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Existence and approximation of solutions to an anisotropic phase
field system for the kinetics of phase transitions

OLAF KLEIN†

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39, D-10117 Berlin,
Germany

[Received 25 July 2000 and in revised form 13 July 2001]

This paper is concerned with a phase field system of Penrose–Fife type for a non-conserved order
parameter with a kinetic relaxation coefficient depending on the gradient of the order parameter.
This system can be used to model the anisotropic solidification of liquids. A time-discrete scheme
for an initial-boundary value problem to this system is presented. By proving the convergence of this
scheme, the existence of a solution to the problem is shown.
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1. Introduction

A class of phase-field systems modelling the dynamics of diffusive phase transitions has been
derived by Penrose and Fife in [32]. Dealing with a non-conserved order parameter, one of these
systems is generalized to the following form:

c0θt + λ′(χ)χt + ∇�q = g, �q = κ(θ)∇
(

1

θ

)
, (1.1)

ζ(∇χ)χt − ε∆χ + s′(χ) = −λ′(χ)

θ
. (1.2)

In this system an energy balance (1.1) is coupled with an evolution (1.2) for the order parameter
χ . These equations determine the evolution of the absolute temperature θ and the order parameter.
Here, the positive constant c0 is the specific heat, and the function κ , which attains only positive
values, models some temperature-dependent thermal conductivity. The heat flux �q satisfies the
Fourier law, if κ(θ) = κFourθ

2 with some positive constant κFour. The function λ′(χ) represents
the latent heat of the phase transition, and the datum g represents heat sources or sinks.

Moreover, ζ stands for a kinetic relaxation coefficient depending on the gradient of the order
parameter, the positive constant ε is a relaxation coefficient, representing the energy of the phase
interfaces, and s′ is the derivative of some potential on R.

In the context of a solid–liquid phase transition with a critical temperature θC , one typically
has a quadratic or linear function λ and the potential s(r) is the sum of λ(r)

θC
and the double-well

potential �(r2 − 1)2 with some positive constant �. To ensure that the order parameter attains only
values in the interval [−1, 1], the double-obstacle potential I[−1,1](r)+�(1−r2), with I[−1,1] being
the indicator function of the interval [−1, 1], is used instead of the double-well potential.
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In this work, the existence of a solution to an initial-boundary value problem for the Penrose–
Fife (PF) system (1.1), (1.2) is proved by considering a time-discrete scheme and proving the
convergence of the scheme. These results can be applied for the situations discussed above.

The existence of solutions to the PF system with a constant kinetic relaxation parameter ζ has
been investigated in a number of papers, for example in [20–22, 26, 28, 29, 35, 38] for κ being a
constant, and, for more general heat flux laws, in [9, 10, 12, 30]. In [14, 23, 24], such investigations
have been performed for the PF system with ζ and κ being constant and θt being replaced by the
time derivative of a more general function of 1/θ . In [25, 27] the numerical approximation of PF
systems with κ being a constant and a space depending kinetic relaxation parameter ζ has been
considered.

To the knowledge of the author, a dependence of this kinetic relaxation parameter on the gradient
of the order parameter has not been taken into account before in the context of a PF system. For the
standard phase field system (see [6]), i.e. the system (1.1), (1.2) with λ′(χ) ≡ L for some constant
L > 0, a Fourier law heat flux, i.e. �q = −κFour∇θ , and 1

θ
in the order parameter equation (1.2)

replaced by −θ , this has already been done: see, for example, [7, 16].

A kinetic relaxation parameter ζ depending on the gradient of the order parameter allows one
to model the evolution of a phase interface with a direction-dependent kinetic mobility, i.e. a phase
interface whose normal velocity depends on orientation of the phase interface. If such a kinetic
mobility is used, and the growth of a solid phase into a surrounding liquid phase is considered, an
anisotropic growth process will be observed, i.e. the solid phase will grow faster in some directions,
and slower in other directions. On first glance, one would assume that this would lead to the growth
of tips in the directions with a higher growth speed, and therefore to the formation of dendrites, but
in the performed numerical simulations this has not been observed. Instead, these simulations have
produced a behaviour that is similar to the one described in [33: Section 2.3]: during the growing
of the solid phase, the part of the phase interphase with an orientation corresponding to a higher
growth speed grows out and becomes smaller, while the part with a lower growth speed orientation
becomes bigger. After some time, the phase interphase consists only of regions with orientations in
the slow growing regime, separated by corners.

If only (1.2) with a given right-hand side and s equal to the double-well or the double-obstacle
potential is considered, one is dealing with the Allen–Cahn equation or the double-obstacle Allen–
Cahn equation, respectively. In these models, one does not take into account the latent heat of the
phase transitions. The double-obstacle Allen–Cahn equation with a kinetic relaxation parameter ζ

depending on the direction of ∇χ is considered in [17–19].

To deal with non-smooth potentials, the potential is split in the form s(r) = φ(r)− σ(r), where
φ represents the convex, maybe not smooth, part of the potential, and σ is a differentiable function,
such that −σ can represent the non-convex part of the potential. Now, in (1.2), s′(χ) is replaced by
ξ − σ ′(χ), where ξ is a representation of the subdifferential ∂φ of φ.

Moreover, the heat flux will be written in the form �q = −∇α(θ). For a function α such that
α′(θ)θ2 = κ(θ), we get the heat flux considered in (1.1). The Fourier law is obtained by using
α(θ) = κFourθ .

The layout of this paper is as follows. In Section 2, the formulation of the considered initial-
boundary value problem for phase-field system and two existence results are presented. In Section 3,
the time-discrete scheme is introduced and the approximation results are shown. Sections 4–7 deal
with the proof of the results. Their contents are discussed at the end of Section 3.
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2. The phase-field system

In this section, an initial-boundary value problem for the phase field system of PF type is
investigated. It will be considered on a bounded, open domain Ω ⊂ R

N with N ∈ {2, 3} and a
smooth boundary Γ = ∂Ω . Let ΩT := Ω × (0, T ) and ΓT := Γ × (0, T ), where T > 0 stands for
a final time.

First, the boundary condition for the temperature is derived. In Section 2.2, a way to deal with
1/θ and α(θ) is introduced, which is also valid if θ is not a function on Ω but only a functional
on some function space on Ω . This way is used in the formulation of the initial-boundary value
problem in Section 2.3. An existence result is presented in Section 2.4, and a stronger existence
result, which requires additional assumptions, is presented in Section 2.5.

2.1 Boundary condition for the temperature

On the boundary Γ , a heat exchange with an external environment at temperature θext is considered.
For an energy balance with a heat flux �q satisfying the Fourier law with a constant thermal
conductivity κFour > 0, i.e. �q = −κFour∇θ , this is modelled by the boundary condition

−κFour
∂θ

∂n
= γFour(θ − θext), (2.1)

where γFour is some positive constant and n is the outward unit normal to Γ .
Now, the derivation of this boundary condition as the author learned from [37] is adapted to

deal with more general heat fluxes. By considering the following computations for the special form
α(θ) = κFourθ , which correspond to the Fourier law, one gets the boundary condition (2.1).

To avoid technicalities, the derivation is presented in a one-dimensional, time-independent setup.
Hence, we consider a temperature field θ on an interval (x0, x1).

The external temperature θext(x1) considered on the right-hand side x1 of the interval does not
correspond to a physical temperature of the environment in the point x1, but to the temperature on
the right-hand side of some interfacial region on the right-hand side of x1, wherein the physical
temperature changes continuously its value from θ(x1) to θext(x1).

We assume that the interfacial region has the thickness δ > 0. Hence, we can extend the
temperature field θ continuously to [x0, x1 + δ] such that

θ(x1 + δ) = θext(x1). (2.2)

Since the heat flux is continuous across ∂(x0, x1), we have q(x1) = qinter(x1), where q denotes
the the heat flux in [x0, x1] and qinter denotes the heat flux in the interfacial region, i.e. in Ωinter :=
[x1, x1 + δ]. Assuming that the heat flux stays constant inside the interfacial region, we get

q(x1) = qinter(x1 + τ), ∀ 0 � τ � δ. (2.3)

To derive the boundary condition for (1.1) with an heat flux of the form �q = −∇α(θ), we
consider in (x0, x1) the corresponding heat flux q = − ∂

∂x (α(θ)) and in Ωinter a heat flux of the
same form for a function αinter = γinterα with some positive constant γinter. Hence, we have qinter =
−γinter

∂
∂x (α(θ)) and (2.3) yields that

−∂α(θ)

∂x
(x1) = q(x1) = −γinter

∂α(θ)

∂x
(x1 + τ), ∀ 0 � τ � δ.
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Hence, considering the integral over [x1, x1 + δ] and using (2.2), we observe that

δ
∂α(θ)

∂x
(x1) = γinter(α(θext(x1))− α(θ(x1))).

Defining γ := γinter
δ

and performing an analogous calculation also for the left-hand side of the
interval, we get on ∂(x0, x1):

∂α(θ)

∂n
= γ (α(θext)− α(θ)). (2.4)

Hence, we have derived a boundary condition that models the heat exchange through a thin interface
surrounding the considered domain, with a heat flux inside this interface that is proportional
to the considered heat flux �q = ∇α(θ) in the domain. To the knowledge of the author, the
physical meaning of this boundary condition has not been pointed out until now, even if this
boundary condition has already been used in a number of papers dealing with PF systems: see,
for example, [11, 25–27] for the special form α(θ) = −κ0/θ with some positive constant κ0,
and [9, 10, 14, 23, 24] for more general α.

Performing the same computations as above for a heat flux with thermal memory, which means
to replace α(θ) by a function depending also on the former values of the temperature θ , one gets the
boundary condition for the heat flux which is used in [12].

Considering (2.4) on ΓT and defining µ : ΓT → R by µ := γα(θext), we get the boundary
condition that is used in this work.

2.2 New formulation to deal with 1/θ and α(θ)

Following an approach used in a number of papers dealing with PF systems, the considered system
is rewritten by introducing two additional unknowns u and w. The 1/θ-term and the α(θ)-term
in the system are replaced by u and w respectively, and the additional compatibility conditions
u = 1/θ and w = α(θ) a.e. on ΩT are used. To prepare the weak formulation of the PF system,
these conditions have to be replaced by weaker ones, which can also be applied if θ(t) is a not
function on Ω but only a functional in H1(Ω)

∗
. The following assumptions for α are intended to

be used in the existence results, and one could replace these assumptions by weaker ones, if one is
only interested in the reformulation of the compatibility conditions.

(A1) Let α ∈ C1((0,∞)) be an increasing function, with α′ non-increasing, such that there exist
positive constants θlow, αlow, αfactor, and α′factor with

α(s) = −αlow

s
, ∀ s ∈ (0, θlow], α(r) � −αfactor

1

r
, α′(r) � α′factor

1

r2
∀ r > 0. (2.5)

Let α̃(s) := ∫ s
θlow

α(r) dr .

REMARK 2.1 The heat flux laws corresponding to assumption (A1) can represent at high
temperatures a Fourier law, while there has to be a singularity at θ = 0. This singularity is used
to get a priori estimates for 1/θ such that one can control the singularity at θ = 0 appearing in the
right-hand side of the order parameter equation. These heat flux laws are a special case of the heat
flux laws considered in [9, 10], where instead of (2.5) more general conditions have been considered.
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The PF system is intended to be used at intermediate temperatures. Therefore, the
thermodynamic functions and material laws used in the derivation of this system are only valid in a
certain temperature range. For example, a PF system which models a solid–liquid phase transition
is not supposed to be valid for temperature above the boiling temperature where the liquid is
transformed to vapour. For dealing with the evaporation one has to use another model. Therefore,
one can choose θ∗low, θ∗high ∈ (0,∞), such that the interval [θ∗low, θ∗high] encloses the temperature
range in which the PF system is valid.

For a function α∗ such that the conditions in (A1), apart from (2.5), are satisfied, one can define
a function α satisfying (A1) such that ∇α∗(θ) and ∇α(θ) lead to the same heat flux, as long as the
temperature stays inside [θ∗low, θ∗high]. Hence, the heat flux∇α(θ) can be considered as regularization
of ∇α∗(θ), where the regularization only takes place for temperatures outside the temperature range
where the PF system is supposed to be valid.

For w̃ and θ̃ in L2(Ω) the conditions θ̃ > 0 and w̃ = α(θ̃) a.e. on Ω are equivalent to w̃ ∈ ∂ j0(θ̃)

in L2(Ω), where j0 : L2(Ω) �→ R ∪ {+∞} is the L2(Ω)-representation of the convex function
α̃ : (0,∞) → R. We have for f ∈ L2(Ω)

j0( f ) :=
{∫

Ω α̃( f (x)) dx, if f > 0 a.e. in Ω and α̃( f ) ∈ L1(Ω),

+∞, otherwise.
(2.6)

In [14, 15, 23], Damlamian, Kenmochi, and Kubo extend this function to a function on H1(Ω)
∗

and replaced the L2(Ω)-compatibility condition by a condition in this space. Following their
formulation, we denote by V the Hilbert space, arising by considering H1(Ω) with the inner product
(·, ·)V defined by

(w, v)V =
∫
Ω
∇w • ∇v dx + γ

∫
Γ

wv dσ, ∀w, v ∈ H1(Ω), (2.7)

and the corresponding norm ‖ · ‖V . Thanks to the trace theorem and Poincaré’s inequality, we see
that the norms ‖·‖V and ‖·‖H1(Ω) are equivalent. Hence, V ∗ can be identified with H1(Ω)

∗
and the

H1(Ω)
∗
-norm is equivalent to the induced norm ‖ · ‖V ∗ on V ∗ as dual space of V . Let F : V → V ∗

be the duality mapping:

〈Fw, v〉V ∗×V = (w, v)V , ∀w, v ∈ V . (2.8)

We see that V ∗ is a Hilbert space with the inner product (·, ·)∗
(w, v)∗ := 〈w, F−1v〉V ∗×V = (F−1w, F−1v)V , ∀w, v ∈ V ∗, (2.9)

satisfying

‖ f ‖V ∗= √
( f, f )∗ = ‖F−1 f ‖V , ∀ f ∈ V ∗. (2.10)

Now, j0 is extended to work on the whole V ∗ by considering the corresponding Γ -regularization
j of j0 on V ∗, i.e. we have

j (w) = inf{lim inf
n→∞ j0(zn) : (zn)n∈N ⊂ L2(Ω), zn → z in V ∗}, ∀w ∈ V ∗. (2.11)
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Replacing in these definitions α by the function (0,∞) � s �→ −1/s, which also satisfies (A1),
we get two other convex, lower semicontinuous functionals J̃0 : L2(Ω) → R ∪ {∞} and J̃ :
V ∗ → R ∪ {∞}. We have, see [15: Theorem 1.5, Corollary 1.6], with ∂∗ j and ∂∗ J̃ denoting the
subdifferential of j and J respectively in the Hilbert space V ∗:

LEMMA 2.2 Assume that (A1) holds. We have j = j0 and J̃ = J̃0 on L2(Ω).

For θ̃ ∈ L2(Ω)

θ̃ ∈ D(∂∗ j) ⇔ θ̃ > 0 a.e. in Ω and ∃w̃ ∈ H1(Ω) : w̃ = α(θ̃), a.e. in Ω , (2.12)

θ̃ ∈ D(∂∗ J̃ ) ⇔ θ̃ > 0 a.e. in Ω and ∃ũ ∈ H1(Ω) : −ũ = −1/θ̃, a.e. in Ω . (2.13)

We have ∂∗ j (θ̃) = {Fw̃} with w̃ as in (2.12) for θ̃ ∈ L2(Ω) ∩ D(∂∗ j). We have ∂∗ J̃ (θ̃) = {−Fũ}
with ũ as in (2.13) for θ̃ ∈ L2(Ω) ∩ D(∂∗ J ).

2.3 The phase-field system

We consider the following initial-boundary value problem for the phase field system of PF type.

(PF) Find (θ, w, u, χ, ξ) fulfilling

θ ∈ H1(0, T ; V ∗), w, u ∈ L2(0, T ; V ), (2.14a)

χ ∈ H1(0, T ; L2(Ω)) ∩ L2(0, T ; H2(Ω)), ξ ∈ L2(0, T ; L2(Ω)), (2.14b)

Fw(t) ∈ ∂∗ j (θ(t)), −Fu(t) ∈ ∂∗ J (θ(t)), in V ∗, for a.e. t ∈ (0, T ), (2.14c)

χ ∈ D(β), ξ ∈ β(χ), a.e. in ΩT . (2.14d)

〈c0θt (t), v〉V ∗×V +
∫
Ω

λ′(χ(t))χt (t)v dx +
∫
Ω
∇w(t) • ∇v dx + γ

∫
Γ

w(t)v dσ

=
∫
Ω

g(t)v dx +
∫
Γ

µ(t)v dσ, ∀ v ∈ V, for a.e. t ∈ (0, T ), (2.14e)

ζ(∇χ)χt − ε∆χ + ξ − σ ′(χ) = −λ′(χ)u, a.e. in ΩT , (2.14f)

∂χ

∂n
= 0, a.e. in ΓT , (2.14g)

θ(·, 0) = θ0, in V ∗, χ(·, 0) = χ0, a.e. in Ω . (2.14h)

REMARK 2.3 We see that (2.14e) is the weak formulation of the first equation in (1.1) for �q =
−∇α(θ), combined with the boundary condition (2.4) for µ := γα(θext).

REMARK 2.4 If (A1) holds, and a solution to the problem (PF) with θ ∈ L2(0, T ; L2(Ω)) is given,
we get from Lemma 2.2 that the compatibility conditions between θ, u, and w, holds a.e. on ΩT ,
i.e.

θ > 0, w = α(θ), u = 1

θ
, a.e. in ΩT . (2.15)

2.4 First existence result

For dealing with the system (PF), in addition to (A1), the following assumptions will be used.
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(A2) Let β be a maximal monotone graph on R and φ : R → [0,∞] a convex, lower
semicontinuous function satisfying

β = ∂φ, 0 ∈ D(β), 0 ∈ β(0), int D(β) "= ∅.

(A3) There are positive constants λfactor, σ
′
factor, λ

′′
sup, σ

′′
sup such that

λ ∈ W 2,∞
loc (R), σ ∈ W 2,∞

loc (R),

−λ(s) � λfactor(φ(s)+ 1), (σ ′(s))2 � σ ′factor(φ(s)+ 1), ∀ s ∈ D(β),

|λ′′(s)| � λ′′sup, |σ ′′(s)| � σ ′′sup, for a.e. s ∈ R.

(A4) We have

g ∈ L2(0, T ; L2(Ω)), µ ∈ L2(0, T ; H
1
2 (Γ )).

(A5) We consider initial data θ0 ∈ L2(Ω), χ0 ∈ H2(Ω), such that

θ0 > 0, χ0 ∈ D(β), a.e. in Ω , φ(χ0), α̃(θ0), ln(θ0) ∈ L1(Ω).

(A6) We have positive constants ζinf, ζsup such that the function ζ : R
N → [ζinf, ζsup] is

continuous on R
N .

We have the following existence result, which is the main result of this work.

THEOREM 2.5 Assume that (A1)–(A6) hold. Then there is a solution (θ, w, u, χ, ξ) to the PF
system.

REMARK 2.6 Similar to the existence result for the phase relaxation system with a kinetic
relaxation parameter depending on the gradient of the order parameter studied in [8], no uniqueness
result is known for the solution to (PF).

REMARK 2.7 If one starts to model the evolution of a phase interface with a kinetic mobility term
depending on orientation of the interface, one would like to use a kinetic relaxation parameter ζ

which depends only on the direction of ∇χ , and has therefore a discontinuity in 0, but neither one
of the theorems in this section nor the later Theorem 3.4 apply to this situation.

By extending the concept of L p(Ω)-viscosity solution as in [5] with considerations similar to
Chapter 9 in [13], we get a L p(Ω)-viscosity solution formulation for (2.14f), which is also valid if
u and ζ are not continuous. But, also in this formulation, χ has to be continuous on ΩT , and the
continuity of χ could not even be shown for the solution to the PF system with continuous ζ (see
Theorems 2.5 and 2.8).

2.5 Second existence result

In addition to the result above, one can also show that there is a solution to the PF system, such that
θ is function on ΩT , at least under the following additional assumptions:
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(A7) We have a positive constant αlow such that

α(r) = −αlow
1

r
, ∀ r > 0.

(A8) We have a positive constant λ′sup such that

|λ′(s)| � λ′sup, ∀ s ∈ D(β), µ � 0, a.e. in ΓT .

The existence results reads as follows.

THEOREM 2.8 Assume that (A2)–(A8) hold. Then there is a solution (θ, w, u, χ, ξ) to the PF
system with θ ∈ L∞(0, T ; L2(Ω)) and (2.15).

REMARK 2.9 Assumption (A7) corresponds to the heat flux �q = −αlow∇(1/θ), which is also
investigated in [20–22, 26, 28, 29, 35, 38]. This heat flux is not considered because of some special
physical significance, but because of its properties which simplify the mathematical investigations.
These properties are used in the proof of Theorem 2.8. One can also derive an existence result with
θ ∈ L∞(0, T ; L2(Ω)) under somehow weaker assumptions for the heat flux, but this would require
more technicalities.

REMARK 2.10 If (A8) is satisfied, the latent heat function λ′(χ) is bounded. Hence, for a quadratic
λ, the assumption (A8) can only be satisfied if D(β) is bounded. This is the case for the double-
obstacle potential, but not for the double-well potential. For dealing with this situation, one has to
consider the existence result presented earlier in Theorem 2.5.

For α as in (A7), a function θext on ΓT with θext > 0, and µ defined as at the end of Section 2.1,
i.e. µ := γα(θext), we have µ < 0, i.e. the assumption for µ in (A8) is satisfied.

3. The time-discrete scheme

In this section, a time-discrete scheme is introduced to prepare numerical computations. Moreover,
this scheme is used to prove the existence results in the last section. We consider time-step sizes that
do not need to be uniform, but satisfy the following assumption, where cup � 1 is a fixed constant.

(A9) The vector H = (h1, . . . , hK ) ∈ R
K of time-step sizes, with K ∈ N, fulfils

K∑
m=1

hm = T, hm � cuphm−1, ∀ 1 < m � K ,

0 < hm <
ζinf

3σ ′′sup
, ∀ 1 � m � K .

We define hmax(H) := max1�m�K hm , t0 := 0, and, for 1 � m � K :

tm := tm−1 + hm =
m∑

i=1

hi , (3.1)

gm(x) := 1

hm

∫ tm

tm−1

g(x, t) dt, µm(σ ) := 1

hm

∫ tm

tm−1

µ(σ, t) dt, ∀ x ∈ Ω , σ ∈ Γ . (3.2)

Now, an Euler scheme in time for the PF systems is presented, which is implicit, except for the
treatment of the nonlinearities λ′, σ ′, and ζ .
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(D) Let

θ0 := θ0, χ0 := χ0, (3.3)

and, for 1 � m � K , find

θm ∈ L2(Ω), wm ∈ H2(Ω), um ∈ H1(Ω), χm ∈ H2(Ω), ξm ∈ L2(Ω), (3.4a)

such that

0 < θm, α(θm) = wm, um = 1

θm
, χm ∈ D(β), ξm ∈ β(χm), a.e. in Ω , (3.4b)

c0
θm − θm−1

hm
+ λ′(χm−1)

χm − χm−1

hm
−∆wm = gm, a.e. in Ω , (3.4c)

ζ(∇χm−1)
χm − χm−1

hm
− ε∆χm + ξm − σ ′′(χm−1)χm

= −λ′(χm−1)um − σ ′′(χm−1)χm−1 + σ ′(χm−1), a.e. in Ω , (3.4d)

∂wm

∂n
= µm − γwm,

∂χm

∂n
= 0, a.e. in Γ . (3.4e)

REMARK 3.1 The time-discrete scheme (D), especially the approximation used for the coupling
terms, is chosen in such a way that one can use discrete versions of the a priori estimates derived by
Sprekels and Zheng [35].

The approximation for σ ′(χm) used in (3.4d) is linear with respect to χm , i.e. to the implicit part,
and involves an approximation error which is less or equal to σ ′′sup(χm−χm−1)

2. This approximation
is equal to σ ′(χm), if σ ′(·) is an affine function.

THEOREM 3.2 Assume that (A1)–(A6), and (A9) hold.

(1) Then there exists a solution to (D).
(2) The solution is unique, if (A7) holds.

REMARK 3.3 For heat flux laws corresponding to (A7) the right-hand side of the later contracting
inequality (6.2) is zero, while for a more general heat flux, i.e. a more general α, one has to estimate
this right-hand side to get a uniqueness result. Therefore, to avoid technicalities, the uniqueness
result in the last theorem is only proved under the assumption (A7).

We use a solution to (D) to construct an approximate solution (θ̂ , w, u, χ̂ , ξ) in
(L∞(0, T ; L2(Ω)))4 to the PF system. The function θ̂ is defined to be linear in time on [tm−1, tm] for
m = 1, . . . , K such that θ̂ (tk) = θk holds for k = 0, . . . , K . The function χ̂ is defined analogously.
We define w piecewise constant in time by w(t) = wm for t ∈ (tm−1, tm] and m = 1, . . . , K . The
functions u, ξ are defined analogously.

We have the following convergence result.

THEOREM 3.4 Assume that (A1)–(A6) hold. Let a sequence {H (n)}n∈N of vectors of time-step

sizes with (A9) and hmax(H (n)) −−−→
n→∞ 0 be given. Denote by ((θ̂ (n), w(n), u(n), χ̂ (n), ξ

(n)
))n∈N a

corresponding sequence of approximations. Hence, there is a subsequence {nk}k∈N and a solution
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(θ, w, u, χ, ξ) to the PF system such that

θ̂ (nk ) −−−→
k→∞ θ, strongly in C([0, T ]; V ∗), (3.5)

weakly in H1(0, T ; V ∗), (3.6)

w(nk ) −−−→
k→∞ w, weakly in L2(0, T ; V ), (3.7)

u(nk ) −−−→
k→∞ u, weakly in L2(0, T ; V ), (3.8)

χ̂ (nk ) −−−→
k→∞ χ, weakly in H1(0, T ; L2(Ω)) ∩ L2(0, T ; H2(Ω)), (3.9)

weakly-star in L∞(0, T ; H1(Ω)), (3.10)

ξ
(nk ) −−−→

k→∞ ξ, weakly in L2(0, T ; L2(Ω)). (3.11)

If also (A7) and (A8) are satisfied, then we have

θ̂ (nk ) −−−→
k→∞ θ, weakly-star in L∞(0, T ; L2(Ω)). (3.12)

REMARK 3.5 The upper bound for λ′′ and σ ′′ used in (A3) can be weakened to some growth
condition by using the same approach as in [27].

A crucial step in the proof is the derivation of the strong L6(0, T ; H1(Ω)) convergence
(see (7.10)) for the approximation of χ . To avoid therein a more technical argumentation as in
the derivation of [8: (3.29)], it is assumed in (A5) that χ0 ∈ H2(Ω). One can weaken this
regularity assumption to χ0 ∈ H1(Ω) and derive the same results, except for (3.9): instead of
the weak L2(0, T ; H2(Ω)) convergence for χ̂ (nk ) only a weak convergence in L2(t, T ; H2(Ω)) for
all 0 < t < T could be shown.

REMARK 3.6 If (A3) holds, there is some n0 ∈ N satisfying 3T σ ′′sup � n0ζinf. For n ∈ N, we

can consider the vector H (n) = (h(n), h(n), . . . , h(n)) ∈ R
n+n0 of time-step sizes with h(n) :=

T
n0+n , such that (A9) is satisfied. Hence, it follows from Theorem 3.4 that Theorem 2.5 is satisfied.
Since (A1) follows from (A7), we get Theorem 2.8 by combining Theorem 3.4 with Remark 2.4.

In the sequel, first Theorem 3.2 will be proved, following the proof of [27: Theorem 2.1]. Under
the additional assumption that D(β) is bounded, the existence of a solution to the scheme is proved
in Section 4, and uniform estimates for the solutions to the scheme are derived in Section 5. In
Section 6, these results are combined to derive the existence and uniqueness results for the time-
discrete scheme.

In Section 7, the convergence of the solutions to the time-discrete scheme and the existence of
a solution to the considered PF system is proved. So, Theorem 3.4 is proved. In the sequel, the
notation ‖ · ‖p will be used for the L p(Ω)-norm and the notation ‖ · ‖p,N will be used for the
(L p(Ω))N -norm for all p ∈ [1,∞].
REMARK 3.7 As mentioned in Remark 2.7, one is interested in weakening the assumption (A6)
on the kinetic relaxation parameter ζ by allowing ζ to be discontinuous in 0. If this weaker version
of (A6) is used, Theorem 3.2 still holds and the estimates in Section 5 can be performed for the
corresponding solutions to the scheme. Hence, one can get all convergence results in Section 6
except that of (7.14), and one is therefore not able to prove in this way that (2.14f) is satisfied.
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4. The existence of a solution to the scheme (D) for D(β) bounded

Before presenting the existence result, some properties for α and α−1 are derived. Here, R(α) =
{α(s) : s > 0} denotes the range of the function α.

LEMMA 4.1 Assume that (A1) holds. There is a positive constant C ′
α , such that

|α̃(s)| � α̃(s)+ C ′
α(1+ |ln(s)|), ∀ s > 0. (4.1)

Moreover, the inverse function ψ := α−1 : R(α) → (0,∞) is an increasing C1-function, such
that ψ ′ is non-decreasing. The function � : R → (0,∞) with

�(w) :=
{

1/ψ(w), if w ∈ R(α),

0, otherwise,
(4.2)

is Lipschitz-continuous and decreasing on R, and C1 on R(α). There is a positive constant C�, such
that

ψ(w)w � −αfactor, �′(w) = − 1

(ψ(w))2α′(ψ(w))
, ∀w ∈ R(α), (4.3)

0 > �′(w) � − 1

α′factor
, 0 � �(w) � 1

θlow
+ 1

αlow
|w|, ∀w ∈ R(α), (4.4)

α′factor(�
′(w))2 � −�′(w), αlow(�(w))2 � C� − w�(w), ∀w ∈ R(α). (4.5)

Proof. Thanks to (A1), we see that α̃ � 0 on (0, θlow), and that for s � θlow it holds that

−α̃(s) �
∫ s

θlow

αfactor
1

r
dr = αfactor(ln s − ln θlow).

This leads to (4.1). Invoking (A1), we deduce that rα(r) � −αfactor for all r > 0. Hence, we
see that the inequality in (4.3) holds, while the equality follows from the definitions of � and ψ by
applying the chain rule. Combining this equality with (A1) and (�′(w))2 = (−�′(w))(−�′(w)), we
see that the estimates for �′ in (4.4) and (4.5) hold. Because of (A1), we have

�(w) = − w

αlow
, (�(w))2 = −�(w)

w

αlow
, ∀w � −αlow

θlow
. (4.6)

�(w) � �

(−αlow

θlow

)
= 1

θlow
, −w�(w) = −α(ψ(w))

ψ(w)
, ∀w � −αlow

θlow
. (4.7)

Recalling (A1) leads to

α(s) � α(θlow)+ α′(θlow)(s − θlow) � αlow

θ2
low

s, ∀ s � θlow.

Combining this with (4.6) and (4.7) leads to the estimates for � in (4.4) and (4.5). �

We have the following existence result.

LEMMA 4.2 Assume that (A2)–(A6), (A9) hold, and that D(β) is bounded. Then, there exists a
solution to the scheme (D).
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Proof. The existence of a solution to the scheme will be shown by induction. Thanks to (3.3),
(A5), and Sobolev’s embedding theorem, we have θ0 ∈ L2(Ω), χ0 ∈ L∞(Ω). Let θm−1 ∈ L2(Ω)

and χm−1 ∈ L∞(Ω) be given for some m ∈ {1, . . . , K }. Because of (A3) and (A6), we obtain
λ′(χm−1) ∈ L∞(Ω) and ζ(∇χm−1) ∈ L∞(Ω). To rewrite the conditions in the scheme, let the
nonlinear operators Am and Bm on L2(Ω) and the linear operator Dm : L2(Ω) → L2(Ω) be
defined by

Amw = c0ψ(w)− hm∆w − c0θm−1 − hm gm

− λ′(χm−1)χm−1, a.e. in Ω , ∀w ∈ D(Am), (4.8)

D(Am) =
{
w ∈ H2(Ω)

∣∣∣∣∂w

∂n
= µm − γw, a.e. in Γ , ψ(w) ∈ L2(Ω)

}
, (4.9)

Bmχ = −ε∆χ + {ξ ∈ L2(Ω)|ξ ∈ β(χ), a.e. in Ω}, (4.10)

D(Bm) =
{
χ ∈ H2(Ω)

∣∣∣∣∂χ

∂n
= 0, a.e. in Γ , χ ∈ D(β), a.e. in Ω ,

∃ξ ∈ L2(Ω) : ξ ∈ β(χ), a.e. in Ω
}
, (4.11)

Dmχ =
(

ζ(∇χm−1)

hm
− ζinf

2hm
− σ ′′(χm−1)

)
χ, a.e. in Ω , ∀χ ∈ L2(Ω). (4.12)

Thanks to (A6), (A3), (A9), and χm−1 ∈ L2(Ω), we conclude that Dm is a maximal monotone
linear operator, and [4: Corollary 13] yields that Bm is a maximal monotone operator on L2(Ω).

By translating the proof of [4: Corollary 13], we see that the operator Am is maximal monotone.
Using (4.3), we can show that this operator is also coercive. Hence, we obtain (see, for example, [36:
Chapter I, Theorem 2.4]) that the operator is also surjective. By finally estimating the difference
between two given solutions, we have shown that Am is one-to-one as operator from D(Am) →
L2(Ω). The proof is similar for the one for α(θ) = −κ0/θ in [25: Lemma 5.1].

Using λ′(χm−1) ∈ L∞(Ω) and that Am is one-to-one as operator from D(Am) → L2(Ω), we
deduce that for every χ ∈ L2(Ω) there is a unique function w ∈ D(Am) such that

Amw = −λ′(χm−1)χ, (4.13)

is satisfied. Defining now W (χ) := w, we get an operator W from L2(Ω) → H2(Ω).
Let fm ∈ L2(Ω) be defined by

fm := 1

hm
ζ(∇χm−1)χm−1 − σ ′′(χm−1)χm−1 + σ ′(χm−1), a.e. in Ω . (4.14)

Since D(Dm) = L2(Ω), we have D(Bm)∩int D(Dm) "= ∅. Hence, applying a theorem on summing
maximal monotone operators (see, for example, [3: Chapter II, Theorem 1.7]), we see that Bm+Dm

is maximal monotone. For w ∈ L2(Ω) and � as in (4.2), we get from (A3), χm−1 ∈ H2(Ω),
and (4.4) that λ′(χm−1)�(w) ∈ L2(Ω). Therefore, there is a unique function χ ∈ D(Bm + Dm)

such that

ζinf

2hm
χ + Bmχ + Dmχ + λ′(χm−1)�(w) � fm . (4.15)
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Setting Ψ(w) := χ , we get an operator from L2(Ω) to D(Bm + Dm).
Thanks to the construction, Ψ ◦ W is a mapping from L2(Ω) to H2(Ω) ∩M with

M := {v ∈ H2(Ω) : v ∈ D(β) a.e. in Ω}.
Testing for χ ∈M the equation (4.13) by W (χ), we see that W (M) is a bounded subset of H1(Ω).
Considering (4.13) for two functions χ, χ ′ ∈ L2(Ω), and testing the difference of the two equations
by W (χ) − W (χ ′), we conclude that W is continuous as function from L2(Ω) to H1(Ω). Similar,
we get, by using (4.4), that Ψ(W (M)) is a bounded subset of H1(Ω), and that Ψ is continuous as
function from L2(Ω) to H1(Ω). Combining this, we see that Ψ ◦ W is a continuous function from
L2(Ω) to L2(Ω), and that Ψ ◦ W (M1) ⊂M1 holds for

M1 := {v ∈M : ‖v‖H1(Ω)� sup{‖w‖H1(Ω): w ∈ Ψ ◦ W (M)}}.

Since M1 is a convex, compact subset in L2(Ω), and Ψ ◦W is continuous, we can apply Schauder’s
fixed point theorem and get a fixed-point χm of Ψ ◦ W . For wm := W (χm) ∈ H2(Ω) ⊂ W 1,6(Ω),
we get from [31: Theorem 1] that um := �(wm) ∈ H1(Ω). Defining now θm := ψ(wm) and ξm

by (3.4d), we see that the conditions in (3.4) are satisfied. Therefore, the Lemma is proved. �

5. Uniform estimates

In this section, uniform estimates for solutions to the time-discrete scheme are derived. Assume
that (A1)–(A6), and (A9) hold. Let β∗ := ∂φ∗ and φ∗ : R → [0,∞] be either φ or the function
defined by

φ∗(s) =
{

φ(s), if |s| � B,

∞, otherwise,
(5.1)

for some B > ‖χ0‖∞. In the light of (A2), we see that φ∗ is a convex, lower semicontinuous
function with

0 � φ � φ∗ on R, 0 ∈ D(β∗), intD(β∗) "= ∅, 0 ∈ β∗(0), φ∗|D(β∗) = φ|D(β∗). (5.2)

Now, a modified version of the time-discrete scheme is considered, where β in (D), i.e. in (3.4b), is
replaced by β∗. Let any solution to this scheme be given.

REMARK 5.1 Applying (3.4c), Green’s formula, (3.4e), and (2.7), we deduce that∫
Ω

(
c0

θm − θm−1

hm
+ λ′(χm−1)

χm − χm−1

hm

)
v dx + (wm, v)V

=
∫
Ω

gmv dx +
∫
Γ

µmv dσ, ∀ v ∈ H1(Ω), 1 � m � K . (5.3)

In the sequel, Ci , for i ∈ N, will always denote generic positive constants, independent of the
vector H of time-step sizes, the constant B, and the considered solution.

To prepare the a priori estimates, we estimate the data and their approximations.
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LEMMA 5.2 There exist positive constants C1, C2, C3 such that

|λ′(s)| + |σ ′(s)| � C1(|s| + 1), ∀ s ∈ R, (5.4)∣∣∣∣ ∫
Ω

gmv dx

∣∣∣∣+ ∣∣∣∣ ∫
Γ

µmv dσ

∣∣∣∣ � C2‖v‖V (‖gm‖2+‖µm‖L2(Γ )), ∀ v ∈ H1(Ω), 1 � m � K ,

(5.5)
K∑

m=1

hm(‖gm‖2
2+‖µm‖2

L2(Γ )
) � C3. (5.6)

Proof. These estimates follow from (A3), (A4), (3.1), the trace-mapping from H1(Ω) to H
1
2 (Γ ),

and the equivalence of the H1(Ω)-norm and ‖ · ‖V . �

The following Lemmas use ideas from [9–11, 22, 27, 35].

LEMMA 5.3 There are two positive constants C4, C5 such that

max
0�m�K

(‖θm‖1+‖ln(θm)‖1+‖χm‖2
H1(Ω)

+‖φ(χm)‖1)

+
K∑

m=1

hm‖um‖2
V+

K∑
m=1

hm

∥∥∥∥χm − χm−1

hm

∥∥∥∥2

2
+

K∑
m=1

‖χm − χm−1‖2
H1(Ω)

� C4, (5.7)

max
0�m�K

(‖λ′(χm)‖6+‖σ ′(χm)‖6)+
K∑

m=1

hm

∥∥∥∥λ′(χm−1)
χm − χm−1

hm

∥∥∥∥2

3
2

� C5. (5.8)

Proof. Testing (3.4d) by (χm − χm−1), taking the sum from m = 1 to m = k, and using (A6),
Green’s formula, (3.4e), ξm ∈ ∂φ∗(χm), 0 � φ � φ∗, the elementary equality

a(a − b) = 1
2 a2 − 1

2 b2 + (a − b)2, ∀ a, b ∈ R,

Hölder’s inequality, (3.3), φ∗(χ0) = φ(χ0), (A3), (A5), (A9), and Young’s inequality, we deduce

ζinf

6

k∑
m=1

hm

∥∥∥∥χm − χm−1

hm

∥∥∥∥2

2
+ ε

2
‖∇χk‖2

2,N+
ε

2

k∑
m=1

‖∇χm − ∇χm−1‖2
2,N+‖φ(χk)‖1

� C6 −
k∑

m=1

∫
Ω

λ′(χm−1)(χm − χm−1)um dx + 1

2ζinf
σ ′factor

k∑
m=2

hm‖φ(χm−1)‖1. (5.9)

From um = �(wm), (2.7), and (4.5), we get positive constants C7, C8, such that

−(wm, um)V = −
∫
Ω

�′(wm)|∇wm |2 dx − γ

∫
Γ

wm�(wm) dσ � C7‖um‖2
V−C8. (5.10)

Because of Taylor’s formula and (A3), we have

−λ′(χm−1)(χm − χm−1) � −λ(χm)+ λ(χm−1)+ 1
2λ′′sup(χm − χm−1)

2, a.e. in Ω . (5.11)

For 1 � m � K and δ := min(1/(2λfactor), ζinf/(6λ′′supT )), we insert v = hmδ − hmum in (5.3),

use (3.4b), take into account that −1
s is the derivative of the convex function − ln(s), apply (5.5),
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(5.10), (5.11), and δλ′′sup < ζinf/(6T ). Summing the resulting inequality from m = 1 to m = k,
applying Young’s inequality, (5.6), (3.4b), (3.3), (A3), and (A5), we conclude that

δc0‖θk‖1+c0

∫
Ω

(− ln(θk)) dx + 1
2 C7

k∑
m=1

hm‖um‖2
V � C9 +

k∑
m=1

∫
Ω

λ′(χm−1)(χm − χm−1)um dx

+ δλfactor‖φ(χk)‖1+ 1

12T
ζinf

k∑
m=1

h2
m

∥∥∥∥χm − χm−1

hm

∥∥∥∥2

2
. (5.12)

By elementary analysis we get a positive constant C10, such that

δ

2
s + |ln s| � δs − ln s + C10, ∀ s > 0.

We use this inequality to estimate the first two summands in (5.12) from below. Adding the resulting
estimate to (5.9), and using δλfactor � 1/2, the discrete version of Gronwall’s lemma, (A9), (3.3),
and (A5), we conclude that (5.7) is satisfied.

Thanks to Hölder’s inequality, we have∥∥∥∥λ′(χm−1)
χm − χm−1

hm

∥∥∥∥ 3
2

� ‖λ′(χm−1)‖6

∥∥∥∥χm − χm−1

hm

∥∥∥∥
2
, ∀ 1 � m � K . (5.13)

Because of (5.7) and Sobolev’s embedding theorem, we have a uniform upper bound for ‖χm‖6. In
the light of (5.4), (5.7), and (5.13), we observe that (5.8) holds. �

LEMMA 5.4 There is a positive constant C11 such that

max
0�m�K

‖α̃(θ)‖L1(Ω)+
K∑

m=1

hm‖wm‖2
V � C11. (5.14)

Proof. For 1 � m � K , we insert v = hmwm in (5.3), use (3.4b), take into account that α is the
derivative of the convex function α̃, and apply (5.5), Hölder’s inequality, the continuous embedding
of V in L6(Ω), and Young’s inequality, to conclude that

c0

∫
Ω

α̃(θm) dx − c0

∫
Ω

α̃(θm−1) dx + 1
2 hm‖wm‖2

V

� hmC12

(∥∥∥∥λ′(χm−1)
χm − χm−1

hm

∥∥∥∥2

6/5
+ ‖gm‖2

2+‖µm‖2
L2(Γ )

)
.

Summing up this equation from m = 1 to m = K and using (5.6), (5.8), and (4.1), we see that (5.14)
is satisfied. �

LEMMA 5.5 There is a positive constant C13 such that

K∑
m=1

hm

∥∥∥∥θm − θm−1

hm

∥∥∥∥2

V ∗
� C13. (5.15)



62 O. KLEIN

Proof. In view of the terms in (5.3) and the estimates (5.5)–(5.8), (5.14), and the continuity of the

embedding of L
6
5 (Ω) in H1(Ω)

∗
and in V ∗, we conclude that (5.15) is satisfied. �

LEMMA 5.6 There exists a positive constant C14 such that

K∑
m=1

hm‖ξm‖2
2+

K∑
m=1

hm‖χm‖2
H2(Ω)

� C14. (5.16)

Proof. We use a classical elliptic estimate (see, for example, [2: Remark 9.3d]), (5.7), and (3.4e),
and compare the terms in (3.4d), to derive that

‖χm‖H2(Ω)� C15 + C16‖∆χm‖2� C15 + C16
1

ε
‖ f ∗m − ξm‖2, (5.17)

with f ∗m ∈ L2(Ω) defined by

f ∗m := −λ′(χm−1)um − ζ(∇χm−1)
χm − χm−1

hm
+ σ ′′(χm−1)(χm − χm−1)+ σ ′(χm−1). (5.18)

Testing formally (3.4d) by ξm and using Green’s formula, (3.4e), (3.4b), Young’s inequality,
and (5.18), we observe that

‖ξm‖2� ‖ f ∗m‖2. (5.19)

For a precise derivation of this inequality, one has to consider for n ∈ N a nonlinear elliptic problem
arising by considering (3.4d) with χm and ξm replaced by χm,n and β 1

n
(χm,n), respectively, where

β 1
n

is the Yosida approximation of β. This equation is tested by χm,n and β 1
n
(χm,n). Now, a passage

to the limit and [3: Chapter II Proposition 1.1(iv)] lead to (5.19).
Because of (5.18), the discrete Schwarz’s inequality, Hölder’s inequality, (A6), and (A3), we

have

‖ f ∗m‖2
2 � 3

(
‖λ′(χm−1)‖2

4‖um‖2
4 + (ζsup + σ ′′suphm)2

∥∥∥∥χm − χm−1

hm

∥∥∥∥2

2
+ ‖σ ′(χm−1)‖2

2

)
. (5.20)

Thanks to Sobolev’s embedding theorem, the equivalences of the norms ‖ · ‖V and ‖ · ‖H1(Ω),
and (5.7), we have a uniform upper bound for ‖um‖4. Hence, in the light of (5.20), (5.8), (5.17),
and (5.19), we see that (5.16) is satisfied. �

LEMMA 5.7 We have

K∑
m=1

hm‖χm − χm−1‖6
H1(Ω)

� C17hmax(H). (5.21)

Proof. Applying that a6 = a4a2 holds for all a ∈ R and recalling (5.7), we conclude that (5.21) is
satisfied. �

LEMMA 5.8 If (A7) and (A8) hold, there exists a positive constant C18 such that

K∑
m=1

hm‖∇(ln(θm))‖2
2,N+ max

0�m�K
‖θm‖2� C18. (5.22)
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Proof. We multiply (3.4c) by hm , sum up the resulting equation for m = 1 to m = i and apply (3.3),
to derive that

c0θi −
i∑

m=1

hm∆wm = c0θ
0 +

i∑
m=1

hm

(
gm − λ′(χm−1)

χm − χm−1

hm

)
, a.e. in Ω . (5.23)

Because of (A7), (3.4b), the continuity of wi on Ω , ui > 0 a.e. in Ω , we see that wi =
−αlowui = −αlow/θi a.e. in Ω , and that ui � 0 in Γ . Moreover, µi � 0 a.e. in Γ because of (3.1)
and (A8). Hence, by applying Green’s formula, (3.4b), and (3.4e), we get, at least formally,

−
∫
Ω

θi∆wi dx = αlow

∫
Ω

θi∆ui dx � αlow‖ui∇θi‖2
2,N−C19 = αlow‖∇ ln(θi )‖2

2,N−C19. (5.24)

For a precise derivation of this inequality, one has to perform this computation with θi replaced by
the approximation θi,l ∈ H1(Ω) defined by

θi,l :=
(

ui + 1

l

)−1

, a.e. in Ω , ∀ l ∈ N,

and consider afterwards the limit for l →∞, using the Lebesgue-dominated convergence theorem.
Indeed, we have strong convergences for θi,l in L2(Ω), so that θi,l∇ui −−−→

l→∞ θi∇ui strongly in

(L1(Ω))3 and weakly in (L2(Ω))3.
Because of (5.24), we can test (5.23) by hi · ∆wi , take the sum from i = 1 to i = k over

the resulting equation, and utilize the formulae [27: (AP.2), (AP.3)] for the generated double sums.
Applying afterwards Schwarz’s inequality, Young’s inequality, (A5), (5.6), (A8), (5.7), and (A9),
we observe that

c0αlow

k∑
i=1

hi‖∇ ln(θi )‖2
2,N+ 1

2

∥∥∥∥∥ k∑
i=1

hi∆wi

∥∥∥∥∥
2

2

+ 1
2

k∑
i=1

h2
i ‖∆wi‖2

2

� C20 +
∫
Ω

((
c0θ

0 +
k∑

i=1

hi

(
gi − λ′(χi−1)

χi − χi−1

hi

))
k∑

i=1

hi∆wi

)
dx

−
k−1∑
i=1

hi+1

∫
Ω

((
gi+1 − λ′(χi )

χi+1 − χi

hi+1

) i∑
m=1

hm∆wm

)
dx .

� C21 + C22

k−1∑
i=1

hi

∥∥∥∥∥ i∑
m=1

hm∆wm

∥∥∥∥∥
2

2

+ 1
4

∥∥∥∥∥ k∑
i=1

hi∆wi

∥∥∥∥∥
2

2

. (5.25)

Thanks to the discrete version of Gronwall’s lemma, there is a uniform upper bound for the left-hand
side of (5.25). Comparing now the terms in (5.23) and using (A5), (5.22), Schwarz’s inequality,
(5.6), and (3.3), we see that (5.22) holds. �

6. The proof of Theorem 3.2

Proof. Assume that (A1)–(A6) and (A9) are satisfied.
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For any B > ‖χ0‖∞, we can consider φ∗ as in (5.1), β∗, and the corresponding modified version
of the time-discrete scheme as in the last section. Lemma 4.2 yields that there exists a solution
(θ B

m , wB
m , u B

m, χ B
m , ξ B

m )K
m=0 to this modified version of the scheme, and the estimates derived in the

last section hold for this solution. Now, because of (5.16) and Sobolev’s embedding theorem, there
is some positive constant C ′, independent of B, such that

( min
1�m�K

hm) max
1�m�K

‖χ B
m ‖2

C(Ω)
�

K∑
m=1

hm‖χ B
m ‖2

C(Ω)
� C ′. (6.1)

Hence, we see that for B sufficiently large the solution to the modified version of the scheme is also
a solution to the unmodified version of the scheme. This proves part (1) of Theorem 3.2.

To prove part (2) of Theorem 3.2, we assume that (A7) holds and that we have some m ∈
{1, . . . , K }, θm−1 ∈ L2(Ω), χm−1 ∈ H2(Ω), and two solutions (θ

(1)
m , w

(1)
m , u(1)

m , χ
(1)
m , ξ

(1)
m ),

(θ
(2)
m , w

(2)
m , u(2)

m , χ
(2)
m , ξ

(2)
m ) to the system (3.4) in (D).

Let θ∗m := θ
(1)
m − θ

(2)
m , and w∗

m, u∗m, χ∗m, ξ∗m be defined analogously. First, we consider (5.3) with
v = hmw∗

m for both solutions, and compute the difference of the resulting equations. Then, (3.4d)
is considered for both solutions, and the difference of the resulting equations is tested by αlowχ∗m .
Adding the resulting equations, and applying (3.4b), the monotonicity of α and β, (3.4e), (A6), (A3),
and (A9), we get

c0‖θ∗mw∗
m‖1 + hm‖w∗

m‖2
V +

2

3

1

hm
ζinfαlow‖χ∗m‖2

2 + αlowε‖∇χ∗m‖2
2,N + αlow‖χ∗mξ∗m‖1

� −
∫
Ω

λ′(χm−1)(w
∗
m + αlowu∗m)χ∗m dx . (6.2)

Because of (A7) and (3.4b), the right-hand side of (6.2) is equal to zero, and therefore χ∗m = 0 and

w∗
m = 0. Using (3.4b) and that α is injective, we see that θ

(1)
m = θ

(2)
m and u(1)

m = u(2)
m . Now, (3.4d)

yields that ξ
(1)
m = ξ

(2)
m . This completes the proof of Theorem 3.2. �

7. Convergence of the time-discrete scheme

In this section, Theorem 3.4 is proved. We assume that (A2)–(A6) hold, and that we have a
sequence {H (n)}n∈N of vectors H (n) = (h(n)

1 , h(n)
2 , . . . , h(n)

K (n) ) of time-step sizes with (A9) and

hmax(H (n)) −−−→
n→∞ 0.

Hence, Theorem 3.2 yields that for every H (n) there exists a solution to the time-discrete

scheme (D). Let (θ̂ (n), w(n), u(n), χ̂ (n), ξ
(n)

) be the corresponding approximations derived from the

solution to (D) as in Section 3. Moreover, we define the piecewise constant functions θ
(n)

, χ(n),
µ(n), g(n), analogously to w(n), while χ(n) ∈ L∞(0, T ; H2(Ω)) is defined by

χ(n)(t) = χ̂ (n)(t (n)
m−1) = χ

(n)
m−1, ∀ t ∈ [t (n)

m−1, t (n)
m ), 1 � m � K (n), (7.1)

with t (n)
0 := 0 and t (n)

m := ∑m
i=1 hi , for 1 � m � K (n).
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Then, by the definition of the approximations, (3.3), (3.4), Lemma 2.2, (A5), and (5.3), we have

θ̂ (n) ∈ H1(0, T ; L2(Ω)), w(n) ∈ L∞(0, T ; H2(Ω)), u(n) ∈ L∞(0, T ; H1(Ω)), (7.2a)

χ̂ (n) ∈ H1(0, T ; H2(Ω)), χ(n), χ(n) ∈ L∞(0, T ; H2(Ω)), (7.2b)

ξ
(n) ∈ L∞(0, T ; L2(Ω)), (7.2c)

Fw(n)(t) ∈ ∂∗ j (θ
(n)

(t)), −Fu(n)(t) ∈ ∂∗ J̃ (θ
(n)

(t)) in V ∗, for a.e. t ∈ (0, T ), (7.2d)

χ(n), χ̂ (n), χ(n) ∈ D(β), ξ
(n) ∈ β(χ(n)), a.e. in ΩT , (7.2e)

c0〈θ̂ (n)
t (t), v〉V ∗×V +

∫
Ω

λ′(χ(n)(t))χ̂ (n)
t (t)v dx + (w(n)(t), v)V

=
∫
Ω

g(n)(t)v dx +
∫
Γ

µ(n)(t)v dσ, ∀ v ∈ H1(Ω), for a.e. t ∈ (0, T ), (7.2f)

ζ(∇χ(n))χ̂
(n)
t − ε∆χ(n) + ξ

(n) − σ ′′(χ(n))(χ(n) − χ(n))− σ ′(χ(n))

= −λ′(χ(n))u(n), a.e. in ΩT , (7.2g)

∂χ(n)

∂n
= 0, a.e. in ΓT , (7.2h)

θ̂ (n)(·, 0) = θ0, χ̂ (n)(·, 0) = χ0, a.e. in Ω . (7.2i)

From (A4) and (3.1), we obtain by a density argument

‖g − g(n)‖L2(0,T ;L2(Ω))+‖µ− µ(n)‖
L2(0,T ;H 1

2 (Γ ))
−−−→
n→∞ 0. (7.3)

In the sequel, Ci , for i ∈ N, will always denote positive generic constants, independent of n.
We find, from (5.7), (5.14), (5.15), (5.16), (3.3), and (A5):

‖θ̂ (n)‖H1(0,T ;V ∗)∩L∞(0,T ;L1(Ω))+‖θ(n)‖L∞(0,T ;V ∗∩L1(Ω))

+ ‖w(n)‖L2(0,T ;V )+‖u(n)‖L2(0,T ;V )� C1, (7.4)

‖χ̂ (n)‖H1(0,T ;L2(Ω))∩C([0,T ];H1(Ω))∩L2(0,T ;H2(Ω))+‖χ(n)‖L∞(0,T ;H1(Ω))∩L2(0,T ;H2(Ω))

+ ‖χ(n)‖L∞(0,T ;H1(Ω))∩L2(0,T ;H2(Ω))+‖ξ (n)‖L2(0,T ;L2(Ω))� C2. (7.5)

The difference between the different approximations can be estimated, by using (5.7), (5.15),
and (5.21):

‖χ̂ (n) − χ(n)‖L2(0,T ;L2(Ω))+‖χ(n) − χ(n)‖L2(0,T ;L2(Ω))+‖χ̂ (n) − χ(n)‖6
L6(0,T ;H1(Ω))

+ ‖θ̂ (n) − θ
(n)‖L2(0,T ;V ∗)� C3hmax(H (n)) −−−→

n→∞ 0. (7.6)

Thanks to the estimates (7.4), (7.5), compactness arguments and (7.6), we get a subsequence
{nk}k∈N, a function θ : (0, T ) → V ∗, and functions w, u, χ, ξ : ΩT → R, such that we have
the convergences (3.6)–(3.11) and

θ
(nk ) −−−→

k→∞ θ, weakly-star in L∞(0, T ; V ∗), (7.7)

χ(nk ) −−−→
k→∞ χ, weakly in L2(0, T ; H2(Ω)). (7.8)
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Now, we will show that (θ, w, u, χ, ξ) is a solution to the PF system. Thanks to the
convergences (3.6)–(3.11), we see that (2.14a) and (2.14b) are satisfied.

Because of (7.5), the Aubin Lemma as in [34: Corollary 8] implies that the sequence {χ̂ (nk )}k∈N

is relatively compact in L6(0, T ; H1(Ω)). Therefore, by (3.9),

χ̂ (nk ) −−−→
k→∞ χ, strongly in L6(0, T ; H1(Ω)). (7.9)

Recalling (7.6) and the continuous embedding of H1(Ω) in L6(Ω), we deduce that

χ(nk ) −−−→
k→∞ χ, strongly in L6(0, T ; H1(Ω)), (7.10)

strongly in L6(ΩT ). (7.11)

Thus, we can extract a subsequence {nkl }l∈N from {nk}k∈N such that we have a.e. convergence
for χ(nk ) and ∇χ(nk ) to χ and ∇χ , respectively. Now, we can assume without losing generality
that already {nk}k∈N has been chosen in such a way that these convergences are satisfied. Hence, by
applying the generalized Lebesgue-dominated convergence theorem (see, for example, [1: A-1.26]),
(5.4), (7.11), and (A6), we conclude that

λ′(χ(nk )) −−−→
k→∞ λ′(χ), strongly in L6(ΩT ), (7.12)

σ ′(χ(nk )) −−−→
k→∞ σ ′(χ), strongly in L6(ΩT ), (7.13)

ζ(∇χ(nk )) −−−→
k→∞ ζ(∇χ), strongly in L p(ΩT ), ∀ 1 � p < ∞. (7.14)

Combining this with (3.9) and Hölder’s inequality, we observe

λ′(χ(nk ))χ̂
(nk )
t −−−→

k→∞ λ′(χ)χt , weakly in L
3
2 (0, T ; L

3
2 (Ω)). (7.15)

From (3.8) it follows by Sobolev’s embedding theorem that u(nk ) converges to u weakly in
L2(0, T ; L6(Ω)). Thus, we get from (7.12) by using Hölder’s inequality

λ′(χ(nk ))u(nk ) −−−→
k→∞ λ′(χ)u, weakly in L

3
2 (0, T ; L3(Ω)). (7.16)

Thanks to (A3), (7.6), and (7.13), we have

−σ ′′(χ(nk ))(χ(nk ) − χ(nk ))− σ ′(χ(nk )) −−−→
k→∞ −σ ′(χ), strongly in L2(0, T ; L2(Ω)). (7.17)

Applying (7.2f), (3.6), (7.15), (3.7), (7.3), and (2.7), we conclude that (2.14e) is satisfied.
Recalling (7.2g), (7.14), (3.9), Hölder’s inequality, (7.8), (3.11), (7.17), and (7.16), we conclude
that (2.14f) is satisfied. Moreover, (7.2h) and (7.8) produce (2.14g), and (2.14h) is satisfied because
of (7.2i), (3.6), and (3.9).

Using (7.9), (7.6), and (3.11), we observe that∫ T

0

∫
Ω

χ(nk )ξ
(nk ) dx dt −−−→

k→∞

∫ T

0

∫
Ω

χξ dx dt.
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Now, we combine this with (7.2e), (7.8), (3.11), and [3: Chapter II, Lemma 1.3], to show that
(2.14d) is satisfied.

Hence, it remains only to show that (2.14c) is satisfied to prove that (θ, w, u, χ, ξ) is a solution
to the PF system. This is done by following and extending the calculations in [23: (4.10)–(4.16)].
Inserting v = F−1θ̂ (n)(t) in (7.2f), we get, by (2.9) and (2.10):

1

2
c0

d

dt
‖θ̂ (n)(t)‖2

V ∗+
∫
Ω

λ′(χ(n)(t))χ̂ (n)
t (t)F−1θ̂ (n)(t) dx + (Fw(n)(t), θ̂ (n)(t))∗

=
∫
Ω

g(n)(t)F−1θ̂ (n)(t) dx +
∫
Γ

µ(n)(t)F−1θ̂ (n)(t) dσ, a.e. in (0, T ). (7.18)

Since V is compactly embedded in L3(Ω), the Aubin Lemma yields that H1(0, T ; V ) is
compactly embedded in C([0, T ]; L3(Ω)). Hence, the continuity of the map F−1 : V ∗ → V
and (3.6) yield that

F−1θ̂ (nk ) −−−→
k→∞ F−1θ, strongly in C([0, T ]; L3(Ω)). (7.19)

Hence, integrating (7.18) from 0 to s ∈ [0, T ] and using (7.15), (7.19), Hölder’s inequality, and (7.3)
produce

1
2 c0‖θ̂ (nk )(s)‖2

V∗+
∫ s

0
(Fw(nk )(t), θ̂ (nk )(t))∗ dt −−−→

k→∞
1
2 c0‖θ(0)‖2

V ∗

−
∫ s

0

∫
Ω

λ′(χ(t))χt (t)F−1θ(t) dx dt +
∫ s

0

( ∫
Ω

g(t)F−1θ(t) dx +
∫
Γ

µ(t)F−1θ(t) dσ

)
dt.

(7.20)

Inserting v = F−1(θ(t)) in (2.14e), integrating the resulting equation from 0 to s, and
applying (2.9), (2.10), (7.20), (7.6), and (7.4), we have proved that

1
2 c0‖θ̂ (nk )(s)‖2

V ∗ +
∫ s

0

(
Fw(nk )(t), θ

(nk )
(t)

)
∗

dt −−−→
k→∞

1

2
c0‖θ(s)‖2

V ∗+
∫ s

0
(Fw(t), θ(t))∗ dt.

(7.21)

Hence, (3.6) yields that

lim sup
k→∞

∫ s

0
(Fw(nk )(t), θ

(nk )
(t))∗ dt �

∫ s

0
(Fw(t), θ(t))∗ dt, ∀ 0 � s � T . (7.22)

Combining this with (7.2d), (7.7), (3.7), (7.22) for s = T , and [3: Chapter II, Lemma 1.3], we
deduce that

Fw(t) ∈ ∂∗ j (θ(t)) in V ∗, for a.e. t ∈ (0, T ), (7.23)

0 � lim inf
k→∞

∫ s

0
(Fw(nk )(t)− Fw(t), θ

(nk )
(t)− θ(t))∗ dt

= lim inf
k→∞

∫ s

0
(Fw(nk )(t), θ

(nk )
(t))∗ dt −

∫ s

0
(Fw(t), θ(t))∗ dt, ∀ 0 � s � T .
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Hence, (7.21) and (7.22) lead to

‖θ̂ (nk )(s)‖2
V ∗−−−→

k→∞ ‖θ(s)‖2
V ∗ , ∀ s ∈ [0, T ].

Therefore, we get from (3.6)

θ̂ (nk )(s) −−−→
k→∞ θ(s), strongly in V ∗, ∀ s ∈ [0, T ].

Since the sequence {θ̂ (nk )}k∈N of continuous functions from [0, T ] to V ∗ is uniformly
equicontinuous by (7.4), we now recall Ascoli’s Theorem and the equivalence of the space V ∗
and H1(Ω)

∗
, to show that (3.5) is satisfied. Applying (3.8), we observe that

lim
k→∞

∫ T

0
(−Fu(nk )(t), θ

(nk )
(t))∗ dt =

∫ T

0
(−Fu(t), θ(t))∗ dt.

Combining this with (7.2d), (3.5), (3.8), [3: Chapter II, Lemma 1.3], and the already proved
compatibility (7.23) between w and θ , we see that (2.14c) is satisfied. Hence, we have shown that
(θ, w, u, χ, ξ) is a solution to the PF system, and the first assertion in Theorem 3.4 is proved.

To prove the second assertion, we assume that (A7) and (A8) are satisfied. Therefore, (5.22)
yields that

‖θ̂ (n)‖L∞(0,T ;L2(Ω))� C4.

Combining this with (3.6), we observe by compactness that (3.12) is satisfied. This completes the
proof of Theorem 3.4.
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10. COLLI, P., LAURENÇOT, P., & SPREKELS, J. Global solution to the Penrose–Fife phase field model with
special heat flux laws. Variations of Domain and Free-boundary Problems in Solid Mechanics (Paris,
1997). Kluwer, Dordrecht (1999) pp. 181–188.

11. COLLI, P. & SPREKELS, J. J. Stefan problems and the Penrose–Fife phase field model. Adv. Math. Sci.
Appl. 7, (1997) 911–934.

12. COLLI, P. & SPREKELS, J. J. Weak solution to some Penrose–Fife phase-field systems with temperature-
dependent memory. J. Diff. Equ. 142, (1998) 54–77.

13. CRANDALL, M., ISHII, H., & LIONS, P. Users’s guide to viscosity solution of second order partial
differential equations. Bull. Am. Math. Soc. 27, (1992) 1–67.

14. DAMLAMIAN, A. & KENMOCHI, N. Evolution equations associated with non-isothermal phase
transitions. Functional Analysis and Global Analysis (Quezon City, 1996). Springer, Singapore (1997)
pp. 62–77.

15. DAMLAMIAN, A. & KENMOCHI, N. Evolution equations generated by subdifferentials in the dual space
of (H1(Ω)). Discrete Contin. Dynam. Syst. 5, (1999) 269–278.

16. ELLIOTT, C. M. & GARDINER, A. Double obstacle phase field computations of dendritic growth,
Research Report 96–19, University of Sussex, CMAIA, (1996).

17. ELLIOTT, C. M., GARDINER, A., & KUHN, T. Generalized double-obstacle phase field approximation
of the anisotropic mean curvature flow, Research Report 96–17, University of Sussex, CMAIA, (1996).
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