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A projection method for motion of triple junctions by level sets
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We develop a projection method to treat the motion of multiple junctions (such as contact lines) in
the level set formulation. Multiple junctions are relevant to many fields including fluid dynamics,
foams, and semiconductor manufacture. In the level set method an interface is defined as the zero
level set of a smooth function. For an N -phase system the location of all interfaces can be specified
by N − 1 functions (hence only one level set function is needed for a two-phase system). For N > 2
we describe a symmetric projection of the N level set functions onto an N −1 dimensional manifold.
This reduction in phase space eliminates unacceptable values of the level set functions (such as cases
where more than one is positive at a given point.) This prevents the formation of vacuums or overlaps
at multiple junctions during interface evolution. Further, this method can be applied to any number
of phases and spatial dimensions. We present two- and three-dimensional results showing that the
method gives correct equilibrium contact angles and produces accurate dynamics in multi-phase
fluids.
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1. Introduction

The level set method as proposed by Osher and Sethian [8] is a novel method for capturing the
evolution of complex interfaces. In this method, the interface is represented as the zero level surface
of a ‘level set function’ of one higher dimension. The evolution of the surface is then embedded
in an evolution equation for the level set function itself which is solved on a fixed Eulerian mesh.
The method has many well established advantages over competing front tracking algorithms. These
include a natural handling of topological changes in the interface, easy extension to any number of
spatial dimensions, and a fundamental connection to numerical methods for hyperbolic conservation
laws which enables the stable and accurate evolution of corners and cusps in the interface.

However, the choice of representing the surface implicitly also restricts the types of surfaces
which can be represented, namely orientable manifolds. It also effectively excludes the construction
of surfaces which have triple junctions such as can arise in multi-phase fluid problems. For example,
the spreading of a liquid droplet on a solid surface involves air, liquid, and solid phases.
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Attempts at extending the level set method to include more than two phases have been mostly
successful, but they suffered from some critical drawbacks. In [7], each phase is represented by a
separate level set function. The difficulty with this approach is to establish an appropriate constraint
condition at a triple junction that couples the three functions at a single point. Note that this is not
an issue when only two phases are present because the two phases are implicitly coupled through
the use of a single level set function. In [7], this coupling is enforced by a type of interface surgery
performed every time step. In this approach, the different phase interfaces move independently
according to the given speed law. After the interface has moved, voids and overlaps are corrected
by replacing each level set function φi by 1

2 max j �=i (φi − φ j ). This approach is an ad hoc solution
which has no physical basis, but has been shown to produce reasonable results for some problems.

In [14], a variational formulation is used to remove the overlaps/voids through an additional
constraint equation. While this approach does effectively eliminate overlaps and voids, its
application is restricted to problems at near-equilibrium conditions (see also [15]). More general
dynamic interface motion is not addressed. It also depends heavily on the use of reinitialization
instead of using velocity extensions. It has been shown in [6] that the repeated use of reinitialization
can lead to substantial errors in volume conservation, though these errors can be reduced using more
sophisticated reinitialization techniques.

In [4], the authors represent the multiple interfaces by using a binary approach. For N phases,
�log2 N� level set functions are used. Phase i is located by taking a binary representation for i , call
it d1d2 . . . dn , and then

{x in Phase i} =
{

x : φ j (x)

{
> 0 if d j = 1

< 0 if d j = 0

}}

This representation effectively eliminates voids and overlaps when the number of phases is N = 2m .
However, when N �= 2m for some integer m, voids can appear in the form of non-existent phases.
For example, if N = 3, then two level set functions are used to represent the three phases labelled 0,
1, 2. A fourth phase corresponding to φ1, φ2 > 0 is unaccounted for among the physical phases in the
application, but can appear numerically. However, it should be pointed out that for the applications
in image processing to which this method has been employed it has worked well.

The real issue here is that the space of permissible configurations for N level set functions at
a point is N − 1 dimensional. The approaches discussed above use N or �log2 N� dimensions.
In this paper, we build an (N − 1)-dimensional representation which correctly handles the triple
junction in such a way that overlaps and voids cannot appear. This is accomplished through the use
of projections of the level set functions onto a subspace in which there is a one-to-one map between
points in the subspace and allowable values of the level set functions. The evolution of the interfaces
is done through a combination of steps in both the projected and real spaces. The end result is
a numerical method which can generalize to any number of phases and any number of spatial
dimensions, maintains sharp triple-junctions without voids or overlaps, can be used for more general
velocity fields not near equilibrium, and reduces to the original level set method for two-phase flows.
Our method was first applied to domain coarsening in late-stage spinodal decomposition in [12].

The outline of the paper is as follows. In Section 2, we give a brief description of the level set
method. In Section 3, we describe the general multi-phase flow problem. In Section 4, we describe
the new formulation of the projected level set method. In Section 5, we describe the numerical
implementation of this method for incompressible fluid motion. Finally, in Section 6, we present
numerical results and give concluding remarks.
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2. The level set method

We give here a brief overview of the level set method. While the description of this method will
be presented in terms of one-dimensional interfaces in the plane, the analysis readily generalizes to
higher dimensions.

Imagine a closed curve Γ in the plane propagating normal to itself with speed F . We can embed
the initial position of the front as the zero level set of a function φ defined on the plane, the level set
function, and then identify the evolution of φ with the propagation of the front itself through a time-
dependent initial value problem. In order to derive an equation of motion for this level set function
φ, we stipulate that the zero level set of the evolving function φ always match the propagating
interface which means that if x(t) is a point on the interface, then

φ(x(t), t) = 0. (1)

By the chain rule,

φt + ∇φ(x(t), t) · x′(t) = 0. (2)

Since F is the speed in the outward normal direction, then x′(t) · n = F where n is the outward
normal and can be computed from φ via n = ∇φ/ ‖∇φ‖. This yields an evolution equation for φ,
namely,

φt + F ‖∇φ‖ = 0 (3)

φ(x, t = 0) given.

This is the level set evolution equation introduced by Osher and Sethian [8].
As analysed by Sethian in [9], the efficient solution of these front propagation problems requires

the use of upwind difference schemes borrowed from the solution of hyperbolic conservation laws.
A detailed discussion of such schemes in the context of interface propagation can be found in [10].

In order to apply the level set method, the velocity field F itself must be defined on the entire
domain of φ, not just the zero level set corresponding to the interface itself. Thus, it is necessary to
extend F from the interface into the domain of φ. In [1], a technique was introduced for building
this extension velocity field in a highly efficient and accurate manner. It is shown there that if φ is a
signed distance function so that ‖∇φ‖ = 1 and the extended velocity field F solves

∇F · ∇φ = 0, (4)

then the property ‖∇φ‖ = 1 is preserved in all regions where φ and F are smooth. In other words,
this velocity extension preserves the signed distance property of the function φ.

Solving equation (4) can be done efficiently by using the Fast Marching Method [11], which is
the optimal technique for solving the Eikonal equation, coupled with a bicubic interpolation scheme
for initialization [6]. The Fast Marching Method solves an equation of the form

F‖∇φ‖ = 1

where F is the interface speed by assigning values to φ at grid points in an ordered fashion from
nearest to farthest from the interface φ = 0. This is precisely the same order in which equation (4)
must be solved.
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Since the interface φ = 0 is defined only implicitly, locating the interface during the course of
the evolution is non-trivial. It is necessary in order to initialize the Fast Marching Method described
above. In [6], a second-order method for locating the interface given the level set function data on
regular grid points, which is based on bicubic interpolation, is proposed. This method for locating
the interface is attractive due to its accuracy and its easy extendability to higher dimensions.

3. Overview of multi-phase interface motion

We now describe the basics of multi-phase flow and the difficulties it presents for the original level
set method. Consider the problem of three phases lying in R

2. The original level set method breaks
down at triple junctions, points where all three phases meet. It is not possible to build a single
smooth function φ which can simultaneously represent all three interfaces between phases. One
obvious choice to correct this is to use three separate level set functions φi , which are positive in
phase i and negative outside.

While the use of multiple level set functions solves the problem of representation, the coupling
between the different level set functions requires additional constraints or non-physical results can
arise. One such problem occurs in interface flows where the motion of the interface is driven solely
by surface tension. Without an additional constraint at the triple junction, the three level set functions
will pull away from the triple junction leaving a measurable region in which all three level set
functions are negative indicating no phase exists. For more complicated flows, it is also possible,
sometimes simply through numerical error, for multiple level set functions to be positive at a point
indicating more than one phase at a single point.

Neither of these non-physical situations is acceptable, so attempts to apply the level set method
to multi-phase flows have led to modifications, such as those discussed in the introduction, that try to
account for these problems. The key to a better scheme for handling multi-phase flows using level
set methods is to establish a better mapping between the physical domain and the set of phases,
where each point maps onto exactly one of the phases. The resulting mapping must then be coupled
to the equations of motion so it is preserved during evolution in time.

4. Projection method

In order to describe our representation of the phases, we begin with some notation. Consider the
general problem of n phases lying in R

d . For each phase i , we define Ωi ⊂ R
d to be the region

occupied by phase i . Define Γi = ∂Ωi , the boundary of Ωi , and an m-junction as a connected subset
of Γi1i2...im ≡ Γi1 ∩ Γi2 ∩ · · · ∩ Γim . Note that, except for degenerate cases, each domain Ωi has
dimension d , and each boundary Γi has dimension d−1. The interface between phase i and phase j ,
Γi j = Γi ∩ Γ j also has dimension d − 1 by virtue of the fact that, for a two-phase system, Γi = Γ j .
However, a triple junction Γi jk = Γi ∩ Γ j ∩ Γk is the intersection of three interfaces, and hence has
one lower dimension, d − 2. In general, an m-junction is the intersection of two (m − 1)-junctions,
so the dimension dm of an m-junction for m � 2 is given by

dm = d − m + 1. (5)

Thus, in two dimensions a triple point is the only possible m-junction for m > 2. If four or
more phases meet at a junction, we can interpret the junction as the coincidence of multiple triple
junctions. In three dimensions, triple lines and quadruple points can exist. In this paper we will
focus on triple junctions but the method is applicable to arbitrary values of m.
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Triple lines are important in many areas. The wetting of a solid surface by a liquid is controlled
by contact line dynamics which give rise to complicated phenomena such as viscous fingering.
The rupture of encapsulated droplets and the use of liquid bridges in antifoaming agents are
other important processes involving triple lines. Foam calculations also contain a large number of
separated regions and thus many high-order junctions. Also in semiconductor manufacturing various
processes, such as etching and deposition, produce multiple regions on the underlying structure.

Before describing the projection method we consider the nature of the problem posed by
multiple junctions in the level set method. In general we wish any level set function φ to be a
distance function satisfying ‖∇φ‖ = 1. If a system contains more than two phases then we define a
vector containing the level set function of each phase: φ(x) = (φ1(x), . . . , φn(x)) ∈ R

n . However
there are some constraints on the acceptable values of φ(x). The errors which may occur at multiple
junctions are violations of these constraints. The projection method is a means of evolving the
interfaces while satisfying the constraints. The first constraint is simply that at any (off-interface)
point x there must be exactly one positive element ofφ(x), say φi , meaning that x lies in Ωi . Because
we are using distance functions it follows that |φi (x)| is the shortest distance to Γi . It is also true
for some j that φ j (x) = −φi (x). In other words this distance is also the shortest distance to Γ j , the
boundary of Ω j . The boundary of any other region, Γk , must be an equal or greater distance from x.
We now have the following constraints on φ(x):

φi (x) � 0 (6)

φ j (x) = −φi (x) (7)

φk(x) � φ j (x), for k �= i, j . (8)

These are essentially the same conditions as in [7, 14]. These constraints restrict φ(x) to an (n − 1)-
dimensional manifold Π embedded in R

n . An illustration for n = 3, where Π is a three-sided cone,
is shown in Fig. 1. This manifold consists of the union of n(n − 1)/2 different pieces Πi j ⊂ R

n

that are sectors of (n − 1)-hyperplanes, each labeled by a pair of indices i , j and with Πi j ≡ Π j i . A
point φ(x) ∈ Πi j if for i , j , φ(x) satisfies (6)–(8).

There are many well defined maps from Π into R
n−1, and we will choose one that is piecewise

linear, and treats all phases in a symmetric way. To construct this map Ψ : Π → R
n−1, we first

introduce some auxiliary maps and spaces.
To properly define Euclidean projections in R

n , we use a metric such that the vectors ei form
an orthonormal basis, namely ei · e j = δi j . We can project the space R

n into a hyperplane H that
passes through the origin and is normal to a given unitary vector n given by

P : R
n → H, p �→ p − (n · p)n. (9)

When this map is restricted to Π not all choices of n lead to a one-to-one mapping, but the following
symmetric choice does:

n = (1/
√

n)(1, 1, . . . , 1)e.

Consider now the projections of the unit vectors ei into the plane H . This gives a set of n
vectors P(ei ), all lying in the plane, and clearly not linearly independent. From this set of vectors,
we can construct an orthonormal basis for the (n − 1)-dimensional space H . We apply the Gram–
Schmidt procedure to the set {P(e1), P(e2), . . . }, in the given order, and arrive at the desired basis
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0

ϕ1 Π12

Π23

Π13

ϕ2

ϕ3

FIG. 1. Illustration of Π for n = 3. Note that the negative φ3 axis lies in Π12, the negative φ2 axis lies in Π13, and the
negative φ1 axis lies in Π23.

set: {h1, h2, . . . }. Explicitly:

hi = 1√
(n − i)(n − i + 1)

(
(n − i)ei −

n∑
j=i+1

e j

)
. (10)

We note that the vectors hi in R
n together with the vector hn = n form an orthonormal basis.

Therefore we can constuct the projection map P by the n − 1 × n matrix A given by

A =



hT
1
...

hT
n−1




which maps R
n onto H with basis h1, . . . , hn−1 via ψ = Aφ.

The inverse map involves one extra step in order to invert the projection. Given a point ψ ∈ H ,
it is first mapped back into R

n via the transpose map θ = ATψ. Next, we must invert the projection
operator. To do this, let i∗, j∗ be indices such that θi∗ � θ j∗ � θk for all k �= i∗, j∗. Now, the map
is inverted by taking

φ = θ −
√

n

2
(θi∗ + θ j∗)n. (11)
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From this construction, we see that

φi∗ = θi∗ −
√

n

2
(θi∗ + θ j∗)

1√
n

= 1

2
(θi∗ − θ j∗) � 0 (12)

φ j∗ = θ j∗ −
√

n

2
(θi∗ + θ j∗)

1√
n

= 1

2
(θ j∗ − θi∗) = −φi∗ (13)

φk = θk −
√

n

2
(θi∗ + θ j∗)

1√
n

� θ j∗ −
√

n

2
(θi∗ + θ j∗)

1√
n

= φ j∗ , (14)

for all k �= i∗, j∗. Hence conditions (6)–(8) are satisfied.
For example, when n = 3, the transformation from φ to ψ is

ψ1 = (2φ1 − φ2 − φ3)/
√

6 (15)

ψ2 = (φ2 − φ3)/
√

2 (16)

and the inverse transformation is

θ1 = 2ψ1/
√

6 (17)

θ2 = −ψ1/
√

6 + ψ2/
√

2 (18)

θ3 = −ψ1/
√

6 − ψ2/
√

2 (19)

φ1 = (θ1 − θ2 − θ3 + min(θ1, θ2, θ3))/2 (20)

φ2 = (−θ1 + θ2 − θ3 + min(θ1, θ2, θ3))/2 (21)

φ3 = (−θ1 − θ2 + θ3 + min(θ1, θ2, θ3))/2. (22)

We note that ψ2 is equivalent to the dual function d23 = (φ2 − φ3)/2 (and would be equivalent
to other di j under a rotation of axes). The zero contour of d23 (or ψ2) is the manifold of points
equidistant from Γ2 and Γ3, containing Γ23. At a triple junction it bisects the contact angle in Ω1.

5. Governing equations and numerical implementation

The class of interfacial motion problems we consider here are those which involve the evolution of
φ according to

∂φ

∂t
= f(φ). (23)

A common problem in evolution near m-junctions is the formation of vacuums or overlaps, i.e. grid
points where the number of positive φi s is either zero or greater than one. By using a projected form
of (23), these kinds of problems cannot arise. The projected form is obtained by applying the matrix
A to both sides of (23) to get

∂ψ

∂t
= Af(A−1ψ). (24)

In many instances, such as advection by an external velocity field, (23) has the form ∂φi/∂t =
f (φi ). In this case (24) can be simplified to ∂ψi/∂t = f (ψi ).
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At grid points adjacent to a junction we solve (24) and then map ψn+1 �→ φn+1 to ensure the
proper motion of the junction. Away from the junctions we need only solve (23) for φ. However, if
a high-order differencing scheme is used to compute f(φ) it is possible that |f(φn

i )| �= |f(φn
j )| near

Γi j at points close to a triple junction. This would have the undesired effect of causing φi and φ j

to diverge slightly in a region where they are supposed to represent the same interface. To avoid
this we evolve the dual function di j = (φi − φ j )/2 and update according to φn+1

i = dn+1
i j and

φn+1
j = −dn+1

i j . We then use the velocity extension method [2] for each φi to ensure that it remains
a distance function. Thus, we use the following algorithm for the evolution of φ over a single time
step.

ALGORITHM 1

1. Let J be the set of points that contain a junction in the stencil of the evolution equation.
2. For points in J :

(a) Project φn onto ψn .
(b) Update ψn according to

ψn+1
i = ψn

i + ∆t fi (ψ
n
i ).

(c) Project ψn+1 onto φn+1.

3. For points not in J :

(a) Calculate f(φ) (using di j where a triple junction lies within the stencil of f(φ)).
(b) Calculate the velocity extension for f(φ) for each φi .
(c) Update φn according to

φn+1
i = φn

i + ∆t fi (φ
n
i ).

A test problem used in [7] is that of curvature driven interface motion given by

∂φi

∂t
= |∇φi |γiκ(φi ) (25)

where κ is the curvature:

κ(φ) = ∇ · ∇φ

|∇φ| . (26)

We have instead tested our method using the Navier-Stokes equations for a three-phase fluid system
which has the advantage of being locally volume conserving. This allows us to compare equilibrium
domain shapes with analytical solutions as a means of checking the contact angles. The function φ
is advected by the fluid velocity:

∂φi

∂t
= −u · ∇φi . (27)

Thus we can implement the above algorithm by substituting f(φi ) = −u · ∇φi . The interfaces
affect the evolution of the velocity field through the surface tension force which acts to reduce local
curvature similar to the former test problem. If we consider the simplified case where viscosity
µ, and density ρ, are the same in all phases then there are four dimensionless parameters in the
equations. These are: the Reynolds number, Re = ρul/µ, and a Weber number for each interface,
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W ei j = ρlu2/σi j where l and u are characteristic length and time scales. The surface tension
associated with Γi j is given by σi j . The non-dimensional Navier-Stokes equations are:

∂u
∂t

= −∇ p − u · ∇u + r∇2u − F (28)

∇ · u = 0 (29)

where r = 1/Re. F is the surface tension force. For n = 2 one can write F as [3]

F = w12κ(φ1)∇ H(φ1) (30)

where wi j = 1/W ei j and H is the Heaviside function. For n > 2 we decompose the physical
surface tensions wi j into the phase specific surface tensions w̃i such that:

F =
∑

1�i�n

Fi (31)

Fi = w̃iκ(φi )∇ H(φi ) (32)

wi j = w̃i + w̃ j . (33)

We solve (27)–(29) following the methods developed in [5, 13] and the algorithm outlined above.

6. Numerical results

To ensure that the projection method produces the correct equilibrium contact angles we examined
the spreading of a liquid lens (a droplet lying on a free surface). The initial condition is a circular
droplet, Ω3, located at a free surface between Ω1 and Ω2. We allow the droplet to relax until a steady
shape is reached. The equilibrium contact angles are determined by

sin θ1

σ23
= sin θ2

σ13
= sin θ3

σ12
(34)

and the equilibrium lens shape is the union of two circular sections. The relation between the lens
area A, its length d (the distance between triple junctions), and the contact angles, θi , is:

d−2 = 1

8A

(
2(π − θ1) − sin(2(π − θ1))

sin2(π − θ1)
+ 2(π − θ2) − sin(2(π − θ2))

sin2(π − θ2)

)
(35)

Thus, the accuracy of the steady lens shape can be measured by comparing the observed d with the
analytical value. This is preferable to measuring the contact angles directly which is made difficult
by the curvature of the interfaces.

The length d was measured for a range of surface tensions and the results are listed in Table 1.
The steady droplet shapes for the 128 × 128 case are compared with analytical solutions in Fig. 2.
We performed a convergence study for at three different resolutions as shown in Fig. 3. We also
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TABLE 1
Contact angle measurements

{σi j } θ(◦) dexact dobserved

1, 0.6, 0.6 67 0.471 0.469
1, 0.8, 0.8 103 0.370 0.368
1, 1, 1 120 0.339 0.340
1, 1.2, 1.2 131 0.319 0.320
1, 1.4, 1.4 138 0.309 0.311

FIG. 2. Equilibrium droplet shapes. (a) The initial condition. (b)–(f) The steady shapes for w12 = 1 and w13 = w23 =
1.4, 1.2, 1, 0.8, 0.6 respectively where the upper fluid is phase 1, the lower fluid is phase 2, and the droplet is phase 3.
Dashed curves represent the analytical solutions.

examined a case where wetting occurs, w12 = w13 = 1, w23 = 10, to demonstrate that the method
handles topological changes appropriately. An evolution sequence is shown in Fig. 4.

To demonstrate an application of our method in a more complex system we show collisions
between different phase droplets in three dimensions. The droplets are driven towards each other
by a shear flow. We considered two cases: (i) all surface tensions are equal and the droplets stay
in contact after colliding and (ii) the droplet–droplet surface tension is too high to maintain a triple
line and the droplets slide past each other. Results are presented in Figs 5 and 6. An example from a
previous study of late stage spinodal decomposition [12] is shown in Fig. 7. Spinodal decomposition
is a phase separation process in which a highly disordered network of bi-(or tri-)continuous domains
(see Fig. 7, time = 0.0) is formed by diffusion. In the later stages surface tension induced flow is the
driving force for domain growth.
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FIG. 3. Convergence study for the case where w13 = w23 = 1.2. Grid size is N × N where N = 64 for the solid curve,
N = 128 for the dotted curve, and N = 256 for the dashed curve. Grid lines are for N = 64.

t=0 t=0.05

t=0.15 t=0.3

FIG. 4. Time sequence of a droplet leaving an interface under surface tension forces. w12 = w13 = 1, w23 = 10. Grid size
is 256 × 256.

7. Conclusion

In summary, we have presented a new algorithm for the modeling of triple junctions using the
level set method. This method differs from past efforts in this direction by properly maintaining
the correct conditions on the multiple level set functions to ensure that voids and overlaps do not
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t = 0 t = 12

t = 15 t = 20

FIG. 5. Time sequence of droplets colliding in 3D. w12 = w13 = w23 where the droplets are phases 2 and 3 and the external
fluid is phase 1. The grid size is 32 × 32 × 32.

t = 0 t = 12

t = 15 t = 20

FIG. 6. Time sequence of droplets passing in three dimensions. w23 = 1, w12 = w13 = 0.1.
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time= 0.0 time= 0.008

time= 0.023 time= 0.039

FIG. 7. Domain growth in late-stage spinodal decomposition for a three phase system. w12 = w13 = w23. Boundary
conditions are periodic. Reprinted from [12].

occur, while at the same time decoupling the level set representation from the underlying velocity
field. The result is an algorithm that eliminates overlaps and voids, and can be used for dynamic
simulations (not just relaxation to equilibrium). In regions where only two phases are present, the
method reduces to the original level set method which has been proven successful in many areas.
Finally, we have demonstrated the effectiveness of this method for solving complex multi-phase
flow.
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