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We describe the behaviour of minimum problems involving non-convex surface integrals in 2D,
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1. Introduction

The starting point of this work is the study of minimum problems related to the equilibrium of
elastic crystals (see for example, [15, 16] for the variational formulation, [8, 9] for a derivation of
the model from statistical considerations, [3] for its links with Ising systems, and [20, 25] for an
analogous derivation as a singular perturbation of the Allen—Cahn model). The model problem we
have in mind is that of finding sets minimizing a (possibly highly anisotropic) ‘perimeter functional’
(i.e. a line integral on the boundary, that reduces to the usual perimeéterig regular andy is
identically 1), of the form

min{/ Y (ve)dH : Ep C E}, 1)

dE

where the minimum is computed among all sEts” R? with boundary of clas€* and containing

a fixed open setEq. Here, s is a Borel functionyg denotes the (appropriately oriented) tangent to

E and ! is the one-dimensional (Hausdorff) surface measure. Another model problem is that of
local minimizersof the same anisotropic perimeter, related to

min{/ ¥ (vg) dHY : |Eg AE| ga}, @)
JE
wheres > 0 is a fixed constant A A B stands for the symmetric difference of the satand B).
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Problems of the above type, and some of their perturbations, can be tackled following the so-
called direct method of the calculus of variations. First, problems (1) and (2) can be ‘relaxed’ by
admitting as competing sets all sets with finite perimeter (see [5, 18]). Thénisiflarger than a
fixed constant ors! and if its homogeneous positive extension of degree one ousSiideaconvex
function, classical results imply that the surface integral in (1) and (2) is lower semicontinuous
and coercive in the appropriate topology of th&-convergence of characteristic functions. The
application of the direct method of the calculus of variations thus yields the existence of minimizing
sets of finite perimeter and, {2 is smooth and strictly convex (hypotheses are usually made’on
sincey is positively homogeneous and hence non-convex on radial directions), regularity results for
minimal surfaces assure that such minimizers are regular. On the other highid ifiot convex, then
the minimum problems (1) or (2) may not possess solutions. It can be seen (see for example, [21])
that the application of the direct method of the calculus of variations gives minimizing sequences
with increasingly wiggly boundaries (even though with equi-bounded total area). Their limits can
be described (see [4]) as minimizers of a ‘relaxed’ problem of the same type: in the case of (1), for
example,

min{ Vve)dH : Eo C E], 3)

dE

where the new surface energy densjtyis simply the convex envelope of the one-homogeneous
extension ofy to R2. This process may lead to non-strictly convex integrands, which in turn may
yield non-unique and non-smooth solutions. In this case, it may be necessary to consider higher-
order terms in the surface energy to explain solutions with sharp corners and facets (see also [30];
a similar phenomenon is studied in [19]). Note that so far the problem can be framednn an
dimensional framework, upon replacing curves by hypersurfaces.

In this paper we study, in a genuinely two-dimensional setting, the case when we add a singular
perturbation by a curvature term in (1) (or analogously in (2)), obtaining a minimum problem of the
form

min[/aE(w(vE) + SZKZ) dH!: Eo C E}, (4)

where now the minimum is taken among sets v@thboundary and (x) denotes the curvature of
dE atx. In this way, oscillating boundaries are penalized if they introduce large curvatures.

In a way similar to [22, 24, 25], in order to understand the behaviour of minimizers for (4) we
may study the (equivalent}rescaled minimum problem

min{/E(M +8K2) dH: Ep C E}. (5)
d

&

We assume for simplicity tha#’ (ve) = v (vg) only on a finite number of directions; . .. , vn
(N > 2). One can easily check that under this assumptianust satisfy
Sin(vj+1 — v) sin(v — v;)
v > —————Yy(i) + ————
sin(igr—v) 0 sin(vig — )
(we identify vy 41 With v1). Note that this condition rules out a smooth behaviour mear. . , vy
as in the energies considered in [19]. The problem can then be rewritten as

min[/aE(@Jrsxz) dH: Eo C E}, (6)

&

Y (Vit1), Yve W,vi+1),Vi=1...,N

wherey : S — [0, +00) vanishes only on those preferred directions.
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E E;
FiG. 1. Two approximations with simple vertices.

Our main result is to describe the asymptotic behavious as 0 of problem (6), showing
that the minimizersE, tend, up to translations, to seEswhich in turn minimize a limit energy.
This limit energy can be computed by using the techniquds-obnvergence (see [10, 11, 13]). We
define the functionalF, on sets of finite perimeter as

/ (‘/’(:E)+5K2)dH1 if E is of classC2
Fe(E) =177 v

+00 otherwise

and we compute theif-limit G with respect to the_! and L&)C-convergence of characteristic
functions. As an example, in the simplest case wieés symmetriowith respect to both axes and
the preferred directions coincide with the coordinate directions, the domain of th&limisimply
the set of the coordinate polyrectangles &1&) = c#(V (E)), whereV (E) is the set of vertices

of the polyrectangl€. The constant can be computed as
c=2 /S Vo(s) dH(s), (8)
whereSis the minimal arc irS! connecting(1, 0) and(0, 1). Hence, the limit problem is trivially
min{c#(V(E)) : E acoordinate polyrectangleEy C E} 9)

and the minimizers of the limit problem are simply all coordinate rectangles contdigimdpte that
the limits of minimizerskg, of (4) minimize both (3) and (9), so that they are coordinate rectangles
(since they must minimize the number of vertices) contairiiggpf minimal perimeter (since the
energy in (3) coincides with the Euclidean perimeter on polyrectangles).

In the general case, we show that the domain of the limit energy consists of those polygons
whose tangents belong to the set of the preferred directians. . , vy}, and that the limit energy
G is much more complicated than (9) Bfcontains only simple vertices (which can be also phrased:
if 0E is locally Lipschitz) we define

FE) =Y {90~ . v @) : ve VB, (10)
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FIG. 2. Approximation giving a non-local effect.

whereg is given by

g(v1, v2) =2 Vo(s) dH(s) (11)

A(v1,v2)

(A(v1, v2) is the minimal arc connecting andv; in St) andv®(v) are the two tangents at If,
loosely speakingE is such that approximating sequendgsmay be chosen ‘uniformly close’ to
E then we prove thaB(E) = F(E). Inthe general case, the val@E) is obtained as

G(E) = inf{lim_inf F(Ej): E; — E, Ej with simple vertice%;. (12)
j

This formula hides two types of degenerate behaviours. First of all, we have to take into account that
when two or more vertices coincide the getay be approximated in many different ways and (12)
highlights that the approximation of minimal energy must be chosen. Figure 1 shows two different
approximationsEj with simple vertices of a s with a ‘double’ vertex. In addition, the energ@y
may benon-local in asense, a polygon may be completed by adding segments pointing in some of
the preferred directions, which must be considered as degenerate parthefenergyG(E) takes
into account the ‘minimal’ of such completions. In Fig. 2 the corresponding optimal approximation
is pictured. This effect is analogous to that highlighted in [6] for functionals depending on the
square of the curvature. As a consequence of formula (12), we get that the study of minimizers
of problems involvingG corresponds to the analysis of minimizing sequences of corresponding
problems involvingF. In particular, we deduce that the limit problem of (6) admits as solutions all
the convex polygons with tangents in the preferred directions.

Once the form of thd -limit is computed, we may apply our results also to other problems for
which the solution is less immediate, such as

min{faE(‘p(:E) +s,<2) dHY : |Eg AE| gs}, (13)

or

min{/aE(‘”(”E) +ex2) dH: + |Eo A E|], (14)

&

where Eg is some fixed set. The latter problem is also of interest in some models in Image
Processing where energies depending on curvatures and on (the number of) vertices are considered
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(see [12,23,27]). Note that the solution to problem (14) may be given by & sstisfying
G(E) < F(E) (see the example in Section 6.2).

Finally, we note that, since the solutions of the limit problem are polygons with fixed
orientations, it is very tempting to link this approximation result to the theory of crystalline growth
as recently developed (see [7, 17, 28, 29]), where non-strictly cofneme considered.

The paper is organized as follows. Section 2 contains the statement of the main results in terms
of I'-convergence and the necessary notation. In Sections 3 and 4 we prove the lower and upper
bounds for the limit energy. In Section 5 some cases are dealt with when the limit en&ygalis
i.e., it can be written as a sum of energies concentrated on vertices. Finally, in Section 6 we consider
the pathological case when we do not have a boundedness condition on the perimeter, giving a
qualitative description of the shape of sequences with equi-bounded energy. We also give an example

whereI'-limits computed in thé-* andL . topology differ.

2. Main results
2.1 Statement of the main results

For every open seE C RR? of classC? and everg > 0, we define the energy

F.(E) =/ <}(p(v)+8/<2) dH?t (15)
dE \ €

wherev = v(X) is thetangent directiorto 9 E in X, defined in such a way th&t,, —v1) coincides
with the outer unit normal t6 E in x. With ! we denote the one-dimensional Hausdorff measure.
The quantityc = «(x) denotes theurvature ofdE in x, andg : St — [0, +00) (we identify St
with R mod 2r) is acontinuous function with the following property:

Jvg,...on eSS, vi<uvp<un < UN+1=Vv1+ 27 such thaﬁfl(O) = {v1,...vn}
We will always assume that
[vi —vip1l <m, i=1,...,N.

We will identify sets E with their characteristic functionyg, and then the functional given by
formula (15) will be identified with the functiond, : L1(R?) — [0, +o00] given by

1
/ (—(p(v) + 8/(2) dH! if u= xe andE is of classC?
9E \ &

400 otherwise

Fe (U) = (16)

With an additional slight abuse of notation, we say that a sequence afsgts R? converges to
E CR?2in LY(R?) if xg, — xe in L1(R?).

Forfy, 0, € S, 61 # 65 + 7, let A, 0,) denote the shortest of the two arcsShconnecting
01 and 62. We assume thai\y, ¢,) is oriented in the direction going fromy to 6». We define
g: St x St — [0, +00) in the following way:

(17)

2 Vo) dHw) if 6 ef{vi,...on} i =1,2
g(01, 02) = Awy.00)
o0

+ otherwise
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Note thatg(62, 61) = g(61, 62).
An admissible polygois a setP € R2 whose boundary is a polygonal composed of segments
whose directions lie in the séty, ... vn}. We set

P ={P : Pisan admissible polyggn

We also define the class
R = [P eP:oPis piecewisecl} ,

and we callregular admissible polygonthe elements ofR. The difference between a general
admissible polygon and a regular admissible polygon is that each vertex of the second is the endpoint
of exactly two sides.

Given a polygorP in R?, we define the se¥ (P) < R? of thevertices of Pto be

V(P)={xecdP : 9P isnotClatx}.
We also define the function&r : P — R in the following way:

g~ (v),vt(v)), IifPeR;

Fr(P) = 3 veV(P)
~+00, if PgR.

Here,v~ (v), v (v) denote the directions of the two sides intersecting &V (P). This functional
will be identified with a functionaFz : L1(R?) — [0, +o0] in the same spirit of (16).
We also set
G =sc (Fpr),

wheresc™ denotes the sequential lower semi-continuous envelope, understood in the sense of the
L 1-topology with uniform bounds on the perimeters, namely

sc (Fr) (E) := inf{liminanR(En) . En — Ein LY(R?), supH'(3En) < +oo}.
n

REMARK 2.1 It can be easily checked th& is finite only on (characteristic functions of)
admissible polygons. Moreover, given an admissible polyg§orthere always exists a sequence
(Pn) of regular polygons which converge Bin L1(R?), and for which sug #(8P,) < 400 and
sup, Fr(Pn) < +o0. In fact, it is sufficient to take

Pnz{xeP:dist(x,aP)gé}. (18)

Note that in general the sequence given by formula (18) does not recover the infimum in the
definition of G(E).

REMARK 2.2 Given an admissible polygoR, there always exists a sequende,) of regular
polygons which converge t& in L1(R?), and for whichG(P) = Fx(P,) for sufficiently large

n. In fact, whenever the quantityr (P,) remains bounded, it ranges over a finite set of numbers,
and the infimum is always attained.
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Our main result is the following -convergence theorem (for a general introduction to the
subject we refer to [11, 13]).

THEOREM2.1 Fore > 0, letF, : LY(R?) — [0, +oc] be the functional given by formula (16).
Then

r-lim F. =G (19)

e—0
with respect to the convergencelif(R?) with uniform bound of the perimeter. By (19) we mean:

(i) (closure) if sup H1(E,) < +o0, sup. F¢(E¢) < 400 andE, — u in L1(R?) then there exists
P € P such thau = xp;

(i) (I-lim inf inequality) for all P € P and for allE; — P in LY(R?) with sup. H(E,) < +o0,
we haveG(P) < liminf, F.(E,);

(iii) ( I"-lim sup inequality) for allP € P there existE, — P in L1(R?) with sup. H(E,) < +o0
such thaiG(P) = lim; F.(E;).

REMARK 2.3 (Convergence of minimum problems) From Theorem 2.1 we obtain the convergence
of the minimum values of problems (13) and (14) to the minimum values

min{G(P) ‘Pe?P, |[EgAP| < a} = infi Y g @.vTW) PR, [EoAP|< 5},
veV(P)

and

min{G(P) 4+ |EgAP|:Pe P} - inf{ 3 g0 @ v ) +[EoAPI: P e R}
veV(P)

respectively, provided that there exists a sequence of minimizers with equi-bounded perimeter. This
property is a well known result of-convergence, once we notice that the equi-boundedness of
the perimeters ensures compactness of the minimizing sequence (upon, possibly, a translation), and
that the constraints or the additional terms are ‘compatible’ Witbonvergence. To check this for
problem (13), it is sufficient to notice that a slight modification of the argument in the proof of
Theorem 2.1(iii) allows us to suppofgy A E| < §. On the other hand, it is clear that the addition

of the perturbation in (14) is compatible, since it is continuous with respect to'tte®nvergence.

REMARK 2.4 Theorem 2.1 remains valid K, takes the form
1
F.(E) =/ (—(p(v) +£K2> dH + cHY(DE), (20)
JE \ €

with ¢ > 0, i.e. if we add a term proportional to the lengthad. In this case, we similarly modify
Fr(E) by setting
FR(E)= D g0~ ().v" (@) +cH@E)
veV (E)

onR. Note that in this case the equi-boundedness condition on the perimeter is redundant.
We refer to Section 6 for the case when we drop the equi-boundedness condition on the

perimeters and we consider thq}x convergence . We conclude this section by deducing a
convergence result for the minimum problems in (1) as an example of application of Theorem 2.1.
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COROLLARY 2.1 Lety andy be as in the Introduction. Lé&y be a bounded connected open set
and letE, be minimizers for the problems

m, = min{/aE(tﬁ(vE) + 82K2> dHY: Ep C E}.

Then, to within a translation and a passage to a subsequghgeonverges to a polygoR which
minimizes both

m= min{/ T(vg)dH: Eg C E} (21)
0E
and
m® = min{ 3 g @.ovtW):EgCE.Ee R} (22)
veV (E)

Proof. We just sketch the proof, including details only for the passages involVitgnvergence.

By a relaxation argument (see [4]) and the density of sets with regular boundary we may suppose
thatE, converges to a minimizeg of (21), which is connected since suclg. On the other hand,
E. is also a minimizer of

m® = min{/aE<@ +8K2) dH! — ? cEp C E}.

Definep = ¥ — . By using the construction of Section 4, it is easily seen that we have

m < ¥ (ve,) dHY < m+o(e),
1=

and thatk, is ano(1)-minimizer of

m® = min{/E(M + 8/<2> dHl: o C E}
Gl

&
- mini/;E(&E) +e;c2) dHl: Ep E}.

&

We may apply Theorem 2.1 and Remark 2.4 as the perimet&; @ equi-bounded sincg¢ > ¢
We then obtain thak is a (convex) polygon minimizing both (21) and (22). d

2.2 Notation

We introduce some preliminary notation and definitions.
Given a polygorP in R2, we define aide of Pto be the closure of a componentad® \ V (P);
we also define
5(P) = min{ length ofs : sis a side ofP}.

If ¥ : [a,bi] > R2 i = 1,2 are two curves withy1(by) = y2(ap), we definey® x 32 :
[ai, by + by — ay] > R%as

yi t € [ag, bs]

1 2
t) =
= xyHM yz(t—b1+a2) t € [b, by + by — ay].
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Similarly, we define inductively

yl*_._*yk:<y1*__.*yk—1)*yk_

Given a curve : [a, b] — R?, we denote by infc) its image. Ifc is of classC?, andt € [a, b] is
such that/(t) # 0, we definac(c(t)) to be the curvature af atc(t).

Given two sequence@A,), (Bp) of subsets ofR? such thatA, N B, = ¢ for all n, and given
v € St, wesay that(By) aligns with(Ay) in the directionv (or that(Bp) and(Ay) are in line with
the directionw) if for everyé > Oiitis

<48, Vxe A, VyeB,, for n sufficiently large

We say that a family of curveg, : (a,, by) — R? aligns in the directiorv if for every n > 0
and for every sequence of pait&n, Yn), Xn, Yn € iMm(yn), With |Xn — yn| > n, and such that
¥t (Xn) > ¥ X(yn), the sequencexy) aligns with(yy) in the directionw.

Given a piecewis€?! curvey : S! — R?, and given a poink which does not belong to iw),
we define indx, y) to be the winding number gf aroundx, namely (in complex notation)

. _ 1w
nd(v- ) = o /sl y(t) —x

Finally, we say that two segmerits;, X1, [y1, Y2] € R? do not intersect transversallf
(X1, X2) N (Y1, Y2) = 0. (NT)

Givenés, 6o € St, the sunmy; + 62 will denote, unless it is explicitly remarked, the sum as elements
of the groupS! endowed with its natural structure (i.e the sunRafodulo 2r).

3. The I'-liminf inequality
This section is devoted to the proof of tiie liminf inequality in Theorem 2.1.
We consider sequenceégn)  R2, e, — 0T for which

(H)  xg, » uin L1(R?);
(H2)  supg, HY(DEp) < +o0;
(H3) sup, Fq,(En) < 4o0.

Our first aim is to prove that the sequeri&,) converges i1 (R?) to some admissible polygon
P. In fact we have the following result.

PrRoPcsITION 3.1 Lete, — 0 and let(Ey) satisfy hypotheseéH1)—(Hs). Then there exists an
admissible polygorP € P such thau = xp, and for which there holds

G(u) < liminfaFe, (En). (23)

Before proving Proposition 3.1 we introduce some preliminary results.
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LEMMA 3.1 Leta,b,§ e R,a <b,§ > 0, and letj € ¢—1(0). Then for every curve : [a, b] —
A vi,) Of classC with

n(@) = v + 34, no) = vy -4,
we have
b1
f (; e(nt) +¢ IIf;(t)llz) dt > g(vi, viy1) +0s(1), (24)
a

whereos (1) — 0 ass — O.

Proof. This is a simple consequence of the Young inequality: in fact we obtain

b /1 b
[ (Goman +eniwR) a =2 [ Voum o
a a
Vi41—6 Vit1
s2 [ 7 sz [ et o,

i+6
which is the desired inequality. O

Now we consider a family of curves, : St — R? of classC? with the following properties:
1 . d v 2
Sup/ — (ﬁ) + én (— ﬁ) d =M < 400, (25)
n Jst \én [ynl dt |ynl

sup/ [¥nl dt < +o0. (26)
n Jst

We suppose also that the curvgsare parametrized proportionally to their arc length, namely that
there holds

1
IPn(t)] = — / 17| ds; forallt € St and for alln € N.
21 Jq

We want to describe the limit shape of the curggsvhenn — +o0. In order to do this, we set for
>0

S =S"\(vi—68vi+81U---U [un — 8, vn +8]),
and

C®) = inf g(v). 27)
VES
If #: [a,b] - S is a curve of clas€?, then there holds clearly

b1 1
/ (gﬁﬂ(ﬁ(t)) + 8|I7'7(t)||2> dt > Z (b—a)C(%); (28)
a

hence, using (25) and (28) with= y,, ande = &, we deduce

1 7 £n L, (O 2 enM
H-({t € [0, Tal : yn(1) € SH < c® Jyes <8n<ﬂ( o] ) +énk (Vn(U)) dt < co)
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From this inequality we deduce the existence of a sequ&nee 0 such that

LY(p) = 0 asn — 400, (29)
where we have set O
Yn
Ih={test: = € Sgn} .
" { ()]

Since & is open, the components ¢f are at most countable: denote hi/ = (crnj , GA), j =

1, ..., kn, those components df, for which ))n(a,{) + ;)n(b,j]). From assumptioriHz) and from
Lemma 3.1 it follows that sypk, < +oo and so, passing to a subsequence, we can assume that
kn = k for all n. We also set

ko
Jh=s"\Jn. (30)
j=1

LEMMA 3.2 Let(8]', o"*1) be a component al, such that
Y@M = |ynl (v £8n),  for somev; € {v1, ..., N}
Then]/n|(9r|?’0£1+1) aligns in the direction;.
Proof. Letn > 0, and letan, B € (6], /1) be such thatyn(an) — yn(Bn)| > 1. Then, sincen

is parametrized proportionally to the arc length, there holds

Bn
1 < Iyn(an) — yn(Bn)| < f Iyn®] dt = Iyl L1((an, Bn)), (31)

Qn

so in particular we have

— <L < L, Bo) < 2.
sup [yi| Il
Hence by equation (26) the quantiti€s((an, Bn)) are uniformly bounded from above and from

below. Set
Pn =/ Yn(D) dt; n =/ Yn(t) dt.
(Otn,ﬂn)\|n (Oln-ﬂn)m'n

Equations (26) and (29) imply thag — 0 ash — +o0. We also have
/ ) dt = [yl L1((an, Bn) \ In) vi +/ (" (®) — Iynl vi) dt,
(o, )\ In (etn, B\ In

so from (31) and the definition df, we deduce
on = |¥nl L1((a@n, Bn)) vi +0(1). (32)
From this expression and from the fact tlwat— O it follows that

) —ynlem) - T P o) = o).

) — @l len+ml ol
This concludes the proof. |
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The next lemma shows that,, restricted to a component af,, converges uniformly to a
segment in directiom; parametrized by arc length.

LEMMA 3.3 Let(gl, aﬁ“) be a component al, as in Lemma 3.2. Then, given apy> 0, there
existsn, € N such that

ln(Bn) — ynlan) — I¥nl (Bn — an) vill < p, Vo, Bn € (0, op ™), Yn=>n,. (33)

Proof. This follows easily fromyn(8n) — yn(a@n) = pn+ n, €quation (32), and the fact that — 0
asn — +oo. [l

Let us now introduce some additional notation. We define the class

it 4y st - R2is piecewiseCt, L € {v1, ..., vn) ae. inSk i =1,...,k}.

[
Lety = {y1,...,y%} e C. Then for alli im(y') is composed by a finite number of segments with
directionsvj,, ..., vj, . WedefineF : C — R in the following way:

K i
= Z I(WVjns Vinga)-

i=1 h=1

PROPOSITION 3.2 Let ¢y and let (E,) satisfy hypothesegH1)—(Hs) above. Letyr{, i =
., | (passing to a subsequence we can suppose that the nlindbéardependent of) be
parameterizations of the components&,. Then there exist a polygoR € P such thau = xp,

there exist integerh, k, k < h < |, and there existy = {y1,..., X} e C with the following
properties:

(M) yd — y1,j=1,...,k uniformly onSt, andyd — xi € R2, j =k + 1, ..., h, uniformly
onSt.

(I2) the segments of iy) do not intersect transversally;
(I3) for a.e.x € R2,itis YK, ind(y', x) € {0, 1}, and xp(x) = 3K, ind(y', x);
(I's) F(y) < liminfnFe, (En).

Proof. Leti e {1,...,h}, and consider the sequence of cur\pé,swhich parameterize theth
component ob Ej,. Th|s sequence satisfies conditions (25) and (26), hence we can repeat for them
the constructions above. Lé,t be the counterpart of the s&i for the curveyn We can also suppose

that the number of componentsﬂ# is a constank’ independent ofi. From Lemma 3.3 it follows

that

up to translationy, — »' uniformly onSt, for some curve/' € C, (34)
or

up to translationy, — x' uniformly onS*, for some point' € R?. (35)
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Up to a permutation of the indices, there extisk € N, 0 < k < h < | such that(ynl), e (yr',‘)
converge uniformly inS' to somey?, ..., y¥ € C, andthat (1), ..., () converge uniformly
in S to some points<kt1, ... x" € R2. Definey to bey = {y1,...,yX}, sothatalsoy € C.

Condition (I7) is automatically satisfied. Conditioi) follows easily from the fact that the sets
E, are of clas<C?.
From equations (34) and (35) we deduce

k h
H2(B,) =0, where B, = (U im(y')) U ( U x'). (36)
i=1 i=k-+1
By the continuity of the winding number with respect to the uniform convergence we have

h h
limy > ind (v, ) = > _ind (', %), forallx € R?\ B,
i=1 i=1

hence, since the index is integer-valued there holds

> ind(yp. %) =D ind (', ), for nlarge and for alk € R?\ B,.

i=1 i=1
From this we can deduce that, setting

h
P= {x eR?\ B, : limy Zind(y,'wx) = 1},
i=1

we have

xeP = xeE, fornlarge
x¢gP = x¢E, fornlarge

This implies that
XE, — Xp asn — +oo, a.e. inR?,

and proves conditio/3). Property(14) follows from Lemma 3.1. O

LEMMA 3.4 Suppose thap € C satisfies conditiongl1) and(I2) in Proposition 3.2. Then there
exists a sequence of regular polygai#%) € R such that

xp, = xp INLYR?;  Fr(Py) < F(). (37)
Proof. For the proof of this Lemma we refer to [14]. O
Finally, we are in position to prove Proposition 3.1.

Proof of PropositiorB.1 Let P be the polygon given by Proposition 3.2, and(Bf) € R be the
sequence of regular polygons given by Lemma 3.4. Then, by equation (37) and by prdperty
there holds

FrR(Pn) < F(y) <liminfnFe, (En).

Finally, by the definition ofc we have

This concludes the proof. |
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4. The I'-limsup inequality

The goal of this section is to prove tli&lim sup inequality in Theorem 2.1. Starting with a regular
admissible polygorP, we maodify it near its vertices and we obtain a sequence of Bgtsf class

C2 which converge td® and such thak,, (En) is as small as possible. Then we treat the general
case of an admissible polygon by approximating it with regular polygons.

PrROPCSITION 4.1 LetP € R be an admissible regular polygon. Then, given any sequenee
0t, there exists a sequence of sé,) of classC? such that

xg, — xpin LY®R?);  limsupF,(En) < FR(P).
n

Proof. Let v be a vertex ofP: since P is regular, there are exactly two sidesfintersectingv.
Without loss of generality, we can suppose that the directions of these sides, which we ddnote by

andl,, arev; andv, respectively. Let. : (—% ll, 3 |I2|) — RR2 be defined by
v—tvy, te —%|1,0];
() = ’ (38)
v+tvy, te 0,—|2].

The curvel defined in this way parametrizes partlpfor t < 0 and part of; fort > 0. Our aim
is to find a sequence of regular curvgs: [—% l1l, 3 |I2|] — R2 with the following properties:

1 1
An — A uniformly on [_E 1], > |I2|] ; (39)
, 1 An 5
imo [ = o[22 ) + w2 ) ot = gOun, v2). (40)
(=3 123 021) \&n * \|2n]
Sincey is assumed to be of clags! in St \ {v1, ..., vn}, the following Cauchy problem:

0 -1
Yt = Vely®) ( 1 0 ) y(®

v1+v2
0 = .
y(0) 5

(41)

admits a unique maximal solutiam : (a,b) — S, with —co < a < 0,0 < b < +o0. Itis
immediate to check that is aC! increasing function which tends ta (respectivelyy,) ast — a
(respectivelyt — b).

For everyc,d € (a, b), withc < 0 < d (c andd will be taken sufficiently close ta andb),
definee = ¢ — (u(c) —v1) and f = d + (v2 — u(d)); note thate < ¢ < d < f. Wecan find a
nondecreasing function: [e, f] — A, ., of classC?, such that

ne =vy; ne=0; (42)

n(f)y=vy;, (=0 (43)
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n(t) = u(t), t e (c,d);
N < 2[u(c) —v1|, te(ec; (44)
)] <2va—u(d)], te(,f).

11 11
szl £5 ||2|] for

, te|-11el;
na(t)=[vl te[ s 5 1] e] 45)

11
V2, f, £ 2 ||2|] .

Fore > 0, letn, denote the unique continuous extension td the interval[—
which

Finally, for en — O, definein : [—% ll, 1 ||2|] — R2to be

t s 1 1
xn<t>=v+/ A I e I
0 en 2 2

Sincen,, is anSt-valued curve of clas€?, it follows thatin is of classC? and is parametrized by
arc length. Fot < 0 it turns out that

t
An(t)—k(t)=v+/ Nen <i> ds—v—tiy
0 &

n
ene s t s
2/ Nen <_) d5+/ Nen (—) ds—t.
0 €n ene &n
Since|n,,| = 1, and sincey,, (t) = vy for t < e, it follows that
An(t) — A(t) = O, uniformly fort € [—% 4], 0] )
In the same way one can show that
An(t) — A(t) = 0, uniformly fort € [0, 31l ] ,

so we have proved (39).
Using the definition ok, and the change of variab?; =y, we find

el 11, PN ,
J— _— + 2 )\. ) dS:/ . + . ) d ;
./%||1| <8n (p(l)tn|) enk“(An) 7% %Hﬂ <§0 (778 ) (T]g ) ) y

then, taking into account equation (45), one has
f

/%l,nl'zl (w (nen) + (ﬁsn)z> dt =/e (<p (Men) + (ﬁen)z) dt.

Dividing the interval(e, f) into (e, ¢), (c, d) and(d, f), by equation (41) we get

f
[ (o) +(5)°) < e (SUpfp + Supﬁ§n>
e

(e,0) (e,c)

+g(v1, v2) + | f —d| (SUP¢+ supfiszn).
d.f)y  @f
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Using the expression & f, and taking into account (44), we deduce

(&,0)

f
f (¢ (1e0) + (0)?) Ot < G01. v2) + u(©) = w1 (sup¢+4|u(c> — vl )
e

+lv2 — u(d)| (SUDrp + 4] — U(d)|2> .

(e,0)
Hence, choosing = c(n) andd = d(n) depending om and such that
lu(c) — vi| + vz —u(d)| — 0 asn — 400,

also (40) follows.

Now consider a componerd of dP. Let vy, ..., vj, denote an ordering of the vertices 6f
along the parametrization af and letxj be the curve defined above corresponding to the vertex
vj, ] =1,...,ig. Then we can choose as parametrizationdathe piecewisez? curvei g given
by

A = A1 % - % Ajg.
Forj e {1,...,ip} letrjn be a sequence of curves which satisfy (39) and (40) with 1 and
v~ (vj), vt (vj) instead ofv; andv,. If we consider the sequence of curves

)\.p’n =)\.1’n koo X )"i@,nv ne N,

they will converge uniformly to. g on their domain(ag, bg). In general the curve.g  is not
closed, but sinceé g is closed there holds

ron(@o) —Agn(beg) — 0, asn — +oo.

Consider the curves n. Since the directions of its two rectilinear parts are linearly independent, it
is sufficient to modify slightly the length of these parts in such a way thaj transforms into a
closed curvé.g p.

Repeating this procedure for all the components Bf we obtain a seE, whose boundary
is parametrized by the union of the curvesg ). The sequencé, will satisfy the required
properties in the proposition. O

REMARK 4.1 From the proof of Proposition 4.1 it follows that we can choagesatisfying (40)
and

An coincides withi in a neighbourhood o{—%|l1|, %|I2|} D A — Alloo < 26| + | f(N)]) en,
(46)
wheree(n) = c(n) — u(c(n)) + v1 and f (n) = d(n) + u(c(n)) — vo.
As an immediate consequence of Proposition 4.1 we have the following corollary.

COROLLARY 4.1 (I'-lim sup inequality) Let P € P be an admissible polygon. Then, for every
(en) With en, — OT there exists a sequence of sEtsof classC? such that

En— PinLY®R?» and  limsupF, (En) < G(P).
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Proof. By Remark 2.2, there exists a sequenBg)k C R of regular polygons such that

xp = xp in LXR?); limsupFr(Po) = G(P);  supHL(3Py) < +oo.
k k

Then, by Proposition 4.1, for evekye N there exists a sequen(:Eﬁ) of sets of clas€? such that
EX - R Fe (EX) — Fr(Po), asn — +oc.

Hence we can choose a sequence of natural nunmglersvith n(kz) > n(ky) if ko > kg such that

1
- <= ky < -
Jres e gy S Fen(ER < Fr(PO+
So, if we choose
En = EX, fornk) < n < n(k + 1),
the sequencék)) satisfies the desired properties. O

5. Somelocal cases

In this section we study some specific cases for whichitHienit G has a local expression, namely
it is the sum over the vertices of an energy depending only on each single vertex.

5.1 Anon-symmetric case

In this section we treat the following particular case. We assume that the furcBatisfies the
conditions

(i) ¢ € CL(SY;
(i) 9~ 1(0) = {v1, ..., vn}, and for alli we have—v; & ¢~1(0) if v € ¢~ 1(0).

Under these hypotheses we will prove thiatim._.o F. has a local expression. Namely, to every
vertex of an admissible polygdn is associated a quantig(v), andI'-lim,_.¢ F.(P) is the sum of

E(v) over the vertices of P, see Proposition 5.4. In order to state this result precisely we introduce
some additional notation.

Let P be an admissible polygon, and lete a vertex ofP. Letl, ..., I be the sides oP
which intersect ab. If condition (i) above is satisfied, then for each of these segnignis =
1,..., 2k, isuniquely determined a tangent directiotj) = vi; € ()}

To eachlj we can associate an orientatief(l j) with respect ta, namely we set

oy(lj) = =1, ifl; is oriented toward;

, . j=1...,2k
oy(lj) =1, if —1j is oriented toward,

Ifthe segmently, . . ., 2, are ordered in such a way that(lj) vi; < oy(lj) vi, < - < oy(lj) Vig,
then clearly it must be

op(lj) - ou(lj41) = -1, i=1...,2k—-1, and op(l2k) - oy (l1) = —1.
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DEFINITION 5.1 An admissible decompositian of v is a partition of 1, ... ., Iz in pairs(l;”, I;"),
i =1,...,k, such that
o) =-1 o(H =1 i=1...k (AD;)
and
A AT A vADL =1k T # ] (ADy)

where[v(l,)), u(IrT)] in the above formula denotes the segmerik?r]'oining v(lp) andu(lf{). We
set also
2, = {w | wis an admissible decomposition foy.

REMARK 5.2 Every vertexv € V(P) admits an admissible decomposition. In fact, if the vectors
Vi, - - ., Vigy, are ordered in such a way that < vi, < --- < vi,, then one can take

It =

li_:|2i—1’ i [9i i=1,...,k

To each admissible decomposition= {(I;", Ii+)}i of a vertexv, we associate the energy(w)
defined by

k

Y =Y gl viH). (47)

i=1

and we define

E(w) = min{y(w) | w € 2,}. (48)
LEMMA 5.3 Lety € C satisfy conditiong%) and(13) in Proposition 3.2, and I€® be the polygon
associated tyr from (I3). Letv € V(P) and letly, ..., I be the segments of which intersect
v. Letl, ..., I be the segments dfi, ..., 1} which are oriented toward, and letl;, ..., 1}
be the elements offs, ..., I} which, following the parametrization of, are afterl;, ... I
respectively. Thew) = (Ij_, IJ*), j =1,...,k, is an admissible decomposition of

Proof. Property (AD1) is immediate to verify. Conditiofl AD») is equivalent to the fact that
adjacent sides must have opposite orientations. |

PROPOSITION 5.4 Supposep satisfies conditions (i) and (ii) above and Btbe an admissible
polygon. Then

G(xp)= »_ E@). (49)

veV(P)

Proof. Let us prove first the-liminf inequality. Lete, — O, let(E,) satisfy hypothese@H;) —
—(Ha3), and letu = xp. Lety e C be given by Proposition 3.2. Thenf is given by Lemma 5.3,
there holds

Foy= Y  E@).

veV(P)
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Finally, using equation (48) and propeit¥s) in Proposition 3.2 we get

Y. E@< Y E@)) =F(y) <liminfaFe, (En).
veV(P) veV(P)

This proves thd -lim inf inequality; let us now turn to thé'-lim sup inequality.
Letv € V(P) and letw, be an admissible decomposition ofwhich realizes the minimum
energy, namely for which
V(wy) = E(v).

The set of the admissible decompositiangs whenv ranges ovelV (P), determines an element
y € C in the following way.
Given a sidd! of P, are uniquely determined two vertices andv, and two indiceg; andis
for which, if we se@y = { (73, 7} and@z = [17%,.17,)] , we have
’ ’ I ’ ’ I

11 -

=1F =1
1, i2,2
Letl? = Ii; -, reasoning as above, there exist an unique vargean unique indexs for which, if

we sefog = [(Ii*3, Ifg)}_ , there holds
’ ’ |
2 —
1" =152 =l s
Continuing in this way, we obtain a first segmehitfor which 11t = 1|7 . Letc' : [of, '] — R?,
i =1,..., j be parameterizations of the sidésand consider the closed curyé defined by

ylzcl %ok Gl
Up to reparameterizations, we can supposejhas defined orSL. In the same way, we define the
curvesy?, ..., yK: St — R2 until all the remaining sides d? are considered.
Now we fix a numbeM > 0, a sequence of positive numbe&rsconverging to zero, and we
consider the set
An = {UBwms,(0) v e V(P)}.

Let y* be the curve defined above, and§gt= {t € S' : y1(t) € An}. Theset&] is a finite

union of closed intervaISx%" , ,3%"], i =1,..., j1, and we denote byo_r;l,l’ rnl,|)' =10
the components o8! \ &1, where we have takesi' = g7'. SettingGh! = yH i i and
n sPFn
ALi 1 s
G’ =y It iy, itis dear that
e

Of course, we can write a similar expression$dt . . ., yK.

We observe that the_maﬁ%', i=1....k!l=1...,j,are union of two rectilinear curves
with directionsy”' and v'J;' (following the order of the parametrization), while the cur@h% are

rectilinear with direction)'J;I .
We define also the curves

GO =gl O+ (W +u), telo A
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where the above sum’ + v''is now a sum of elements 2. It follows from property( AD,) that

the images of the curve$' are all disjoint when varies from 1 tk, andl varies from 1 toj;. We
have also

G B e @Y @R

ﬁ— _ m, fora”i=1,...,k,|=l,...,ji. (50)
@'y e @ @™

Now we choose a function : [0, 1] — [0, 1] of classC*> and which satisfies the following
properties:

n = 0 in aneighbourhood of 0
n = 1in aneighbourhood of;l (51)
=0 <2 In'| <

and fora, b > 0, letnap : [0, 1] — R? be defined by

Na,b(t) = < bj(tt) ); t € [0, 1].

Using simple computations, one can check that
b
| (na,p®)] < 4, forallt € [0, 1]. (52)

Werrecallk (na,b(t)) denotes the curvature gf b atnan(t).

Fixi € {1,....k},1 € {1,..., ji}, and consider the poing; (8") and&;' "1 (a'™1); then by
equation (50) there exist unique numbar$ > 0, and an unique affine isometfyof R? for which
the curveT o 5, p possesses the following properties (we omit the dependenaghofl on the
indicesi, | andn):

Tonab© =& (i) Tonap(d =8 e ™
(Tonab) @ =vi"s (Tonap) (1) =v}.

One can easily check that
b <26, a>15s; for n large
see Section 2.2 for the definition 8fFrom these equations and from (52), it follows that

8n
s(P)’

(53)

T ' 8
(Tomnab) .‘< n_. k(T o nab)| < 16

|(T o nap)| s(P)’

Denote by@{' the curvena pn, wherea, b are chosen as above depending dnn, and consider

)/n _Cll é%’l*ﬁrl{z *E% I *Cl I
It follows from the first equation in (53) that i is sufficiently large, then the curveﬁﬁ', i =

, K are simple, mutually disjoint, and the union of their images is the boundary of a piecewise
(:2 setEn C R2. Itisclear thatE, — P in L1(R?).
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Let e, — O: for everyi € {1,...,k} and everyl € {1,..., i}, leta! b etc., be the
analogous of, b, ¢, d in the proof of Proposition 4.1 when we considéf, v andv'!. Since
¢ is assumed to be of clagd!, we can choose, — 0 andé€"!'(n), f':'(n) with the following
properties:

Sn _
en (J€1 (M) + [Ty —

@ limy, ~+o00 foralli € {1,...,k}andeveryt € {1,..., ji};

o1 _ (8 _
(i) lim e C <§8n> =0;

see (27) for the definition ().
We have

1, (CHly .y 1 /8 16\ 2
/ _¢(7(~?|) )dt—i—en/ K?Chd < —=cC (:5n) + &n <T) 57
0.1 &n M(Cr')| [0,1] en S S

From property (ii) above and from (53), it follows that

Iimn/ i(p( ((?fl)/)dt—i—en/ K?(Clhdt) =o. (54)
1 en MCHY| 0,11

By Remark 4.1, for every € {1,...,k}, eweryl € {1,..., ji} and everyn sufficiently large it
is possible to choose a curv_lé;l o', BT — R2 such that

—il iy . .
Ch © — &' ] < 2en (€ 1+ T () (55)
éin’l coincides witte):! in a neighbourhood of’;', g\'}: (56)
1, @Cly i 0o
/'| O —gp( (—PI) )dt+/'| . anKZ(CIn’I)dt — g(v'_’l,v'jgl). (57)
lom A1 En - M(Cp )| len . Bri']

Let3' be the curve defined by

~i —i, 1 =i i,2 i i
Pl=Cr % ClsCyox .- xCl x Gyl

From (56) it follows that the curvér,i1 i =1,...,k, are curves of clas€?, while (55) implies
that they are simple, mutually disjoint, and the union of their images is the boundarg dkat
En € R2. Again,E, — P in L1(R?). Moreover from (57) one can deduce that

limsup, Fe,(En) < Y E(v).
veV(P)

This concludes the proof. |
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5.2 Asymmetric case

In this section we treat the case in which the admissible polygons are polyrectangles, and the
function ¢ is symmetric with respect to the axgsandy. A direct proof of Theorem 5.1 is also
presented in [10], Appendix B.

THEOREMS5.1 Lete;, e be the canonical basis B, and suppose that satisfies the conditions
e H0) ={v1,....v4}, where vi=e, =&,  vz=-€, =-6&, (58)
and
go:=g(vi,viy1) Iisindependentaf=1,...,4. (59)
Then the admissible polygons are polyrectangles, and for éveryP
G(P) = go x #{vertices ofP}.
Proof. Let us prove first thd'-lim inf inequality. We note that iP € R, then one has
Fr (P) = #{vertices ofP} = #{sides ofP}. (60)

Let E € P, and letEx € R, Ex — E in L1(R?). Then, since it must be{#ides ofEy} >
#{sides ofE} for k large, it follows from (60) that

Fr(Ex) > #{sides ofE} > #{vertices ofE}, for k large

Hence we have also
G(E) = sc (FRr)(E) > #{vertices ofE},

which is thel-lim inf inequality. Let us prove now th&-lim sup inequality. Given a polyrectangle
E, and given a number > 0, consider the sk, defined by

E, = {x € E : dist(x, dE) < o}.

Then, ifo is sufficiently small,E, € R, and #sides ofE,} < #{sides ofE}. This concludes the
proof. |

6. Pathological cases

In this section we consider the case in which the uniform boundedness of the perimeter is not
required in the definition of convergence. In this situation, it is possible to have the convergence in

the L .(R?) sense without having convergencelit(R?), so we are led to defining

G(E) = inf {liminfnF.,(En) : En — Ein LL.(R?).

We recall that, by Theorem 2.1G(E) = inf {liminf,F. (En) : En — Ein LY(R?), sup, Ha
(0En) < 400}, 0 itisclearlyG(E) < G(E). In Section 6.1 we describe the asymptotic shape
of the subsequencé&g,) for which sup, F, (En) < +oo0, highlighting similarities with Section 3.
However, in generaB < G. In Section 6.2 we are able to exhibit a functiprand a polygorP for
which G(P) is strictly less tharG(P).
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6.1 Asymptotic shape of minimizers

In this section we describe the limit shape of a sequence of Egifor which just condition(Hz)
holds, while condition{H2)—the uniform boundedness of the perimeter—is lifted.

We suppose thal E,, possesses just one connected component; the general case requires only
simple modifications. Le,, be a parametrization &fE,, proportional to the arc length. First, we
note that Lemmas 3.1 and 3.2 remain unchanged, so we can define the quantitied |, and J,
with |15] — 0, just as we did in Section 3. In general, we do not have uniform convergence on the
components ofl, as in Lemma 3.3. However, it can be recovered under a suitable rescaling.

LEMMA 6.1 LetJ, be defined as in (30), and I@l}, arﬁ”fl) be a component ad, such that
@) = |ynl (v £8,)  forsomev; € {v1, ..., N}

and such thalyn (0" — yn(e/*1)| — +oo asn — +oo. Let 7 : (61, o' *1) be defined by

Tn(t) = () — yn(BM).
Y06 = (o) "
Then we have
sup  yn(t) —vit] = 0, asn — 4oo.

te@ ot

Proof. We have|;,(t)| < C on 8/, o"1), and moreover

1 b 1 .
/ —g( dt</ —w(ﬁ) .
o en " \ ¥l ©hofth en " \lvnl

Hence, considering the cung&, we are in the same situation of Lemma 3.3, so our statement

follows. O
Passing to a subsequence, we find an intégandk sequences of points}), .. ., (x,'ﬁ) such that
dist(yn(1n), {x}. ....xK}) — 0, asn — +oo.
In this case, the mutual distances between the paintsan diverge. However, it turns out that the
sequences of poin{s?, . . ., x,'ﬁ} arrange in ‘clusters’, and the limit shape of some rescaled portion
of Ej, is still polygonal.
In fact, let ‘ _
dy = sup{Ix, — xA| i, j € {1.....K}Li # j},

and consider the sequence of sets
El = dhH =t (En —xD.

Let ! be a parametrization GfEL. Then, there exists a numblet < k andk; sequences of points
e (x%’kl) such that

dist(y,2(1n), (x>, ..., xtk) - 0, asn — —+oo.
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From Lemma 6.1, it is easy to see that the sequéfjceonverges irL1(R?) to some admissible
polygonP?! e P.

If we choose a different rescaling for the $&t, we can obtain some ‘finer’ structures of these
sets. In fact, consider the set of indides ...,ij} € {1, ..., k}, for which

limy@hH X! — x>0,  1=1....],
and defined? to be _
d2 = sup|x! — x| : 1, hefir,....ij}1 #h});

itis clear that(d})~*d2 — 0. Consider the sequence of sEf%
E2 = (d?) "1 (En — x}).

Then, using the arguments above, one can checkgthat P2in L (R?), whereP? C R?is a set
whose boundary is composed of segments, half-lines or lines oriented in the diré¢etians, vy }.
In some senseR? could be considered as a polygon with some sides of infinite length.

Of course, the same result holds true if one considers suitable rescalings at thexjpdants

i £ 1.

6.2 Anexample in whicks # G

In this section we consider the following particular case, namel(0) = {v1, ..., vs} with
and
g(v1, v2) = g(v2, v3) = g(v4, v5) = g(v1, v2) = L; g(vs, v1) =5. (62)

Letpi,q € R%,i =1,...,3, be given by

PL=(0,0, p2=(10, p3=(11; w=20, =@G0, w=2D,

and letP be the polygon defined as follows (see Fig. 3(a)):

3 3 3 3
P=1> tipilt >0,Zti=1}u:2tiqi|ti >0,) ti=1f.
i=1 i=1 i=1 i=1

It is clear from (61) thaP e P. We show that in this cas€(P) is strictly less tharG (P).

In fact, let (En) € R be a sequence of sets of cla8$ as in Fig. 3(b). It is clear that the
boundary ofE,, has just one component and from (62) one can checkRhaP,) = 17 + o(1),
whereo(1) — 0 ash — +o0.

Now, suppose by contradiction that(P) = G(P) < 17, namely that there exist&,) C R2
with

En, — Ein LY(R?), SUpH1(dEn) < +oo, limnFe, (En) < 17.
n
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(b) e)

F En En

FIG. 3. A set withG(P) < G(P) and its optimal approximations

Passing to a subsequence, we can assume that the number of the comporddtisoh fixed
numberk independent ofi. By Lemma 3.1, it turns out th&. (En) > 9k + 0o(1), so, since we are
assuming thak,, (En) < 17+ o(1), it follows thatk = 1.

Let yn : St — R? be a parametrization dfE, proportional to the arc length. Then we can
apply Proposition 3.2, and we find a curve St — R2, y € C, for which y, — y uniformly on
St, and for whichP = {x € R? : ind(y, x) = 1}.

Consider the set

A={teS :1<@)xt) <2yt e{vs, va}}.

Sincey has just one component, it must Be# ¢, and since-v3 and—v4 do not belong te—1(0),
it should bey (A) C 9P, which is a contradiction.

REMARK 6.1 It is possible to haveG(P) < G(P) also when the (strong)! convergence is
required in the definition ofG. In fact, if ¢ is of classCl, one could choose a sequence of
approximating setéEp) as in Fig. 3(c). Reasoning as in Section 5, one can proveRhéE) =
174 o(1).
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