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Area-preserving curve-shortening flows: from phase separation to
image processing
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Some known models in phase separation theory (Hele–Shaw, nonlocal mean curvature motion) and
their approximations by means of Cahn–Hilliard and nonlocal Allen–Cahn equations are proposed
as a tool to generate planar curve-shortening flows without shrinking. This procedure can be seen
as a level set approach to area-preserving geometric flows in the spirit of Sapiro and Tannenbaum
[38], with application to shape recovery. We discuss the theoretical validation of this method and its
implementation to problems of shape recovery in Computer Vision. The results of some numerical
experiments on image processing are presented.
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1. Introduction

A commonly adopted mathematical model for a monochromatic plane image is thegrey-level
representation in which the image is described by a functiong defined on a subsetΩ of R2. The
real numberg(x, y) ∈ [0, 1] is the intensity of grey at the point(x, y) and one of the interesting
problems in image processing is to extract from these values the contours of the objects in the image.

On this ground, plane curves deformations have been recently considered in Computer Vision
for the purpose of shape recovery and analysis as well as in relation to image segmentation (see, for
example, [23–25, 37, 38]). In this context, the curve deformation process should be designed in order
to yield both noise suppression in the initial contours and to progressively modify them to a form
which is more manageable for pattern recognition and interpretation. A further important feature of
the process should be that of providing a representation of the object contours across different scales
satisfying the usual properties ofmulti-scale representation theory such as recursivity, locality, grey-
scale invariance, and conservation of inclusions (see [3, 25, 29]).

More precisely, ifC(p, t) : S1×[0, T ) → R2 is a representation of a contour curve parametrized
by the pointp on the curve itself and the real variablet representingscale, the deformation process
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can be described by an evolution equation of the form

∂C

∂t
(p, t) = V (p, t), (1.1)

where the velocity fieldV must be chosen in such a way that, as the scale parametert increases, the
initial contourC(p, 0) is deformed according to equation (1.1) into modified contours fulfilling the
requirements above.

An important example which has been thoroughly investigated both in mathematical literature
[18, 20–22] and in Computer Vision [24, 25, 37] is thegeometric heat flow:

∂C

∂t
= κN , (1.2)

whereκ andN are, respectively, the Euclidean curvature and the inward unit normal ofC . A
relevant feature of the flow (1.2) is curve shortening: the evolution defined by equation (1.2) is in
fact the fastest way to shrink the length of a curve [19]. The shortening and the related simultaneous
smoothing effect induce a desirable noise suppression effect as the scale parametert increases. On
the other hand, a major intrinsic drawback in the application of (1.2) to image processing is the well
known fact [20, 22] that the area enclosed in a planar embedded curve which evolves according to
the geometric heat flow decreases ast increases and that the shape of the object becomes more and
more circular and eventually shrinks to a point in finite time. Such a shrinking effect is indeed an
undesirable feature in image processing applications: the evolving contour will diverge rapidly from
the desired shape causing loss of information.

Two modifications of the geometric heat flow which are simultaneously curve-shortening and
area-preserving have been considered by Gage [19], namely

∂C

∂t
=

(
κ − 2π

L

)
N , (1.3)

and

∂C

∂t
=

(
κ − πρ

A
)
N + αT . (1.4)

In (1.3), whereL = L(p, t) denotes the length of the curve at scalet , the correction term2π
L N

is the component of the length gradient which lies parallel to the area gradient. In (1.4),A = A(p, t)
denotes the area of the region enclosed by the curve,ρ(p, t) = −〈C(p, t),N (p, t)〉 is the support
function of the curve andαT is a tangential component which does not change the shape; then, the
geometric flow is corrected by a homothety magnifying the plane simultaneously with the evolution.
The flow (1.4) has been applied by Sapiro–Tannenbaum [38] to the problem of shape recovery in
image processing in order to overcome the above-mentioned undesirable effects of the geometric
heat flow.

The discussion above indicates that a relevant task in Computer Vision is that of developing
efficient numerical methods for the computation of contours evolving according to length-
shortening and area-preserving flows such as (1.3), (1.4). The direct numerical computation of the
previous flows is, however, not an easy task for image processing applications where, in general,
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several object contours have to be simultaneously detected and, therefore, the simultaneous tracking
of a large and a priori undetermined number of evolving curves is required.

In this paper, whose content was partially announced in [8], we propose a global approach
in order to overcome these computational difficulties which is based on the use of some partial
differential equations models in phase separation theory which can be interpreted, perhaps
asymptotically, aslevel set formulations [12, 16, 26, 33] of length-shortening and area-preserving
flows of type (1.1). The phase separation models here considered (see Section 3 below) are the
Cahn–Hilliard equation and the nonlocal Allen–Cahn equation.

The Cahn–Hilliard equation is

∂u

∂t
= 1

ε
∆(ω′(u) − ε2∆u), (1.5)

whereε > 0 is a small parameter andω(s) is a double equal-well potential taking its global
minimum value 0 ats = ±1. The results of Pego [34], Alikakoset al. [1] and Chen [11] show
that, asε → 0, the zero level sets of solutions of equation (1.5) tend to solutions of the Hele–Shaw
free-boundary problem [10]. It turns out that the evolution of a plane closed curve according to
the Hele–Shaw model is a curve-shortening motion which does not change the area of the region
enclosed by the curve (see, for example, [34]). The corresponding flow can therefore be interpreted
as a curve deformation of type (1.1) with a velocity fieldV implicitly defined by the solution of the
Hele–Shaw problem (see Section 2).

The nonlocal Allen–Cahn equation is

∂u

∂t
= ∆u − 1

ε2
ω′(u) + 1

ε2 | Ω |
∫
Ω

ω′(u) dx, (1.6)

whereε > 0 andω(s) have the same meaning as in (1.5). By the works of Rubinstein and Sternberg
[35] and Bronsard and Stoth [6] it is known that, asε → 0, the zero level sets of solutions of
equation (1.6) evolve according to the general flow (1.1) with normal velocity given by

V = κ − 1

| Γ |
∫
Γ

κ ds, (1.7)

| Γ | denoting the total length of the set of curvesΓ . It is worth to observe that, for a single planar
curve, the motion defined by (1.7) reduces to the one given by (1.3).

We then propose the use of equations (1.5) and (1.6) as computational tools for the recovery of
shapes from images for the following reasons. First, the nonlocal flows obtained as asymptotic limits
from such equations (Hele–Shaw and (1.7), respectively) should indeed regularize the contours
of an image without pushing the evolving curves far away from the desired object boundaries,
because such flows are both curve-shortening and area-preserving. Moreover, the solution of the
Cahn–Hilliard and of the nonlocal Allen–Cahn equations yields automatically also a solution of
the above-mentioned problem of detection and simultaneous tracking of an unknown number of
evolving curves. A further advantage of the proposed approach lies in the possibility (see Sections
4 and 5) to adapt efficiently to the Computer Vision problem the sophisticated numerical analysis
machinery developed for phase separation equations, see [4, 14, 30].



328 I. CAPUZZO DOLCETTA, S. FINZI VITA AND R. MARCH

Another relevant feature of the limit flows for the application to shape recovery is the global
character of the area conservation property: small ‘blobs’ due to the presence of noise in the image
do not persist during the evolution because of the area conservation. On the contrary, a coarsening
process associated to the phase separation equations forces, in general, finer structures to disappear
as time evolves [35]. Consequently, the related models for shape recovery and analysis show an
interesting noise suppression property which consists in a shrinking effect on small blobs. The
results of numerical experiments on both synthetic and real images reported in the paper seem to
validate this approach.

To conclude this introduction, let us mention that a computational approach which is
conceptually similar to the one proposed in this paper but restricted to the curve-shortening flow
(1.2) has been previously suggested by Nochetto and Verdi [31]. They consider the Allen–Cahn
equation of the phase transition theory [2]

∂u

∂t
= ∆u − 1

ε2
ω′(u), (1.8)

whereε > 0 andω are as in (1.5) and (1.6). Asymptotic results (see [5, 13, 15]) show that, asε → 0,
u tends to either+1 or−1, in two regions separated by a sharp interface which moves by its mean
curvature. Therefore, asε → 0, the interface is the zero level set of the solutionu and it consists of a
set of curves which evolves according to equation (1.2). The numerical solution of the Allen–Cahn
equation was then used as a tool for the effective computation of the geometric heat flow which
handles changes of topology during the evolution [30, 31].

2. Area-preserving geometric flows

In this section we review some known properties of area-preserving curve-shortening flows and of
phase separation models which yield such flows for the interface and we point out their relevance for
shape recovery. Let us observe preliminarily that the geometric heat flow (1.2) is the gradient flow
of the length functional on the space of smooth plane curves endowed with the Euclidean metric. If
C(p, t) is a one-parameter family of curves with lengthL(t), then (see [19])

dL
dt

= −
∫ 〈

∂C

∂t
, κN

〉
ds,

wheres denotes the arclength. So the geometric heat flow is the fastest way to shrink the length of a
curve. To keep the area enclosed by the curve constant while decreasing the length, Gage proposed
to subtract the component of the length gradient which lies parallel to the area gradient. Since the
first variation of the area is [19]

dA
dt

= −
∫ 〈

∂C

∂t
,N

〉
ds,

and, for simple closed curves, ∫
〈κN ,N 〉 ds =

∫
κ ds = 2π,
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the geometric evolution equation

∂C

∂t
=

(
κ − 2π

L

)
N (2.1)

was proposed as the gradient flow of the length functional along curves which enclose a fixed area.
An alternative method suggested in [19] is to use the geometric heat flow (1.2) while

simultaneously magnifying the plane by a homothety which keeps constant the enclosed area. The
corresponding evolution equation becomes

∂C

∂t
=

(
κ − πρ

A
)
N + αT , (2.2)

whereρ = −〈C,N 〉 is the support function of the curve andαT is a tangential component which
does not affect the shape. The following theorem about the evolutions (2.1) and (2.2) has been
proved in [19].

THEOREM 2.1 A smooth convex curve in the plane which evolves according to either (2.1) or (2.2)
remains convex and converges to a circle in theC∞ metric.

REMARK 2.2 Since the flow defined by (2.2) and the geometric heat flow are related by dilations,
the two flows share the same scale–space properties. The flow (2.2) has been proposed by Sapiro
and Tannenbaum for shape recovery in order to overcome the undesirable shrinking effect of the
geometric heat flow (see [38]). Conversely, the nonlocal flow (2.1) lacks some important properties
like scale invariance and conservation of inclusions; observe in this respect that if two curves
are tangential at some point and the inner curve is shorter than the outer one, then at some later
time the regions bounded by the evolved curves will certainly overlap (see [19]). Moreover, a
nonconvex curve evolving through (2.1) can develop singularities in finite time (see [35]). However,
the collision and the subsequent fusion of different portions of a curve during the evolution can be
interpreted as the removal of features in the multi-scale representation.

The generalization of (2.1) to the case of many different fronts evolving at the same time has of
course an interest in phase separation theory; it corresponds to take in the equation the velocity field
(1.7), that is

∂C

∂t
=

(
κ − 1

|Γ |
∫
Γ

κ ds

)
N , (2.3)

whose solution defines the so-called nonlocal mean curvature flow.
A conceptually completely different way to generate flows having similar geometric properties

is, not surprisingly, via the motion of interfaces in phase separation models where conservation of
mass enters as a constitutive law.

Consider for example the Hele–Shaw model: letΩ be a bounded and simply connected domain
in R2, Γ∗ be a smooth closed curve inΩ and consider the free-boundary problem of finding a
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functionµ(x, t), t ∈ [0, T ], and a free boundaryΓ = ∪0�t�T (Γt × {t}) satisfying


∆µ(·, t) = 0 in Ω \ Γt , t ∈ [0, T ],
∂µ
∂n = 0 on∂Ω × [0, T ],

µ = λκ onΓt , t ∈ [0, T ],
1
2

[
∂µ
∂n

]
Γt

= V onΓt , t ∈ [0, T ],

Γ0 = Γ∗ on {t = 0},

(2.4)

whereλ is a positive constant related to the surface tension,n is the unit outward normal to∂Ω or to
Γt , κ andV are, respectively, the curvature and the normal velocity ofΓt (with the sign convention
that the curvature of a circle and the normal velocity of a shrinking curve are positive),[

∂µ

∂n

]
Γt

= ∂µ−

∂n
− ∂µ+

∂n
, (2.5)

andµ+ andµ− are the restrictions ofµ onΩ+
t andΩ−

t (respectively, the exterior and interior ofΓt

in Ω ).
Chen [10] established the local existence of a solution of the Hele–Shaw problem for an arbitrary

smooth initial curve, and global existence of a solution when the initial curve is close to a circle.
If we denote byA(t) andL(t) the area ofΩ−

t and the length ofΓt , respectively (and we use
the same notations also for the interface of the flow induced by (2.3)), the following features are
relevant for the application of the two flows to the problem of shape recovery [10, 34, 35].

PROPOSITION 2.3 The following properties hold for the solutions of (2.3) and of (2.4):

dA
dt

= 0,
dL
dt

� 0.

Therefore, both the Hele–Shaw flow and the nonlocal mean curvature flow preserve the area of
the region enclosed byΓt while decreasing its length. In the general case, which occurs in image
processing, different fronts evolve at different speeds keeping the total area fixed. A gradual
coarsening process takes place since the only possible equilibrium state should be that of one or
more discs of the same size.

Let us now consider the theoretical effects of these geometric flows on the evolution of a set
of approximate contoursΓ∗ extracted from a given image (we will discuss in Section 4 possible
ways to do that). Such a set, under suitable hypotheses, can be considered as the union of several
nonintersecting closed curves. The curve evolution generated by the Hele–Shaw (or the nonlocal
mean curvature) flow starting fromΓ∗ should then regularize the contours without pushing the
evolving curves far away from the true contours because the flow is both curve-shortening and
area-preserving.

One could wonder if small ‘blobs’ due to the presence of noise in the image data could
persist during the evolution because of area conservation. This event is not possible, since a noise
suppression property due to a shrinking effect on small blobs takes place. More precisely, for the
Hele–Shaw flow we have the following proposition.
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PROPOSITION 2.4 Suppose that one of the initial curves inΓ0 for the Hele–Shaw flow is a circle
with radiusr . Then, ifr is small enough, the circle shrinks.

Proof. From (2.4),µ(x, 0) is harmonic inΩ \ Γ0 and constant on the circle, then it is constant
inside the circle. Hence on the boundary of the circle we have

µ(x, 0) = λ

r
, V = −1

2

∂µ+

∂n
at t = 0. (2.6)

By the maximum principle for harmonic functions,µ(x, 0) takes then its maximum value onΓ0 ∪
∂Ω . For small enoughr , wecan assume thatµ(x, 0) takes the maximum valueλ/r on the boundary
of the circle, then from the maximum principle it follows easily that on the boundary of the circle
we have

∂µ+

∂n
< 0.

Hence (2.6) impliesV > 0, so that the circle shrinks. �

A similar property holds for the nonlocal curvature flow: this is a well known phenomenon in
phase transition theory related to coarsening processes in which finer structures disappear as time
evolves.

Summing up, the propagation law for free boundaries that arises in the two-phase separation
models considered here exhibits the following properties which are useful for shape recovery:

• curve smoothing and multi-scale representation by means of curve-shortening: suppression of
noise and removal of small-scale features as time (i.e. scale) increases;

• preservation of area: the main evolving contours do not shrink, then they diverge less rapidly
from the desired shape than in the geometric heat flow (1.2);

• simultaneous evolution of all the contours in the image with suppression of small contours due
to the presence of noise.

The setΓ∗ contains a noisy version of the contours in the image plus a large number of small
blobs caused by noise. Because of the curve-shortening effect, after a small time the curvature of
Γt is largest at the boundaries of the blobs. Then the coarsening process starts and the small blobs
due to the presence of noise disappear. Very small particulars in the image are treated as noise,
here as in any other approach, the goal being the detection of the essential contours. The surviving
curves can be considered as the boundaries of the objects of interest. The curve-shortening effect
removes noise from those remaining boundaries and the further evolution yields a simultaneous
multi-scale representation for all the shapes in the image. As usual in shape recovery by means
of curve evolution, the process has to be stopped after a suitable time in order to avoid losing
information ast becomes larger and larger.

3. Shape recovery by phase separation equations

In this section we shortly review the approximation of the Hele–Shaw model (2.4) by means of the
Cahn–Hilliard equation (1.5) [1, 11, 34] and that of the nonlocal curvature model (2.3) by means of
the nonlocal Allen–Cahn equation (1.6) [6, 35].
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It is well known from phase separation theory, that the curve evolution law obtained as the
limit of a rescaled partial differential equation depends on how the time variable in the equation is
rescaled. In the previous section we focused our attention on laws for curve evolution with specific
properties that are relevant for image processing (mainly, the conservation of the area enclosed by
the fronts), such as the Hele–Shaw and the nonlocal mean curvature flows. From the implementation
point of view in image processing however, the direct use of these models is not easy and we
found much more convenient their approximation via the Cahn–Hilliard and nonlocal Allen–Cahn
equations, used with the corresponding time rescaling (1.5) and (1.6). We then discuss how an
algorithm for shape recovery, based on these results, can be designed.

3.1 Asymptotic behaviour of the models

In [34] Pego showed by using formal matched asymptotic expansions that level sets of solutions
to the Cahn–Hilliard equation tend to solutions of the Hele–Shaw problem asε → 0. Alikakos
et al. [1] then rigorously proved Pego’s result under the assumption that classical solutions of the
Hele–Shaw problem exist and, more recently, Chen [11] removed such a regularity hypothesis.

Werewrite the Cahn–Hilliard equation (1.5) as the system


∂uε

∂t = 1
ε
∆vε in Ω × (0, T ],

vε = ω′(uε) − ε2∆uε in Ω × (0, T ],
(3.1)

supplemented with initial and boundary conditions


uε(x, 0) = uε
0(x) in Ω ,

∂uε

∂n (x, t) = ∂vε

∂n (x, t) = 0 on∂Ω × (0, T ].
(3.2)

The property of mass conservation holds as a direct consequence of (3.1) and (3.2):∫
Ω

uε(x, t) dx =
∫
Ω

uε
0(x) dx ∀t ∈ (0, T ]. (3.3)

Let Γ∗ be a smooth closed curve inΩ and assume that the Hele–Shaw problem (2.4) starting
from Γ∗ has a smooth solution(µ,Γ ), with

Γ :=
⋃

0�t�T

(Γt × {t})

in a time interval[0, T ] with Γt ⊂ Ω for all t ∈ [0, T ]. The following theorem has been proved
in [1].

THEOREM 3.1 There exists a family of smooth initial data
{
uε

0(x)
}

0<ε�1 which are uniformly
bounded inε ∈ (0, 1] such that ifuε are the corresponding solutions of (3.1)–(3.2) then

lim
ε→0

uε(x, t) =
{ −1 if (x, t) ∈ Q−

0 ,

+1 if (x, t) ∈ Q+
0 ,

uniformly on compact subsets, (3.4)

lim
ε→0

(ε∆uε − 1

ε
ω′(uε))(x, t) = µ(x, t) uniformly onΩ × (0, T ],
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whereQ+
0 and Q−

0 denote, respectively, the exterior (inΩ × (0, T ]) and the interior ofΓ , (µ,Γ )

being a solution of (2.4).

If uε is a solution to (3.1)–(3.2) and we consider the zero level set

Γ ε := {(x, t) ∈ Ω × [0, T ] : uε(x, t) = 0} =
⋃

0�t�T

(
Γ ε

t × {t}) ,

thenΓ is the limit front ofΓ ε asε → 0, in the sense made precise by the previous theorem.
The above-mentioned result shows that the zero level set of the solution to the Cahn–Hilliard

equation approximates asε → 0 a free boundary that solves the Hele–Shaw problem. In
particular, the mass conservation law (3.3), taking (3.4) into account, corresponds to the approximate
conservation of the area of the region enclosed by the zero level setΓ ε, which becomes exact as
ε → 0.

In a similar way, let us consider now the nonlocal Allen–Cahn problem


∂uε

∂t = ∆uε − 1
ε2 ω′(uε) + 1

ε2|Ω |
∫
Ω ω′(uε) dx in Ω × (0, T ],

uε(x, 0) = uε
0(x) in Ω ,

∂uε

∂n (x, t) = 0 on∂Ω × (0, T ],

(3.5)

where the nonlocal term in the equation plays the role of a Lagrangean multiplier in order to preserve
mass. In [35] the method of matched asymptotic expansions has been used to show that asε → 0
the motion of the zero level sets of the solutions of (3.5) describes a coarsening process, with
velocity given by equation (1.7), which preserves the total area inside the fronts. A rigorous proof
of this convergence has been given, at least for the case of radially symmetric solutions of (3.5) in a
bounded spherically symmetric domainΩ , by Bronsard and Stoth [6].

REMARK 3.2 For a more detailed comparison between the flows induced by (3.1)–(3.2) and (3.5)
and between their asymptotic models, see [6, 35]; the main difference perhaps lies in the case of a
multifront evolution. If we consider for example an initial set made of two or more non-intersecting
discs, their behaviour is not the same. In the nonlocal mean curvature flow the discs keep their form
as time evolves, while shrinking in the increasing order of their size. In the Hele–Shaw flow, on the
contrary, the discs distort immediately, and the effects of even very small discs close to extinction
is still considerable on the whole flow. This appears as a possible breakdown in the convergence of
the Cahn–Hilliard model towards the Hele–Shaw problem in the presence of asymptotically small
discs, even if the essential qualitative properties are preserved.

REMARK 3.3 It should be remarked (see [35]), that both the Cahn–Hilliard and the nonlocal
Allen–Cahn models can be interpreted as particular cases of the generalized viscous Cahn–Hilliard
equation

α
∂u

∂t
= ∆

[
ω′(u) − β∆u + ν

∂u

∂t

]
,

introduced by Novick-Cohen [32] to take care of viscous effects in phase separation models:ν → 0
yields the Cahn–Hilliard equation, whileα → 0 gives the nonlocal Allen–Cahn equation. In
principle, other choices ofα andν could yield interesting models for shape recovery.
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3.2 Application to shape recovery

The convergence results reviewed in the previous section, together with the properties of the limit
models already discussed in Section 2, suggested to us the use of the systems (3.1)–(3.2) or (3.5) to
build a numerical algorithm for shape recovery in image segmentation applications: the zero level
set of their solutions after a short time can be used to recover the boundaries of the objects of interest
in an image.

The double-well potentialω can be replaced for practical purposes by a double-obstacle
potential such as

ψ(s) :=
{

1 − s2 if s ∈ [−1, 1],
+∞ if s /∈ [−1, 1]. (3.6)

With such a choice (see for example [4] for the Cahn–Hilliard model and [30] for the Allen–Cahn
model), the essential properties of the flows are preserved, while the solutions (which are now
solutions of a double-obstacle variational inequality) are forced to remain in the interval[−1, 1] for
all times; more than that, they differ from the extrema±1 only on a narrow transition region of size
proportional toε, so that the use of a dynamic mesh algorithm becomes possible (as in [30]).

We remark that this approach can be still considered as a level set method, since an arbitrary
and a priori unknown number of contours corresponding to several objects can be simultaneously
tracked and recovered from an image, even though, of course, we are not interested in changes of
topology during the evolution of the curves that are object boundaries. Furthermore, the coarsening
effect, which takes place in these models, makes the small contours due to the presence of noise
vanish during the evolution.

Then, an algorithm for shape recovery based on the previous phase separation models should
contain the following steps:

• choose an initial set of contours by means of a suitable pre-processing of the image (see next
secion);

• compute initial data for the phase separation equation from the initial set of curves;

• compute a solution of the equation (several numerical methods are well known for these models
in phase transition theory);

• stop the computation at a suitable timet in order to save the information contained in the
evolving contour (see the comment below);

• plot the zero level set of the solution at different times obtaining a multi-scale representation of
the shapes contained in the original image.

Here, as in related approaches, the choice of the stopping time is a delicate task and essentially an
open problem. One way to implement the stopping criterion is to modify the evolution equation by
introducing an interaction with the image intensity functiong in order to moderate the geometric
diffusion effect when the evolving curve drifts far away from the original shape. For instance, this
interaction can be introduced in the Cahn–Hilliard equation by simply replacing the first equation
in (3.1) with

∂uε

∂t
= 1

ε
∇ · (b(x)∇vε) in Ω × (0, T ], (3.7)
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where a suitable form forb can be the following:

b(x) = 1

1 + η|∇Gσ ∗ g|2 .

Here,η is a positive parameter andGσ is the standard 2D Gaussian function with extentσ , while ∗
denotes the convolution product. In such a way the mass conservation property still holds while the
evolution is slowed down near the ’edges’ ofg, that is for large values of its gradient (for a similar
approach in the mean curvature motion case see [9]). The study of such modified models will be the
object of a forthcoming paper [17]. A different approach based on optimal control ideas has been
proposed in [7].

A final remark is that most of the results discussed in this paper generalize to any space
dimension, so that the models of shape recovery based on the analogy with phase transitions can also
be applied, in principle, to recover surfaces which are the boundaries of objects in three-dimensional
images.

4. Numerical methods and computational aspects

In this section we discuss how efficient numerical methods developed in the context of phase
transition theory can be adapted to the problem of shape recovery, with several convergence results
and error estimates already proved for the discrete solutions. Moreover, here and in the next section
we study the application of those models to the analysis of test images, discussing how some known
algorithms from the literature can be tailored to fit in our framework.

The first and common issue in such applications to shape recovery is the extraction of a suitable
initial set of contours from the given image datumg to be processed. Such a set, here already
denoted byΓ∗, can be considered in the simplest case as the union of several nonintersecting closed
curves. A possible choice, suggested by Shah [39], is to take

Γ∗ = {x ∈ Ω : (∆Gσ ∗ g)(x) = 0, ∇(∆Gσ ∗ g)(x) = 0}. (4.1)

The computation of the zero-crossings of the image convolved with the Laplacian of a Gaussian
function was originally proposed by Marr and Hildreth [28] as a theory of edge detection. It may
be shown [40] that, if∇(∆Gσ ∗ g)(x) = 0 at any point x where(∆Gσ ∗ g)(x) = 0, then the zero-
crossing contours are closed curves or curves that terminate at the boundary of the image. For small
σ the initial setΓ∗ turns out to be close to the ‘true’ contours of the image, even if still noisy [28].

4.1 The Cahn–Hilliard approach

We adopted the splitting method proposed in [14]: the fourth-order Cahn–Hilliard equation (1.5)
is first rewritten as the system (3.1)–(3.2) of second-order equations in the two variables(uε, vε),
and then semidiscretized using continuous piecewise linear finite elements. IfTh denotes a quasi-
uniform triangulation ofΩ of ‘size’ h, the finite element space will be

Vh = {φ ∈ C0(Ω) : φ|τ ∈ P1, ∀τ ∈ Th},
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whereP1 is the set of first-order polynomials, and the splitting algorithm becomes (for simplicity
we have dropped the dependence onε)

find {uh, vh} : [0, T ] → Vh × Vh such that




(
∂uh
∂t , φ)h + 1

ε
(∇vh, ∇φ) = 0 ∀φ ∈ Vh,

ε2(∇uh, ∇φ) + (ω′(uh) − vh, φ)h = 0 ∀φ ∈ Vh,

uh(0) = uh
0,

(4.2)

whereuh
0 is a suitable approximation of the initial datum, and(., .)h denotes the approximatedL2

inner product, given by

(z, w)h =
∑
τ∈Th

∫
τ

Π h
τ (z(x)w(x)) dx, ∀z, w ∈ C0(Ω),

Π h
τ being the linear interpolation operator onτ . Let {φi }i denote the set of basis functions forVh ,

andM , respectivelyK , the (lumped) mass and stiffness matrices of the finite element method; then,
if we set

uh(t) =
∑

i

Ui (t)φi ,

the system (4.2) reduces to the following first-order nonlinear system of ordinary differential
equations: 


M dU (t)

dt + ε(K M−1K )U (t) + 1
ε
(K M−1)Φ(U (t)) = 0,

U (0) = uh
0,

(4.3)

whereΦ(U ) represents the nonlinear term coming from (4.2).
In [14] this approach is proved to yield second-order optimal error bounds for(u − uh) in the

L∞(0, T ; L2(Ω)) norm, provided the termuh
0 is suitably chosen, keeping at the same time all the

relevant properties of the continuous model (such as conservation of mass).
Concerning the time discretization of (4.3), explicit algorithms are useless in practice (a

straightforward stability condition would require a very small time step∆t , according to the
condition number of the matrixK M−1K ). The use of a Crank–Nicholson scheme coupled with
the linearization of the termΦ(U ) gave satisfactory results in the tests. Instability effects are still
present but they do not affect heavily the scheme; actually, only a short time evolution needs to be
considered for our purposes (see the discussion in Section 3.2).

Of course, a fully implicit scheme could be used as well, yielding in principle unconditional
stability. We tested for example the scheme proposed in [4] for the Cahn–Hilliard model with non-
smooth free energy, that is with the double-obstacle potential (3.6); in such a way the problem can be
written as a variational inequality, and the discretization error estimate for the scaling corresponding
to (3.1)–(3.2) reads as

‖u − uh‖2
L∞(0,T ;(H1(Ω))′) + ‖u − uh‖2

L2(0,T ;H1(Ω))
� c

(
h4

∆t
+ h2 + ∆t

)
,
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where(V )′ denotes the usual dual space of a spaceV . However, in order to prove this estimate,
as well as the convergence of the iterative scheme needed at any step to advance in time, a strong
bound on∆t is required with respect toε (that is∆t < 4ε2); since a smallε is necessary for a sharp
detection of the contours, and the optimal order of convergence holds when∆t is of the order ofh2,
the advantages of the fully implicit scheme are in this case partially lost.

4.2 The nonlocal Allen–Cahn approach

For the numerical treatment of the nonlocal Allen–Cahn model (3.5) we preferred to adopt the finite
element approach of [30]. Making use of the obstacle potential (3.6), the problem is then reduced
to a variational inequality and hence to a complementarity system whose resolution leads to the
following explicit iterative scheme: for anyn = 0, 1, ... we look for a pair(U n+1,Λn+1) such that


U n+1/2 = M−1

((
M − ∆t K + ∆t

ε2 M
)

U n + ∆t π
4ε

MΛn+1
)

,

U n+1 = PU n+1/2,

(4.4)

∫
Ω

U n+1 dx = m0, (4.5)

whereU n denotes the vector of the nodal values at timetn = n∆t , P is the componentwise
projection on the interval[−1, 1], while Λn+1 ∈ R is a dynamic Lagrange multiplier needed to
fulfil the mass constraint (4.5), with the constantm0 deduced from the initial dataU0 (as before,
M and K are the finite element mass and stiffness matrices). The fronts are then reconstructed at
any time as the zero level set of theU -interpolated function: since in a short-time evolution they are
not supposed to move so far, for simplicity we have not used in the experiments the dynamic mesh
algorithm proposed in [30], even though such an approach would allow us to strongly reduce the
number of elements far from the fronts, at least when they are well separated.

5. Experiments

In the computer simulations we have done, the two models have exhibited similar performances. The
stopping time has been chosen empirically on the basis of a number of experiments. In this section
we discuss some of them, stressing more on the qualitative aspects than on the technicalities.

A first test was made to verify in practice the area conservation property of the models: the
evolution of a single flower-shaped curve was considered and the area contained in it was computed
at any time iteration. Even for anε of the order of 10−1 only, its shape rapidly converges to a disc
of equivalent size, see Fig. 1. In Table 1 the initial and final values of ‘mass’ and ‘area’ are reported,
respectively computed as

m(n) =
∫
Ω

U (tn) dx, a(n) = |Ω+
n | − |Ω−

n |,

with
Ω+

n = {x ∈ Ω : U (tn)(x) > 0}, Ω−
n = Ω − Ω+

n .
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FIG. 1. Cahn–Hilliard evolution of a single curve,h = 1/63,∆t = 10−5, ε = 10−1, time iterationsn = 0 (the initial front),
1, 2, 4, 6 and 10.

Since the initial datumU (0) is a two-value vector (equal to –1 inside the curve and +1 outside), for
n = 0 the two quantities coincide. After ten iterations the variation is less than 5%.

The effects of the coarsening property were studied on a long-time (Cahn–Hilliard) evolution of
amore complex, even if still artificial, black and white image. In this case the initial set of curves can
be directly chosen as a level set of the interpolated intensity function. Figure 2 shows that when the
diffusion term in the equation is not negligible, different fronts can merge together as time increases.
Further iterations would transform the shape into an annulus and, finally, into a disc. For a smaller
ε, on the contrary, the three balls would vanish independently without merging.

For the same image, perturbed with some artificial noise, we experimented with the filtering
effects of the algorithms. The Cahn–Hilliard approach (see Fig. 3) shows that small blobs due to
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TABLE 1
Values of mass and area for the curve evolution of Fig. 1

Iteration Mass Area

n = 0 0.421 517 0.421 517

n = 10 0.403 177 0.443 689
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FIG. 2. Evolution of a black and white image for the Cahn–Hilliard flow: the original image and its evolving contours after
1, 4 and 10 time iterations (h = 1/149,∆t = 10−6, ε = 10−1).

the noise disappear after a short time while the true contours are smoothed without shrinkage, in
accordance with the theory: then the coarsening property acts like a denoising factor in the evolution.

We also tested the algorithms on real images: Fig. 4(a) shows a picture (256× 256) of a cell
nucleus taken by an electronic microscope. In that case, the straightforward use of the zero-crossings
setΓ∗ given in (4.1) is not very helpful, since it produces too many curves and makes very hard the
reconstruction of a function with such a zero level set to be used as initial datum for the evolution.

Then we adopted a slightly different strategy: the original image was pre-processed by a
threshold method in order to concentrate the attention only on the region of main interest (the
nucleus in this case, Fig. 4(b)), then the initial binary data for the evolution was created using
in a suitable way the sign information on the Laplacian of the (smoothed) intensity function of
the image ((c) and (d)). A short-time evolution with the nonlocal Allen–Cahn model shows in the
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FIG. 3. The Cahn–Hilliard processing: the initial image, the initial set of curves (with noise), the zero level set after 4 and
10 iterations (h = 1/120,∆t = 10−8, ε = 10−2).

last two pictures how the smaller details of the image are quickly filtered while the contours are
smoothed without affecting the size of the cell.
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