(x) =

{
f +ε

(
x; a0 + δ

2 , 1 − η
2

)
, x ∈ [

a0 + δ
2 , 1 − η

2

)
0 x ∈ [

1 − η
2 , 1

] is a subsolution for x ∈ [
a0 + δ

2 , 1
]
, t ∈

[T, Tε];
w4(x) =

{
0 x ∈ [

0,
η
2

)
f −ε

(
x; η

2 , a0 − δ
2

)
x ∈ [ η

2 , a0 − δ
2

] is a supersolution for x ∈ [0, a0 − δ
2 ], t ∈ [T, Tε].

By comparison of uε(t, x) with w1, w2, w3, w4 for t ∈ [T, Tε] we get (2.12). �

PROPOSITION 8.6 Let 0 < ã < 1
2 , 0 < γ̃ < 1 − 2ã, u0(x) > x − ã for x ∈ (0, 1 − γ̃ ) and

u0(x) > 0 for x ∈ (1 − γ̃ , 1). Then for all ε small enough

limuε(t, x) � f +ε (x) as t →∞.

Proof. Let v4(x) be defined in (6.5) with a = −δ, b = ã + δ, c = 1 − γ̃ where δ is chosen small
enough such that b−a < c−b. Function v4(x) is a subsolution. Let Vε(t, x) be the solution of (2.1)
satisfying Vε(0, x) = v4(x) with Vε(t, 0) = Vε(t, 1) = 0. For ε small enough, Vε(0, x) = v4(x) �
u0(x) and Vε(t, 0) = u(t, 0), Vε(t, 1) = u(t, 1). By the comparison principle, Vε(t, x) � uε(t, x).
On the other hand, by Proposition 6.3 and Theorem 4.1, Vε(t, x) ↗ f +(x); thus the assertion
follows. �

Proof of Theorem 5. First assume a0 ∈ (0, 1
2 ). Function v1(x) = Cx + δ, C > 1, δ > 0 is

a supersolution. Moreover v1(x) > f +ε (x) for x ∈ [0, 1]. Let V 1
ε (t, x) be the solution of (2.1)

satisfying V 1
ε (0, x) = v1(x), with V 1

ε (t, 0) = V 1
ε (t, 1) = 0. As in the proof of Proposition 8.6,

V 1
ε (t, x) � uε(t, x) and V 1

ε (t, x) ↘ f +ε (x). Therefore, limuε(t, x) � f +ε (x).
On the other hand, it follows from the previous lower bound on uε(t, x) on (0, 1 − η/4) and

Proposition 8.6 that limuε(t, x) � f +ε as t → ∞. The proof in this case is complete. The case
a0 ∈ ( 1

2 , 1) is similar and therefore we omit it. �

Proof of Theorem 6. As in the proof of Theorem 3.1 we use functions v1(x) = Cx + δ and

w(x) =
{

α sin π
1−2δ

(x − δ) if x ∈ [δ, 1 − δ]
0 otherwise

where δ is some fixed small number. For C large enough and α small enough

w(x) < u0(x) < v1(x).

On the other hand, w(x) is a subsolution and v1(x) is a supersolution of the problem (2.4). By
Proposition 6.3 and Theorem 4.1, uε(t, x) → f +ε (x). �
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9. Concluding remarks

In this paper, we considered a one-dimensional formulation in which the interface equation (1.4) is
readily reduced to Burgers-type equation (2.1) for the interface slope. In this setting we were able
to carry out a full analysis of the interface dynamics. We first classified stationary solutions. Then,
in the limit of small Markstein diffusivity, we obtained the dynamic behavior of solutions by using
the associated hyperbolic equations. We thus described and explained the metastable behavior of
flames with parabolic shapes. In the present work, we gave a rigorous description of both stages of
the metastable behavior whereas in most previous works, only the second stage had been considered.

There is no doubt that the basic metastability effect will also appear in the two-dimensional
version of this problem, for flames propagating in vertical tubes. In this case, however, the
representation of the problem in terms of the interface slope is obviously ruled out. Therefore, a
completely different approach is required. We plan to address this problem in a forthcoming study.
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Appendix A. Uniqueness of the positive solution

In spite of the simplicity of the equation, the uniqueness result for the positive solution of (2.4) does
not seem to follow directly from a straightforward calculation. Also, it seems that one cannot readily
apply the methods of [3].

In this appendix, we prove Lemma A1 below which is used in the proof of uniqueness in
Section 4. It relies on some explicit computations. Let us first state this result again.

Consider the two functions x(t) and y(t) defined implicitly for 0 < t < ∞ by{
−x − ln(1 − x) = t

y − ln(1 + y) = t
(A1)

with values x(t) ∈ (0, 1) and y(t) ∈ (0,∞). Set

H(t) = √
t

(
1

x(t)
+ 1

y(t)

)
.

The result is the following lemma.

LEMMA A1 The function H(t) is increasing on (0,∞).

This fact is somewhat more delicate that one might first think because it can be seen (and it

follows from the proof given below) that while
√

t
x(t) is increasing, the function

√
t

y(t) is decreasing and
one has to carry out some very precise computations in order to see that H(t) is increasing. In terms
of the notation of Section 4, this means that a(m) is increasing but that L(m)− a(m) is decreasing.

Let us now turn to the proof. Note first that x(t) and y(t) are increasing, x(0) = y(0) = 0,
x ′(0) = y′(0) = ∞ and x(∞) = 1, y(∞) = ∞.



388 H. BERESTYCKI, S. KAMIN & G. SIVASHINSKY

We set X (t) = x(t2/2), Y (t) = y(t2/2). It suffices to show that t �→ H(t2/2) is increasing on
(0,∞). Hence, we set h(t) = √

2H(t2/2) so that

h(t) = t

(
1

X (t)
+ 1

Y (t)

)
. (A2)

We will prove that h(t) is increasing.
The functions X (t) and Y (t) are defined implicitly by{

−X (t)− ln(1 − X (t)) = t2/2

Y (t)− ln(1 + Y (t)) = t2/2.
(A3)

Therefore, it follows that

X

1 − X
dX = t dt,

Y

1 + Y
dY = t dt. (A4)

We start with the analysis of the behavior of h(t) near t = 0.

LEMMA A2 Near t = 0, h satisfies h(0) = 1/2, h′(0) = 0 and h′(t) > 0 for small t > 0.

Proof. Observe that X (0) = Y (0) = 0 and that near t = 0, the following expansions hold:{
t2 = X2 + 2

3 X3 + 1
2 X4 + O(X5),

t2 = Y 2 − 2
3 Y 3 + 1

2 Y 4 + O(Y 5).
(A5)

Thus, as t → 0, X (t) ∼ t and Y (t) ∼ t which shows that h(t) → 1/2 as t → 0.
An exact computation relying on (A2) and (A4) yields

h′(t) = 1

X
+ 1

Y
− t2

(
1 − X

X3
+ 1 + Y

Y 3

)
.

Then, using the expansions (A5) to substitute the term t2, we get

h′(t) = 1
6 (X + Y )+ O(t2) as t ↘ 0+. (A6)

This completes the proof of Lemma A2. �

Let us now proceed with the proof of Lemma A1. Let us write h′(t) = V + W with V (t) =
V (X) = 1

X − t2( 1−X
X3 ), and W (t) = W (Y ) = 1

Y − t2( 1+Y
Y 3 ). We write indifferently V (t) on V (X)

and likewise for W according to which variable—t or X—we choose as an independent variable.
The claim we will now prove is that V + W > 0 for t > 0. As said before, the source of the

difficulty lies in that while V > 0, the term W on the contrary is negative. Since V + W |t=0 = 0
and V + W > 0 for small t > 0, it will be sufficient to show that V ′ + W ′ > 0. Now this we will
show to hold separately for V and W —that is we will now show that V ′ > 0 and W ′ > 0.

LEMMA A3 For all positive t > 0, V ′(t) > 0.
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Proof. Since dX
dt > 0, it suffices to show that V ′(X) > 0 for dV

dt = dV
dX

dX
dt . (Here and in the

following, V ′(t) means dV
dt and V ′(X) refers to dV

dX .)
A straightforward computation which uses the first relation in (A4), t dt

dX = X
1−X , yields

V ′(X) = − 3

X2
+ t2

(
3

X4
− 2

X3

)
. (A7)

Use of the first expansion of (A5) in (A7) shows that V ′(X) = 1
6 + O(X) as t → 0+ so that

V ′(0) = 1
6 .

Next, write V ′(X) = X−4V1(X) with V1(0) = 0, V1(X) = −3X2 + t2(3 − 2X). Making use
again of the expression (A4), some direct computations lead to

V ′
1(X) = −2t2 + 2X2

1 − X
, V ′′

1 (X) = 2X2

(1 − X)2
.

Therefore, V ′
1(0) = 0, V ′′

1 > 0 and V ′
1 is increasing. Hence, V ′

1(X) > 0 for all X and thus V1(X) > 0
for all X which shows that V ′(X) > 0. �

LEMMA A4 W ′(t) (or W ′(Y )) is positive for all t .

Proof. The same type of computations as above (using t dt
dY = Y

1+Y ) allows one to write

W ′(Y ) = Y−4W1(Y )

with

W1(Y ) = −3Y 2 + t2(3 + 2Y ), W1(0) = 0. (A8)

As above, we have W ′
1(Y ) = 2t2 − 2Y 2

1+Y , W ′′
1 (Y ) = 2Y 2

(1+Y )2 > 0. Therefore W ′
1(0) = 0, W ′′

1 > 0 and

W ′
1 is increasing. Hence, we derive first that W ′

1 > 0 and then that W1 > 0 for all values of t . This
shows that W ′ > 0 and the proof is complete. �

Appendix B. Derivation of the basic interface equation

In order to derive the flame evolution equation (1.4) we adopt a simple hydrodynamic model which
considers the flame as a geometrical surface moving at a prescribed curvature-dependent velocity
relative to the underlying flow field. Transport and chemical kinetics effects are ignored, but the
change in gas density is taken into consideration. We consider an upward propagating flame in a
vertical channel. The corresponding set of appropriately scaled Euler equations read

∂ û

∂ t̂
+ û

∂ û

∂ x̂
+ v̂

∂ û

∂ ŷ
= − 1

ρ̂

∂ p̂

∂ x̂
, (B1)

∂v̂

∂ t̂
+ û

∂v̂

∂ x̂
+ v̂

∂v̂

∂ ŷ
= − 1

ρ̂

∂ p̂

∂ ŷ
− ĝ, (B2)

∂ û

∂ x̂
+ ∂v̂

∂ ŷ
= 0. (B3)
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Here v̂ = (û, v̂) is the scaled velocity of gas in units of Ub; (x̂, ŷ, t̂), scaled spatio-temporal
coordinates in units of L , L/Ub, respectively; ρ̂, scaled density in units of ρb; p̂, scaled pressure in
units of ρbU 2

b ; ĝ = gL/U 2
b , scaled acceleration of gravity. L , Ub, ρb are defined in Section 1.

Equaitons (B1)–(B3) are considered in the frame of reference attached to the planar flame (ŷ =
0) pertinent to the zero-gravity condition.

For the general non-zero-gravity situation the following relations on the flame interface, ŷ =
F̂(x̂, t̂), must be held:

(i) continuity of mass flow [
ρ̂(v̂·n − D)

]+
− = 0, (B4)

(ii) continuity of momentum flow [
ρ̂v̂(v̂ · n − D) + pn

]+
− = 0, (B5)

(iii) curvature-dependent mass flow through the flame interface

ρ̂(v̂ · n − D) = −1 − µ/R. (B6)

Here 1/R = F̂x̂ x̂/(1 + (F̂x )
2)3/2 is the interface curvature, and µ = DM/Ub L is the scaled

Markstein diffusivity (compare Section 1)

n = {1 + (F̂x̂ )
2}−1/2 (−F̂x̂ , 1)

D = {1 + (F̂x̂ )
2}−1/2 F̂t̂ .

(B7)

At the channel walls we impose the impermeability conditions,

û = 0, F̂x̂ = 0 at x̂ = 0, 1. (B8)

Hydrodynamic quantities corresponding to the burned gas region (ŷ < F̂) are assigned the index
(−); those corresponding to the fresh gas region (ŷ > F̂), the index (+). With this convention,

ρ− = 1, ρ+ = 1/(1 − γ )
(
γ = (ρ+ − ρ−)/ρ+

)
. (B9)

Using (B6) and (B9), conditions (B4) and (B5) are transformed to the following form, more
convenient for further treatment:

[v · n]+− = γ (1 + µ/R) (B10)

[v · τ ]+− = 0, τ = {1 + (F̂x̂ )
2}−1/2 (1, F̂x̂ ) (B11)

[p]+− = γ (1 + µ/R). (B12)

For the sequel, it will be convenient to introduce the reduced pressure,

q̂ = p̂ + ρ̂ ĝ ŷ, (B13)

eliminating the external acceleration from (B2). In terms of the reduced pressure (B11) becomes

[q]+− =
(

γ ĝ

1 − γ

)
F̂ + γ (1 + µ/R)2. (B14)



METASTABILITY IN A FLAME FRONT EVOLUTION EQUATION 391

At zero gravity (ĝ = 0) the above problem allows for the following time-independent, one-
dimensional solution pertinent to the planar flame, F̂ = 0:

û− = 0, v̂− = −1, q̂− = 1 (ŷ < 0), (B15)

û+ = 0, v̂+ = −(1 − γ ), q̂+ = 1 + γ (ŷ > 0). (B16)

At non-zero gravity we consider the limit γ � γ ĝ = α � 1, and introduce the scaled quantities,
v±, V±, Q±, s, defined as

û+ = α2U+, v̂+ = −(1 − γ ) + α2V+,

q̂+ = (1 + γ ) + α2 Q+

û = α2U−, v̂− = −1 + α2V−

q̂− = 1 + α2 Q−, αt̂ = s.

(B17)

In terms of the scaled variables, for the leading-order asymptotics with respect to γ and α, (B1)–(B3)
become

∂U±

∂ ŷ
= ∂ Q±

∂ x̂
,

∂V±

∂ ŷ
= ∂ Q±

∂ ŷ
,

∂U±

∂ x̂
+ ∂V±

∂ ŷ
= 0.

(B18)

Putting F̂ = αΘ , µ = ακ , for the leading-order asymptotics the conditions (B6), (B10), (B11),
(B14) yield

Θs = κΘx̂ x̂ + 1
2 (Θx̂ )

2 + V+ at ŷ = 0, (B19)

U+ = U−, V+ = V−, Q+ = Q− +Θ at ŷ = 0. (B20)

Conditions (B8) at the channel walls become,

U+ = U− = 0, Θx̂ = 0 at x̂ = 0, 1. (B21)

We also assume that far ahead of the flame interface the hydrodynamic disturbances vanish, i.e.,

U+ → 0, V+ → 0, Q+ → 0 at ŷ →∞. (B22)

In the adopted approximation the nonlinear term (Θx̂ )
2 figures only in (B19). Thus, the

hydrodynamic quantities U±, V±, Q± may be expressed linearly in terms of the flame interface
Θ , which appears in (B20).

For the sequel it is convenient to express the flame front configuration as a cosine-Fourier series
(see (B21)),

Θ(x̂, s) = Θ0(s)+
∞∑

n=1

Θn(s) cos(πnx̂) (B23)

where

Θ0(s) = 〈Θ(x̂, s)〉 (B24)
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is the mean value of Θ(x̂, s) over the channel cross-section.
The solution of system (B18) with boundary conditions (B21), (B22), expressed in terms of

Θ0(s), Θn(s), is written in complex notation (keeping in mind that the functions are real)

V+ + iU+ = 1

2

∞∑
n=1

Θn(s) exp
[
πn(−ŷ + ix̂)

]

−V− + iU− = 1

2

∞∑
n=1

Θn(s) exp
[
πn(ŷ + ix̂)

] − ∞∑
n=1

Θn(s) cos(πnx̂)

Q± = ±1

2

∞∑
n=1

Θn(s) cos(πnx̂) exp(∓πn ŷ)

(B25)

Hence,

V+(x̂, 0, s) = 1

2

∞∑
n=1

Θn(s) cos(πnx̂) = 1
2

(
Θ(x̂, s)− 〈Θ(x̂, s)〉) (B26)

and (B19) yields the desired equation for the flame interface

Θs = κΘx̂ x̂ + 1
2 (Θx̂ )

2 + 1
2 (Θ − 〈Θ〉), (B27)

which should be considered jointly with the boundary conditions,

Θx̂ (0, s) = Θx̂ (1, s) = 0. (B28)

Setting 2κ = ε, 2Θ = Φ, 2s = τ , x̂ = ξ , (B27) and (B28) reduce to equations (1.4). �


