
Interfaces and Free Boundaries 4, (2002) 309–323

Droplet spreading under weak slippage: the optimal asymptotic
propagation rate in the multi-dimensional case
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We prove optimal estimates on the growth rate of the support of solutions to the thin-film equation
ut + div(|u|n∇∆u) = 0 in space dimensions N = 2 and N = 3 for parameters n ∈ [2, 3)

which correspond to Navier’s slip condition (n = 2) or certain variants modeling weaker slippage
effects. Our approach relies on a new class of weighted energy estimates. It is inspired by the one-
dimensional technique of Hulshof and Shishkov Adv. Diff. Equations 3, (1998) 625–642, and it
simplifies their method, mainly with respect to basic integral estimates to be used.
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1. Introduction and statement of the main result

In this paper we study the asymptotic behavior for t → ∞ of the support of solutions to the Cauchy
problem

ut + div(|u|n∇∆u) = 0 in IRN × IR+ (1.1)

with compactly supported initial data u0 ∈ H1(IRN ; IR+
0 ) in space dimensions N = 2 and N = 3.

Equation (1.1) is a model problem for a class of fourth-order degenerate parabolic equations arising
in materials sciences and fluid dynamics (see [10, 13, 22] and references therein). In the formulation
above, it describes the surface tension driven evolution of the height u of a thin film of viscous liquid
spreading on a horizontal surface. In general, the exponent n is assumed to be a positive number.
From the physical point of view, the cases n = 2 and n = 3 are distinguished. Taken with a grain of
salt, the former one corresponds to the assumption of Navier’s slip condition, the latter one to the
assumption of a no-slip condition at the liquid solid interface. As the total mass is conserved under
that evolution and since the equation is invariant under the scalings

x = K x̂, t = K γ t̂, u = K −N û (1.2)

with γ = 4 + nN , the existence of a compactly supported self-similar solution of the form

u(x, t) = t−
1

4+nN U

(
x

t
1

4+nN

)
(1.3)

would be expected for all values of n > 0. Surprisingly, this self-similar solution only exists for n
in the interval (0, 3) as was proven by Bernis et al. [7] in space dimension N = 1 and by Ferreira
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and Bernis [15] in the multi-dimensional case. In contrast, for n � 3 solutions are expected to
have a support constant in time. As the exponent n = 3 corresponds to the assumption of a no-
slip condition, this result is consistent with the observation made by Dussan and Davis [14] that
a no-slip condition causes infinite energy dissipation for moving droplets. However, this is not the
only phenomenon indicating that the solution’s behavior is sensitive to the exponent n. Indeed, the
analytical tools used to prove results on existence, non-negativity or on the qualitative behavior of
solutions depend on the fact whether n ∈ (0, 2) or n ∈ [2, 3). In the former range, finite speed
of propagation, optimal growth rates for the solution’s support or occurrence of a waiting time
phenomenon could be proven in all the physically relevant space dimensions (see [3, 6] for results
in one space dimension, [9, 11] for results in higher space dimensions). To put it concisely, these
results were based on certain variants of a particular integral estimate which is sometimes called the
entropy estimate (see [2, 8, 10] for further details on that estimate). In the range n ∈ [2, 3), however,
this entropy estimate cannot be used any more and therefore it seems that the analytical arguments
have to be based on the only remaining integral estimate which is the energy estimate and which
reads as follows:

1
2

∫
IRN

|∇u(·, T )|2 +
∫ T

0

∫
IRN

un|∇∆u|2 � 1
2

∫
IRN

|∇u0|2. (1.4)

By virtue of Bernis’ interpolation inequalities (see [5])

∫
Ω

vn−4v6
x � C

∫
Ω

vn−1|vxx |3, (1.5)∫
Ω

vn−1|vxx |3 � C
∫
Ω

vnv2
xxx , (1.6)

the second term on the left-hand side of (1.4) becomes utilizable for Gagliardo–Nirenberg-type
arguments, and Bernis [4] and Hulshof and Shishkov [20] succeeded in proving in one space
dimension a qualitative result on finite speed of propagation and an optimal estimate on the growth
of the solutions’s support, respectively (see also Andreucci and Tedeev [1] for the latter result using
a different approach).

Just recently, the author of this note was able to establish a multi-dimensional equivalent of the
interpolation inequalities (1.5) and (1.6) (see [18]). This was the key ingredient to prove in [19] the
following existence result for the Cauchy problem in the multi-dimensional case.

THEOREM 1.1 Let n ∈
(

2−
√

1 − N
8+N , 3

)
, N < 4, and assume u0 ∈ H1(IRN ) to be non-negative

with compact support in the sense that u0(x) = 0 almost everywhere on IRN \ BR0(0) for a positive
number R0. Then, a non-negative function u exists that has the following properties:
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(i) Regularity:

ut ∈ L2(IR+; (W 1,p(Ω))′) for p >
4N

2N + n(2 − N )
and any Ω ⊂⊂ IRN , (1.7)

u ∈ L∞(IR+; H1(IRN )), (1.8)

∇∆u
n+2

2 ∈ L2(IRN × IR+), (1.9)

∇u
n+2

6 ∈ L6(IRN × IR+), (1.10)

D2u
α+n+1

2 ∈ L2(IRN × IR+) for any α ∈ (max{−1, 1/2 − n}, 2 − n), (1.11)

∇u
α+n+1

4 ∈ L4(IRN × IR+) for any α ∈ (max{−1, 1/2 − n}, 2 − n), (1.12)

J =
{

un∇∆u on [u > 0]
0 on [u = 0] ∈ L2(IR+; Lq(IRN )) (1.13)

for any 1 < q <
4N

2N + n(N − 2)
.

(ii) u is a solution to the Cauchy problem in the sense that∫ T

0
〈ut , φ〉(W 1,p(B(0)))′×W 1,p(B(0)) −

∫
[u>0]T

un∇∆u∇φ = 0 (1.14)

for p > 4N
2N+n(2−N )

, arbitrary T > 0 and for all test functions φ contained in

L2((0, T ); W 1,∞(IRN )) such that
⋃

t∈(0,T ) supp φ(., t) ⊂ B(0), where B(0) is an arbitrary

ball centered in the origin 0 ∈ IRN .
(iii) The solution u attains initial data u0 in the sense that

lim
t↘0

u(·, t) = u0(·) in Lβ

loc(IR
N ) (1.15)

for arbitrary 1 � β < 2N
N−2 .

Moreover, the solutions constructed in Theorem 1.1 have the property of finite speed of propagation
in the following weak sense (see [19] and the forthcoming paper [17]).

DEFINITION 1.2 Let v : IRN × (0, ∞) → IR be a non-negative function and assume that for every
t ∈ [0, ∞) the function v(., t) has compact support. We say that v has finite speed of propagation iff
for each ball B(x0, R0), x0 ∈ IRN , R0 > 0, that contains supp v(·, 0), a continuous, monotonically
increasing function R : [0, ∞) → IR+

0 , R(0) = 0, exists such that

supp v(., t) ⊂ B(x0, R0 + R(t)).

It is the purpose of this paper to establish a quantitative estimate on the maximum growth rate of the
solution’s support. More precisely, the following result will be obtained.

THEOREM 1.3 Let n ∈
(

2 −
√

1 − N
8+N , 3

)
, N < 4 and assume u to be a solution of the Cauchy

problem (1.1) in the sense of Theorem 1.1. Moreover, suppose that initial data u0 satisfy

supp u0 ⊂ B(0, R0) (1.16)
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for a positive number R0.
Then a positive constant C exists which only depends on n, N and the mass of initial data such

that

supp u(·, t) ⊂ B(0, R0 + C · t
1

4+nN ) (1.17)

for all t > 0.

Remarks.

(1) Note that the exponent α = 1
4+nN is consistent with the scaling in (1.2) and therefore optimal.

(2) Analogous results for 0 < n < 2 and N ∈ {2, 3} were established in Bertsch et al. [9].
(3) For n � 3 it is conjectured that the solution’s support is constant in time.
(4) Physically, the assumption of a slip condition

�vhor

∣∣∣∣
z=0

= βhn−2 · ∂ �vhor

∂z

∣∣∣∣
z=0

entails
†

the thin-film equation

ht + div((h3 + βhn)∇∆h) = 0. (1.18)

This equation obviously loses the scaling properties (1.2). Hence, self-similar solutions cease
to exist. In the case of (1.18), Theorem 1.3 can therefore serve to describe the propagation rate
for larger values of t when the exponent n becomes dominant. For an intermediate time-scale,
Giacomelli and Otto [16] recently proved in one space dimension that the apparent support,

i.e. the set {x ∈ IR : h(·, t) > β}, increases with the rate
(

t
log 1/t

)1/7
.

(5) The validity restriction for values of (N , n) is inherited from identical conditions in the
existence result Theorem 1.1.

Our approach simplifies and extends the method of Hulshof and Shishkov [20] who proved a
similar result in one space dimension. For instance, we will not need to prove L2(IRN × (0, T ))—

estimates for the quantity ∇∆(η · u
n+2

2 ) where η is an appropriate cut-off function, which—in the
multi-dimensional case—would be a rather tedious task. Nor will we rely on estimates of third-order
derivatives of certain powers of the solution. In this way, further technical difficulties can be avoided
which would naturally arise in the multi-dimensional setting as soon as interpolation arguments

are to be applied. These are due to the fact that only ∇∆u
n+2

2 but not the entire tensor of third-
order derivatives can be controlled. Instead, we will base our argument on the L6(IRN × (0, T ))-

integrability of ∇u
n+2

6 which could be established in [19].
On account of these changes in strategy, we will present the proof in some detail. In Section 2,

we recall the weighted energy estimate from [19] and derive—in combination with an appropriate
scaled version of Poincaré’s inequality on annuli—the integral estimate essential for the sequel. By
means of an iteration lemma due to Stampacchia (see [21]), we prove in Section 3 a preliminary
estimate on the radius of the solution’s support. As this result still depends on certain integral

†
Here, �vhor denotes the horizontal velocity component of the fluid flow, β is a positive parameter and z stands for the

vertical coordinate. For n = 2, the classical slip condition of Navier is recovered.
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quantities involving the solution u, we first have to estimate these quantities only in terms of initial
mass and time before Theorem 1.3 can be proven. Both will be accomplished in Section 4. Finally,
the Appendix contains a number of auxiliary results frequently used within the text.

Throughout the paper, we will use the standard notation for Sobolev spaces. �ν stands for the unit
outer normal vector to a domain Ω , and we write B(�) for the ball with radius � centered in the
origin. A(�0, �1) denotes for �1 > �0 > 0 the annulus B(�1) \ B(�0). Sometimes, we abbreviate
∂
∂x u by ux , and we also write L1 instead of L1(IRN ) when no misunderstanding can occur. Finally,

IT (�) stands for
∫ T

0

∫
IRN \B(�)

un+2 dx dt .

2. The weighted energy estimate and some of its variants

In this section, we will provide the key result to prove a recursive estimate of the form

IT (� + δ) � C(IT (�) − IT (� + δ))1+β · F(T )

δm
(2.1)

with positive quantities m, β, F(T ), which is—as in [20]—fundamental for a future application of
Stampacchia’s iteration lemma.

To this end, let us consider for positive �, δ ∈ IR a smooth localization function ψ�δ having the
following properties:

ψ�δ ≡ 0 on B(�),

0 � ψ�δ � 1 on A(�, � + δ),

ψ�δ ≡ 1 on IRN \ B(� + δ),

‖∇ψ�δ‖∞ � Cδ−1,

‖D2ψ�δ‖∞ � Cδ−2.

(2.2)

In [19], the following integral estimate for solutions to the auxiliary problem

wt + div(|w|n∇∆w) = 0 in B(k) × IR+

∂

∂ν
w = ∂

∂ν
∆w = 0 on ∂ B(k) × IR+ (2.3)

w0 ∈ H1(B(k); IR+
0 )

and k > � + δ has been proved:∫
B(k)

ψ6
�δ|∇w(·, T )|2 + C−1

{∫ T

0

∫
B(k)

ψ6
�δ|∇w

n+2
6 |6 +

∫ T

0

∫
B(k)

ψ6
�δ|∇∆w

n+2
2 |2

}

�
∫

B(k)

ψ6
�δ|∇w0|2

+ C
∫ T

0

∫
B(k)

wn+2{|∇ψ�δ|6 + |D2ψ�δ|2 |∇ψ�δ|2ψ2
�δ + |D2ψ�δ|3ψ3

�δ}.
(2.4)

Note that the property ∂
∂ν

ψ�δ = 0 on ∂ B(k) is essential for the validity of (2.4).
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Following the lines of the existence proof for solutions to the Cauchy problem in [19], it becomes
evident that the solution u constructed in Theorem 1.1 satisfies the following estimate for arbitrary
�, δ > 0 and for arbitrary positive times T :

∫
IRN

ψ6
�δ|∇u(·, T )|2 + C−1

{∫ T

0

∫
IRN

ψ6
�δ|∇u

n+2
6 |6 +

∫ T

0

∫
IRN

ψ6
�δ|∇∆u

n+2
2 |2

}

�
∫

IRN
ψ6

�δ|∇u0|2

+ C
∫ T

0

∫
IRN

un+2{|∇ψ�δ|6 + |D2ψ�δ|2 |∇ψ�δ|2ψ2
�δ + |D2ψ�δ|3ψ3

�δ}.
(2.5)

From (2.2) and (2.5), we immediately infer the following lemma.

LEMMA 2.1 Let � > 0, δ > 0 and T > 0 and assume u to be a solution of (1.1) in the sense of
Theorem 1.1 to initial data satisfying (1.16). Then positive constants d = d(n, N ) and C = C(n, N )

exist such that

sup
t∈(0,T )

∫
IRN \B(�+δ)

|∇u(·, t)|2 + d(n, N )

∫ T

0

∫
IRN \B(�+δ)

|∇u
n+2

6 |6

� C(n, N )

δ6

∫ T

0

∫
A(�,�+δ)

un+2. (2.6)

By virtue of the qualitative result on finite speed of propagation presented in [19], there exists a
continuous monotone function R : (0, ∞) → [R0, ∞) such that

supp u(·, t) ⊂ B(0, R(t)). (2.7)

An application of Lemma A.1 of the Appendix entails the following estimate.

LEMMA 2.2 Let u be a solution of (1.1) in the sense of Theorem 1.1 to initial data satisfying (1.16).
Let K̃ > 1 be a positive parameter and assume that � and δ are positive constants with the properties
� > R0 and � + δ >

R(T )

K̃
for arbitrary, but fixed T > 0, where R(T ) is the quantity introduced in

(2.7). Then, positive constants d = d(n, N , K̃ ) and C = C(n, N , K̃ ) exist such that

sup
t∈(0,T )

∫
IRN \B(�+δ)

u(·, t)2 + d · (R(T ) − � − δ)2+
∫ T

0

∫
IRN \B(�+δ)

|∇u
n+2

6 |6

�
C · (R(T ) − � − δ)2+

δ6

∫ T

0

∫
A(�,�+δ)

un+2.

(2.8)

3. Stampacchia’s iteration lemma and a first estimate on the support

Combining Lemma 2.2 with an appropriate version of Gagliardo–Nirenberg’s inequality, we may
establish the desired estimate in the spirit of (2.1).
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LEMMA 3.1 Let u be a solution of (1.1) in the sense of Theorem 1.1 to initial data satisfying (1.16)
and assume T > 0 to be arbitrary, but fixed. Suppose that � > R0, δ > 0, and � + δ >

R(T )

K̃
with a

positive parameter K̃ > 1. Then a positive constant C1 = C1(n, N , K̃ ) exists such that

IT (� + δ) � C1 · T
12

nN+12 (R(T ) − � − δ)
12(n+2)
nN+12+

(
IT (�) − IT (� + δ)

δ6

) (6+N )n+12
nN+12

. (3.1)

Proof. Let us first estimate the left-hand side of (3.1) in terms of the quantities appearing on
the left-hand side of (2.8). We apply Gagliardo-Nirenberg’s inequality in the form presented in

Theorem 7.4.1 of [19]. Introducing w := u
n+2

6 , we obtain

(∫
IRN \B(�+δ)

w6
)1/6

� C

(∫
IRN \B(�+δ)

w
12

n+2

) n+2
12 (1−θ) (∫

IRN \B(�+δ)

|∇w|6
) θ

6

, (3.2)

where

θ = nN

nN + 12
.

Rewriting this estimate in terms of u and integrating with respect to time gives

∫ T

0

∫
IRN \B(�+δ)

un+2 � C

(∫ T

0

∫
IRN \B(�+δ)

|∇u
n+2

6 |6
) nN

nN+12
(∫ T

0

(∫
IRN \B(�+δ)

u2
) n+2

2
) 12

nN+12

� C · T
12

nN+12

(∫ T

0

∫
IRN \B(�+δ)

|∇u
n+2

6 |6
) nN

nN+12
(

sup
t∈(0,T )

∫
IRN \B(�+δ)

u2

) 6(n+2)
nN+12

.

(3.3)

Combining (3.3) with (2.8), it follows that

IT (� + δ) � C0 · T
12

nN+12

(
C(n, N , K̃ )

δ6
(IT (�) − IT (� + δ))

) nN
nN+12

· (R(T ) − � − δ)
12(n+2)
nN+12+

∗
(

C(n, N , K̃ )

δ6
(IT (�) − IT (� + δ))

) 6(n+2)
nN+12

= C0T
12

nN+12 (R(T ) − � − δ)
12(n+2)
nN+12+

(
C(n, N , K̃ )

δ6
(IT (�) − IT (� + δ))

) (6+N )n+12
nN+12

.

This proves the claim.

Let us now prove a first estimate on R(T ). We need the following version of Stampacchia’s iteration
lemma (see [20, 21]).

LEMMA 3.2 Suppose that the non-negative and non-increasing function J satisfies with fixed real
numbers r0 and 0 < θ < 1 the estimate

J (r + J (r)) < θ J (r) for all r > r0. (3.4)
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Then, for any r1 � r0,

J (r) = 0 for all r > r1 + J (r1)

1 − θ
. (3.5)

Our result reads as follows.

LEMMA 3.3 Let K̃ > 1 be a fixed parameter and assume u to be a solution of (1.1) in the sense of
Theorem 1.1 to initial data satisfying (1.16). Then a positive constant C = C(n, N , K̃ ) exists such
that

R(T ) � �1 + C(n, N , K̃ )T
2

(4+N )n+8 · IT (�1)
n

(4+N )n+8 (3.6)

for all �1 > max
{

R0,
R(T )

K̃

}
.

Remark. By construction, we have for arbitrary � � �1 and δ > 0:

� + δ >
R(T )

K̃
and (R(T ) − � − δ)+ � (R(T ) − �1)+. (3.7)

Proof. The proof is inspired by the corresponding result in [20]. Without loss of generality we may
assume that R(T ) > �1. Consider for given �1 > max

{
R0,

R(T )

K̃

}
the function

JT (�) := F(T )1/m · IT (�)β/m = (R(T ) − �1)
2(n+2)

(6+N )n+12
+ · T

2
(6+N )n+12 · IT (�)

n
(6+N )n+12 ,

where

F(T ) := (R(T ) − �1)
12(n+2)
nN+12 · T

12
nN+12 , m := 6((6 + N )n + 12)

nN + 12
, β := 6n

nN + 12
.

By virtue of (3.1) and (3.7), JT (�) satisfies for � � �1 the estimate

JT (� + JT (�)) < θ JT (�) (3.8)

with the parameter θ =
(

C1
1+C1

)β/m
. Here, C1 = C1(n, N , K̃ ) is the constant which appeared in

(3.1). Lemma 3.2 entails that

JT (�) = 0 (3.9)

for all

� > �1 + JT (�1)

1 − θ
.

As a consequence,

R(T ) � �1 + JT (�1)

1 − θ
. (3.10)

Inserting the definition of JT (�1), we find that

R(T ) − �1 � C(n, N , K̃ )(R(T ) − �1)
2(n+2)

(6+N )n+12 T
2

(6+N )n+12 · IT (�1)
n

(6+N )n+12 . (3.11)

Rewriting (3.11) gives

(R(T ) − �1)
(4+N )n+8
(6+N )n+12 � C(n, N , K̃ )T

2
(6+N )n+12 · IT (�1)

n
(6+N )n+12 ,

and (3.6) follows in an obvious way.
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4. Estimates of IT (�) by initial mass and proof of the theorem

As the preliminary estimate (3.6) for the radius R(T ) of the solution’s support at time T > 0 still
depends on the free parameter �1, let us look for estimates of IT (�) in terms of T and the initial
mass. We will use the following auxiliary result.

LEMMA 4.1 Let u be the solution of (1.1) considered before and assume that the parameters �, δ

satisfy � > R0 and 0 < δ < �. Then, there exists a positive constant C = C(n, N ) such that

sup
t∈(0,T )

∫
IRN \B(�+δ)

|∇u(·, t)|2 +
∫ T

0

∫
IRN \B(�+δ)

|∇u
n+2

6 |6

� C

δN (n+1)+6
‖u0‖n+2

L1 · T .

(4.1)

Proof. Writing again w := u
n+2

6 and using Lemma A.2 for values of � > R0 and 0 < δ < � (note
that � + δ < 2�!), we find that

(∫
A(�,�+δ)

w6
)1/6

� C

(∫
A(�,�+δ)

|∇w|6
)Θ

6
(∫

A(�,�+δ)

w
6

n+2

) n+2
6 (1−Θ)

+ Cδ
−N

(
n+2

6 − 1
6

) (∫
A(�,�+δ)

w
6

n+2

) n+2
6

with Θ = N (n+1)
N (n+1)+6 . Hence,

∫
A(�,�+δ)

un+2 � C

(∫
A(�,�+δ)

|∇u
n+2

6 |6
) N (n+1)

N (n+1)+6
(∫

A(�,�+δ)

u

) 6(n+2)
N (n+1)+6

+ C

δN (n+1)

(∫
A(�,�+δ)

u

)n+2

.

By conservation of mass, we infer that

∫ T

0

∫
A(�,�+δ)

un+2 � C

(∫ T

0

∫
A(�,�+δ)

|∇u
n+2

6 |6
) N (n+1)

N (n+1)+6 (
‖u0‖n+2

L1(IRN )
T

) 6
N (n+1)+6

+ C

δN (n+1)
‖u0‖n+2

L1(IRN )
· T .

Together with Young’s inequality and (2.6) it follows that

sup
t∈(0,T )

∫
IRN \B(�+δ)

|∇u(·, t)|2 + d(n, N )

∫ T

0

∫
IRN \B(�+δ)

|∇u
n+2

6 |6

� ε

∫ T

0

∫
A(�,�+δ)

|∇u
n+2

6 |6

+
(

C(n, N ) + C(n, N )
N (n+1)+6

6 Cε

) ‖u0‖n+2
L1 · T

δN (n+1)+6
.

(4.2)
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Obviously, this estimate also holds for �′ := � + δ
2 and δ′ := δ

2 . We rewrite it in the following way:

sup
t∈(0,T )

∫
IRN \B(�+δ)

|∇u(·, t)|2 + d(n, N )

∫ T

0

∫
IRN \B(�+δ)

|∇u
n+2

6 |6

� ε

∫ T

0

∫
IRN \B(�+ δ

2 )

|∇u
n+2

6 |6 + Cε‖u0‖n+2
L1 · T(

δ
2

)N (n+1)+6
.

Introducing

G(δ) := δN (n+1)+6 sup
t∈(0,T )

∫
IRN \B(�+δ)

|∇u(·, t)|2

and

H(δ) := δN (n+1)+6
∫ T

0

∫
IRN \B(�+δ)

|∇u
n+2

6 |6

and choosing ε := d(n, N )2−(N (n+1)+7), we find using the iteration procedure presented in [20]
that

G(δ) + d(n, N )H(δ) � d(n, N )

2 j
H

(
δ

2 j

)
+ C(ε, n, N )

j∑
i=0

‖u0‖n+2
L1 T

2i

for j ∈ IN, and in the limit j → ∞ relation (4.1) is obtained.

This permits us to estimate IT (� + δ) in terms of the initial mass.

LEMMA 4.2 Let u be the regular strong solution considered before. Then the following estimate
holds for T > 0 and parameters �, δ satisfying � > R0 and 0 < δ < �:

IT (� + δ) � C(n, N )
‖u0‖n+2

L1 · T

δN (n+1)
. (4.3)

Proof. The homogeneous Gagliardo-Nirenberg inequality on exterior domains (see e.g. [19:
Theorem 7.4.1]) combined with (4.1) gives

∫ T

0

∫
IRN \B(�+δ)

un+2 � C(n, N )
(‖u0‖L1

) 6(n+2)
N (n+1)+6 T

6
N (n+1)+6

(∫ T

0

∫
IRN \B(�+δ)

|∇u
n+2

6 |6
) N (n+1)

N (n+1)+6

� C(n, N )
(‖u0‖L1

) 6(n+2)
N (n+1)+6 T

6
N (n+1)+6

(‖u0‖n+2
L1 · T

δN (n+1)+6

) N (n+1)
N (n+1)+6

= C(n, N )‖u0‖n+2
L1 · T δ−N (n+1).

Now we have collected all the estimates necessary to prove the main result.

Proof of Theorem 1.3. Let us replace �+δ by �′ in (4.3) and let us choose δ′ = �′ − R0. Then (4.3)
becomes

IT (�′) �
C(n, N )‖u0‖n+2

L1 · T

(�′ − R0)N (n+1)
(4.4)
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for all �′ > R0. Combined with (3.6), we obtain the following estimate for R(T ), provided

� > max

{
R0,

R(T )

K̃

}
.

R(T ) � � + C(n, N , K̃ )T
2

(4+N )n+8

(
C(n, N , K̃ )‖u0‖n+2

L1 · T

(� − R0)N (n+1)

) n
(4+N )n+8

= � + C(n, N , K̃ )T
2+n

(4+N )n+8
(‖u0‖L1

) n(n+2)
(4+N )n+8

(� − R0)
nN (n+1)

(4+N )n+8

.

(4.5)

Let us rewrite (4.5) in the form

R(T ) � � + S(T )

(� − R0)α
for � > max

{
R(T )

K̃
, R0

}
(4.6)

with

S(T ) := C(n, N , K̃ ) · T
2+n

(4+N )n+8 ‖u0‖
n(n+2)

(4+N )n+8

L1

and

α := nN (n + 1)

(4 + N )n + 8
.

Our strategy is to minimize the right-hand side of (4.6) for values of � contained in the interval(
max

{ R(T )

K̃
, R0

}
, ∞)

.

For further reference, let us choose K̃ once and for all times such large that

(1 − K̃ )α
1

α+1 + α− α
α+1 < 0. (4.7)

This can easily be accomplished as α does not depend on K̃ . Note that the function

fT (�) := � + S(T )

(� − R0)α

has a global minimum �∗(T ) on the interval (R0, ∞) which is attained in

�∗(T ) = R0 + α
1

α+1 · S(T )
1

α+1 . (4.8)

As a consequence, the minimum value of fT on (R0, ∞) is given by

min
�∈(R0,∞)

fT (�) = R0 + (α
1

α+1 + α− α
α+1 ) · S(T )

1
α+1 . (4.9)

As S(T ) is increasing in T with S(0) = 0, for small values of T the inequality

�∗(T ) > max

{
R(T )

K̃
, R0

}
(4.10)
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is satisfied. Let us prove that (4.10) is in fact true for all T > 0.
Assuming the contrary, there would exist a positive number T ∗ such that

�∗(T ) > max

{
R(T )

K̃
, R0

}
, (4.11)

R(T ) � R0 + (α
1

α+1 + α− α
α+1 ) · S(T )

1
α+1 (4.12)

for all 0 < T < T ∗, but

�∗(T ∗) � max

{
R(T ∗)

K̃
, R0

}
= R(T ∗)

K̃
.

By continuity,

R(T ∗) � R0 + (α
1

α+1 + α− α
α+1 ) · S(T ∗)

1
α+1

and

R(T ∗) � K̃ · �∗(T ∗) = K̃ · R0 + K̃α
1

α+1 S(T ∗)
1

α+1 ,

which gives

(K̃ − 1)R0 � ((1 − K̃ )α
1

α+1 + α− α
α+1 ) · S(T ∗)

1
α+1 .

The latter inequality contradicts (4.7) and therefore (4.10) is true for all T > 0.
Especially in our case, we compute using the definition of α and S(T ):

R(T ) � R0 + C(n, N , K̃ )T
2+n

Nn2+(4+2N )n+8 · (‖u0‖L1

) n(n+2)

Nn2+(2N+4)n+8

= R0 + C(n, N , K̃ ) · (‖u0‖L1

) n
4+nN · T

1
4+nN .

This proves the theorem.
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Appendix

For the reader’s convenience, let us prove the following version of Poincaré’s inequality valid on
annuli in IRN .

LEMMA A.1 Let A = B(R1) \ B(R0), R1 > R0 > 0, be an annulus in IRN and assume

R1 < K R0 (A.1)

for a real number K > 1. Suppose in addition that 1 < p < ∞. Then a positive constant C =
C(N , K ) exists such that the following estimate is true for all u ∈ W 1,p(A) which vanish on
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∂ B(R1) in the sense of traces.∫
A

|u(x)|p dx � C(R1 − R0)
p
∫

A
|∇u(x)|p dx . (A.2)

Proof. It will be sufficient to prove the result for smooth functions u satisfying u|∂ B(R1) ≡ 0.
Denoting the surface element on SN−1 by dSN−1, abbreviating the angular coordinates by Ω and
writing ũ for the function in polar coordinates corresponding to u, we find for r ∈ [R0, R1]:

ũ(r,Ω) = −
∫ R1

r
ũr (s,Ω) ds.

Hence,

|ũ(r,Ω)|p � |r − R1|p−1
∫ R1

r
|ũr (s,Ω)|p ds

� (R1 − R0)
p−1

∫ R1

R0

|ũr (s,Ω)|p ds.

As a consequence,∫
A

|u(x)|p dx =
∫ R1

R0

∫
SN−1

|ũ(s,Ω)|ps N−1 dΩ ds

� C(N )(R1 − R0)
N+p−1

∫
SN−1

∫ R1

R0

|ũr (s,Ω)|p ds dΩ

� C(N )(K − 1)N−1(R1 − R0)
p
∫

SN−1

∫ R1

R0

|ũr (s,Ω)|ps N−1 ds dΩ

� C(N , K )(R1 − R0)
p
∫

A
|∇u|p dx

where we used (A.1) in the second step of this chain of estimates.

In addition, we cite the following version of Gagliardo-Nirenberg’s inequality which can be found
in [12].

LEMMA A.2 Let 1 � r � ∞, p > 0, q ∈ (0, p), m ∈ IN+ such that

1

r
− m

N
<

1

p
.

If Ω ⊂ IRN is bounded with piecewise smooth boundary, then positive constants c1 and c2
depending only on Ω , r, p, m and q exist such that for any u ∈ Lq(Ω) satisfying Dmu ∈ Lr (Ω),
the following inequality holds:

‖u‖p � c1‖Dmu‖a
r ‖u‖1−a

q + c2‖u‖q (A.3)

where a =
1
q − 1

p
1
q + m

N − 1
r

.

In addition, a positive constant c = c(r, p, m, q) exists such that
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(i) if Ω = BR(0), then (A.3) holds with

c1 = c and c2 = c · R−N ( 1
q − 1

p )
, (A.4)

(ii) if Ω = IRN , then the result holds with c1 = c and c2 = 0,
(iii) if Ω = BR2(0) \ BR1(0) with 0 < R1 < R2 where we require 3R1 > R2 if N > 1, then (A.3)

holds with

c1 = c , c2 = c(R2 − R1)
−N ( 1

q − 1
p )

.

Finally, if Ω is an infinite cone, i.e. for given points x0, y0 ∈ IRN , x0 �∈ B1(y0) a set

Cx0,y0 := {z ∈ IRN |z = x0 + λ(y − x0), y ∈ B1(y0), λ > 0},
then (A.3) holds with constants c1 = c(‖x0 − y0‖, r, p, m, q) and c2 = 0.


