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A codimension-two free boundary problem for the equilibrium
shapes of a small three-dimensional island in an epitaxially strained

solid film
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We determine the equilibrium morphology of a strained solid film for the case where it wets
the substrate (Stranski–Krastanow growth). Using a continuum elasticity model with isotropic
surface energy and equal elastic constants in the film and substrate, we determine an asymptotic
solution for the axisymmetric three-dimensional equilibrium shape of a small island, where the
height is much less than the width, resulting in a codimension-two free boundary problem. This
codimension-two free boundary problem can be reformulated as an integro-differential equation in
which the island width appears as an eigenvalue. The solutions to the resulting integro-differential
eigenvalue problem consist of a discrete spectrum of island widths and associated morphological
modes, which are determined using a rapidly converging Bessel series. The lowest-order mode is
energetically preferred and corresponds to the quantum dot morphology. Our predictions of quantum
dot width compare favorably with experimental data in the GeSi/Si system. The higher-order modes,
while not minimum-energy configurations, are similar to ‘quantum ring’ and ‘quantum molecule’
morphologies observed during the growth of strained films.
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1. Introduction

Strained solid films are an important component in electronic and opto-electronic devices. In many
cases, the desirable growth mode of the film is layer by layer, resulting in a planar film. On the other
hand, there has been recent interest in quantum dot devices [23], which correspond to the Stranski–
Krastanow growth mode. In the Stranski–Krastanow growth mode, the first few monolayers of the
film grow layer by layer, forming a ‘wetting layer’, then subsequent growth occurs in the form of
mounds or ‘islands’ on top of the wetting layer (Fig. 1). A review of theoretical and experimental
results on island formation is presented in [25].

Morphological evolution in strained solid films can be modeled using continuum theory. The
surface of the strained film is treated as a free boundary, and changes in the morphology of the film
are due to the diffusion of atoms along the surface, which in turn is linked to a stress-dependent
chemical potential. Within this framework, it has been shown that an initially planar film is
unstable to the formation of surface corrugations [2, 8–13, 17, 29, 30, 36], the so-called stress-driven
morphological instability. If the film is sufficiently thick then the valleys of the corrugation develop
cusp singularities in finite time [5, 18, 31, 39, 40]. If the film is sufficiently thin, the deepening of the
valley can be stopped by the influence of the substrate. For example, in many systems the surface
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FIG. 1. Schematic illustration of typical island.

energy of the film is lower than that of the substrate, so there is a significant energy penalty for the
film to ‘dewet’ the solid surface. Thus, with a strong wetting effect, the substrate surface acts as a
barrier for film rupture. Under this constraint, the evolution of the stress-driven instability is towards
solid drops (islands) separated by a wetting layer. The island morphology, then, is generated by the
strain relief which accompanies the island shape, but also requires the presence of the wetting layer
to stabilize the island edges.

Mathematical models for the wetting layer have been investigated in recent years. In general,
the details of wetting depend on the atomistic physics of films of a few monolayers thickness (see,
for example, [38]). Since the atomistic calculations are difficult (particularly with nonplanar, free
boundary geometries) there has been interest in developing robust continuum models for the physics
of wetting that enable one to predict the island shape. One idea has been the use of transition layer
models, in which the sharp variation in material properties across the film/substrate interface is
modeled by a smooth transition over a thin transition layer [6, 19, 41, 42]. Another approach has
been to model the wetting layer as being infinitesimally thin, with the wetting energy being much
larger than the energetics associated with island formation [32–34]. In this model, the monolayer
of the film adjacent to the substrate is in effect ‘glued’ to the substrate. This constraint results in a
piecewise boundary condition for the free boundary: the film surface is either h = 0 (for the wetting
layer), or satisfies a condition of constant chemical potential on the island surface. In this piecewise
free boundary description, the island width is to be determined as part of the solution.

Recently, asymptotic results which describe the relationship between the transition layer models
and the glued wetting layer model have been presented [35]. It was shown that any transition
layer model which has algebraic decay reduces to the glued wetting layer model in the limit of
small transition layer thickness. Thus, the results of this analysis suggest that the details of the
transition layer model are not important to determining the macroscopic island shape. In view of the
correlation between the transition layer models and the glued wetting layer model, we use the glued
wetting layer model as the ‘generic’ zero-parameter model for the wetting layer.

It is generally appreciated that islands form because of elastic relaxation: a fixed volume of
material has a lower total energy as an island than as a planar film. Of the work on the free boundary
problem, there have been asymptotic and numerical solutions for the case of a two-dimensional
(2D) ridge [6, 19, 32–35], and recently there have also been calculations of the island shape in three
dimensions (3D) using a finite element method with a thick film/substrate transition region [41, 42].
While the 3D calculations hold promise for simulating time-dependent dynamics of well-developed
islands, our aim here is to derive some fairly simple asymptotic results that enable one to describe
the shape of a small 3D island without extensive computation.

Our analysis is based on the approach used in [32] to describe the shape of a small island ridge.
In this work, the solution to the free boundary problem for the island surface was found using an
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asymptotic expansion in the aspect ratio of the island (height/width). The resulting problem becomes
a codimension-two free boundary problem [15] which consists of a mixed boundary value problem
for the half-plane where the location of the points at which the boundary condition changes type
are to be determined as part of the solution. At leading order, the island shape was determined as
a solution to an integro-differential eigenvalue problem. Here, we employ the same approach to
determine the shape of an axisymmetric island.

The codimension-two free boundary problem for the island shape consists of an integro-
differential equation with prescribed boundary conditions at the island edges, the position of which
is to be determined. The island width plays the role of an eigenvalue, and we find a discrete spectrum
of island widths and associated morphological modes which can be indexed by the number of ridges
on the island surface, m.

The lowest-order mode m = 1 corresponds to the quantum dot morphology and is the most
energetically favorable mode. The width is the minimum width of the island modes, and is almost
a factor of two larger than the width of a small island ridge, a result that is consistent with the
energetics of 3D versus 2D small-amplitude surface undulations. We compare our predictions of the
island width directly to experimental data and find that our theory is consistent with observations of
small islands in the GeSi/Si system.

Other low-order modes are less energetically favorable than the quantum dot mode, but may be
physically relevant as metastable states. In particular, the modes m = 2 and m = 3 are similar to
quantum ring and quantum molecule morphologies. We suggest generalizations of our axisymmetric
solutions to non-axisymmetric, annular solutions which may permit quantitative description of the
quantum ring and quantum molecule morphologies and energetics.

The remainder of the paper is organized as follows. In Section 2 we construct the mathematical
model and nondimensionalize the system. In Section 3 we seek solutions as an asymptotic expansion
in the island aspect ratio and obtain the integro-differential eigenvalue problem for the island shape,
which we solve using a Bessel series. In Section 4 we compare the results for our quantum dot
solution to the 2D theory and to experiments, and describe the relevance of our other solutions to
quantum rings and quantum molecules. Section 5 summarizes our findings.

2. Mathematical model

2.1 Variational problem for the island shape

We model the Stranski–Krastanow morphology in a 3D, isotropic, epitaxially strained system, and
describe the shape of an axisymmetric, isolated island. As described in Section 1, the formation
of islands requires a model for the wetting interaction of the film and substrate. We use the glued
wetting layer model in which a wetting layer of negligible thickness covers the substrate, and such
that the energy required to remove the wetting layer from the substrate is large relative to the energies
involved in the formation of the islands. Thus, in the context of our continuum model, the wetting
layer is a layer of the film of vanishing thickness which is in effect glued to the substrate [32].

We describe the island shape in cylindrical coordinates with radial symmetry, z = h(r). The
wetting model then dictates that h(r) � 0. For an isolated island of finite dimensions the film
thickness vanishes outside some radius R describing the island size, and{

h(r) � 0 for 0 < r < R

h(r) = 0 for r � R.
(2.1)
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The equilibrium island shape can be described by the solution to a variational problem for
minimizing the energy of the system subject to the constraint of constant volume of the film and the
wetting constraint. The energy consists of two contributions, E = Eγ + ES where

Eγ =
∫
S

γ dS (2.2)

is the total surface energy obtained by integrating the surface free energy density γ over the surface
of the film S, and where

ES =
∫
V

S(u, h) dV (2.3)

is the total strain energy of the system obtained by integrating the linear elasticity strain energy
density S(u, h) over the volume of the film and substrate. Here S(u, h) denotes the dependence
of the strain energy on the displacement field u and the shape of the domain h. Finally, for radial
symmetry the volume constraint takes the form

V = 2π

∫ R

0
h(r) r dr, (2.4)

where V is the prescribed volume of the island.
Minimizing E with respect to variations in the shape h and variations in the displacement u

for prescribed V and h � 0 results in a variational inequality for h coupled to the linear elasticity
equations. The volume constraint enters with a Lagrange multiplier µ (the chemical potential). The
contact angle condition arising from the variational calculation is that h′(r) = 0 at the island edges
because the surface energy of the island and the surface energy of the wetting layer are the same.
This classical Young angle is not modified by the presence of elastic strain, as has been shown
from the local analysis of possible singularities for arbitrary contact angle [37]. The equation for
the shape of the island is then determined by the piecewise boundary condition


h′(r) = 0 at r = 0 (by symmetry)

µ = γ κ(h) + S(u, h) for h(r) > 0 (on the island)

h′(r) = 0 at the island edge

h(r) = 0 otherwise (on the wetting layer)

(2.5)

where κ is the local curvature of the film surface, and S(u, h) is the strain energy density evaluated
at the surface of the film. Equilibrium island shapes correspond to finding solutions h(r) which
satisfy (2.5) for constant chemical potential µ (the value of which is to be determined). As
written, (2.5) might permit solutions consisting of concentric annular island ‘rings’ separated by
wetting layers of zero thickness. Our aim in this paper is to describe the shape of a single island
as is commonly observed in experiments and for which h(r) > 0 on 0 < r < R. To this end, we
assume that h(r) > 0 for 0 < r < R to rule out the possibility of a ‘ring’ structure (in Section 4 we
suggest extending this work to permit the description of ring-like solutions). The equation for the
island shape is then 


h′(r) = 0 at r = 0

µ = γ κ(h) + S(u, h) for 0 < r < R (on the island)

h′(r) = 0 at r = R

h(r) = 0 for r � R.

(2.6)



EQUILIBRIUM SHAPES OF SMALL ISLANDS 5

Note that the location of the island edge R and the chemical potential µ are to be determined.
The minimization of the energy with respect to the displacement yields the usual equations of

linear elasticity, with a jump condition on the strains at the film/substrate interface to account for
the misfit strain due to the difference in lattice parameters in the film and substrate. For lattice
parameters of the film aF and the substrate aS, the biaxial misfit strain is εm = (aS − aF)/aF in
the film at the film/substrate interface. For our islands with assumed radial symmetry, the linear
elasticity problem for mechanical equilibrium in the film/substrate system is given by the following
system of equations. Defining σF and σS as the stress tensors in the film and substrate, respectively,
mechanical equilibrium in the solid requires

∇ · σF = 0 in the film (0 < z < h(r)) (2.7)

and

∇ · σS = 0 in the substrate (z < 0), (2.8)

subject to the Beltrami–Michell compatibility conditions. The boundary conditions for the elasticity
problem are the following. First, the film surface is traction free,

σF · n = 0 on z = h(r) (2.9)

where n is the outward unit normal to the film surface. Second, there is a force balance at the
film/substrate interface,

σF · ẑ = σS · ẑ on z = 0 (2.10)

where ẑ is the unit normal in the z direction. Third, the misfit strain generated by the difference
in lattice parameters generates a jump in the lateral components of the strain tensor E across the
film/substrate interface,

EF
rr = ES

rr + εm on z = 0

EF
θθ = ES

θθ + εm on z = 0

EF
r z = ES

r z on z = 0

EF
θ z = ES

θ z on z = 0 (2.11)

where the subscripts denote the components of the strain tensor in cylindrical coordinates. The last
boundary condition is that the stresses in the substrate decay to zero far away from the island,

σS → 0 as z → −∞ and as r → ∞. (2.12)

Finally, in each of the film and substrate we use isotropic linear elasticity to relate stress to strain,

σ = E

1 + ν

[
E + ν

1 − 2ν
Tr(E)I

]
, (2.13)

where E is Young’s modulus, ν is Poisson’s ratio, Tr(E) is the trace of the strain tensor, and
I is the identity tensor. Equations (2.4) and (2.6)–(2.13) define the free boundary problem for
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the equilibrium shape of an isolated, axisymmetric non-annular strained island with prescribed
volume V .

It can be shown that the above equations can also be derived by using an alternative to the
wetting constraint h � 0. If one considers a class of wetting layer models that are based on a
smooth transition in material properties across the film/substrate interface, then, in the limit that the
transition layer thickness approaches zero, one recovers the 2D version of the equations above [35].
Viewed in this way, the free boundary equation (2.6) can be interpreted as the condition of constant
chemical potential µ over the entire film surface: over the island surface the strain energy and
surface energy balance to give the island shape, and in the wetting layer the strain energy and
wetting energies balance. Further, the contact angle condition h′ = 0 at the island edge also results
naturally from matching solutions for the wetting layer and the island.

2.2 Nondimensionalization

We nondimensionalize the model by using the misfit stress and misfit strain in a planar film as
characteristic scales for the stress and strain fields. The planar film has a characteristic biaxial
stress tensor σ0 with magnitude σ0 = εm E/(1 − ν), and a corresponding strain energy density
S0 = ε2

m E/(1 − ν). We use a characteristic length of l = γ /S0.
In most systems the film and the substate have similar elastic properties, so to greatly simplify

the elasticity problem we assume that the film and substrate have the same elastic constants. In this
case the elasticity problem with the jump condition on the strains at the film/substrate interface and
decay of the stress in the substrate as z → −∞ is equivalent to a problem where one imposes the
misfit stress at z → −∞ with continuity of strain at the film/substrate interface. We thus define the
scaled stress field T as given by T = σF/σ0 in the film and T = (σS + σ0)/σ0 in the substrate,
where the role of σ0 in σS is to eliminate εm from the film/substrate boundary condition. In this
case the conditions for T on the film/substrate interface reduce to the usual continuity conditions
that apply to any interior plane of a solid, and the film/substrate interface serves only as a dividing
surface that distinguishes film from substrate. The linear elasticity problem becomes

∇ · T = 0 in z < h(r) (2.14)

T · n = 0 on z = h(r) (2.15)

and

T →

1 0 0

0 1 0
0 0 0


 as z → −∞ and as r → ∞ (2.16)

where

T =

σrr τrθ τr z

τrθ σθθ τθ z

τr z τθ z σzz


 . (2.17)
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The scaled conditions on the free boundary are given by




h′(r) = 0 at r = 0

µ = κ(h) + S(h) for 0 � r < R

h′(r) = 0 at r = R

h(r) = 0 for r � R,

(2.18)

where

κ(h) = −1

r

d

dr

(
r

dh

dr

/√
1 + (dh/dr)2

)
, (2.19)

and

S(h) = 1

2(1 − ν)
[(1 + ν)(σrr

2 + σθθ
2 + σzz

2) − νσkk
2 + 2(1 + ν)τr z

2], (2.20)

where ν is Poisson’s ratio and σkk = Tr(T). Finally, the volume constraint in nondimensional form
is

V = 2π

∫ R

0
h(r)r dr. (2.21)

All variables are now non-dimensional with respect to the appropriate length or energy scale.
The film/substrate interface has been eliminated from the elasticity problem by the assumptions of
a planar interface and equal elastic constants in film and substrate. The resulting elasticity problem
is equivalent to a biaxially stressed, semi-infinite isotropic solid.

3. Asymptotic solutions for thin islands

3.1 Thin island scalings

We now describe an island where the height H is assumed to be much smaller than the island width
W ≡ 2R, corresponding to a small ‘flat’ island (see Fig. 1). We choose a characteristic island
height Hc such that Hc = ε. The scaled island shape is then given by h̃(r) = h(r)/ε, with the
nondimensional volume constraint

V = 2πε

∫ R

0
h̃(r)r dr. (3.1)

In what follows we show that for Hc = ε, the island half-width R remains O(1). Thus, the island
volume has the same scaling as Hc, with V = O(ε). Rather than defining Hc as the precise height
of the island H , we instead choose to define ε = V . In this case the volume constraint on h̃(r)

becomes

2π

∫ R

0
h̃(r)r dr = 1, (3.2)
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and the island height H is O(ε). The scaled boundary condition for the thin island is then


h̃′(0) = 0

µ = εκ̃ + S for 0 � r < R

h̃′(R) = 0

h̃(r) = 0 for r � R,

(3.3)

where κ = εκ̃ , and the scaled axisymmetric elasticity problem is

−ε
dh̃

dr
σrr + τr z = 0 on z = εh̃(r) (3.4)

−ε
dh̃

dr
τr z + σzz = 0 on z = εh̃(r) (3.5)

with

∂σrr

∂r
+ ∂τr z

∂z
+ σrr − σθθ

r
= 0 in z < εh̃(r) (3.6)

∂τr z

∂r
+ ∂σzz

∂z
+ τr z

r
= 0 in z < εh̃(r) (3.7)

and with

T →

1 0 0

0 1 0
0 0 0


 as z → −∞ and as r → ∞. (3.8)

3.2 Thin island expansion

We look for an asymptotic solution to the free boundary problem is powers of ε of the form

h̃(r) = h̃0(r) + ε h̃1(r) + · · · (3.9)

R = R0 + ε R1 + · · · (3.10)

T(r, z) = T(0) + εT(1) + · · · (3.11)

µ = µ0 + ε µ1 + · · · (3.12)

S(r, εh̃(r)) = S0 + ε S1 + · · · (3.13)

κ̃ = κ̃0 + ε κ̃1 + · · · . (3.14)

We substitute the expansions into the governing equations, drop tildes and collect like terms by
order in ε.

3.3 O(1) solution

At O(1) the elasticity problem corresponds to the biaxially stressed half-space,

τ (0)
r z = 0 on z = 0 (3.15)

σ (0)
zz = 0 on z = 0 (3.16)
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with

∇ · T(0) = 0 in z < 0 (3.17)

and

T(0) →

1 0 0

0 1 0
0 0 0


 as z → −∞ and as r → ∞. (3.18)

The only contribution from the free boundary condition is the chemical potential condition

µ0 = S0 for 0 � r < R0. (3.19)

Thus, with T(0) corresponding to uniform biaxial stress in the far field, we have µ0 = S0 = 1. The
leading order shape h0 is undetermined at this order.

3.4 O(ε) solution

At O(ε) we obtain the elasticity problem for a half-space,

∂σ
(1)
rr

∂r
+ ∂τ

(1)
r z

∂z
+ σ

(1)
rr − σ

(1)
θθ

r
= 0 in z < 0 (3.20)

∂τ
(1)
r z

∂r
+ ∂σ

(1)
zz

∂z
+ τ

(1)
r z

r
= 0 in z < 0 (3.21)

with the boundary conditions

τ (1)
r z = dh0

dr
on z = 0 (3.22)

σ (1)
zz = 0 on z = 0 (3.23)

T(1) → 0 as z → −∞ and as r → ∞. (3.24)

Using the boundary condition (3.23) to eliminate σ
(1)
zz from the elastic energy density S1, the free

boundary condition is

h′
0(0) = 0 (3.25)

µ1 = (σ (1)
rr + σ

(1)
θθ ) − 1

r

d

dr

(
r

dh0

dr

)
for 0 � r < R0 (3.26)

h′
0(R0) = 0 (3.27)

h0(r) = 0 for R0 � r < ∞, (3.28)

and the volume constraint gives

2π

∫ R0

0
h0(r)r dr = 1. (3.29)
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The goal is to find h0(r) which satisfies the edge conditions and volume constraint and for which
the corresponding stress T(1) from (3.20)–(3.24) results in (3.26) being satisfied. Note that R0 and
µ1 are constants to be determined.

The O(ε) problem is thus a codimension-two free boundary problem of the type reviewed by
Howison et al. [15] where the proximity of the free boundary to a prescribed surface leads to a mixed
boundary value problem on a prescribed domain, but with the locations of the points where the
boundary condition changes type (R0 in our case) to be determined as a free boundary. Their review
surveyed recent work on such problems involving either Laplace’s equation or the biharmonic
equation in the half-plane. Our problem involves mechanical equilibrium in an axisymmetric half-
space, so we can formulate it as an axisymmetric biharmonic problem (see the Appendix). While
the island shape problem is reminiscent of elastic contact problems, here the applied traction in
the contact region is a shear stress which depends on the island slope, and the island shape itself
is determined by a balance of curvature and elastic strain energy. Thus, it possibly represents a
new type of codimension-two problem which involves the biharmonic potential. One feature of
codimension-two problems discussed by Howison et al. is that it is usually hard to determine the
appropriate edge conditions, particularly in the dynamic case. In our case, we are only seeking
equilibrium solutions, and the contact angle condition at the island edges (the classical Young
angle) is well established from local scaling arguments [37] and asymptotic analysis of a parent
problem [35]. Finally, the presence of the additional unknown µ1 in our case is balanced by the
additional volume constraint.

In the Appendix we derive the elasticity solution to (3.20)–(3.24) using Hankel transforms. The
stress terms appearing in (3.26) corresponding to the elastic energy density S1 are related to the
island shape by

(σ (1)
rr + σ

(1)
θθ ) = 2(1 + ν)

∫ ∞

0
ξ

[ ∫ R0

0
r̂

dh0

dr̂
J1(ξ r̂) dr̂

]
J0(ξr) dξ. (3.30)

Substituting this expression into (3.26) we obtain the integro-differential equation for the island
shape

µ1 = 2(1 + ν)

∫ ∞

0
ξ

[ ∫ R0

0
r̂

dh0

dr̂
J1(ξ r̂) dr̂

]
J0(ξr) dξ − 1

r

d

dr

(
r

dh0

dr

)
0 � r < R0, (3.31)

which is augmented by the volume constraint (3.29) and the boundary conditions

h′(0) = 0 (3.32)

h′(R0) = 0 (3.33)

h(R0) = 0. (3.34)

The values of the island radius R0 and the chemical potential µ1 are to be determined. The above
integro-differential system can be viewed as an obstacle problem with a nonlocal operator.

To analyze (3.31) we rescale lengths by

s = r/R0 (3.35)

and

H(s) = h0(r)/R0 (3.36)
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to fix the domain of the equation as 0 � s < 1. Also, the presence of Poisson’s ratio ν in (3.31) can
be absorbed by defining

µ̂ = µ1

1 + ν
(3.37)

and

R̂ = R0(1 + ν). (3.38)

With these rescalings and ξ → ξ/R0, the integro-differential equation becomes

µ̂ = 2
∫ ∞

0
ξ

[ ∫ 1

0
ŝ

dH

dŝ
J1(ξ ŝ) dŝ

]
J0(ξs) dξ − 1

R̂

1

s

d

ds

(
s

dH

ds

)
0 � s < 1, (3.39)

with the boundary conditions

H ′(0) = 0 (3.40)

H ′(1) = 0 (3.41)

H(1) = 0 (3.42)

and the volume constraint

2π

(
R̂

1 + ν

)3 ∫ 1

0
H(s)s ds = 1 (3.43)

which now contains the dependence on ν. In our solutions to (3.39), R̂ is determined as a necessary
condition for solutions to exist and plays the role of an eigenvalue. The unknown constant µ̂ is
determined as a property of those solutions.

The role of Ŵ and µ̂ in the solutions can be illustrated more clearly by introducing the alternate
scaling H(s) = µ̂Ĥ(s) which transfers µ̂ from the integral equation to the volume constraint,
determining it in terms of Ĥ(r):

µ̂ =
(

2π R3
0

∫ 1

0
Ĥ(s)s ds

)−1

. (3.44)

Upon applying
∫ s

0 (·)s ds to the integral equation for Ĥ(s) we obtain a Fredholm integral equation

of the second kind for dĤ/ds,

s

2
= 2

∫ 1

0
ŝ

dĤ

dŝ
P(s, ŝ) dŝ − 1

R̂

dĤ

ds
(3.45)

where

P(s, ŝ) =
∫ ∞

0
J1(ξs)J1(ξ ŝ) dξ = 2

πs∗

[
K

(
s∗
s†

)
− E

(
s∗
s†

)]
, (3.46)

and where K , E , are the complete elliptic integrals of the first and second kind, respectively,
s∗ = min(s, ŝ) and s† = max(s, ŝ). Of the solutions Ĥ(s; R̂) to (3.45), we seek those for which
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Ĥ ′(0) = Ĥ ′(1) = 0. Thus R̂ plays the role of an eigenvalue, but it is not the eigenvalue of the
integral operator. Our numerical results in the next section show that there is a discrete spectrum
of R̂ for which solutions to the integral equation also satisfy the boundary conditions. Once Ĥ ′(r)

is known from the integral equation, Ĥ(r) can be determined from integration using Ĥ(1) = 0
and then µ̂ can be determined from the volume constraint above. While (3.45) is an alternative
form for (3.39) which illustrates the role of R̂ and µ̂, we develop our numerical solutions from the
unrescaled version (3.39).

3.5 Bessel series solutions

We seek numerical solutions to the integro-differential equation (3.39) with boundary condi-
tions (3.40)–(3.42) and volume constraint (3.43). We pose a Bessel series expansion for H(s) that
satisfies the three boundary conditions (3.40)–(3.42):

H(s) =
{

a0 + ∑∞
k=1 ak J0(Zks) for 0 � s < 1 (on the island)

0 otherwise (on the wetting layer)
(3.47)

where (3.40) and (3.41) are satisfied by choosing Zk (k = 1, 2, . . . ) to be the zeros of J1, and (3.42)
is satisfied by requiring

a0 = −
∞∑

k=1

ak J0(Zk). (3.48)

Using the relation J ′
0(x) = −J1(x) we find

dH

ds
= −

∞∑
k=1

akZk J1(Zks). (3.49)

We substitute the series into the integro-differential equation (3.39) and obtain

µ̂ = −2
∫ ∞

0
ξ

[∫ 1

0
ŝ

∞∑
k=1

akZk J1(Zk ŝ)J1(ξ ŝ) dŝ

]
J0(ξs) dξ

+ 1

R̂

1

s

d

ds

(
s

∞∑
k=1

akZk J1(Zks)

)
for 0 � s < 1. (3.50)

The operator
∫ 1

0 (·)s J0(Z j s) ds is applied to each term of (3.50) to obtain a linear system of
equations for the coefficients ak . We first consider the cases for j = 1, 2, . . . (the case of j = 0 will
be considered separately later). Applying the operator to the left-hand side of (3.50) we have∫ 1

0
sµ̂J0(Z j s) ds = µ̂J1(Z j )

Z j
= 0 (3.51)

since J1(Z j ) = 0. We apply the operator to the first term on the right-hand side of the integro-
differential equation (3.50) and rewrite the result to obtain

−2
∞∑

k=1

akZk

∫ 1

0
s J0(Z j s)

∫ ∞

0
ξ

[ ∫ 1

0
ŝ J1(Zk ŝ)J1(ξ ŝ) dŝ

]
J0(ξs) dξ ds. (3.52)
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The ŝ integral can be evaluated analytically. The result is

∫ 1

0
ŝ J1(Zk ŝ)J1(ξ ŝ) dŝ = [Zk J1(ξ)J ′

1(Zk) − ξ J1(Zk)J ′
1(ξ)]

ξ2 − Z2
k

. (3.53)

Using the fact that J1(Zk) = 0 and using the recurrence relation J ′
n(x) = Jn−1(x)−n Jn(x)/x gives

the analytical result to the first integration of

−2
∞∑

k=1

akZk

∫ 1

0
s J0(Z j s)

∫ ∞

0

ξZk J1(ξ)J0(Zk)

(ξ2 − Z2
k )

J0(ξs) dξ ds. (3.54)

Interchanging the order of integration and repeating the procedure on the s integral with the
relationship J ′

0(x) = −J1(x) gives the integrated term

−2
∞∑

k=1

akZ2
k J0(Zk)J0(Z j )

∫ ∞

0

ξ2 J 2
1 (ξ)

(ξ2 − Z2
k )(ξ2 − Z2

j )
dξ. (3.55)

Note that if ξ = Z j or ξ = Zk then J 2
1 (ξ) = 0, so the apparent singularities in (3.55) are removable

and the integral is well behaved. Applying the operator to the third term of the integro-differential
equation (3.50) gives

1

R̂

∞∑
k=1

akZk

∫ 1

0

d

ds
(s J1(Zks))J0(Z j s) ds. (3.56)

Using the recurrence relation d
dx {xn Jn(x)} = xn Jn−1(x), (3.56) can be rewritten as

1

R̂

∞∑
k=1

akZ2
k

∫ 1

0
s J0(Zks)J0(Z j s) ds. (3.57)

Since orthogonality holds for (3.57) even with Zk as the zeros of J1 instead of J0, only the k = j
term contributes to the sum and the result is

1

2R̂
a jZ2

j J 2
0 (Z j ). (3.58)

Having applied the operator to all pieces of (3.50), the transformed integro-differential equation is
the linear system

0 = −2
∞∑

k=1

akZ2
k J0(Zk)J0(Z j )Q(Z j ,Zk) + 1

2R̂
a jZ2

j J 2
0 (Z j ) j = 1, 2, . . . (3.59)

where

Q(Z j ,Zk) =
∫ ∞

0

ξ2 J 2
1 (ξ)

(ξ2 − Z2
k )(ξ2 − Z2

j )
dξ. (3.60)
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Equation (3.59) is a homogeneous linear system for the coefficients ak which can be written as
Ma = 0, where a is the coefficient vector and the components of the matrix M are

M jk = −2Z2
k J0(Zk)J0(Z j )Q(Z j ,Zk) + δ jk

Z2
j

2R̂
J 2

0 (Z j ) (3.61)

with

δ jk =
{

1 if j = k

0 if j �= k.
(3.62)

The linear system depends on the island radius R̂ through the diagonal terms of M. In general, the
homogeneous linear system has only the trivial solution a = 0. A nontrivial solution requires M to
be singular, which determines the eigenvalue R̂. Note that R̂ is not given by the eigenvalues of the
matrix M, but rather corresponds to the weighting of the diagonal term in (3.61) which makes the
matrix singular.

The eigenvalue problem (3.59) for the island radius R̂ can be converted to the standard matrix
eigenvalue problem with a diagonal transformation. We write (3.59) as

(−B + λD) a = 0 (3.63)

where λ = 1/(2R̂) and D is the diagonal matrix appearing as the second term in (3.61). Let

u = Da (3.64)

and define

A = BD−1 (3.65)

where

A jk = 2
J0(Z j )

J0(Zk)
Q(Z j ,Zk) (3.66)

to obtain the standard eigenvalue problem

Au = λu. (3.67)

From the eigensolutions (λ, u) we find R̂ = 1/2λ and calculate the coefficients in the expansion
from a = D−1u to find

ak = uk

Z2
k J0(Zk)2

. (3.68)

Once ak (k = 1, 2, . . . ) are determined from the eigenvalue problem, a0 is determined from (3.48).
To implement the volume constraint (3.43) we note that since (3.59) is homogeneous, the

solutions a have an arbitrary multiplicative scale factor c such that ca is also a solution. The scale
factor c is determined from the volume constraint (3.43) to be

c = (1 + ν)3

πa0 R̂3
. (3.69)
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Finally, the chemical potential µ̂ is determined by applying the operator
∫ 1

0 s(·) ds (the j = 0
case alluded to previously) to the three terms of (3.50). The first term gives∫ 1

0
sµ̂ ds = µ̂

2
. (3.70)

The second term gives

−2
∞∑

k=1

akZk

∫ 1

0
s
∫ ∞

0

ξZk J1(ξ)J0(Zk)

ξ2 − Z2
k

J0(ξs) dξ ds. (3.71)

Interchanging the integrals and using the relation
∫

x J0(x) dx = x J1(x) leads to

−2
∞∑

k=1

akZ2
k J0(Zk)

∫ ∞

0

J 2
1 (ξ)

(ξ2 − Z2
k )

dξ. (3.72)

The third term gives ∫ 1

0
s

[−1

R̂s

d

ds

(
s

dH

ds

)]
ds = 0, (3.73)

where we have used the boundary conditions H ′(1) = 0 and H ′(0) = 0 for the island shape. Thus,
the chemical potential is

µ̂ = −4c
∞∑

k=1

akZ2
k J0(Zk)

∫ ∞

0

J 2
1 (ξ)

(ξ2 − Z2
k )

dξ, (3.74)

where, again, the singularity at ξ = Zk is removable.

3.6 Numerical solutions

We construct an approximate numerical solution for the island shape by truncating the series at N
terms, resulting in M being an N × N matrix. We solve the matrix eigenvalue problem (3.67) using
Maple 6. The integrations in the coefficients of A are of an oscillatory integrand (call the integrand
q(ξ)) on an infinite domain, so we have used the asymptotic behavior of the integrand q(ξ) ∼ q∗(ξ)

for ξ � 1 to write each integral as
∫ ∞

0 q(ξ) dξ = ∫ 1
0 q(ξ) dξ +∫ ∞

1 [q(ξ)−q∗(ξ)] dξ +∫ ∞
1 q∗(ξ) dξ .

Here the last integral can be evaluated in terms of special functions and the numerical evaluation
of the second integral converges quickly due to the rapid decay of the integrand for large ξ . The
numerical integrations were performed to six-digit accuracy.

The solution of the eigenvalue problem (3.67) determines a set of N eigenvalue pairs
(λ(m), u(m)), m = 1, . . . , N . For each eigensolution (λ, u), we determine an island radius R̂ =
1/2λ, the coefficients in the Bessel series ak from (3.68) and (3.48), the scale factor c from (3.69),
and the chemical potential µ̂ from (3.74). This set of solutions for m = 1, . . . , N correspond to N
distinct island ‘modes.’

We calculate solutions corresponding to N = 32 terms, indexing the modes m = 1, . . . , N by
increasing radius R̂. The eigenvalues and eigenvectors are all real. Figure 2 shows that the first four
odd modes correspond to a center mound surrounded by (m − 1)/2 annular ridges. Figure 3 shows
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FIG. 3. Island shapes for even modes m = 2, 4, 6, 8. Shown is the normalized island shape H(s)/|H(0)|.

that the first four even modes correspond to a center pit surrounded by m/2 annular ridges. Note,
however, that the even-mode solutions are not admissible solutions to the free boundary problem
because the center pit extends into the substrate and violates the wetting constraint H(s) � 0.
Results for larger m indicate that the pattern for the odd and even solutions continues. We conjecture
(but offer no proof) that for N = ∞ all eigenvalues and eigenvectors are real, all odd modes have a
center mound and (m − 1)/2 annular ridges, and all even modes have a center pit and m/2 annular
ridges with the center pit in violation of the wetting constraint.

Table 1 gives the island radius and chemical potential for the modes m = 1–8. As m increases,
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TABLE 1
Island radius and chemical potential for modes m = 1–8. Numerical values of µ̂ scale with ν as

(1 + ν)3 through the dependence of µ̂ on c (3.69). Results are for ν = 0.25

m R̂ µ̂

1 2.061 −0.183 2
2 3.671 −0.039 23
3 5.259 −0.014 63
4 6.839 −0.007 028
5 8.416 −0.003 916
6 9.991 −0.002 406
7 11.565 −0.001 584
8 13.139 −0.001 098

TABLE 2
Convergence of solutions for the m = 1 and m = 8 modes

m = 1 m = 8
N R̂ µ̂ R̂ µ̂

1 2.074 10 −0.182 224 – –
2 2.065 11 −0.183 041 – –
4 2.061 94 −0.183 159 – –
8 2.060 96 −0.183 171 11.5962 −0.001 578 09

16 2.060 71 −0.183 171 13.1441 −0.001 098 19
32 2.060 66 −0.183 171 13.1387 −0.001 098 42

corresponding to an increasing number of ripples in the solution, the island radius increases as well.
The chemical potential for these modes are all negative, with the m = 1 mode having the most
negative µ̂. As m increases the chemical potential becomes less negative, apparently approaching
zero as m increases.

Table 2 illustrates the fast convergence of the series expansions as a function of the number
of terms in the expansion N , using the modes m = 1 and m = 8 as representative examples.
We illustrate convergence of the series by monitoring two physically relevant quantities, the island
width R̂ and the chemical potential µ̂. For the m = 1 mode, solutions with three-digit accuracy are
obtained with N = 4. For the m = 8 mode, we note that for the m = 8 mode to exist we of course
need to keep at least N = 8 terms. For N = 16 the m = 8 solutions are accurate to four digits.

The relative energies of the different morphological modes can be deduced from the chemical
potential correction µ1 = µ̂(1 + ν). Note that since µ = 1 + εµ1 + · · · , where ε = V is the
island volume, a more negative µ1 means a smaller chemical potential. In the dynamic problem,
mass transport is through surface diffusion from regions of high chemical potential to regions of
low chemical potential, so we infer the relative energetics of different modes from the chemical
potential. Since µ1 is negative, this means that all island modes are energetically preferred to a
planar film (µ1 = 0). Since µ1 is most negative for m = 1, this means that the m = 1 mode is
energetically preferred for islands of fixed volume. Note also that since µ1 is negative for all modes,
the energy of all island modes decreases with increasing island volume.

Figure 4 shows the energetically preferred island shape corresponding to mode m = 1. Since
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FIG. 4. 3D island corresponding to m = 1. Island height is normalized to unity.

our asymptotic theory is based on small island volume, our solutions describe islands for which the
height is much smaller than the island width. To leading order the island width is fixed, and there
is a direct scaling between the island volume and island height. Thus, as the volume increases from
zero the island height increases proportionately but it retains a characteristic width and self-similar
shape.

4. Discussion

4.1 Comparison with 2D island ridges

For the 2D island ridge described in [32], the fixed W value was 1.73, compared with the value of
4.122/(1 + ν) for an axisymmetric island. Thus, for a typical value of ν = 0.25, an axisymmetric
island is wider than a 2D ridge by almost a factor of two. The difference in W for 2D and 3D
axisymmetric islands is consistent with the difference in wavelengths for 2D and 3D neutrally stable
sinusoidal perturbations. From the stability analysis of small-amplitude perturbations to a planar
film of the form eiax x+iay y , neutrally stable solutions are found to have [30]

a =
√

a2
x + a2

y = 4. (4.1)

A 2D perturbation is equivalent to ay = 0, therefore ax = 4. The corresponding wavelength is
λ = 2π/ax = 1.57. A 3D perturbation with equal wavelengths in x and y corresponds to ax =
ay = 4/

√
2, with the wavelength in each direction λ = 2π/ax = 2π/ay = 2.22. Thus, the neutral

2D perturbation has a smaller wavelength than the neutral 3D perturbation, which is consistent with
our observation that the equilibrium width of the 2D island ridge is smaller than the equilibrium
width of an axisymmetric 3D island.

4.2 Comparison of first mode with experiment

To convert our solutions to dimensional (starred) coordinates we let r∗ = sl R0 and h∗(r∗) =
H(s)lεR0, where R0 = R̂/(1 + ν), and ε = V ∗/ l3 is the scaled island volume. We compare
our theoretical results with two studies of epitaxial growth of 3D islands, that by Eaglesham and
Cerullo [7] for Ge islands on an Si substrate, and that by Albrecht et al. [1] for Ge0.85Si0.15 islands on
an Si substrate. In order to compare the theoretical results with the experiments, we need the values
of the relevant material parameters (elastic constants, lattice parameters, and surface energies).
Using the anisotropic elastic constants for Ge and Si [16], we find isotropic values for the Lamé
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TABLE 3
Material parameters used for interpolating composition-dependent material properties

Material µ (1011 dynes cm−2) λ (1011 dynes cm−2) γ (erg cm−2)
Ge 5.64 3.76 1927
Si 6.81 5.24 2513

constants µ and λ by the Voigt averaging method [14]. Linear interpolation is used to approximate
the corresponding constants for a Gex Si1−x alloy. The misfit strain εm = (aS−aF)/aF is interpolated
as εm(x) = x(aSi − aGe)/aGe, where aGe = 5.657 54 and aSi = 5.430 72 are the lattice parameters
at room temperature [22]. The surface energy γ for pure Si and pure Ge is taken from [3]. We use
linear interpolation to approximate γ (x) for Gex Si1−x alloys (Table 3 shows the parameters for Ge
and Si).

The length scale used to non-dimensionalize the elasticity problem was l = γ /S0 where
S0 = 1

2 Ti j Ei j is the basic-state strain energy, which for a biaxial misfit strain condition reduces
to S0 = Eε2

m/(1 − ν) where E = µ(2µ + 3λ)/(λ + µ) is Young’s modulus and ν = λ/2(λ + µ)

is Poisson’s ratio. Therefore the length scale as a function of the composition x is l(x) =
γ (x)[1 − ν(x)]/E(x)(εm(x))2. Using W ∗ = 2R0l(x) provides the expected island width as a
function of film composition in dimensional units. Figure 5 illustrates the relationship between W ∗
and x for Gex Si1−x alloys on Si substrates. For a pure Ge layer on an Si substrate, the theoretical
width W ∗ is 21.5 nm. Eaglesham and Cerullo [7] observed diameters of 40 nm for small isolated
islands. For the Ge0.85Si0.15 layer on Si substrate W ∗ = 30.2 nm. Albrecht et al. [1] observed island
base widths of approximately 50 nm. Thus, our theoretical results for W ∗ are within a factor of 2 of
the experimentally observed island widths.

It is noted that the theoretical values for W ∗ are smaller than the corresponding experimental
measurements. Factors which may contribute to this difference include:

• The difference in the elastic constants of the film and substrate: we assumed that the elastic
constants of the film and substrate were the same. Table 3 shows, however, that the elastic
shear moduli, µ, of Ge and Si differ by about 20%, where Si is stiffer. Spencer et al. [30] have
shown that a stiff substrate increases the wavelength of steady-state perturbations to a planar
film. Based on the correspondence between island widths and neutral perturbation wavelengths,
this suggests that including the effect of the stiffer Si substrate would increase the predicted W ∗
values, bringing them closer to the experimental measurements.

• Higher-order effects: our results are based on an expansion in ε = V , and are therefore valid
in the limit of small islands. Calculations of the fully nonlinear shape for the 2D case [33]
have shown that W increases as the island volume increases. We expect a similar trend to
hold in the 3D case. Therefore, our asymptotic W ∗ results represent minimum island widths
which are exceeded as the island increases in size. In this sense the theory is consistent with the
experiments in that the predicted W ∗ values lie below the experimental values (which are for
finite V ).

• Anisotropic material properties: we assumed that the material properties were isotropic, which
provides a tractable model. However, the experiments of Albrecht et al. [1] show that anisotropy
in the properties leads to faceted island shapes and a dependence of the morphologies on the
crystalline orientation of the substrate. The modification of our analysis to include anisotropic
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material properties could result in changes to the predicted island widths and island shapes,
particularly in the case of strong anisotropy.

4.3 Quantum rings and quantum molecules

The equilibrium solutions corresponding to modes m > 1 are not minimum energy configurations.
Nonetheless, they may be metastable equilibrium states and may influence the evolution of the
morphology in the fully dynamic problem. Morphologies such as ‘quantum rings’ and ‘quantum
molecules’ observed in strained films [4] may be related to modes m > 1 in our theory. Figures 6
and 7 compare the observed quantum ring and quantum molecule morphologies in the CdTe/ZnTe
system with our mode m = 2 and m = 3 solutions. There is a striking qualitative similarity.

We note that since our m = 2 mode violates the wetting constraint, it does not represent a true
quantum ring morphology. To describe a quantum ring we must enforce the wetting constraint inside
the ring, which would lead to a version of the axisymmetric problem where we would find annular
solutions to the free boundary problem for which h(r) > 0 for a < r < b with h(r) = 0 otherwise.
For the quantum molecule solutions, close inspection of Fig. 7a shows that the ring structure is
similar to our m = 3 mode but is modulated in the azimuthal direction. Such modulations can
not be described within our axisymmetric theory, but there is the obvious generalization of our
work to include an azimuthal dependence of the shape with trigonometric modes. It is possible that
allowing for modulation in the azimuthal direction would lead to a lower energy solution than the
axisymmetric mode (perhaps with a lowest energy solution having a circumferential modulation
with wavelength similar to the width of the ring). Description of such a structure would require
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FIG. 6. Quantum ring morphologies. (a) Quantum ring observed in CdTe/ZnTe (courtesy of Luo), (b) mode m = 2 solution
with height normalized to unity.

FIG. 7. Quantum molecule morphologies. (a) Quantum molecule observed in CdTe/ZnTe (courtesy of Luo), (b) mode m = 3
solution with height normalized to unity.

generalization of this work to describe a nonaxisymmetric morphology h(r, θ) > 0 on r < R(θ),
where now the curve that forms the island edge becomes a free boundary. Such generalizations might
permit direct prediction of quantum ring and quantum molecule morphologies and their stability.

5. Summary

We have modeled the island morphology in strained solid films using a continuum theory with a
glued wetting layer model for the film/substrate interactions. The resulting free boundary elasticity
problem has a piecewise boundary equation for the island shape. We have found the shape of a
small axisymmetric island by developing an asymptotic solution based on the island height being
much smaller than the island width, which leads to a codimension-two free boundary problem. The
use of a Hankel transform enabled us to determine the solution of the elasticity problem in terms
of an island of arbitrary (thin) shape. Substitution of the general elasticity solution into the free
boundary equation gave an integro-differential equation for the island shape in which the island
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width played the role of an eigenvalue. We determined a rapidly converging solution to this integro-
differential equation in terms of a Bessel series. We find a discrete spectrum of island widths and
island modes. The first mode corresponds to a quantum dot and is the most energetically favorable
mode. Our predictions of quantum dot width are within a factor of 2 of observations in SiGe/Si,
and it is suggested that this discrepancy is due primarily to our assumption of equal elastic constants
in the film and substrate, and to the nonlinear effect of the island size on the island width. Finally,
the m = 2 and m = 3 modes are suggestive of quantum ring and quantum molecule morphologies.
Generalizations of the present work to include (i) annular solutions and (ii) nonaxisymmetry might
permit detailed description of the quantum ring and quantum molecule morphologies and their
stability.
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Appendix.

Here we derive the elasticity solution to (3.20)–(3.24) for an arbitrary h0(r). The elasticity problem
is a mixed boundary value problem for the half-space in which the applied shear stress vanishes
outside of the island contact region. This mixed boundary value problem could be approached using
the Wiener–Hopf method as has been done for axisymmetric elastic contact problems [24, 27, 28].
Here we choose to find the elasticity solution using Hankel transforms.

An axisymmetric stress function, φ(r, z) (Love’s stress function) [21], is introduced such that

σrr = ∂

∂z

(
ν∇2φ − ∂2φ

∂r2

)
(A.1)

σθθ = ∂

∂z

(
ν∇2φ − 1

r

∂φ

∂r

)
(A.2)

σzz = ∂

∂z

[
(2 − ν)∇2φ − ∂2φ

∂z2

]
(A.3)

τr z = ∂

∂r

[
(1 − ν)∇2φ − ∂2φ

∂z2

]
, (A.4)

where we have dropped the superscript ‘1’ from the stresses. The stress function φ satisfies
the mechanical equilibrium and compatibility conditions of linear elasticity if ∇4φ = 0. The
stress depends on the shape h0(r) through the boundary condition (3.22). We use the Hankel
transform [26] to relate the stresses to h0(r). The Hankel transform of order n of a function f (r) is
defined as

f n(ξ) = Hn{ f (r); ξ} =
∫ ∞

0
r f (r)Jn(ξr) dr, (A.5)

where Jn is the Bessel function of order n. The inverse Hankel transform is then

f (r) =
∫ ∞

0
ξ f n(ξ)Jn(ξr) dξ. (A.6)

We apply the Hankel transform of order zero to ∇4φ = 0 to obtain [20]

(
∂2

∂z2
− ξ2

)2 ∫ ∞

0
rφ(r, z)J0(ξr) dr = 0. (A.7)

Letting φ0(ξ, z) = ∫ ∞
0 rφ(r, z)J0(ξr) dr gives the linear, fourth order, homogeneous differential

equation

∂4φ0

∂z4
− 2ξ2 ∂2φ0

∂z2
+ ξ4φ0 = 0. (A.8)

The general solution to (A.8) is φ0(ξ, z) = (A + Bzξ) e−ξ z + (C + Dzξ) eξ z . For the solutions
to decay as z → −∞, A = B = 0, and φ0(ξ, z) = (C + Dzξ) eξ z . The constants C and D are
determined by transforming the boundary conditions (3.22) and (3.23) for τr z and σzz . Using an
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order-one Hankel transform for τr z and σzz in terms of φ provides [20]

H1{τr z; ξ} = (1 − ν)ξ3φ0 + νξ
∂2φ0

∂z2
(A.9)

H1{σzz; ξ} = (1 − ν)
∂3φ0

∂z3
− (2 − ν)ξ2 ∂φ0

∂z
. (A.10)

The transformed boundary conditions are then

H1{τr z; ξ} = g1(ξ) on z = 0 (A.11)

and

H1{σzz; ξ} = 0 on z = 0 (A.12)

where

g1(ξ) =
∫ ∞

0
r

dh0

dr
J1(ξr) dr (A.13)

is the order-one Hankel transform of dh0/dr . Substituting for φ0(ξ, z) in the transformed stress
equations (A.9) and (A.10) and using the mechanical equilibrium boundary conditions (A.11)
and (A.12), we determine C and D in terms of g1(ξ). The transformed Love function is therefore

φ0(ξ, z) = (1 − 2ν + ξ z) eξ z

ξ3
g1(ξ). (A.14)

The above elasticity solution (A.14) relates the stresses to the island shape. For a given h0(r), the
function g1(ξ) is determined from the Hankel transform (A.13). Then, φ0(ξ, z) is related to g1(ξ)

from (A.14), and the stress function φ(r, z) is obtained by taking the inverse transform of φ0(ξ, z).
For the free boundary equation (3.26) we need the strain energy density S1 = σrr + σθθ on the

surface of the film. A zero-order Hankel transform is used to express (σrr + σθθ ) in terms of φ0 as

H0{σrr + σθθ ; ξ} = (1 − 2ν)ξ2 ∂φ0

∂z
+ (2ν)

∂3φ0

∂z3
. (A.15)

Substituting for φ0(ξ, z) on z = 0 we obtain

H0{σrr + σθθ ; ξ} = 2(1 + ν)g1(ξ). (A.16)

Substituting for g1(ξ) in the inverse transform of H0{σrr + σθθ ; ξ} gives the desired result

(σrr + σθθ ) = 2(1 + ν)

∫ ∞

0
ξ

[ ∫ ∞

0
r̂

dh0

dr̂
J1(ξ r̂) dr̂

]
J0(ξr) dξ. (A.17)


