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We use a PDE argument to deal with the mathematical analysis of the valuation of American options
on the maximum/minimum of two assets. There are several factors which affect the valuation of
options, such as stock price, strike price, the time to expiry, volatilities, the correlation constant, the
risk-free interest rate and dividends. The first problem we are concerned with here is what happens to
the prices of options if one of these factors is increasing while the others remain fixed. In the second
part of this paper, the properties of the optimal exercise boundary of option as free boundary of the
parabolic obstacle problem are studied such as monotonicity, convexity and asymptotic behavior.
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In finance a call (put) option is a contract which gives the holder a right to buy (sell) one of the
assets, such as stock, foreign currency etc, by a certain date for a certain price. If the option can be
exercised only at a certain date, then the contract is known as a European option. If the option can
be exercised at any time before a certain date, then the contract is known as an American option.

In the Black–Scholes framework, by a simple arbitrage argument the valuation of the American
option is a free boundary problem. Similar to the obstacle problem in mechanics, where the obstacle
is the payoff function and the free boundary is the optimal exercise boundary.

In this paper we are concerned with the valuation of American options on the maximum
(minimum) of two assets. These are very popular contracts traded in modern financial markets or
issued by firms. Many examples can be found in [1–3].

As we know, there are several factors which affect the valuation of American options on the
maximum (minimum) of two assets, such as stock prices, strike prices, the time to expiry, volatilities,
the correlation constant, the risk-free interest rate and dividends. The first problem considered here
is what happens to the prices of the options if one of these factors is increasing while the others
remain fixed. For the options of a single asset the same problem was studied in [4: Chapter 7].
For the European option on the maximum (minimum) of two assets, the problem has been solved
by Stulz [2]—in this case there is an explicit expression of the price of the option. Unfortunately,
we cannot extend his argument to the American case, because here the Black–Scholes model is a
variational inequality and the solution cannot be expressed in a closed form. In the first part of this
paper, we deal with this problem by using the PDE approach. From the view of PDE the problem
is to claim the monotonicity of the solution on variables, initial data and coefficients of equations
respectively. In order to prove the monotonicity of the solution, we have to check the sign of related
differential expressions of the solution for the variational inequality in which the obstacle and initial
data are only Lipschitz continuous. Some results we obtain here are of interest. For example, as is
known, the monotonicity of the American option pricing on volatilities in the case of two underlying
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assets is not always true. It depends on their correlation constant. We find a condition and prove that
the monotonicity is true if and only if the increments of volatilities satisfy the condition.

The other contribution of this paper is to study the properties of the optimal exercise boundary
which is a free boundary of a parabolic obstacle problem. For obstacle problems much is known
about the existence, uniqueness and regularity of the solutions. But the obstacle here is a special one
in which the payoff function is also initial data of the parabolic obstacle problem. So we can get
much deeper information about the properties of the optimal exercise boundary, such as evolution,
monotonicity, convexity, asymptotic behavior, etc. Recently Broadie and Detemple published a nice
paper [1], in which they also took an interest in the similar problems by using a probability argument.

We start the study of the optimal exercise boundary from a special case of the strike price
E = 0, i.e. the payoff function is max(S1, S2) (Si , the underlying asset (i = 1, 2)), which is the
same as the one of an option to exchange one asset for another. This problem was first produced
by Margrade [8] for valuing a European option. Rubinstein [9] showed that the American version
of this option can be valued similarly to the case of a single asset and solved using the binomial
tree method. According to their idea, this problem can be reduced under some transformations to
a 1D parabolic obstacle problem with two free boundaries. Some properties of free boundaries are
studied, such as monotonicity, asymptotic behavior, etc. Based on all of these results, the evolutions
of optimal exercise boundary is studied in the general case E > 0 using a comparison principle.

The paper is organized as follows. Section 1 outlines the Black–Scholes model of the American
call-max (min) option. Section 2 introduces a penalized problem corresponding to the valuation
problem of the American call-max (min) option with a smooth approximate payoff function.
Sections 3–6 establish the relation between the price of American call (put)-max (min) option
and the factors: stock price S1, S2, strike price E , time to expiration T , risk-free interest rate r ,
dividend q1, q2, volatility σ1, σ2 and correlation constant ρ respectively. Sections 7 and 8 focus
on the properties of the optimal exercise boundary for the American call-max option. We start in
Section 7 with the special case of the strike price E = 0 first. Based on the results of Section 7, the
properties of the optimal exercise boundary in the general case of the strike price E > 0 are dealt
with in Section 8.

1. Model

Assume the prices of underlying assets S1, S2 satisfy the stochastic differential equations

dS1 = (r − q1)S1 dt + σ1S1 dW 1
t

dS2 = (r − q2)S2 dt + σ2S2 dW 2
t

where W 1
t , W 2

t are standard Brownian motions and

E(dwi
t ) = 0, Var(dW i

t ) = dt (i = 1, 2)

E(dwi
t · dw2

t ) = ρ dt, |ρ| < 1 (1.1)

where r is constant rate of interest, qi � 0 is dividend rate of asset i(i = 1, 2), σi is volatility of
price of asset i(i = 1, 2) and ρ is correlation coefficient.

The price V (S1, S2, t) of an American call option on the maximum of two assets S1, S2 (denoted
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American call-max option) satisfies a boundary value problem of PDE as follows:

min

{
− ∂V

∂t
− LV, V − G(S1, S2)

}
= 0,

(S1, S2) ∈ R+ × R+
0 � t < T

(1.2)

V (S1, S2, T ) = G(S1, S2), (S1, S2) ∈ R+ × R+ (1.3)

V (0, S2, t) = V 0
1 (S2, t), S2 ∈ R+, 0 � t < T (1.4)

V (S1, 0, t) = V 0
2 (S1, t), S1 ∈ R+, 0 � t < T (1.5)

where E is the strike price, T is the time to expiry,

LV = 1
2

(
σ 2

1 S2
1
∂2V

∂S2
1

+ 2ρσ1σ2S1S2
∂2V

∂S1∂S2
+ σ 2

2 S2
2
∂2V

∂S2
2

)

+ (r − q1)S1
∂V

∂S1
+ (r − q2)S2

∂V

∂S2
− r V (1.6)

G(S1, S2) = (max(S1, S2) − E)+ (1.7)

and V 0
i (s, t) (i = 1, 2) is a solution of the following problem:

min

{
− ∂V 0

i

∂t
− σ 2

i

2
s2 ∂2V 0

i

∂s2
− (r − qi )s

∂V 0
i

∂s
+ r V 0

i , V 0
i − (s − E)+

}
= 0 (1.8)

V 0
i (s, T ) = (s − E)+ (1.9)

V 0
i (0, t) = 0. (1.10)

REMARK 1.1 For other American options on the maximum (minimum) of two assets, the payoff
function has a different type as follows:

G(s1, s2) = (min(s1, s2) − E)+ call-min option

G(s1, s2) = (E − max(s1, s2))
+ put-max option

and

G(s1, s2) = (E − min(s1, s2))
+ put-min option.

Then the boundary conditions (1.4), (1.5) have to be changed according to different payoff function.

REMARK 1.2 Equation (1.2) is an obstacle problem of a parabolic equation. The coincidence set
and the separate (noncoincidence) set of the obstacle problem are called a stopping region and a
continuation region of the option respectively here.

2. Approximations

Before starting our proof, we make a transformation

ln s1 = x1, ln s2 = x2 (2.1)

T − t = τ. (2.2)
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Then, the American call-max option problem is reduced to a parabolic obstacle problem with
constant coefficients as follows:

min

{
∂v

∂τ
− Lv, v − g

}
= 0, (x1, x2) ∈ R2, 0 < τ � T (2.3)

v(x1, x2, 0) = g(x1, x2) (2.4)

where

v(x1, x2, τ ) = V (ex1 , ex2 , T − τ)

g(x1, x2) = G(ex1 , ex2) = (max(ex1 , ex2) − E)+ (2.5)

Lv = 1

2

[
σ 2

1
∂2v

∂x2
1

+ 2ρσ1σ2
∂2v

∂x1∂x2
+ σ 2

2
∂2v

∂x2
2

]

+
(

r − q1 − σ 2
1

2

)
∂v

∂x1
+

(
r − q2 − σ 2

2

2

)
∂v

∂x2
− rv. (2.6)

As we know, (2.3) is a complementary form of the variational inequality and the payoff
function (2.5) is only a Lipschitz continuous function. First we have to consider an approximation
of the problem (2.3), (2.4).

Suppose

gε(x1, x2) = Πε(Fε(x1, x2) − E) (2.7)

where ε > 0 and

Πε(s) =




s s � ε

↗ −ε � s � ε

0 s � −ε

(2.8)

and

Πε(s) ∈ C∞(R), 1 � Π ′
ε(s) � 0,Π ′′

ε (s) � 0, lim
ε→0

Πε(s) = s+ (2.9)

Fε(x1, x2) = ex1 + ex2

2
+ ex1 − ex2

2
H

(
ex1 − ex2

2ε

)
(2.10)

H(s) = 2

π
arctg(s). (2.11)

It is easy to check that

H ′(s) � 0

0 < 2H ′(s) + s H ′′(s) � 4/π (2.12)

0 � 1 ± [H(s) + s H ′(s)] � 2

and

lim
ε→0

Fε(x1, x2) = max(ex1 , ex2)

lim
ε→0

gε(x1, x2) = lim
ε→0

Πε(Fε(x1, x2) − E) = g(x1, x2).
(2.13)
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Consider an approximation of the complementary form of variational inequality (2.3). In order
to do this, we introduce a nonlinear penalized problem as follows:

∂v

∂τ
− Lv + βδ(v − g) = 0, (δ > 0) (2.14)

where the penalized term satisfies

βδ(s) ∈ C∞(R), βδ(s) � 0, β ′
δ(s) � 0, β ′′

δ (s) � 0. (2.15)

and

lim
δ→0

βδ(s) =
{

0 s > 0

−∞ s < 0.

According to our need in the proof, we will choose the penalized function βδ(s) in the different
forms.

Combining the approximation (2.7) and (2.14), we obtain an approximation of the Cauchy
problem (2.3), (2.4) as follows:

∂v̂

∂τ
− Lv̂ + βδ(v̂ − gε(x1, x2)) = 0, (x1, x2) ∈ QM (2.16)

v̂|∂ p QM = gε(x1, x2)|∂p QM (2.17)

where QM = {−∞ < x1 � M, −∞ < x2 � M; 0 � τ � T }, M � ∞, ∂p QM is a parabolic
boundary of domain QM , and

v̂(x1, x2, τ ) = vδ,ε,M (x1, x2, τ ).

REMARK 2.1 As we know, the solution of v̂(x1, x2, τ ) of the penalized problem (2.16), (2.17)
tends to the solution v(x1, x2, τ ) of the Cauchy problem (2.3), (2.4) uniformly in any bounded
domain D(D ⊂ Q∞) as δ → 0 and then ε → 0, M → ∞, see [5, 6].

REMARK 2.2 For American call-main option the approximate payoff function is given in the form

gε(x1, x2) = Πε(F̃ε(x1, x2) − E) (2.18)

where

F̃ε(x1, x2) = ex1 + ex2

2
− ex1 − ex2

2
H

(
ex1 − ex2

2ε

)
. (2.19)

3. Effects from change in s1, s2 and in E

In this section we assume that

QM = Q∞, and βδ(s) satisfies (2.15). (3.1)

By the maximum principle, we have the following lemma.
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LEMMA 3.1

∂v̂

∂xi
� 0 in Q∞. (3.2)

As its corollary, we have the following theorem.

THEOREM 3.1 If S̄i � Si , (i = 1, 2), then for the American call-max option

V (s̄1, s̄2, t) � V (s1, s2, t), (3.3)

where V (s1, s2, t) is a solution of the problem (1.2)–(1.5).

THEOREM 3.2 If E1 � E2, then for the American call-max option

0 � V (s1, s2, t; E2) − V (s1, s2, t; E1) � E1 − E2. (3.4)

Proof. Set ŵ = v̂2 − v̂1, where v̂i is the solution of the penalized problem (2.16), (2.17)
corresponding to the strike price Ei (i = 1, 2). In view of

0 � ŵ|τ=0 = g(2)
ε − g(1)

ε � E1 − E2

by the maximum principle, we have
ŵ � 0

i.e.
E1 − E2 � v̂2(x1, x2, τ ) − v̂1(x1, x2, τ ).

By the same reason, we have

v̂2(x1, x2, τ ) − v̂1(x1, x2, τ ) � 0

so (3.4) is true. �
REMARK 3.1 For the American call-min option, it is easy to check that

(gε)xi � 0

and, therefore, the results of Theorems 3.1 and 3.2 are still true.

4. Effects from change in r and in q1, q2

In this section we assume that
QM = Q∞

and

βδ(s) = −1

δ
(−s)+, (s ∈ R). (4.1)

From the regularities of a solution of the Cauchy problem (2.16), (2.17) with a penalized term (4.1),
we know that for any domain D ⊂⊂ Q∞

v̂ and ∇v̂ ∈ W 2,1
p (D), ∀p ∈ (1, ∞), (4.2)

where W 2,1
p (D) is a Sobolev space

W 2,1
p (D) = {w | w, Dxw, D2

xw, Dtw ∈ L p(D)}.
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LEMMA 4.1
∂v̂

∂xi
� 0 (i = 1, 2).

The proof is similar to that of Lemma 3.1

LEMMA 4.2

∂v̂

∂x1
+ ∂v̂

∂x2
− v̂ + ε

2
� 0. (4.3)

Proof. Setting

w = ∂v̂

∂x1
+ ∂v̂

∂x2
− v̂ + ε

2

we have

∂w

∂τ
− Lw + 1

2δ
(1 − Sg(v − gε))w = 1

2δ
(1 − Sg(v − gε))

(
ε

2
+ ∂gε

∂x1
+ ∂gε

∂x2
− gε

)

w|τ=0 = ε

2
+ ∂gε

∂x1
+ ∂gε

∂x2
− gε

where

Sg(s) =
{

1 s > 0

−1 s � 0.

It is easy to calculate that the function ε/2 + ∂gε/∂x1 + ∂gε/∂x2 − gε is non-negative. Therefore
by using the maximum principle the proof of the lemma is completed. �

REMARK 4.1 For the American call-min option, it is easy to see that if ε < Eπ/2, then the function
ε/2 + ∂gε/∂x1 + ∂gε/∂x2 − gε is still non-negative, and the inequality (4.3) is also true for the
American call-min option.

As a corollary of (4.3), we have the following theorem.

THEOREM 4.1 If r1 � r2, then for the American call-max option we have

V (s1, s2, t; r1) � V (s1, s2, t; r2). (4.4)

THEOREM 4.2 If q̄i � qi (i = 1, 2), then for the American call-max option we have

V (s1, s2, t; q̄i ) � V (s1, s2, t; qi ). (4.5)

REMARK 4.2 Thanks to Remark 4.1 the ordering results (4.4), (4.5) are still true for the American
call-min option.

5. Effects from change in expiration time T

In this section we assume

QM (0 < M < ∞), and that βδ(s) satisfies (2.15):

βδ(0) = −1

δ
. (5.1)
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LEMMA 5.1 If δ > 0 is small enough, then

∂v̂

∂τ
� 0. (5.2)

Proof. Due to v̂ ∈ C∞(QM ), the function ω = ∂v̂/∂τ satisfies the following problem:

∂ω

∂τ
− Lω + β ′

δ(v̂ − gε)ω = 0, in QM

ω|τ=0 = Lgε − βδ(0)

ω|x1=M = 0

ω|x2=M = 0.

By using the maximum principle, the estimate

Lgε − βε(0) � 0 (5.3)

implies (5.2). According to (2.9), (2.12), a straightforward calculation shows that there exists a
constant δ0(M) such that if δ � δ0(M), the estimate (5.3) holds. �

As a corollary of (5.2), we have the following theorem.

THEOREM 5.1 If T1 > T2, then for the American call-max option

V (s1, s2, t; T1) � V (s1, s2, t; T2), (t � T2). (5.4)

REMARK 5.1 What about the American call-min option? The crucial step is to claim that the
inequality (5.3) is still valid. We can do this easily.

6. Effect from change in volatilities σ1, σ2 and correlation ρ

In this section we assume
QM = Q∞,

and

βδ(s) = −1

δ
[(−s)+]2 (s ∈ R). (6.1)

LEMMA 6.1 Assume σ̄i = (1 + εi )σi , εi � 0 (i = 1, 2) and (εi , ε2) ∈ D, where the domain D is
enclosed by curves Γ1 and Γ2{

Γ1 = {(ε1, ε2) | ε1 = ϕ(ε1/ε2), 0 � ε1/ε2 � ω0}
Γ2 = {(ε1, ε2) | ε2 = ϕ(ε2/ε1), 0 � ε2/ε1 � ω0} (6.2)

and

ω0 = 1

ρ2

(
1 −

√
1 − ρ2

)2

(6.3)

ϕ(ω) = −(1 − ρ2)(1 + ω) + √
(1 − ρ2)2(1 + ω)2 + (1 − ρ2)[(1 + ω)2ρ2 − 4ω]

(1 − ρ2)
(6.4)
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then we have

Λv̂ = 1

2
(σ̄ 2

1 − σ 2
1 )

∂

∂x1

(
∂v̂

∂x1
− v̂

)
+ ρ(σ̄1σ̄2 − σ1σ2)

∂2v̂

∂x1∂x2

+ 1

2
(σ̄ 2

2 − σ 2
2 )

∂

∂x2

(
∂v̂

∂x2
− v̂

)
� 0 (6.5)

where v̂ is a solution of the penalized problem (2.16), (2.17) with a penalized term (6.1).

Proof. Set w = Λv̂, we have

∂w

∂τ
− Lw − 1

δ
Λ[(gε − v̂)+]2 = 0 (6.6)

w|τ=0 = Λgε. (6.7)

Computing Λ[(gε − v̂)+]2, we obtain that if v̂ > gε,

Λ[(gε − v̂)+]2 = 0, (6.8)

and if v̂ < gε,

Λ[(gε − v̂)+]2 = I+((v̂ − gε)x1 , (v̂ − gε)x2) + 2(v̂ − gε)(w − Λgε) (6.9)

where I±(λ1, λ2) which is a quadratic form is defined as follows:

I±(λ1, λ2) = σ 2
1 (2ε1 + ε2

1)λ
2
1 + σ 2

2 (2ε2 + ε2
2)λ

2
2 ± 2ρσ1σ2((ε1 + ε2) + ε1ε2)λ1λ2.

Thus

I±(λ1, λ2) � 0, ∀λ1, λ2 ∈ R (6.10)

iff
∆ = −ρ2((ε1 + ε2) + ε1ε2)

2 + (2ε1 + ε2
1)(2ε2 + ε2

2) � 0

i.e.

ω = ε2/ε1

(1 − ρ2)ε2
2 + 2(1 − ρ2)(1 + ω)ε2 − ρ2(1 + ω)2 + 4ω � 0.

Thus if (ε1, ε2) ∈ D and D is defined by (6.2)–(6.4), then (6.10) follows.
Now we turn to check the sign of Λgε. A straightforward calculation shows

Λgε = Π ′′
ε (Fε − E)I+(Fεx1 , Fεx2)

+ 1

8ε
Π ′

ε(Fε − E)(2H ′(s) + εH ′′(s))I−(σ1 ex1 , σ2 ex2),

(
s = ex1 − ex2

2ε

)
.

Therefore, according to the assumption (6.2)–(6.4) and the inequalities (2.9), (2.12), we have

Λgε � 0. (6.11)

Combining (6.8)–(6.11) and using the maximum principle, we have

w = Λv̂ � 0.

�
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THEOREM 6.1 If σ̄i = (1+εi )σi , εi � 0 (i = 1, 2) and (ε1, ε2) ∈ D, where D satisfies (6.2)–(6.4),
then for the American call-max option

V (s1, s2, t; σ̄1, σ̄2) � V (s1, s2, t; σ1, σ2). (6.12)

Proof. Assume v̂1(x1, x2, τ ), v̂(x1, x2, τ ) be the solutions of the penalized problem with volatilities
σ̄1 and σ̄2 and σ1, σ2 respectively, where the penalized term is the function (6.1), then the function
ŵ = v̂1 − v̂2 satisfies the following problem:

∂ŵ

∂τ
− Lσ̄ ŵ + β ′(ξ)w = Λv̂2

ŵ|τ=0 = 0

where Lσ̄ is the differential operator L corresponding to volatilities σ̄1 and σ̄2.
By using the maximum principle we have

ŵ � 0

according to the result of Lemma 6.1.
Taking the limit as δ → 0 and ε → 0, the inequality (6.12) holds. �

REMARK 6.1 What about the American call-min option? We check the proof of Lemma 6.1. Under
the assumption (6.2)–(6.4), the inequality (6.10) still holds. But in this case,

Λgε = ΛΠε(F̃ε − E) = Π ′′
ε (F̃ε − E)I+(F̃εx1 , F̃εx2)

− 1

8ε
Π ′

ε(F̃ε − E)(2H ′(s) + s H ′′(s))I−(σ1 ex1 , σ2 ex2).

Thus for all (x1, x2) ∈ R2 the sign of Λgε is not constant. That means the result of Theorem 6.1 is
not true for the American call-min option!

But for the American put option, the situation is opposite. Theorem 6.1 holds for the American
put-min option, but it is false for the American put-max option.

REMARK 6.2 It is clear that the domain D in the assumption (6.2) depends on the correlation
constant ρ. Denoting D by Dρ , we have

(1) Dρ1 ⊃ Dρ2 if |ρ1| < |ρ2|,
(2) D0 = R+ × R+,
(3) Dρ → D1 = {(ε1, ε2)|ε1 = ε2, ∀εi ∈ R+, i = 1, 2} as |ρ| → 1.

Finally we study the effect of change in correlation ρ.
In view of the definitions of gε(x1, x2)

∂2gε

∂x1∂x2
=




Π ′′
ε (Fε − E)(Fε)x1(Fε)x2 + Π ′

ε(Fε − E)(Fε)x1x2 call-max option

Π ′′
ε (E − Fε)(Fε)x1(Fε)x2 − Π ′

ε(E − Fε)(Fε)x1x2 put-max option

Π ′′
ε (F̃ε − E)(F̃ε)x1(F̃ε)x2 + Π ′

ε(F̃ε − E)(F̃ε)x1x2 call-min option

Π ′′
ε (E − F̃ε)(F̃ε)x1(F̃ε)x2 − Π ′

ε(E − F̃ε)(F̃ε)x1x2 put-min option.
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TABLE 1

Max-option Min-option
European American European American
Call Put Call Put Call Put Call Put

Stock price s1, s2 + − + − + − + −
Strike price E − + − + − + − +
Time to expiration ? ? + + ? ? + +
Volatility σ1, σ

(∗)
2 + ? + ? ? + ? +

Correlation ρ ? + ? ?? + ? ?? ?
Risk-free interest rate r + − + − + − + −
Dividend q1, q2 − + − + − + − +
(∗)The increments of σ1 and σ2 have to satisfy conditions (6.2)–(6.4).
(?): the conclusion of monotonicity on this variable is not true.
(??): the conclusion of monotonicity on this variable is still unknown.

According to (Fε)x1x2 � 0, (F̃ε)x1x2 � 0 and (2.9), (2.12) we have for the put-max option and the
call-min option

∂2gε

∂x1∂x2
� 0.

But for the call-max option and the put-min option the sign of ∂2gε

∂x1∂x2
is not constant. As a

consequence of the above fact, we have the following theorem.

THEOREM 6.2 If ρ̄ � ρ, then for the European put-max option and the European call-min option,
the price of option Ve(s1, s2, t) satisfies

VE (s1, s2, t; ρ̄) � VE (s1, s2, t; ρ).

However, this condition is false for the European call-max option and the European put-min option.
Whether the result is true for the American put-max option and American call-min option remains
an open question.

The results obtained in Sections 3–6 are summarized in Table 1.

7. Evolution of optimal exercise boundary in the case of E = 0

In this section and the next, we confine ourselves to study of the properties of the optimal exercise
boundary only for the American call-max option. We believe that for other options the proof is
similar, although the results may be different.

We first study an evolution of optimal exercise boundary in the case of E = 0, and assume
q1 +q2 > 0 (wlog, q2 > 0). In fact, as we know, for the American call option there is not an optimal
exercise boundary at all, if q1 = q2 = 0.

From (1.2)–(1.5), the price V (s1, s2, t) of the American call-max option is a solution of the
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following problem:

min

{
∂V

∂t
− LV, V − max(s1, s2)

}
= 0 (7.1)

V |t=T = max(s1, s2) (7.2)

V |s1=0 = s2 (7.3)

V |s2=0 = s1. (7.4)

Set

V = s2U (7.5)

introduce a new variable

ξ = s1

s2
(7.6)

and define
u(ξ, t) = U (s1, s2, t).

Then we have

min

{
− ∂u

∂t
− L0u, u − max(ξ, 1)

}
= 0 (7.7)

u|t=T = max(ξ, 1) (7.8)

u|ξ=0 = 1 (7.9)

where

L0u = 1

2
(σ 2

1 − 2ρσ1σ2 + σ 2
2 )ξ2 ∂2u

∂ξ2
+ (q2 − q1)ξ

∂u

∂ξ
− q2u. (7.10)

THEOREM 7.1 A solution u(ξ, t) of problem (7.7)–(7.9) satisfies the following free boundary
problem:

−∂u

∂t
− L0u = 0 ξ1(t) < ξ < ξ2(t), 0 � t < T (7.11)

u|ξ=ξ1(t) = 1,
∂u

∂ξ

∣∣∣∣
ξ=ξ1(t)

= 0, 0 � t < T (7.12)

u|ξ=ξ2(t) = ξ2(t),
∂u

∂ξ

∣∣∣∣
ξ=ξ2(t)

= 1, 0 � t < T (7.13)

where ξ1(t), ξ2(t) are free boundaries and

ξ1(t) ↑, ξ2(t) ↓ (7.14)

and

ξ1(T ) = ξ2(T ) = 1. (7.15)
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Proof. Assume C to be a continuation region of the American call-max option (E = 0), and ∂C to
be the boundary of C.

First, we claim

∂T C = ∂C ∩ {t = T } = Point(1, T ). (7.16)

In C, as we know, u(ξ, t) is the solution of the problem (7.7)–(7.9). If (ξ, T ) ∈ ∂T C and ξ �= 1, then
from (7.7) and the initial data (7.8) we have

∂u

∂t

∣∣∣∣
(ξ,T )

= L0(max(1, ξ)) =
{

q1ξ ξ > 1

q2 ξ < 1.
(7.17)

Therefore in the neighborhood of (ξ, T ), (ξ �= 1),

u(x, t) < max(1, ξ), (x, t) ∈ C.

The contradiction shows that (7.16) is true.
Thus there exist two free boundaries which start from (1, T ). The property (7.14) is a

consequence of the following fact:

∂u

∂t
� 0. (7.18)

The proof of (7.18) is same as for Lemma 5.1. �

We next study the asymptotic behavior of a solution to the parabolic obstacle problem (7.1)–(7.4)
as T → ∞.

Consider an elliptic obstacle problem as follows.
Find a triple {û0, ξ

0
1 , ξ0

2 } such that

L0û0 = 0, ξ0
1 < ξ < ξ0

2 (7.19)

u0(ξ
0
1 ) = 1, u′

0(ξ
0
1 ) = 0 (7.20)

u0(ξ
0
2 ) = ξ0

2 , u′
0(ξ

0
2 ) = 1 (7.21)

where L0u is defined by (7.10).
Problem (7.19)–(7.21) is a second-order ordinary differential equation with two free boundary

points. It has a solution

û = c1(ξ/ξ0
2 )α+ + c2(ξ/ξ0

1 )α− (7.22)

where α± are roots of the following quadratic equation:

1
2σ 2α(α − 1) + (q2 − q1)α − q2 = 0

(σ 2 = α2
1 − 2ρα1α2 + α2

2) α− < 0, α+ > 1

and

α± = w ± θ (7.23)
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where

w = 1

2
+ 1

σ 2
(q1 − q2) (7.24)

θ =
√

ω2 + 2q2

σ 2
=

√
1

4
+ q1

σ 2
+ (q1 − q2)2

σ 4
.

The coefficients c1, c2 and free boundary points ξ0
1 , ξ0

2 are defined by boundary conditions (7.20),
(7.21). Therefore we get the solution

û0 = α−
α− − α+

β

α+(1−α−)

α+−α−− β
− α+(1+α+)

α+−α−+ ξα+ + α+
α+ − α−

β

α−(α+−1)

α+−α−+ β

α−(1−α−)

α+−α−− ξα− (7.25)

ξ0
1 = β

1−α+
α+−α−+ β

α−−1
α+−α−− (7.26)

ξ0
2 = β

−α+
α+−α−+ β

α−
α+−α−− (7.27)

where β± = (α± − 1)/α±.
Thus we have proved the following theorem.

THEOREM 7.2 The elliptic obstacle problem

min{L0u0, u0 − max(1, ξ)} = 0 (7.28)

u0(0) = 1, (7.29)

has a solution

u0(ξ) =




ξ ξ � ξ0
2

û0(ξ) ξ0
1 � ξ � ξ0

2

1 0 � ξ � ξ0
1

(7.30)

where the triple {û0, ξ
0
1 , ξ0

2 } is a solution of the free boundary problem (7.19)–(7.21), which is
expressed in (7.25)–(7.27).

Denoting the pricing of the American option and the optimal exercise boundary in the
problem (7.11)–(7.13) for the expiration time T by u(ξ, t; T ) and ξi (t; T ), then we have the
following theorem.

THEOREM 7.3 The solution u0(ξ) (7.30) is a limit of the solution u(ξ, t; T ) of the problem (7.7)–
(7.9) (also (7.11)–(7.13)) as T → ∞, i.e. ∀t < T

lim
T →∞ u(ξ, t; T ) = u0(ξ), ξ ∈ R (7.31)

and

lim
T →∞ ξi (t; T ) = ξ0

i , (i = 1, 2). (7.32)
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In order to prove this, we make a transformation τ = T − t in the problem (7.7)–(7.9) and study
the asymptotic behavior of the solution as τ → ∞.

The proof of the theorem is standard. We omit it here.

THEOREM 7.4 Let V (s1, s2, t) be the price of the American call-max option (strike price E = 0),
then the optimal exercise boundary consists of two surfaces

s1 = ξ1(t)s2

and

s1 = ξ2(t)s2.

The continuation region is

{ξ1(t) <
s1

s2
< ξ2(t), (s1, s2) ∈ R+ × R+, 0 � t � T }

and the stopping region
∑

0 = ∑(1)
0 ∪ ∑(2)

0 ,

∑(1)

0
= {0 � s2 � s1/ξ2(t), 0 � t � T, (s1, s2) ∈ R+ × R+}∑(2)

0
= {0 � s1 � s2ξ1(t), 0 � t � T, (s1, s2) ∈ R+ × R+} (7.33)

where ξi (t)(i = 1, 2) are the free boundaries of problem (7.11)–(7.13). As T → ∞, the price of
perpetual American call-max option (strike price E = 0) is

V∞(s1, s2) =




s1
s1

s2
� ξ0

2

α−
α− − α+

β

α+(1−α−)

α+−α−− β
− α+(1+α+)

α+−α−+ sα+
1 s1−α+

2

+ α+
α+ − α−

β

α−(α+−1)

α+−α−+ β

α−(1−α−)

α+−α−− sα−
1 s1−α−

2 ξ0
1 � s1

s2
� ξ0

2

s2 0 � s1

s2
� ξ0

1 .

(7.34)

Theorem 7.4 is the consequence of Theorems 7.2 and 7.3 according to the transforma-
tions (7.5), (7.6).

8. Properties of the optimal exercise boundary

Let us turn to the American call-max option in the general case E > 0, and study the properties of
the optimal exercise boundary.

Suppose
∑

(t; E) to be the stopping region of the American call-max option, i.e.∑
(t; E) = {(s1, s2)|V (s1, s2, t) = G E (s1, s2), s1 ∈ R+, s2 ∈ R+} (8.1)
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where G E (s1, s2) = (max(s1, s2) − E)+. The optimal exercise boundary Γ (t; E) = Γ1(t; E) ∪
Γ2(t; E), where

Γ1(t; E) = ∂
∑

(t; E) ∩ {s1 � s2}
Γ2(t; E) = ∂

∑
(t; E) ∩ {s2 > s1}. (8.2)

It is clear that ∑
(T ; E) = {(s1, s2)|LG E (s1, s2) < 0}. (8.3)

In fact, if (s0
1 , s0

2 , T ) belongs to the continuation region and LG E |(s0
1 ,s0

2 ) < 0, then we have

−∂V

∂t
|(s0

1 ,s0
2 ,T ) = LG E |(s0

1 ,s0
2 ) < 0

which means that there exists t0 < T , such that (s0
1 , s0

2 , t0) belongs to the continuity region, and

V (s0
1 , s0

2 , t0) < V (s0
1 , s0

2 , T ) = G E (s0
1 , s0

2).

That is impossible.
Therefore strightforward calculation from (8.3) shows that for the American call-max option the

stopping region at expiration time t = T is

∑
(T ; E) =

{
(s1, s2)|s1 � s2, s1 � max

(
E,

Er

q1

)
and s1 � s2, s2 � max

(
E,

Er

q2

)}
. (8.4)

What about the evolution of the optimal exercise boundary (stopping region) as t < T ?

THEOREM 8.1 ∑
(t2; E) ⊃

∑
(t1; E) as t2 > t1 (8.5)

i.e. the free boundary is monotonic.
This is a consequence of the estimate (5.2) ∂V

∂t � 0.

THEOREM 8.2 ∑
(t; E1) ⊂

∑
(t; E2), (E1 > E2). (8.6)

Proof. If this is not true, there exists a point (s0
1 , s0

2 ) and time t0 such that

(s0
1 , s0

2 , t0) ∈
∑

(t0; E1) but (s0
1 , s0

2 , t0) /∈
∑

(t0; E2).

Then, in view of (3.4), we have

G E1(s
0
1 , s0

2) = V (s0
1 , s0

2 , t0; E1)

� V (s0
1 , s0

2 , t0; E2) − E1 + E2

> G E2(s
0
1 , s0

2) − E1 + E2
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i.e.
max(max(s0

1 , s0
2) − E1, 0) + E1 > max(max(s0

1 , s0
2) − E2, 0) + E2.

Consequently,
max(s0

1 , s0
2) < E1

but in view of (8.4) and (8.5),

max(s0
1 , s0

2) � min

(
max

(
E1,

r E1

q1

)
, max

(
E1,

r E1

q2

))

according to t0 < T and (s0
1 , s0

2 , t0) ∈ ∑
(t0; E1).

The contradiction shows that

(s0
1 , s0

2 , t0) ∈
∑

(t; E2)

�

REMARK 8.1 ∑
(t; E) ⊂

∑
(t; 0). (8.7)

Due to (7.34) and (8.7), we can give an evaluation figure of the optimal exercise boundary to the
American call-max option.

At the ‘initial time τ = 0’ (expiration time t = T ), the stopping region is
∑

(T ; E) (see (8.4)),
then as τ > 0(t < T ) the region is separated at the ray s1 = s2 into two parts, and each subregion
goes to opposite side monotonical with respect to ‘time τ ’. One of the subregion in {s1 > s2} is
denoted by

∑(1)
(t) and the other in {s1 < s2} is denoted by

∑(2)
(t).

THEOREM 8.3 The price V (s1, s2, t) of American call-max option as a function of s1, s2 is convex.
The stopping subregions

∑(1)
(t) and

∑(2)
(t) are convex sets.

Proof. The convexity of the subregion
∑(i) i = 1, 2 is the consequence of the convexity of solution

V (s1, s2, t).
In fact, wlog, we assume P(s1, s2, t), P0(s0

1 , s0
2 , t) ∈ ∑(1)

(t) and

Pλ : (s0
1 + λ(s1 − s0

1), s0
2 + λ(s2 − s0

2), t), Pλ ∈ P P0, (0 � λ � 1).

According to the convexity of V (s1, s2, t), we have

0 � (1 − λ)G E (s0
1 , s0

2) + λG E (s1, s2) − V (s0
1 + λ(s1 − s0

1), s0
2 + λ(s2 − s0

2), t). (8.8)

In view of P, P0 ∈ ∑(1)
(t), s1 > s2, s0

1 > s0
2 and (8.5)

s1 > max

(
E,

Eq1

r

)
, s0

1 > max

(
E,

Eq1

r

)
.

So
G E (s1, s2) = s1 − E, G E (s0

1 , s0
2) = s0

1 − E .
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Therefore, by virtue of (8.8),

V (s0
1 + λ(s1 − s0

1), s0
2 + λ(s2 − s0

2), t) � (1 − λ)(s0
1 − E) + λ(s1 − E)

= s0
1 + λ(s − s0

1) − E = G E (s0
1 + λ(s1 − s0

1), s0
2 + λ(s2 − s0

2))

i.e. Pλ ∈ ∑(1)
, (0 � λ � 1).

To verify the convexity of the solution of problem (1.2)–(1.5), we consider a penalized
problem (2.16), (7.17) at first and claim

J (v̂; α1, α2) = α2
1
∂2v̂

∂x2
1

+ 2α1α2
∂2v̂

∂x1∂x2
+ α2

2
∂2v̂

∂x2
2

− α2
1

∂v̂

∂x1
− α2

2
∂v̂

∂x2
� 0 (8.9)

for any α1, α2 � 0. This is a consequence of the estimate (6.5), where

σ̄1

σ1
= σ̄2

σ2
= 2, αi = 3

2
σi and ρ = 1.

Set V̂ (s1, s2, t) = v̂(ln s1, ln s2, t). According to (8.9), a straight calculation shows

∂2

∂τ 2
V̂ (s1 + τ∆s1, s2 + τ∆s2, t) = ∂2

∂τ 2
v̂(ln(s1 + τ∆s1), ln(s2 + τ∆s2), t)

=
(

∆s1

s1 + τ∆s1

)2(
∂2v̂

∂x2
1

− ∂v̂

∂x1

)
+ 2

(
∆s1

s1 + τ∆s1

)(
∆s2

s2 + τ∆s2

)
∂2v̂

∂x1∂x2

+
(

∆s2

s2 + τ∆s2

)2(
∂2v̂

∂x2
2

− ∂v̂

∂x2

)
= J

(
v̂; ∆s1

s1 + τ∆s1
,

∆s2

s2 + τ∆s2

)
� 0,

(1 − λ)V̂ (s1, s2, t) + λV̂ (s1 + ∆s1, s2 + ∆s2, t) − V̂ (s1 + λ∆s1, s2 + λ∆s2, t)

= λ

∫ 1

λ

(1 − τ)
∂2

∂τ 2
V̂ (s1 + τ∆s1, s2 + τ∆s2, t) dτ

+ (1 − λ)

∫ λ

0
τ

∂2

∂τ 2
V̂ (s1 + τ∆s1, s2 + τ∆s2, t) dτ � 0

for any λ ∈ [0, 1]. Taking the limits as δ → 0 and ε → 0, the proof of Theorem 8.3 is complete. �

Finally, we study the asymptotic behaviour of the optimal exercise boundaries as s1 → ∞ or
s2 → ∞. According to the convexity of the stopping regions and the boundary conditions (1.4) on
s1 = 0 and (1.5) on s2 = 0, optimal exercise boundaries Γi (t; E), (i = 1, 2) can be expressed in
the form

Γ1(t; E) s2 = ϕ1(s1, t)

Γ2(t; E) s1 = ϕ2(s2, t).
(8.10)

THEOREM 8.4 The optimal exercise boundaries Γi (t; E)(i = 1, 2) have the following properties:

(A) ϕ1(s1, t) and ϕ2(s2, t) are monotonically increasing in s1 and s2,
(B) ϕ1(s1, t) and ϕ2(s2, t) are concave in s1 and s2,
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(C)

lim
s1→∞

ϕ1(s1, t)

s1
= (ξ2(t))

−1 (8.11)

lim
s2→∞

ϕ2(s2, t)

s2
= ξ1(t), (8.12)

where ξ1(t), ξ2(t) is defined in (7.11) (7.14), s1 = ξi (t)s2 (i = 1, 2) are optimal exercise boundaries
in the case of strike price E = 0.

Proof. (A) Rescaling s1 and s2
s1 = Es̃1, and s2 = Es̃2,

and introducing a new function
V = EṼ

then we have Ṽ as a function of s̃1 and s̃2 is a solution of the problem (1.2)–(1.4) with the
strike price E = 1, in which the payoff function is

G(s̃1, s̃2) = (max(s̃1, s̃2) − 1)+.

Assume that Γ̃1(t) : s̃2 = ϕ̃1(s̃1, t) and Γ̃2(t) : s̃1 = ϕ̃2(s̃2, t) are optimal exercise boundaries
of the American call-max problem (1.2)–(1.4) with E = 1. Then we have

ϕi (si , t) = E ϕ̃i

(
si

E
, t

)
(i = 1, 2). (8.13)

Therefore we only need to prove the theorem in the case of E = 1. Due to (8.6), if E1 > E2,

E2ϕ̃i

(
si

E2
, t

)
> E1ϕ̃i

(
si

E1
, t

)
(i = 1, 2)

i.e. if si
E2

>
si
E1

, for si > 0,

ϕ̃i

(
si

E2
, t

)
>

E1

E2
ϕ̃i

(
si

E1
, t

)
> ϕ̃i

(
si

E1
, t

)
(i = 1, 2). (8.14)

So ϕ̃i (si , t) is monotonically increasing in si .
(B) is a consequence of Theorem 8.3.

Now we turn to prove the property (C). We know (see (3.6)) that

lim
E→0

V (s1, s2, t; E) = V0(s1, s2, t)

where V0 is a solution of problem (7.1)–(7.4). As a consequence, we have

lim
E→0

ϕi (si , t) = ϕ0
i (si , t), (i = 1, 2) (8.15)

where Γ1(t; 0) : s2 = ϕ0
1(s1, t) and Γ2(t; 0) : s1 = ϕ0

2(s2, t). In view of (8.13) for fixed
si , si = Es̃i ,

lim
s̃i →∞

ϕ̃i (s̃i , t)

s̃i
= lim

E→0

E

si
ϕ̃i

(
si

E
, t

)
= lim

E→0

ϕi (si , t)

si
= ϕ0

i (si , t)

si
=

{
(ξ2(t))−1 i = 1

ξ1(t) i = 2

according to (7.34).
The proof of Theorem 8.4 is complete. �
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9. Conclusions

In accordance with the results mentioned above, even if we have not got an explicit form of the
solution, we still can draw a figure of the optimal exercise boundary to the American max-call
option as follows:

S2

S1
O

S1 = ξ1 (t) S2

S1 = ξ2 (t) S2

Γ2(t)

Γ1(t)

Σ(2)(t)

Σ(1)(t)
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