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Morphological instability of pores and tubules
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We present a linear stability analysis of a uniaxially stressed, hollow cylindrical tubule, where the
mass transport mechanism is surface diffusion driven by surface curvature- and elastic-energy. We
find that there are always two distinct eigenmodes for any choice of wavenumbers, applied stress,
and geometry. We also find that applied stress has a destabilizing effect, increasing the range of
unstable wavenumbers. For any choice of applied stress and geometry, the most dangerous mode is
axisymmetric, and can be either sinuous or varicose depending on choices of geometry and applied
stress. The case of a cylindrical pore in a stressed infinite solid emerges as a limiting case.
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1. Introduction

Thin solid films are becoming increasingly important in technological applications, especially in
the rapidly expanding field of microelectronics. A thin film formed on a substrate, for instance,
may evolve over time and break up into small islands, a particularly undesirable result in the case
of interconnects in an integrated circuit. Mass transfer may occur by a number of mechanisms, for
example evaporation/condensation, chemical dissolution, electromigration, and bulk, and surface
diffusion; the one typically dominant at elevated temperatures is surface diffusion. The seminal work
on evolution by surface diffusion, Mullins [11], formulates the equations for surface energy-driven
diffusion. This model has been extended to more complicated situations, for example rods and
spheres [12], lines on substrates [10], and films [15, 17, 18]. Work has also been done on extending
this model to include diffusion driven by elastic-strain energy [2, 5, 6, 16].

The case of a thin, solid cylindrical rod, a whisker, evolving via capillarity-driven surface
diffusion was originally discussed by Nichols and Mullins [12]. In that case, the diffusion is driven
by surface energy, or equivalently, the mean curvature of the surface. Linear stability theory shows
that such a whisker is unstable to small-amplitude axisymmetric perturbations whose wavelengths
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FIG. 1. The geometry of the tubule.

exceed the circumference of the unperturbed cylinder, a result identical to the classical Rayleigh
instability of a liquid jet with surface tension.

The effects of elastic stress on morphological stability were studied initially by Asaro and
Tiller [2], who considered the combined effects of both capillary- and stress-driven surface diffusion
on the morphology of a two-dimensional semi-infinite solid under tensile loading. Their linear
analysis demonstrates that the wavenumber of the fastest growing mode is proportional to the
square of applied stress and inversely proportional to surface tension. Sridharet al. [16] examined
the instability of the interphase interface in a composite composed of plate and rod precipitates of
one material embedded in a matrix of another. They, likewise, found that applied stress always has
a destabilizing influence. Colinet al. [6] examined the case of a stressed, solid whisker subjected
to axisymmetric disturbances and found that the range of unstable wavenumbers increased with
increasing applied stress. They also identified maximally unstable wavenumbers in the limit of
large applied stress. Kirillet al. [9] have examined capillarity- and elastic strain energy-driven
surface diffusion of solid rods, with no a priori restriction on the symmetry of the perturbation.
An interesting corkscrew-shaped instability was found to dominate for a range of values of applied
stress. The axisymmetric case of Nicolls and Mullins is recovered as applied stress tends to zero.

This paper considers a stressed, cylindrical tubule with annular cross-section (see Fig. 1) for
small-amplitude instabilities. The perturbations of the inner and outer surfaces of the tubule are
coupled via the elastic fields in the material. We find that, for any choice of wavenumbers and
control parameters, there are always two distinct eigenmodes, each of which represents a combined
disturbance of the inner and outer surfaces. It is found that the ‘most dangerous’ (i.e. fastest-
growing) mode is axisymmetric for any choice of radius ratioη and applied stress. Hereη = Ri/Ro,
whereRi andRo are the unperturbed inner and outer radii, respectively. Asη → 0+ (pinhole bore),
one mode takes on the characteristics of the solid whisker mode [9] (this one will be referred to as
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thesolid-like mode ‘S’), and the other begins to resemble the mode associated with the void problem
(thevoid-like mode ‘V’). These statements will be made more precise in the analysis that follows.

We also examine several other limiting situations, in particular the limit of small applied stress,
the limit of large axial wavenumberk, and the ‘thin-shell limit’ (η → 1−). In particular, for largek,
a skin-depth effect is found: disturbances decay rapidly with depth into the shell. In the thin-shell
limit, results compare favorably with the lamellar stability results of Sridharet al. [16], when the
inner and outer radii are made large. In addition, asymptotic expansions in ‘thinness’ of the shell
are employed to give simple formulae for the growth rates and eigensolutions.

After formulating governing equations and boundary conditions, we analyze the stability of
the ‘void’, a long cylindrical hole in an infinite solid matrix. The morphological instability of
such microscopic channels has been observed in practice [13]: such voids have been artificially
introduced in titanium ion-implanted sapphire substrates, and were seen to ‘heal’ during high-
temperature annealing. The results presented here are related to earlier work by Colinet al. [5]
in which the axisymmetric perturbations of a pore channel were studied. They analyzed the surface
evolution of a cylindrical pore, when the surrounding solid is subjected to constant uniaxial stress
and the perturbations are axisymmetric. Their findings for critical and most dangerous wavelengths
in the large stress limit are identical to those for the whisker, as they should be; in either case,
the cutoff and most dangerous wavelengths are small (when scaled on pore/whisker radius), and
a curved surface appears flat when seen on a small length scale. In other words, they recover the
values obtained by Grinfel’d [7] for a stressed planar surface. In addition, it is found that there is
a qualitative difference between the±1 modes between the void and the solid whisker; ask → 0
growth rates are bounded away from zero for the solid whisker [9] in contrast to neutrally stable
modes for the void.

2. Problem formulation

2.1 Equations and boundary conditions

Consider a tubule consisting of a linearly elastic, isotropic material with traction-free boundaries.
Denote these surfaces byr = r i(θ, z, t) and byr = ro(θ, z, t), respectively, where(r, θ, z) are
cylindrical coordinates. Hence, the displacement field,u = (u, v, w), is governed by Navier’s
equations,

0 = ∇2u + 1

1 − 2ν
∇(∇ · u) , (1)

for r i < r < ro, |z| < ∞, and 0� θ < 2π . Traction-free boundary conditions on the inner and
outer surfaces are

T · n̂ |surface= 0 , (2)

whereT is the stress tensor andn̂ is theoutward-pointing unit normal vector. We assume periodicity
in the z-direction. The mass transport mechanism is assumed to be capillary- and elastic-energy-
driven surface diffusion; hence, the evolution equation relating normal-velocity of each surface to
gradients in surface chemical potential is

Vn = n̂ · ∂x
∂t

= b∇2
s

(
−κ + 1

2γ
Ti jεi j

)
, (3)
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where x is the position vector for a point on the solid surface,∇2
s is the surface Laplacian,

κ = −∇s · n̂ is twice the mean curvature,γ is isotropic surface tension (equal on the two interfaces),
andTi jεi j is strain energy density at surface pointx. The constantb contains materials parameters
that characterize the tubule surfaces;b = DsγΩ2S0/kT , whereDs is the surface diffusivity,Ω is
the atomic volume,S0 is the number of surface atoms per unit area, andkT is the thermal energy.

We introduce dimensionless variables:x = Ro x∗, t = R4
o t∗/b, Ti j = E ε̃ T ∗

i j , εi j = ε̃ ε∗
i j , u =

ε̃Ro u∗, whereE is Young’s modulus,̃ε is adimensionless scale factor, andTi j andεi j are stress and

strain components, respectively. To be more specific, here we setε̃ = T (0)
zz /E , i.e. thezz-component

of the basic-state applied uniaxial stress (see Section 2.2) divided by Young’s modulus. Notice that
length, time and displacement are scaled using the constantouter radiusRo of the hollow cylindrical
rod. With these scalings, and dropping asterisks, Hooke’s Law becomesTi j = 2µ̂εi j + λ̂εkkδi j ,
whereµ̂ = µ/E andλ̂ = λ/E . The normal-velocity condition becomes

Vn = ∇2
s (−κ + βTi jεi j ), (4)

where

β = RoE(ε̃)2

2γ
. (5)

Theelastic parameter β is a ratio of a characteristic strain energy to that of the surface energy on
theouter surface in the basic state. Navier’s equations (1) look the same as before.

2.2 Linearization

Let the basic cylindrical state be given by the displacement fieldu(0) = −νr r̂+zẑ (uniaxial tension),
whereν is the Poission ratio and,r̂ andẑ denote unit vectors. Allow a disturbance of this state by
writing

u(r, θ, z, t) = u(0) + δu(1)(r, θ, z, t) + O(δ2), (6)

r i(θ, z, t) = η + δr i
1(θ, z, t) + O(δ2), (7)

ro(θ, z, t) = 1 + δro
1(θ, z, t) + O(δ2). (8)

Here,δ is the amplitude of the perturbations assumed to be small in magnitude. The linear stability
theory corresponds to retaining only theO(δ) terms.

Linearizing the traction-free boundary conditions yields the three equations onr = 1,

(
1 − ν

ν
u1,r + u1 + v1,θ + w1,z

)
r=1

= 0 (9)(
u1,θ + v1,r − v1

)
r=1 = 0 (10)(

u1,z + w1,r
)

r=1 = 2(1 + ν)ro
1,z, (11)
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and onr = η: (
1 − ν

ν
u1,r + 1

η
u1 + 1

η
v1,θ + w1,z

)
r=η

= 0 (12)

(
1

η
u1,θ + v1,r − 1

η
v1

)
r=η

= 0 (13)

(
u1,z + w1,r

)
r=η

= 2(1 + ν)r i
1,z . (14)

Hereu1, v1, andw1 are ther , θ , andz components of the linearized displacement field. The normal-
velocity equation on the outer surface is,

ro
1,t = −

(
∂2
θ + ∂4

θ + 2∂2
θ ∂2

z + ∂2
z + ∂4

z

)
ro
1 + 2β

(
w1,θθ z + w1,zzz

)
r=1 (15)

and on the inner surface it is

−r i
1,t =

(
1

η4
∂2
θ + 1

η4
∂4
θ + 2

η2
∂2
θ ∂2

z + 1

η2
∂2

z + ∂4
z

)
r i
1 + 2β

(
1

η2
w1,θθ z + w1,zzz

)
r=η

. (16)

Since Navier’s equations are linear, theO(δ) term u(1) also satisfies the same equations.
Collectively, equations (9)–(16) are a system of partial differential equations with coefficients
independent ofθ andz; hence, normal-mode solutions can be sought, i.e.


u(1)

v(1)

w(1)

r i
1

ro
1


 =




U (r)

V (r)

W (r)

r̃i
r̃o


 ei(mθ+kz)+σ t , (17)

where the axial wavenumberk is real, the azimuthal wavenumberm is an integer, and the growth
rateσ is complex. In order to solve this problem and identifyσ as a function ofm andk, weneed to
solve Navier’s equations for the linearized displacement fieldu(1). This problem can be simplified
by representingu(1) in terms of Papkovich–Neuber potentialsψ andφ [14] as follows:

u(1) = 4(1 − ν)ψ − ∇(x · ψ + φ) (18)

where

∇2ψ = 0, (19)

∇2φ = 0. (20)

The elastic solution for the annular interior can be written as a linear combination of six
terms (involving the modified Bessel functionsIm and Km); hence, six unknown coefficients are
introduced (here we have set thez-component ofψ to a constant to ensure periodicity of the
linearized displacement in thez direction). These six, along with the two perturbation amplitudesr̃i
andr̃o, satisfy an 8× 8 linear system obtained by substituting (17) into the traction-free conditions,
(9)–(14), and normal-velocity conditions, (15) and (16). The characteristic equation (relating growth
rateσ to wavenumbersm andk, and to parametersβ andη) is obtained by setting the determinant
of the coefficient matrix equal to zero. See [8] for additional details.
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FIG. 2. Plot of growth rateσ versus axial wavenumberk for β = 1 and azimuthal wavenumberm. Poisson ratioν = 1/3.

3. The void problem

3.1 Description of the problem

Consider the special case of a cylindrical hole within a material that fills all of space. The study
of pore stability is relevant to the issue of high-temperature healing of crack-like and channel-like
defects in materials [13]. Given that the normal vectorn̂ pointsout of the material, the formulation
is similar to that in Kirill et al. [9], with the traction-free boundary conditions being applied on
the interior surface of the cavity. In the expressions for the Papkovich–Neuber potentials, modified
Bessel functionsKm(kr) (which remain bounded asr → ∞) are required.

Figures 2 and 3 are plots ofσ versusk for various values ofm andβ. We see that the mode
m = 1 grows forβ = 1 and decays forβ = 0.1. We find that asβ increases, the number of growing
azimuthal modes increases. For example, ifβ = 10, all modes with|m| � 15 grow.

A typical value ofβ can be estimated for a tubule within copper. From equation (5) an upper
bound onβ is given by

β = Ro(E ε̃)2

2γ E
� RoY 2

2γ E
, (21)

whereY is yield stress for copper. Note the inequality follows sinceE ε̃ = T 0
zz is the applied unaxial

stress of the basic state and is hence bounded byY . If we set Ro = 1µm, and use materials
parametersE = 1.12 · 1011 Pa,Y = 6.9 × 107 Pa,andγ = 1670 mJ m−2 [1, 4], thenβ � 0.013.

For k → 0, σ 0 and σ 1 are given approximately by (notationσm denotes growth rate for
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FIG. 3. Plot of growth rateσ versus axial wavenumberk for β = 0.1 and azimuthal wavenumberm. Poisson ratioν = 1/3.

azimuthal wavenumberm)

σ 0(k) ∼ k2 − 16

3
βk4 ln(k) +

[
−1 + β

(
−2 − 16

3
γ + 16

3
ln 2

)]
k4 (22)

σ 1(k) ∼
(

−1 + 16

3
β

)
k2 + 35

3
βk4 ln(k) +

[
−1 + 7

6
β (9 + 10γ − 10 ln 2)

]
k4 (23)

(γ ≈ 0.5772 is Euler’s constant) so that bothσ 0 andσ 1 vanish ask → 0. In contrast, for the
solid whiskerσ 0 → 0 andσ 1 > 0 ask → 0 [9]. Our results imply that the dominant mode,
corresponding to the largestσ over allk, is alwaysm = 0, whereas for the whisker it is possible for
modesm = ±1 to dominate.

Notice that by lettingβ tend to zero in equations (22) and (23), one recovers the classical
Rayleigh dispersion curves, a growing modem = 0 with cutoff wavenumberkc = 1, while modes
with m � 1 decay. Recall that in the pure capillary case the instability of the cylindrical interface
does not depend on whether the material lies inside or outside the cylinder.

4. Tubules of annular cross-section

4.1 The dispersion relation

Consider the hollow cylindrical rod shown in Fig. 1 (R0 < ∞). There are three traction-free
boundary conditions and one normal-velocity evolution equation on each surface. The characteristic
equation is aquadratic in growth rateσ , so there are two distinct rootsσ1 andσ2 for any choice of
m, k, β, andη. Furthermore, these two roots are real in all ranges ofβ andη examined.
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FIG. 4. Plot of growth rateσ versus axial wavenumberk for m = 0 andβ = 1. Both the pure-solid case andsolid-like
annular mode in the limit asη → 0 are shown. Poisson ratio isν = 1/3.

As the inner radiusη → 0, one of the modes can be identified as ‘solid-like’ or ‘S’, and the other
as ‘void-like’ or ‘V’. Graphs ofσ versusk for the solid-like mode look nearly identical to those of
the pure solid whisker. This is illustrated in Figs 4 and 5 form = 0 andm = 1, respectively. We
see that form = 0, independent ofη, σ increases from zero atk = 0, reaches a maximum, and then
decreases to negative infinity for large wavenumbersk. The casem = 1 displays a similar behavior,
except thatσ > 0 at k = 0. If we rescale growth rateσ , wavenumberk, andβ using theinner
radiusRi rather than outer radiusRo, then the pure-void case is approximated by lettingRo → ∞
and holdingRi fixed, or equivalently takingη → 0. We then note that dispersion curves for the
void-like mode look identical to those of the pure void problem. This is illustrated in Figs 6 and 7
for the casesm = 0 andm = 1, respectively.

Note that the solid-like annular mode withm = 1 (see Fig. 5) inherits the non zero growth rate
at k = 0 from the pure-solid mode. In [9], an asymptotic analysis fork small shows that for a solid
rod,σ ∼ 8β ask → 0. This predicted value for the offset is also observed here for the tubules as
η → 0. Likewise, notice in Fig. 7 that no offset is observed for any of the void-like annular modes,
in agreement with the neutral stability of the pure void ask → 0 (see equations (22) and (23)).

4.2 Small inner radius limit

Another example of the relationship between the ‘S’ (solid-like) mode and the S (pure solid) case
on the one hand, and the ‘V’ (void-like) mode and the V (pure void) case can be seen in plots of
Y ≡ r̃i/r̃o versusη, asη → 0. The variableY measures how the perturbation distributes itself
between the inner and outer surfaces. A large|Y | corresponds to most of the activity lying near the
inner surface, while a small|Y | implies that the activity is confined near the outer surface. Figure 8
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FIG. 5. Plot of growth rateσ versus axial wavenumberk for m = 1 andβ = 1. Both the pure-solid case andsolid-like
annular mode in the limit asη → 0 are shown. Poisson ratio isν = 1/3.
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FIG. 6. Plot ofσ versusk for m = 0 andβ = 1 for pure-void case andvoid-like annular mode, in the limit asη → 0. Note
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FIG. 7. Plot ofσ versusk for m = 1 andβ = 1 for pure-void case andvoid-like annular mode, in the limit asη → 0. Note
thatσ , k, andβ are scaled usinginner radiusRi . Poisson ratio isν = 1/3.
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FIG. 9. (a) Sinuous mode, (b) varicose mode.

TABLE 1
Asymptotic relations for amplitude ratio as η → 0 for the
solid-like eigenmodes. Here, β = 1, k = 1, and Poisson

ratio ν = 1/3. Y ≡ r̃i/r̃o.
m Asymptotics Phase relationship (betweenr̃i andr̃o)
0 Y ∝ η2 sinuous
1 Y ∝ η varicose
2 Y ∝ η4 varicose

TABLE 2
Asymptotic relations for amplitude ratio as η → 0 for the
void-like eigenmodes. Here, β = 1, k = 1, and Poisson

ratio ν = 1/3. Y ≡ r̃i/r̃o.
m Asymptotics Phase relationship (betweenr̃i andr̃o)
0 Y ∝ η−3 varicose
1 Y ∝ η−4 sinuous
2 Y ∝ η−7 sinuous

illustrates this form = 0, β = 1 andk = 1. Notice how asη → 0 the ‘S’ amplitude ratio decreases
to zero and the ‘V’ ratio increases. This is consistent with the view that the ‘S’ mode should begin to
resemble the S mode when the geometry of the annulus begins to resemble that of the solid rod (i.e.
as the hole radius shrinks to zero). In the ‘S’ case, the amplitude of the inner radial perturbationsr̃i
is a negligible fraction of the outer amplitude perturbationr̃o for η small. Likewise, in the ‘V’ case
for smallη the inner amplitude dominates relative to the outer amplitude. A similar result for the
m = 1 case can be found in [8].

These results are summarized in Tables 1 and 2 for the first several azimuthal wavenumbersm.
The column labelled ‘phase relationship’ indicates whether the eigenmode is sinuous (Y > 0) or
varicose (Y < 0); see Fig. 9. It should be mentioned thatonly these two phase relationships between
the two surfaces have emerged in this work.
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FIG. 10. Plot of|Y | versusβ with fixed values ofη = 0.5 andk = 1. For small values ofβ, |Y | is very large for one mode,
and very small for the other. The mode labelled ‘dominant’ is the more dangerous of the two.

4.3 Eigenmode properties as β → 0

The coupling between the inner and outer surfaces of the tubule is due solely to elasticity. In the
absence of applied stress (β = 0), each surface would be susceptible to only the Rayleigh instability,
which is strictly a capillary effect.

A strong elastic coupling between the surfaces should result in the amplitudes of the two surface
perturbations being comparable in size. One would expect that a weak coupling could result in
the amplitude ratio taking on very large or very small values. These trends are clearly depicted in
Fig. 10. Plotted are curves of|Y | versusβ for fixed valuesη = 0.5, andk = 1. For bothm = 0 and
m = 1, the most dangerous mode (the ‘dominant’ one) happens to be varicose.

Recall that, for any choice ofβ, η, m, andk, there are always two modes, each with a distinct
growth rate. If one denotes their amplitude ratios asY1 andY2, then our numerical results imply that
the following relations appear to approximately hold independent of the value ofβ:

Y1 Y2 =
{ − 1

η
, for m = 0

−
(

1
1+k2 η−3 + k2

1+k2 η−1
)

, for m = 1.
(24)

Since the product of the amplitudes is negative, then there is always one varicose and one sinuous
mode. Secondly, if one ratio takes on a large value, then the second will be quite small. This explains
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FIG. 11. Plot of elastic-strain energy perturbation (normalized to 1 atr = η) versus radial coordinater , for the varicose
mode withη = 0.5, m = 0 andk = 1. Notice how the curves approach a steady shape asβ → 0.

the ‘branching’ of the curves in Fig. 10 asβ → 0. Note that equation (24) can only hold for non
zeroβ since the surface displacements will decouple forβ 
= 0.

Now consider the varicose (dominant) mode withη = 0.5 andm = 0 whose amplitude ratio
is depicted in Fig. 10. Since it is varicose,Y → −∞ asβ → 0. One might speculate that the
O(δ) elastic strain energy term decays to zero in the neighborhood of the outer surface; this is not
the case. Figure 11 shows that the normalizedO(δ) strain energy density atr = 1 approaches a
steady value of approximately 0.59 asβ → 0. Therefore, the strain energy density on the outer
surface remains a non zero, constant multiple of the inner-surface strain energy, even as the elastic
parameterβ diminishes to zero.

4.4 Modal properties as k → ∞
For stressed, semi-infinite slabs (e.g. films on substrate), it is well known that any surface
perturbation decays to zero exponentially (in space) with characteristic length equal to the
wavelength of the perturbation. This can be thought of as askin-depth effect. A similar result is
found to hold for the tubule as well. In particular, one expects that for large values of wavenumber
k there would be one large and one small value of|Y |. The large-k perturbation on one surface has
a correspondingly small skin depth, and so little is communicated to the other surface. Figure 12
contains a plot ofσ versusk and |Y | versusk for η = 0.5, β = 1, andm = 0. As k → ∞, the
values forY branch off to 0 and∞.

An unusual phenomenon is displayed in the lower graph of Fig. 12. Neark = 2, the twoY -
curves exhibit poles, one blowing up and the other falling to zero at a vertical asymptote (see Kirill
[8] for additional details). Furthermore, ask passes through the critical valuekc, the thicker curve,
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which corresponds to the more dangerous mode, switches from varicose to sinuous, while the other,
the inferior mode, exhibits the opposite behavior. In other words, at exactly thiskc, the inferior mode
is composed of a nonzero (growing) perturbation on theouter surface, with a relatively quiescent
inner surface. The superior mode exhibits the opposite behavior, with a perturbed inner surface
and unperturbed outer surface. This is a rather counterintuitive result, considering what is known
about the small-β and large-k regimes. One might think that such a behavior could only indicate
the absence of elastic stress. However, the top graph ofσ versusk in Fig. 12 shows, for example,
that the inferior mode has a positive growth rate, indicative of stress-induced instability (a purely
capillary effect would have a negative growth rate fork > 1). Therefore, strain energy remains a
driving force even at the pole.

As further evidence of the presence of elasticity at the pole, a plot of elastic-strain energy versus
radial distancer is presented in Fig. 13. More specifically, plotted on the vertical axis of Fig. 13
(bottom graph) is theO(δ) strain energy density correctionS1 (normalized to one atr = η), with
the normal-mode prefactor ei(mθ+kz)+σ t suppressed, i.e.

S = S0 + δS1 + O(δ2). (25)

As k approaches the critical valuekc ≈ 2.39, the strain energy on the outer surface (r = 1) decreases
to zero, as one might suspect, and the dispersion curve is apparently unaffected ask passes through
the pole.

It is interesting to note that the tubule can have growing perturbations on one surface and remain
unperturbed on the other with anon zero elastic parameterβ.
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4.5 Plots of maximum growth rate σmax and wavenumber kmax versus elastic parameter β

Figures 14 and 15 are plots ofσmax andkmax versus elastic parameterβ, for several values ofm
andη. Notice that all of the curves merge asβ → ∞, independent ofm andη. Futhermore, they
appear to merge towards a straight line, which suggests a power-law fit: i.e. for largeβ, kmax ∼ k̂β

andσmax ∼ σ̂ β4, wherek̂ and σ̂ are bothO(1). If we make these substitutions in the dispersion
relation, and use asymptotic expansions for the modified Bessel functionsIm andKm, it ispossible
to show (after some algebra) that asβ → ∞,

σmax ∼ 4096

243
β4, kmax ∼ 8

3
β. (26)

These asymptotic formulae match almost identically the corresponding ones for the solid whisker;
see Fig. 8 of [9].

One can demonstrate forsmall η why the most dangerous modes arem = 0 for any value of
β, and this argument rests on the fact that, for smallη, the dispersion curves for the ‘S’ and ‘V’
tubule modes are nearly identical to those of the S (pure solid) and V (pure vapor), respectively (see
Figs 4–7). Recall that the solid whisker exhibits helical instability forβ in the range (0.04, 2.35) (see
Section 5(a) of [9]). Further, the maximum growth rate forβ ≈ 2.35 is given approximately by the
large-β asymptotic formulaσmax ∼ 16.9β4; hence, we expect the maximum growth rate at the high
end of the helical range to be given byσmax ≈ 515. This is about the largest growth rate that the
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solid whisker (and hence the ‘S’ tubule mode) could attain while exhibiting the helical instability.
Note that this growth rate is based on anouter scaling: i.e. time is scaled as the fourth power of
outer radiusRo. Now, let us define

β i = Ri E ε̃2

2γ
, (27)

the dimensionless applied stress when scaled using theinner radius. So, whenβ = O(1), one
hasβ i = O(η), which is small. Consequently, as seen from theinner surface, the driving force for
instability is predominantly capillarity, so that an axisymmetric (m = 0) perturbation will be excited
with growth rate given byσmax ≈ 1/4 (using inner time scaling); see Figs 2 and 3. Now, in order to
get a concrete comparison between the maximum growth rate of the ‘S’ and ‘V’ modes, one must
first recall the relation between growth rates which are scaled on the inner radiusRi and those which
are scaled on the outer radiusRo: σ inner = η4 σ outer. In other words, fixingη = 0.1 (for illustrative
purposes) andσ inner = 1

4 implies thatσ outer = 1
4 × 104 = 2500, which is much larger than the

predicted value of approximately 515 for the ‘S’ mode. Since, the maximum growth rate for the
axisymmetric void-like mode is much larger than the largest possible helical solid-like mode, then
axisymmetric disturbances should dominate. Again, this argument is valid only forη � 1.

Notice in Figs 14 and 15 that the graphs ofσmax and kmax exhibit ramp-like behavior for
η = 0.9 in the neighborhood ofβ = 0.65. A graphical explanation of this is presented in Figs 16
and 17, which show graphs ofσmax, |Ymax |, andkmax versusβ, and a series of plots ofσ versusk,
respectively. It is clear from Fig. 17 that, forβ ≈ 0.65, the dominant growth curve has two distinct
maxima (double hump). So, asβ passes through 0.65, there is a jump fromkmax ≈ 4 to kmax ≈ 6:
see Fig. 16. This clearly shows that, for a special choice ofβ, there can be two different dominant
wavelengths with the same growth rate, and hence the ramp-like behavior inσmax is present. Note
that the plots in Fig. 16 contain the values for the most dangerous mode for eachβ (hence, the ‘max’
subscripts), while the dispersion curves in Fig. 17 display both inferior and superior growth rates.

Figure 17 reveals some additional information about the varicose-to-sinuous transition. It
appears that there is a critical value ofk ≈ 5, to the left of which the superior (inferior) modes
are varicose (sinuous), and to right of which the superior (inferior) modes are sinuous (varicose).
This criticalk appears to be independent ofβ, and is a function solely ofη (i.e. the tubule geometry).
For example, a similar plot, but withη = 0.5 can be found in Kirill [8]. In that case, the transition
wavenumber appears to be approximately 2. These transitions occur whenY = 0 or Y = ±∞ (i.e.
apole).

4.6 Which mode is most favored: sinuous or varicose?

Figure 18 reveals that, at least forη = 0.5 andη = 0.9, the dominantm = 0 modes are varicose for
smaller values ofβ, and sinuous for values ofβ > 0.5 (very roughly). It is clear forη = 0.5 that the
curves blow up at the pole. For smallη, namelyη = 0.1, the dominantm = 0 mode is sinuous for
all β depicted in the plot. Sridharet al. [16] state that the sinuous mode is favored over the varicose
mode in the stability of lamellar composites, regardless of magnitude of applied uniaxial stress (see
Section 4.7 for further discussion). As we shall see later, when a thin-shell limitη → 1− is taken,
our results compare favorably with results of [16]. Results form = 1 which are similar to Fig. 18
and display the varicose-to-sinuous transition can be found in Kirill [8].

In fact, for largeβ, |Ymax| should decay exponentially withβ. A rough proof of this can be
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given. An elementary manipulation of the normal-velocity evolution equations (15) and (16) yields

Y ≡ r̃i

r̃o
= −W (η)

W (1)

σ − k2 + k4

σ − k2/η2 + k4
, (28)

whereW (r) is the radial amplitude of the linearizedz-displacement. Recall that the displacement
fields for the tubule can be written as a linear combination of modified Bessel functionsIm(kr)

and Km(kr). As stated in the previous section, for largeβ maximum wavenumber and growth
rate are given bykmax ∼ 8β/3, andσmax ∼ 4096β4/243, respectively. Hence large-argument
asymptotic expansions for the functionsIm andKm [3] imply that W (r) will be of the formW (r) ∼
(constant) ekmaxr√

kmaxr
, and that equation (28) yields

Y ∼ (constant) exp
(

8
3(η − 1)β

)
. (29)

Sinceη < 1, |Y | decays exponentially whenβ is large. Notice that whenη ≈ 1 this limit is
non-uniform, which explains the ‘flatness’ of theη = 0.9 curve in Fig. 18.

The fact that values of|Y | are so close to unity asη → 1 can easily be explained on the basis of
symmetry. Asη approaches 1, the hollow rod looks increasingly like a thin cylindrical shell. Hence,
there is a mirror symmetry present, and the magnitudes ofr̃i andr̃o are nearly identical.

4.7 The thin-shell limit (η → 1−)

4.7.1 Asymptotics. Here we examine the growth rates of the sinuous and varicose eigenmodes
in the limit of η → 1. In this limit, the annulus begins to resemble a thin-shelled cylinder, with the
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inner and outer radii almost the same. Let

η̃ ≡ 1 − η, (30)

and express for̃η → 0 Navier’s equations, the traction-free boundary conditions and the normal-
velocity equation. An appropriate of coordinate is

ρ = 1 + r − 1

η̃
, (31)

so thatρ takes on values over the fixed interval(0, 1).
We can write the displacements and surface deflections in terms of normal modes (17). It is

natural to consider asymptotic expansions as follows: for thesinuous eigenmode,

U ∼ U0 + η̃ U1 + · · · (32)

V ∼ V0 + η̃ V1 + · · · (33)

W ∼ η̃ (W0 + η̃ W1 + · · · ) (34)

r̃o ∼ Ho
0 + η̃ Ho

1 + · · · (35)

r̃i ∼ H i
0 + η̃ H i

1 + · · · (36)

σ ∼ σ s
0 + η̃ σ s

1 + · · · (37)

and for thevaricose eigenmode,

U ∼ U0 + η̃ U1 + · · · (38)

V ∼ V0 + η̃ V1 + · · · (39)

W ∼ W0 + η̃ W1 + · · · (40)

r̃o ∼ η̃
(
Ho

0 + η̃ Ho
1 + · · · ) (41)

r̃i ∼ η̃
(

H i
0 + η̃ H i

1 + · · ·
)

(42)

σ ∼ η̃−1 (
σ v

0 + η̃ σ v
1 + · · · ) . (43)

Upon substituting these series expansions into the equations and boundary conditions, one obtains
asequence of second-order boundary value problems. In particular, for the sinuous eigenmode, it is
found that

H i
0 = Ho

0 (44)

and

σ s
0 = −(m2 + k2)(m2 + k2 − 1) (45)

σ s
1 = 1

9(m2 + k2 − 1)

[
9

(
−k2 + k4 − 2m2 + 5k2m2 − 2m2k4 + 4m4

− 4k2m4 − 2m6
)

+ 4k2β
(
−6k2 + k4 − 6m2 + 7k2m2 + 6m4

)]
. (46)

For the varicose mode, it is found that

H i
0 = −Ho

0 (47)
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σ v
0 = 4β(m2 + k2). (48)

Some observations can be made at this point. First of all, from equations (44) and (47) the
surface amplitudes are equal (at leading order). This is reasonable if one considers the geometry of
ashell so thin that there is symmetry between the inner and outer surfaces (also, recall Fig. 8). Also,
it appears that thesinuous growth rate is due to pure capillary effects at leading order (with elastic
contributions entering at higher order), as though the two surfaces were acting as one perturbed
surface with no material in between. On the other hand, thevaricose growth rate is characterized
by elastic effects at leading order (note theβ), and is inversely proportional tõη.

The leading-order varicose growth rate (48) is non-uniform ink in the neighborhood ofk = 0,
as can be seen by considering those modes with azimuthal wavenumberm � 2. These modes should
have negative growth rates ask → 0, consistent with the effects of capillarity. Figure 19 is a graph of
the dispersion curve form = 2, β = 1, and forη̃ = 0.01 and 0.001. The boundary layers atk = 0
are clearly visible. In addition,σ is non-uniform ink ask → ∞ (capillary effects should have
a dampening effect at large wavenumber). These non-uniformities ink can be treated by seeking
boundary layer solutions and finding a uniformly valid composite expansion.

4.7.2 Comparison with lamellar results of Sridhar et al. Consider again the thin-shell limit.
On a length scale comparable to the shell thickness, the inner and outer radii are growing very
large, and locally the shell resembles a flat plate. Hence, it is reasonable to compare the annulus
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results to results dealing with morphological stability of lamellar microstructures. In particular,
Sridharet al. [16] examined the stability of lamellar eutectics, and plotted several graphs displaying
maximal growth wavenumber versus elastic parameter. More specifically, they examined the
stability of a uniaxially stressed plate-matrix composite, incorporating a plane-strain assumption.
The top and bottom surfaces of their plate are comparable to our outer and inner surfaces,
respectively, in the thin-shell limit.

In order to do a direct comparison, it is necessary to rescale variables using the thin-shell
thicknessd ≡ Ro − Ri , rather than the outer radiusRo as was done before. Therefore,β becomes
β = d E ε̃2

2γ
, and a small parameterε emerges, defined byε ≡ d

Ro
. One should imagineRo (and

henceRi ) growing large with thicknessd held fixed; hence,ε = η̃.
According to [16], a maximal growth wavenumber ofkmax ≈ 0.16 is obtained when parameter

β ≈ 0.011. It should be noted that Sridharet al. obtained these numerical values by perturbing the
top and bottom surfaces of the plate in asymmetrical fashion as viewed from the mid-plane of the
plate. This would be analogous to avaricose perturbation of the annulus. In Fig. 20, the growth rate
σ is plotted against wavenumberk (with m = 0) for ε = 0.01. We see that the maximum varicose
growth rate occurs approximately atk = 0.16, hence the comparison to Sridharet al. [16] is very
good.

The thin-shell annulus limit compares favorably to their results in yet another way. Upon
perturbing the plate in an anti-symmetric fashion, they found that the most dangerous mode is
always sinuous rather than varicose (for any value ofβ). Examination of Fig. 20 tends to corroborate
this finding.
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5. Conclusions

For the solid whisker with surface energy and surface diffusion [9], elastic-strain energy has
a significant destabilizing influence, and can lead to the growth ofnonaxisymmetric modes, in
contrast to the single unstable axisymmetric mode when only surface tension effects are present.
Furthermore, helical (m = 1) instabilities are preferred over a large range of elastic parameterβ.

A different result is found for the pore (cylindrical hole case); the most dangerous mode (given
by linear theory) isalways axisymmetric. An increasingly greater range of azimuthal wavenumbers
is excited as the applied stress is increased. In addition, modes of small axial wavenumber with
azimuthal wavenumberm = 1 are neutral in the case of the pore, but have positive growth rate in
the case of the whisker.

The linear stability analysis of the tubule shows that asη, the ratio of inner radius to outer
radius, approaches zero, the dispersion curves for one of the modes begin to resemble those of the
solid whisker, and the curves for the other mode begin to resemble those of the pore. Furthermore,
the ‘solid-like’ perturbation mode (‘S’) tended to concentrate near the outer surface, whereas the
‘void-like’ mode (‘V’) tended to concentrate near the inner surface. It is as if the tubule problem
degenerates into the original solid whisker and pore problems asη → 0. Further, the growth rate of
the most dangerous mode (which is axisymmetric) isO(β4), and the corresponding wavenumber
is O(β), asβ → ∞, so that σmax ∼ 18β4, andkmax ∼ 2.7β, asβ → ∞ for any choice ofζ
andm. Thus, large applied stresses compensate for differences in annular thicknesses and azimuthal
wavenumbers. Also, ask → ∞, the modes decouple, due to the rapid decay of the elastic field from
the surfaces.

Finally, the phase relationship between inner and outer surface perturbations for the dominant
mode can be either ‘sinuous’ or ‘varicose’ depending on the value ofβ. Indeed, for small values of
applied stress the most dangerous mode is of varicose type, whereas values ofβ larger than a critical
value yields a sinuous disturbance. This result is somewhat counter-intuitive: a varicose perturbation
with its periodic swelling would seem to store more elastic-strain energy (and hence provide a larger
driving force for diffusion) than would a sinuous disturbance. However, results of Sridharet al. [16]
on varicose and sinuous perturbations of lamellar composites tend to corroborate these findings.
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