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A total-variation surface energy model for thin films of martensitic
crystals
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We rigorously derive a thin-film limit for martensitic crystals that utilizes the total variation of the
deformation gradient to model the energy on surfaces separating regions of different variants. We
find that the deformation for an infinitesimally thin film minimizes a two-dimensional energy.
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1. Introduction

Martensitic thin films have applications in actuators, sensors, and micromachines because of their
large work output/(cycle · volume) [22]. Single-crystal martensitic thin films have recently been
grown in the laboratory [12] and theoretically offer even larger work output/(cycle · volume) [5].

Bhattacharya and James [5] have rigorously derived a thin-film variational principle from the
three-dimensional elastic energy for martensite with the surface energy modeled by κ

∫
Ωh

|∇2u|2 dx ,
where κ is a small positive strain-gradient coefficient, Ωh is the reference configuration of a crystal
with thickness h, and

∫
Ωh

|∇2u|2 dx is the square of the L2-norm of the matrix of all the second
derivatives of the deformation u. Unless we set κ = 0, deformations with finite energy for this thin-
film model cannot have sharp interfaces between two compatible variants of martensite or between
austenite and martensite.

Our total-variation model allows the use of continuous, piecewise linear approximations of the
deformation. Conforming numerical approximations of the Bhattacharya–James thin-film energy
require higher-order finite-element approximations [8]. We also note that although mixed finite-
element methods can be used to approximate a plate problem (and presumably the Bhattacharya–
James thin-film model) with piecewise linear deformations, the mixed variational formulation
transforms the primal energy-minimization problem to a more computationally challenging saddle-
point problem [11].

For this reason, we give a derivation of an alternative thin-film variational principle in which the
interfacial energy is modeled by a term of the form κ

∫
Ωh

|D(∇u)|, where κ again denotes a small

positive strain-gradient coefficient and
∫
Ωh

|D(∇u)| denotes the total variation of the deformation
gradient ∇u in Ωh . Deformations of finite energy can have sharp interfaces with this model, and
it can be seen that the interfacial energy is concentrated along the surfaces separating regions
of constant deformation gradient. Hence, when continuous, piecewise linear finite elements are
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used for numerical simulations, the interfacial energy is concentrated along the edges of the finite
element triangulation. Not only does this property make this model computationally attractive, but
we believe it also better models deformations for martensitic crystals with small surface energy.
We have successfully used our total variation model to compute a stress-induced martensitic phase
transformation of a single-crystal thin film by indentation and its reverse transformation to austenite
by heating [10].

A similar approach to the interfacial energy has been studied in [17] and a rigorous analysis of
the relation between the two models for the interfacial energy has been given in [19–21] for some
scalar models. See also [4: p. 44] and [28] for arguments relating the surface energy to the fineness of
microstructures in martensitic crystals. We have proven the ‘Γ -convergence’ of the rescaled three-
dimensional energy to a two-dimensional energy. Related work can be found in [1, 3, 13, 16, 26, 27].

In Section 2, we describe the three-dimensional model with the total-variation interfacial energy
for thin films with finite thickness. In Section 3, we present some known properties of functions of
bounded variation and prove two lemmas needed for the derivation of the thin film-theory. Using
these results for functions of bounded variation, we show in Section 4 by using the direct method
of the calculus of variations that for any positive thickness of the film there exists a minimizer
of the bulk energy (2.5). Next, in Section 5, we analyze the behavior of the minimizers as the
thickness of the film tends to zero. We show that there exists a convergent subsequence of these
minimizers, a limiting two-dimensional energy, and a two-dimensional minimum principle allowing
one to characterize and numerically compute the limiting deformations (Theorem 5.1).

Finally, in Section 6, we briefly describe the finite-element approximation of the model derived
in Section 2. We give the exact expression for the thin-film energy for continuous, piecewise
linear deformations. More details about the computer implementation and the results of numerical
simulations will appear in a subsequent paper.

2. The thin film of finite thickness

We will assume that S ⊂ R
2 is a bounded domain (connected, open set) with a Lipschitz continuous

boundary and denote the reference undistorted configuration of the thin film of the martensitic
material by Ωh , 0 < h � 1, where

Ωh = S × (−h/2, h/2).

In what follows, we will consider functions whose domain is Ωh and whose range is R
3. The gradient

of a typical such function ũ belongs to R
3×3 and will be denoted by ∇ũ. We use the notation

ũi, j = ∂ ũi/∂x j , and we denote the columns of ∇ũ by ũ,i , i = 1, 2, 3.
We denote by (V1|V2) ∈ R

3×2 the matrix whose columns are V1, V2 ∈ R
3. The ‘planar’ gradient

of ũ can then be denoted by ∇P ũ = (ũ,1|ũ,2) ∈ R
3×2. We shall use this notation more generally, so

we will denote by (V12|V3) ∈ R
3×3 the matrix whose first two columns are given by V12 ∈ R

3×2

and whose third column is given by V3 ∈ R
3, and we will denote by (V12|V3|V4) ∈ R

3×4 the matrix
whose first two columns are given by V12 ∈ R

3×2 and whose third and fourth columns are given by
V3, V4 ∈ R

3.
Given an open set Ω ⊂ R

n and a function v ∈ L1(Ω; R), we define the total variation of v [18]
by ∫

Ω
|Dv| = sup

{ ∫
Ω

v(x) div ψ(x) dx : ψ ∈ C∞
0 (Ω; R

n), |ψ(x)| � 1 for all x ∈ Ω
}

(2.1)
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and say v ∈ BV (Ω) if
∫
Ω |Dv| < +∞. We recall that

C∞
0 (Ω; R

n) = {ψ ∈ C∞(Ω; R
n) : suppψ is a compact subset of Ω}.

In what follows, we sometimes suppress the target space of ψ from the notation and simply
write ψ ∈ C∞

0 (Ω) with the corresponding space tacitly assumed. For a matrix-valued function
v ∈ L1(Ω; R

m×p), we define

∫
Ω
|Dv| = sup




∑
i=1,...,m
j=1,...,p

∫
Ω

vi j (x) div ψi j (x) dx : ψ ∈ C∞
0 (Ω; R

m×p×n), |ψ(x)| � 1 for all x ∈ Ω




and say v ∈ BV (Ω) if
∫
Ω |Dv| < +∞. Here and in what follows, the vector norm | · | is the usual

Euclidean norm, that is, the square root of the sum of the squares of all the components. Finally, we
define the ‘planar’ variation

∫
Ω
|DPv| = sup




∑
i=1,...,m
j=1,...,p

k=1,2

∫
Ω

vi j (x)ψi jk,k(x) dx : ψ ∈ C∞
0 (Ω; R

m×p×2), |ψ(x)| � 1 for all x ∈ Ω




and remark that if v ∈ BV (Ω1) is independent of x3, then, abusing the notation slightly, we have∫
Ω1

|Dv| =
∫
Ω1

|DPv| =
∫

S
|Dv|.

Next, we will assume that the energy density φ : R
3×3 × (θ0, θ1) → [0, +∞) is a continuous

function satisfying the growth condition

c1|F |p − c2 � φ(F, θ) � c3(|F |p + 1) for all F ∈ R
3×3 and θ ∈ (θ0, θ1), (2.2)

where c1, c2, and c3 are fixed positive constants, θ0 < θ1 represent a range of temperature, and
3 < p < +∞. The function φ represents the energy density for martensitic crystals, but, other
than the properties mentioned above, we do not impose any additional assumptions on it. The two
arguments of φ are the deformation gradient F and the temperature θ .

We assume that the film adheres to a rigid material on the surface

Γh = γ × (−h/2, h/2),

where we assume that γ �= ∅ is a finite union of connected C1,1 open subsets of ∂S. Let y0, b0 ∈
W 1,p(S; R

3) be such that ∇ y0, ∇b0 ∈ BV (S) and define

ũ0(x1, x2, x3) = y0(x1, x2) + b0(x1, x2)x3 for (x1, x2, x3) ∈ Ωh . (2.3)

We then define the space Ah of admissible deformations of the domain Ωh by

Ah = {ũ ∈ W 1,p(Ωh; R
3) : ∇ũ ∈ BV (Ωh), ũ = ũ0 on Γh}. (2.4)
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If the crystal adheres to a part of the crystal that is constrained by a substrate to be in the austenitic
phase, then we can model the boundary constraint simply [5] by

ũ0(x1, x2, x3) = (x1, x2, x3) for (x1, x2, x3) ∈ Ωh

so that

y0(x1, x2) = (x1, x2, 0)

b0(x1, x2) = (0, 0, 1)

}
for (x1, x2, x3) ∈ Ωh .

We are interested in computing energy-minimizing deformations for asymptotically thin films
with a fixed (measurable) distribution of the temperature θ(x) ∈ (θ0, θ1), so we will present results
for the behavior of the minimizers ũh over the spaces Ah of the energy

Eh(ũ, θ) = κ

∫
Ωh

|D(∇ũ)| +
∫
Ωh

φ(∇ũ(x), θ(x)) dx (2.5)

for fixed κ > 0 as h → 0. Since the temperature distribution will be held fixed in the derivation, we
suppress it from the notation and use Eh(ũ) to stand for Eh(ũ, θ).

REMARK 2.1 Note that due to the growth condition (2.2), we have

Ah = {ũ : Ωh → R
3 : Eh(ũ) < +∞, ũ = ũ0 on Γh}.

Also, since p > 3, it follows from the Sobolev embedding theorem [2] that Ah ⊂ C(Ω̄h). This
ensures that there is no tear in the deformed configurations ũ(Ωh) for ũ ∈ Ah .

We will prove in Theorem 5.1 in Section 5 that energy-minimizing deformations ũh for the
energy (2.5) for thin films of finite thickness can be approximated as h → 0 by deformations

y(x1, x2) + b(x1, x2)x3 for (x1, x2, x3) ∈ Ωh = S × (−h/2, h/2)

such that (y, b) minimizes the thin-film energy

E (0)(y, b) = κ

[ ∫
S
|D(∇ y|b|b)| + √

2
∫

γ

|b − b0|
]

+
∫

S
φ(∇ y|b) (2.6)

in the space A0 of admissible deformations of the domain S given by

A0 = {(y, b) ∈ W 1,p(S; R
3) × L p(S; R

3) : ∇ y, b ∈ BV (S), y = y0 on γ }. (2.7)

We will show in Section 6 that the thin-film energy (2.6) has a very simple form when restricted to
continuous, piecewise linear y and piecewise constant b.

3. Properties of functions of bounded variation

Before we proceed with the derivation of the thin-film theory, we recall and prove extensions of
some results about functions of bounded variation that will be useful in what follows. Variants of
these results can be found, for example, in [15, 18].
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THEOREM 3.1 (Semi-continuity) If {v j } is a sequence of functions which converge in L1
loc(Ω) to

a function v, then ∫
Ω

|Dv| � lim inf
j→∞

∫
Ω

|Dv j |.

Now let S be a domain in R
2 and Ω1 = S × (−1/2, 1/2). If {v j } is a sequence of functions which

converge in L1
loc(Ω1) to a function v, then∫

Ω1

|DPv| � lim inf
j→∞

∫
Ω1

|DPv j |.

LEMMA 3.1 The space BV (Ω) is a Banach space with respect to the norm

‖v‖BV (Ω) = ‖v‖L1(Ω) +
∫
Ω

|Dv|.

THEOREM 3.2 (Compactness) Let Ω be a bounded open set in R
n with a Lipschitz continuous

boundary ∂Ω . Then bounded subsets of BV (Ω) are relatively compact in L1(Ω).

By using the construction and a slight extension of the proof of Theorem 1.17 in [18], we have
the following theorem.

THEOREM 3.3 (Approximation of functions in BV (Ω)) Let 1 � q < +∞ and let Ω be a bounded
open set in R

n with a Lipschitz continuous boundary, ∂Ω . For every v ∈ Lq(Ω) ∩ BV (Ω), there
exists a sequence {v j } ⊂ C∞(Ω) such that v j = v on ∂Ω and such that

lim
j→∞ ‖v j − v‖Lq (Ω) = 0,

lim
j→∞

∫
Ω

|Dv j | =
∫
Ω

|Dv|.

Furthermore, if ∇v ∈ BV (Ω), we may construct the v j above so that ∇v j ∈ BV (Ω).
If Ω1 = S × (−1/2, 1/2) where S is a domain in R

2 with a Lipschitz continuous boundary, ∂S,
then for every v ∈ Lq(Ω1) ∩ BV (Ω1), there exists a sequence {v j } ⊂ C∞(Ω1) such that v j = v on
∂S × (−1/2, 1/2) and such that

lim
j→∞ ‖v j − v‖Lq (Ω1) = 0,

lim
j→∞

∫
Ω1

|DPv j | =
∫
Ω1

|DPv|.

We will also need the following two lemmas which refine a special case of the results of
Theorems 3.1 and 3.3.

LEMMA 3.2 (Semi-continuity) Let S be a bounded domain in R
2 with a Lipschitz continuous

boundary, ∂S, and let γ �= ∅ be a finite union of connected C1,1 open subsets of ∂S. If w j , b j and
w, b are functions in BV (Ω1) satisfying b j = b0 on Γ1 = γ × (−1/2, 1/2) for fixed b0 ∈ BV (Ω1)

and
lim

j→∞ ‖w j − w‖L1(Ω1)
= 0 and lim

j→∞ ‖b j − b‖L1(Ω1)
= 0,

then ∫
Ω1

|DP (w|b)| +
∫
Γ1

|b − b0| � lim inf
j→∞

∫
Ω1

|DP (w j |b j )|.
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FIG. 1. An example of the sets used in the proof of Lemma 3.2. The shaded area is a horizontal section x3 = c of Ω (δ), the

dashed line denotes Γ (δ), and the union of the thick lines denotes Γ
(δ)
∂

.

Proof. Let n(x) denote the inward-pointing normal vector at x ∈ Γ1. For δ > 0, we define the
following sets (see Fig. 1 for an example):

Γ (δ) = {x ∈ Ω1 : dist(x,Γ1) = δ}, Γ (δ)
∂ = {x ∈ Γ1 : x + δn(x) ∈ Γ (δ)},

Ω (δ) = {x ∈ Ω1 : dist(x, ∂S × (−1/2, 1/2)) < δ}.
Given sufficiently small δ > 0, we have for 0 < ν < δ and ζ ∈ C∞(Ω1) ∩ BV (Ω1) the identity

ζ(x) = −
∫ ν

0
Dζ(x + σn(x)) · n(x) dσ + ζ(x + νn(x)) for x ∈ Γ (δ)

∂ ,

so we can derive the trace inequality∫
Γ (δ)

∂

|ζ | � (1 − Lδ)−1
( ∫

Ω (δ)

|DPζ | + δ−1
∫
Ω (δ)

|ζ |
)

for ζ ∈ C∞(Ω1) ∩ BV (Ω1), (3.1)

where L denotes the maximum of the Lipschitz constants for n(x) since the Jacobian of the inverse
of the map (x, σ ) ∈ Γ (δ)

∂ × (0, δ) �→ x +σn(x) ∈ Ω (δ) is bounded above by (1 − Lδ)−1. It follows
from Theorem 3.3 that (3.1) holds for ζ ∈ BV (Ω1). We can then set ζ = (w|b) − (w j |b j ) in (3.1)
to obtain since b j = b0 on Γ1 that

∫
Γ (δ)

∂

|b − b0| � (1 − Lδ)−1
( ∫

Ω (δ)

|DP [(w|b) − (w j |b j )]| + δ−1
∫
Ω (δ)

|(w|b) − (w j |b j )|
)

� (1 − Lδ)−1
(∫

Ω (δ)

|DP (w|b)| +
∫
Ω (δ)

|DP (w j |b j )| + δ−1
∫
Ω (δ)

|(w|b) − (w j |b j )|
)

. (3.2)

For arbitrary ε > 0, we now choose δ > 0 sufficiently small so that

Lδ � ε,

∫
Ω (δ)

|DP (w|b)| � ε,

∫
Γ1\Γ (δ)

∂

|b − b0| � ε. (3.3)

We then have by (3.2) since (w j |b j ) → (w|b) in L1(Ω1) that

lim inf
j→∞

∫
Ω (δ)

|DP (w j |b j )| � (1 − ε)

∫
Γ1

|b − b0| − ε. (3.4)
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Using the semi-continuity Theorem 3.1 applied to Ω1\Ω̄ (δ) and (3.3), we find that

lim inf
j→∞

∫
Ω1\Ω̄ (δ)

|DP (w j |b j )| �
∫
Ω1\Ω̄ (δ)

|DP (w|b)| �
∫
Ω1

|DP (w|b)| − ε. (3.5)

We thus obtain from summing (3.4) and (3.5) that

lim inf
j→∞

∫
Ω1

|DP (w j |b j )| �
∫
Ω1

|DP (w|b)| + (1 − ε)

∫
Γ1

|b − b0| − 2ε.

The proof of the lemma follows since ε > 0 was arbitrary. �

The following corollary of Lemma 3.2 will be used in the proof of the thin film-limit. We note
that ∫

Ω1

|DP (w, b, b)| =
∫
Ω1

|DP (w,
√

2b)|.

COROLLARY 3.1 Let S be a bounded domain in R
2 with a Lipschitz continuous boundary, ∂S, and

let γ �= ∅ be a finite union of connected C1,1 open subsets of ∂S. If w j , b j and w, b are functions
in BV (Ω1) satisfying

lim
j→∞ ‖w j − w‖L1(Ω1)

= 0 and lim
j→∞ ‖b j − b‖L1(Ω1)

= 0,

and b j = b0 on Γ1 = γ × (−1/2, 1/2) for fixed b0 ∈ BV (Ω1), then∫
Ω1

|DP (w|b|b)| + √
2

∫
Γ1

|b − b0| � lim inf
j→∞

∫
Ω1

|DP (w j |b j |b j )|.

LEMMA 3.3 (Approximation of functions in BV (S)) Let 1 � q < +∞ and let S be a bounded
domain in R

2 with a Lipschitz continuous boundary, ∂S. We further assume that γ �= ∅ is a finite
union of connected open subsets of ∂S. Let v0 ∈ W 1,q(S) be such that ∇v0 ∈ BV (S) and let
v̄ ∈ Lq(S) ∩ BV (S). Then there exists a family {v̄ε} ⊂ W 1,q(S) with ∇v̄ε ∈ BV (S) such that
v̄ε = v0 on γ for every ε > 0, and

lim
ε→0

‖v̄ε − v̄‖Lq (S) = 0,

lim
ε→0

∫
S
|Dv̄ε| =

∫
S
|Dv̄| +

∫
γ

|v̄ − v0|. (3.6)

Proof. We define a function vε which agrees with v0 in a thin strip around γ and with v in the
remainder of S. We then construct v̄ε by mollifying vε while preserving its boundary values.

Since ∂S is Lipschitz continuous, there exists a finite open cover {Ui }q
i=1 of γ̄ such that

∂S ∩ Ui = Qi {x ∈ R
2 : x2 = fi (x1), x1 ∈ (αi , βi )},

S ∩ Ui = Qi {x ∈ R
2 : fi (x1) − ρ < x2 < fi (x1), x1 ∈ (αi , βi )},

where fi is Lipschitz continuous, αi < βi , ρ > 0, and Qi is a rigid motion. Next, we let φi ∈
C∞

0 (Ui ) be a partition of unity satisfying φi � 0 and
∑

i φi = 1 near γ̄ .
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We further assume that

γ ∩ Ui = Qi {x ∈ R
2 : x2 = fi (x1), x1 ∈ (ᾱi , β̄i )},

where (ᾱi , β̄i ) = (αi , βi ) unless Qi (ᾱi , fi (ᾱi )) for ᾱi ∈ (αi , βi ) is an end point of γ or
Qi (β̄i , fi (β̄i )) for β̄i ∈ (αi , βi ) is an end point of γ . For 0 < ε < ρ and each i = 1, . . . , q,
we define a strip

Eε
i = Qi {x ∈ R

2 : fi (x1) − ε < x2 < fi (x1), x1 ∈ (ᾱi , β̄i )},
and we let χε

i denote its characteristic function. We now define

vε = v̄ −
∑

i

φiχ
ε
i (v̄ − v0) =

(
1 −

∑
i

φiχ
ε
i

)
v̄ +

∑
i

φiχ
ε
i v0. (3.7)

We then have that vε = v0 on γ , and vε → v̄ in Lq(S) as ε → 0.
Now∫

S
|D(φiχ

ε
i (v̄ − v0))| =

∫
Qi {(x1, fi (x1)−ε):x1∈(ᾱi ,β̄i )}

φi |v̄ − v0| +
∫

Eε
i

|D[φi (v̄ − v0)]|

+
∫

Qi {(ᾱi , fi (ᾱi )−s):0<s<ε}
φi |v̄ − v0| +

∫
Qi {(β̄i , fi (β̄i )−s):0<s<ε}

φi |v̄ − v0|.

By general properties of the trace [15], the first term converges to
∫

Qi {(x1, fi (x1)):x1∈(ᾱi ,β̄i )} φi |v̄ − v0|
as ε → 0, and the second term on the right-hand side converges to zero as ε → 0 since the Eε

i are
decreasing and ∩ε Eε

i = ∅. Since the Qi {(ᾱi , fi (ᾱi ) − s) : 0 < s < ε} are decreasing as ε → 0,
and ∩ε Qi {(ᾱi , fi (ᾱi ) − s) : 0 < s < ε} = ∅, we can conclude that the third term on the right-hand
side above converges to zero and a similar argument gives the convergence of the final term on the
right-hand side to zero. (We note that the third and fourth terms are zero if (ᾱi , β̄i ) = (αi , βi ).)
Hence, we can obtain by applying the triangle inequality to (3.7) and using the above inequalities
that

lim sup
ε→0

∫
S
|Dvε| �

∫
S
|Dv̄| +

∫
γ

|v̄ − v0|,

and so by the lower-semicontinuity Lemma 3.2 we have that

lim
ε→0

∫
S
|Dvε| =

∫
S
|Dv̄| +

∫
γ

|v̄ − v0|.

By Theorem 3.3, for each vε there exists a sequence vε j ∈ C∞(S) such that vε j = vε = v0 on γ ,
∇vε j ∈ BV (S), and such that

lim
j→∞ ‖vε j − vε‖Lq (S) = 0 and lim

j→∞

∫
S
|Dvε j | =

∫
S
|Dvε|.

We can hence choose j = j (ε) such that v̄ε = vε j (ε) satisfies the conclusion of Lemma 3.3. �

We can now derive the following theorem that will be used in the derivation of the thin-film
limit.
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THEOREM 3.4 Let 1 � q < +∞ and let S be a bounded domain in R
2 with a Lipschitz continuous

boundary, ∂S. We further assume that γ �= ∅ is a finite union of connected open subsets of ∂S. Let
b0 ∈ W 1,q(S) be such that ∇b0 ∈ BV (S), let b̄ ∈ Lq(S) ∩ BV (S), and let w ∈ BV (S). Then there
exists a family {b̄ε} ⊂ W 1,q(S) with ∇b̄ε ∈ BV (S) such that b̄ε = b0 on γ for every ε > 0, and

lim
ε→0

‖b̄ε − b̄‖Lq (S) = 0,

lim
ε→0

∫
S
|D(w|b̄ε|b̄ε)| =

∫
S
|D(w|b̄|b̄)| + √

2
∫

γ

|b̄ − b0|. (3.8)

Proof. We construct the family {b̄ε} ⊂ W 1,q(S) exactly as in Lemma 3.3, and the proof of (3.8) is
obtained by following the proof of (3.6). �

4. Existence of minimizers for the finite-thickness model

We have the following lemma establishing the existence of minimizers of the energy (2.5) for all
0 < h � 1.

LEMMA 4.1 We assume that S is a bounded domain with Lipschitz continuous boundary, ∂S, and
that γ �= ∅ is an open subset of ∂S. Then there exists ũh ∈ Ah such that

Eh(ũh) = inf
ũ∈Ah

Eh(ũ) (4.1)

for the energy Eh defined in (2.5) and the space Ah of admissible deformations defined in (2.4).

Proof. Since ũ0 ∈ Ah and Eh(ũ) � 0, we can consider an energy-minimizing sequence {ũk} ⊂ Ah ,
that is,

Eh(ũk) → inf
ũ∈Ah

Eh(ũ) as k → ∞.

Using the lower bound on φ in (2.2) and the Poincaré inequality, together with the boundary
conditions for ũk , we can obtain that there exists a positive constant C such that

‖∇ũk‖BV (Ωh) + ‖ũk‖W 1,p(Ωh) � C for all k.

Hence, it follows from the compactness Theorem 3.2, the semi-continuity Theorem 3.1, and the
trace theorem for functions in W 1,1(Ωh; R

3) that there exists ũh ∈ Ah and a subsequence of {ũk},
not relabeled, such that

ũk ⇀ ũh in W 1,p(Ωh; R
3) and ũk → ũh in W 1,1(Ωh; R

3) as k → ∞.

Since φ is non-negative and continuous, Fatou’s lemma and the semi-continuity Theorem 3.1 give
the result

Eh(ũh) � lim inf
k→∞ Eh(ũk) = inf

ũ∈Ah

Eh(ũ).

�
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5. Derivation of the thin-film variational principle

We next study the behavior of minimizers {ũh ∈ Ah : 0 < h � 1} as the thickness of the film, h,
converges to zero. We will need the following characterization of

∫
Ω |D(∇v)| for v ∈ W 1,1(Ω; R

3)

with ∇v ∈ BV (Ω) that groups the sums into those involving no derivatives with respect to x3, those
involving one derivative with respect to x3, and those involving two derivatives with respect to x3.
The proof follows directly from the definition (2.1) by using integration by parts to obtain

∫
Ω

vi, jψi j3,3 =
∫
Ω

vi,3ψi j3, j

for v ∈ W 1,1(Ω; R
3) and ψi j3 ∈ C∞

0 (Ω).

LEMMA 5.1 Let Ω ⊂ R
3 be an open set and let v ∈ W 1,1(Ω; R

3) be such that ∇v ∈ BV (Ω).
Then

∫
Ω

|D(∇v)| = sup




∑
i=1,2,3
j,k=1,2

∫
Ω

vi, jψi jk,k +
∑

i=1,2,3
j=1,2

∫
Ω

vi,3ψi j3, j +
∑

i=1,2,3
k=1,2

∫
Ω

vi,3ψi3k,k

+
∑

i=1,2,3

∫
Ω

vi,3ψi33,3 : ψ ∈ C∞
0 (Ω), |ψ(x)| � 1 for all x ∈ Ω

}
.

To be able to analyze the thin film limit on a fixed domain, we associate to each deformation
ũ ∈ Ah a deformation u : Ω1 → R

3 via

u(z1, z2, z3) = ũ(z1, z2, hz3) for z = (z1, z2, z3) ∈ Ω1.

We note that since ũ ∈ Ah , we have that

u ∈ A(h)
1 ≡ {v ∈ W 1,p(Ω1; R

3) : ∇v ∈ BV (Ω1), v = u0 on Γ1}

where

u0(z1, z2, z3) = ũ0(z1, z2, hz3) for z = (z1, z2, z3) ∈ Ω1.

Since the energy is expected to scale linearly in h as h → 0, we will consider for each u ∈ A(h)
1 the

scaled energy E (h)
1 defined by

E (h)
1 (u) = 1

h
Eh(ũ).
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In view of Lemma 5.1, we can write for u ∈ A(h)
1

E (h)
1 (u) = κ sup




∑
i=1,2,3
j,k=1,2

∫
Ω1

ui, jψi jk,k dz +
∑

i=1,2,3
j=1,2

∫
Ω1

h−1ui,3ψi j3, j dz +
∑

i=1,2,3
k=1,2

∫
Ω1

h−1ui,3ψi3k,k dz

+
∑

i=1,2,3

∫
Ω1

h−2ui,3ψi33,3 dz : ψ ∈ C∞
0 (Ω1), |ψ(z)| � 1 for all z ∈ Ω1




+
∫
Ω1

φ(u,1|u,2|h−1u,3) dz,

where the subindices denote differentiation with respect to z ∈ Ω1.
We can now state and prove our main theorem on the thin-film limit of the total-variation model.

THEOREM 5.1 Let S be a bounded domain in R
2 with a Lipschitz continuous boundary, ∂S, and

let γ �= ∅ be a finite union of connected C1,1 open subsets of ∂S. For every subsequence {uhn } with

hn → 0 as n → ∞ of the family of rescaled minimizers (4.1), {uh ∈ A(h)
1 : 0 < h � 1}, there exist a

further subsequence, not relabeled, and (ȳ, b̄) ∈ A0 such that if (ŷ(z), b̂(z)) = (ȳ(z1, z2), b̄(z1, z2))

for z = (z1, z2, z3) ∈ Ω1, then

uhn ⇀ ŷ in W 1,p(Ω1; R
3) and h−1

n uhn ,3 ⇀ b̂ in L p(Ω1; R
3)

uhn → ŷ in W 1,1(Ω1; R
3) and h−1

n uhn ,3 → b̂ in L1(Ω1; R
3)

}
as n → ∞.

Furthermore,

lim
n→∞ E (hn)

1 (uhn ) = E (0)(ȳ, b̄) (5.1)

where

E (0)(y, b) = κ

[ ∫
S
|D(∇ y|b|b)| + √

2
∫

γ

|b − b0|
]

+
∫

S
φ(∇ y|b) (5.2)

for (y, b) ∈ A0 = {(y, b) ∈ W 1,p(S; R
3) × L p(S; R

3) : ∇ y, b ∈ BV (S), y = y0 on γ } and

E (0)(ȳ, b̄) = min
(y,b)∈A0

E (0)(y, b).

Proof. We first observe that

E (h)
1 (uh) = 1

h
Eh(ũh) � 1

h
Eh(ũ0) = E (h)

1 (u0)

for all 0 < h � 1 and that E (h)
1 (u0) is a constant independent of h. Hence, using the Poincaré
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inequality, we see that there exists a positive constant C such that

‖uh‖W 1,p(Ω1;R3) � C, ‖h−1uh,3‖L p(Ω1;R3) � C, (5.3)∫
Ω1

|D(∇uh)| � C,

∫
Ω1

|D(h−1uh,3)| � C, (5.4)

sup

{ ∑
i=1,2,3

∫
Ω1

h−2(uh)i,3ψi,3 : ψ ∈ C∞
0 (Ω1), |ψ(z)| � 1 for all z ∈ Ω1

}
� C (5.5)

for all 0 < h � 1. It then follows from the compactness Theorem 3.2 and the semi-continuity
Theorem 3.1 that there exist ŷ ∈ W 1,p(Ω1; R

3) with ∇ ŷ ∈ BV (Ω1) and b̂ ∈ L p(Ω1; R
3) with

b̂ ∈ BV (Ω1) such that for a further subsequence of {uhn }, not relabeled, we have that

uhn ⇀ ŷ in W 1,p(Ω1; R
3) and h−1

n uhn ,3 ⇀ b̂ in L p(Ω1; R
3)

uhn → ŷ in W 1,1(Ω1; R
3) and h−1

n uhn ,3 → b̂ in L1(Ω1; R
3)

}
as n → ∞. (5.6)

We have by the trace theorem that ŷ = y0 on Γ1. Finally, it follows from (5.3) and (5.5) that ŷ and
b̂ are independent of z3, so the existence of (ȳ, b̄) ∈ A0 follows.

Next, we have that∫
Ω1

|DP (∇P uh |h−1uh,3|h−1uh,3)| � 1

h

∫
Ωh

|D(∇ũh)| (5.7)

since

sup




∑
i=1,2,3
j,k=1,2

∫
Ω1

(uh)i, jψi jk,k +
∑

i=1,2,3
j=1,2

∫
Ω1

h−1(uh)i,3ψi j3, j

+
∑

i=1,2,3
k=1,2

∫
Ω1

h−1(uh)i,3ψi3k,k : ψ ∈ C∞
0 (Ω1), |ψ(z)| � 1 for all z ∈ Ω1




� sup




∑
i=1,2,3
j,k=1,2

∫
Ω1

(uh)i, jψi jk,k +
∑

i=1,2,3
j=1,2

∫
Ω1

h−1(uh)i,3ψi j3, j +
∑

i=1,2,3
k=1,2

∫
Ω1

h−1(uh)i,3ψi3k,k

+
∑

i=1,2,3

∫
Ω1

h−2(uh)i,3ψi33,3 : ψ ∈ C∞
0 (Ω1), |ψ(z)| � 1 for all z ∈ Ω1


 .

Since ∇P uhn → ∇P ŷ in L1(Ω1; R
3×2) and h−1uhn ,3 → b̂ in L1(Ω1; R

3), a further subsequence
converges almost everywhere in Ω1; it then follows from (5.7), Corollary 3.1, and Fatou’s lemma
that since the trace of h−1uh,3 on Γ1 is b0 for all 0 < h � 1 we have that

E (0)(ȳ, b̄) = κ

[ ∫
Ω1

|DP (∇P ŷ|b̂|b̂)| + √
2

∫
Γ1

|b̂ − b0|
]

+
∫
Ω1

φ(∇P ŷ|b̂) � lim inf
n→∞ E (hn)

1 (uhn ).

(5.8)
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To prove (5.1), we will construct a sequence of admissible deformations on Ωh such that the
rescaled energies of the associated deformations on Ω1 converge to the left-hand side of (5.8). The
existence of such a sequence will establish equality in (5.8) with ‘lim’ instead of ‘lim inf’ and thus
prove (5.1).

Since b0 ∈ W 1,p(S; R
3) and ∇b0 ∈ BV (S), we can use Theorem 3.4 to obtain a sequence of

functions b̄ε ∈ W 1,p(S) with ∇b̄ε ∈ BV (S) such that b̄ε = b0 on γ for every ε > 0, and

lim
ε→0

‖b̄ε − b̄‖L p(S) = 0,

lim
ε→0

∫
S
|D(∇ ȳ|b̄ε|b̄ε)| =

∫
S
|D(∇ ȳ|b̄|b̄)| + √

2
∫

γ

|b̄ − b0|. (5.9)

Consider now the test functions

ūε
h(z1, z2, z3) = ȳ(z1, z2) + hz3b̄ε(z1, z2) ∈ A(h)

1 .

Since ∇P ūε
h = ∇P ȳ + hz3∇P b̄ε → ∇P ȳ in L p(Ω1) as h → 0, we have∫
Ω1

φ(∇ūε
h) =

∫
Ω1

φ(∇P ūε
h |b̄ε) →

∫
Ω1

φ(∇P ȳ|b̄ε) =
∫

S
φ(∇ ȳ|b̄ε) as h → 0,

using the growth condition on φ and the dominated convergence theorem. Similarly,∫
S
φ(∇ ȳ|b̄ε) →

∫
S
φ(∇ ȳ|b̄) as ε → 0,

so

lim
ε→0

lim
h→0

∫
Ω1

φ(∇ūε
h) =

∫
S
φ(∇ ȳ|b̄). (5.10)

Since b̄ε is independent of z3, we have that∫
Ω1

|D(∇ūε
h)| =

∫
Ω1

|DP (∇P (ūε
h)|b̄ε|b̄ε)| =

∫
Ω1

|DP (∇P (ȳ + hz3b̄ε)|b̄ε|b̄ε)|

because

sup




∑
i=1,2,3
j,k=1,2

∫
Ω1

(ūε
h)i, jψi jk,k +

∑
i=1,2,3

j=1,2

∫
Ω1

h−1(ūε
h)i,3ψi j3, j +

∑
i=1,2,3
k=1,2

∫
Ω1

h−1(ūε
h)i,3ψi3k,k

+
∑

i=1,2,3

∫
Ω1

h−2(ūε
h)i,3ψi33,3 : ψ ∈ C∞

0 (Ω), |ψ(z)| � 1 for all z ∈ Ω1

}

= sup




∑
i=1,2,3
j,k=1,2

∫
Ω1

(ūε
h)i, jψi jk,k +

∑
i=1,2,3

j=1,2

∫
Ω1

b̄εψi j3, j

+
∑

i=1,2,3
k=1,2

∫
Ω1

b̄εψi3k,k : ψ ∈ C∞
0 (Ω1), |ψ(z)| � 1 for all z ∈ Ω1


 .
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We have by the triangle inequality that∫
Ω1

|DP (∇P ȳ|b̄ε|b̄ε)| −
∫
Ω1

|DP (hz3∇P b̄ε)| �
∫
Ω1

|DP (∇P (ȳ + hz3b̄ε)|b̄ε|b̄ε)|

�
∫
Ω1

|DP (∇P ȳ|b̄ε|b̄ε)| +
∫
Ω1

|DP (hz3∇P b̄ε)|,

so we have since ∇b̄ε ∈ BV (S) and ȳ and b̄ε are independent of z3 that

lim
h→0

∫
Ω1

|D(∇ūε
h)| = lim

h→0

∫
Ω1

|DP (∇P (ȳ + hz3b̄ε)|b̄ε|b̄ε)| =
∫

S
|D(∇ ȳ|b̄ε|b̄ε)|. (5.11)

We thus have from (5.9) and (5.11) that

lim
ε→0

lim
h→0

∫
Ω1

|D(∇ūε
h)| =

∫
S
|D(∇ ȳ|b̄|b̄)| + √

2
∫

γ

|b̄ − b0|, (5.12)

and from (5.10) and the above identity (5.12) we have that

lim
ε→0

lim
h→0

E (h)
1 (ūε

h) = E (0)(ȳ, b̄) (5.13)

for E (0) defined in (5.2). Since uh is a minimizing deformation for E (h)
1 , we have that

lim
ε→0

lim
h→0

E (h)
1 (ūε

h) � lim sup
h→0

E (h)
1 (uh).

It thus follows from (5.8) and (5.13) that

lim
n→∞ E (hn)

1 (uhn ) = E (0)(ȳ, b̄)

for any subsequence {uhn } satisfying the limits (5.6).
If we repeat the above argument with an arbitrary pair (y, b) ∈ W 1,p(S; R

3) × L p(S; R
3) such

that ∇ y, b ∈ BV (S) and y = y0 on Γ1, we obtain the minimum principle

E (0)(ȳ, b̄) = min
(y,b)∈A0

E (0)(y, b).

To see this, we can obtain from Theorem 3.4 a sequence of functions bε ∈ W 1,p(S) with ∇bε ∈
BV (S) such that bε = b0 on γ for every ε > 0, and

lim
ε→0

‖bε − b‖L p(S) = 0,

lim
ε→0

∫
S
|D(∇ y|bε|bε)| =

∫
S
|D(∇ y|b|b)| + √

2
∫

γ

|b − b0|.

Consider now the test functions

uε
h(z1, z2, z3) = y(z1, z2) + hz3bε(z1, z2) ∈ A(h)

1 .
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Following the proof above, we can obtain that

lim
ε→0

lim
h→0

E (h)
1 (uε

h) = E (0)(y, b).

Since uhn is a minimizing deformation for E (hn)
1 , we have that

E (0)(y, b) = lim
ε→0

lim
n→∞ E (hn)

1 (uε
hn

) � lim
n→∞ E (hn)

1 (uhn ) = E (0)(ȳ, b̄).

�

Since the subsequence {uhn } in the above Theorem 5.1 was arbitrary, we can conclude the
following corollary.

COROLLARY 5.1 We have that

lim
h→0

min
ṽ∈Ah

(
1

h
Eh(ṽ)) = min

(y,b)∈A0

E (0)(y, b).

REMARK 5.1 We note that it follows from the proof of the above theorem that

1

hn

∫
Ωhn

|D(∇ũhn )| →
∫

S
|D(∇ ȳ|b̄|b̄)| + √

2
∫

γ

|b̄ − b0|

and
1

hn

∫
Ωhn

φ(ũhn ,1|ũhn ,2|ũhn ,3) dx →
∫

S
φ(∇ ȳ|b̄) dz1 dz2

as hn → 0.

REMARK 5.2 We remark that if (y, b) ∈ W 2,1(S; R
3) × W 1,1(S; R

3), then

∫
S
|D(∇ y|b|b)| =

∫
S
(|∇2 y|2 + 2 |∇b|2)1/2.

This is similar to the Bhattacharya–James model [5], in which the interfacial energy is modeled by

∫
S
(|∇2 y|2 + 2 |∇b|2).

We also note that the requirement that b be in H1(S; R
3) in the Bhattacharya–James model

makes the trace of b continuous across smooth curves, while the fact that b is in BV (S) in our
model allows the trace of b to jump across interfaces and, in particular, on the boundary, ∂S. Since
the deformation is modeled by b0 outside γ , this generates an additional term in the interfacial
energy given by

√
2 κ

∫
γ

|b − b0|. However, since κ is assumed to be small, this allows the trace of
b on γ to differ from b0 significantly without generating an excessive amount of energy.
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6. The finite-element approximation

We now give a brief description of the continuous, piecewise linear finite-element approximation of
the total-variation thin-film model. Since most deformations observed in martensitic alloys consist
of laminated microstructures in which regions of nearly constant deformation gradient are separated
by nearly planar interfaces, the combination of the continuous piecewise linear (P1) element for y
and the piecewise constant (P0) element for b should be an efficient choice. The variation of such
functions is zero on each element of a given triangulation; hence, all of the variation is concentrated
along the edges of the triangulation.

In what follows, we assume that S is a polygonal domain in R
2 and that τ is a fixed triangulation

of S [7, 11]. The elements of the triangulation τ are denoted by K and the inter-element edges by
e. To distinguish between the internal edges of τ and the boundary edges, we write e ∈ S for the
internal edges and e ∈ ∂S for the boundary edges.

Given an internal edge e ∈ S and two elements K1, K2 ∈ τ sharing the edge e, we define the
jump across the edge e of a function f ∈ BV (K1 ∪ K2) by

[[ f ]]e = fe,K1 − fe,K2

where fe,Ki denotes the trace on e of f |Ki for i = 1, 2. Since only the Euclidean norm of the jump
will enter the discrete energy below, the sign ambiguity in the definition of the jump will not cause
an ambiguity in the description of the energy below. For a boundary edge e ∈ ∂S that is an edge of
an element K ∈ τ , we define f |e to be the trace on e of a function f ∈ BV (K ). Finally, we denote
by P1(τ ) the space of continuous piecewise linear functions on S which are linear on each K ∈ τ ,
and by P0(τ ) the space of piecewise constant functions on S which are constant on each K ∈ τ .
Then for (y, b) ∈ P1(τ ) × P0(τ ), the energy (5.2) is well defined, and we have

E (0)(y, b) = κ

(∑
e∈S

|[[(∇ y|b|b)]]e| |e| + √
2

∑
e∈γ

|b|e − b0|e| |e|
)

+
∑
K∈τ

φ((∇ y|b)|K ) |K |,

where |e| denotes the length of the edge e, | · | denotes the Euclidean vector norm, |K | is the area of
the element K , and

|[[(∇ y|b|b)]]e| = (|[[∇ y]]e|2 + 2 |[[b]]e|2)1/2.

We note that this is a conforming approximation since

P1(τ ) × P0(τ ) ⊂ {(y, b) ∈ W 1,p(S; R
3) × L p(S; R

3) : ∇ y, b ∈ BV (S)}.
Since the above term is not differentiable everywhere, we have regularized it in our numerical
simulations [10].

We have proven that the error for the deformation and the local volume fractions of deformation
gradients converge to zero as the mesh size converges to zero for the finite element approximation
of laminated microstructure for bulk (three-dimensional) geometrically nonlinear models of
martensitic crystals [6, 9, 14, 23–25]. The total variation of the deformation gradient will generally
not converge, even with the addition to the total energy of a surface energy proportional to the total
variation of the deformation gradient, unless the mesh is aligned with the microstructure. More
details on the approximation properties and implementation of the finite element approximation of
our total variation thin film model are given in [10].
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