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Motion by curvature of a three-dimensional filament: similarity
solutions
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Wesystematically classify and investigate fully three-dimensional similarity solutions to a system of
equations describing the motion of a filament moving in the direction of its principal normal with
velocity proportional to its curvature,v = κn, wheren is the principal normal andκ the curvature of
the filament. Such formulations are relevant to superconducting vortices and disclinations.
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1. Introduction

There are many physical systems which exhibit line singularities [3]. These are characterized by
a singularity in a certain quantity which occurs along a curve in three-space. So, for instance, a
disclination in a nematic liquid crystal is a curve along which the director, a vector field which gives
the preferred direction for molecular alignment, is multivalued. Other examples of line singularities
are the superconducting vortex, the superfluid vortex (which is found in liquid helium) and the
dislocation (which is a misalignment of a crystal lattice). In many scenarios the behaviour of these
systems is primarily governed by the presence of these singularities and it is possible to derive
linear field equations with singularities along curves, corresponding to the positions of the line
singularities, which couple to a law of motion for these curves. In the case of the superconducting
vortex, for example, the vortex law of motion

v = κn + (∇ ∧ B) ∧ t, (1)

couples to a linear field equation for the magnetic fieldB [6]. Herev is the velocity of the vortex,
κ its curvature,t its tangent andn its principal normal. The first term in this velocity law is a self-
induced term while the second term can be thought of as arising from the presence of other vortices
and boundaries. Situations inevitably arise in which the first term dominates so that the motion can
be approximated by

v = κn, (2)

for example when vortices are well separated. It is conjectured that line disclinations in certain
nematic liquid crystal also have this form for the self-induced velocity.
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dynamics of scroll waves, which occur in excitable media, also obey equation (2) [8]. In contrast to
these systems the leading-order self-induced velocity of the superfluid vortex is

v = κb,

whereb is the binormal to the vortex curve (see for example [12]). This is identical to the so-called
local induction approximation for a classical vortex in an otherwise irrotational fluid and has been
derived from the Euler equations by [5, 13] in the limit that the width of the vortex core shrinks to
zero.

In two dimensions the dynamics of a curve evolving under (2) has been fairly intensively
investigated. Mullins [9] found travelling waves, rotating waves and a particular class of similarity
solutions. A Lie group analysis was carried out by Wood [16] which revealed the existence of other
types of similarity solution which were then analysed in detail. Gage [7] showed that an embedded
(non-self-intersecting) two-dimensional curve evolving under the velocity law (2) will tend to a
circle before shrinking in finite time to a point. In fact it can be shown that a closed curve of length
l1(t) shrinks according to the law

dl1
dt

= −
∫ l1(t)

0
κ2 dl,

where we parametrize the curve in terms of arclengthl. This result also holds in three dimensions
and is calledthe curve shortening property. It can be proved by formulating (2) in terms of
arclength. Self-intersecting planar curves have been considered by Altschuler [1]. Such curves
develop singularities in their evolution and [1] defines the flow through such singularity to be given
by the limiting flow of a sequence of space curves which asymptote to the planar curve. Furthermore,
he demonstrates this limit to be independent of the sequence taken. In a sequel paper [2] singularity
development was investigated for space curves and shown to be a planar phenomenon.

A theoretical treatment of the problem given by (2) can be found in a work by Ambrosio and
Soner [4].

In two dimensions the curvature of the curve can be written in terms of the angleθ the curve
makes to thex-axis, say, and its arclengthl, so that

κ = |θl |.
Using this formulation it can be shown that the areaA enclosed by a (closed) curve decreases
according to

dA

dt
= −2π. (3)

In three dimensions we can employ a similar formulation by introducing a second angleφ, so that
the tangent to the curve

t = (sinθ cosφ, sinθ sinφ, cosθ) .

Here it is found that the curvature is

κ =
(
θ2

l + sin2 θφ2
l

)1/2
.
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The generalization of (3) to three dimensions can be found using this formulation and is that, where
φ is monotonically increasing (or decreasing) ins, the area of the projection of the curve onto the
x–y planeAproj changes according to

dAproj

dt
= −

∫ 2π

0
sin2 θ dφ.

In the remainder of this work we investigate the velocity law (2) as applied to a space curve (we
make no assumptions about whether the curve is self-intersecting or otherwise). We find it helpful
to represent the curve by the vectorq such that its position at timet is given by

x = q(s, t) = (u(s, t), v(s, t), w(s, t)),

in Cartesian(x, y, z) space, wheres is some, as yet undefined, parametrization. The velocity law
(2) can then be written in the form

q t = κn − Gt, (4)

where the subscript denotes the partial derivative and we allow an arbitrary component ofq t ,
magnitudeG, in the tangential direction. The choice ofG has the effect of determining the evolution
of the parametrisations.

In terms of the parametrisations the tangent, the normal and the curvature of the curve are given
by

t = qs

|qs |
,

κn = 1

|qs |
∂

∂s

(
qs

|qs |
)

, |n| = 1.

It follows that the velocity law (2) can be formulated in the form

ut − 1√
u2

s + v2
s + w2

s

(
us√

u2
s + v2

s + w2
s

)
s

+ Gus√
u2

s + v2
s + w2

s

= 0, (5)

vt − 1√
u2

s + v2
s + w2

s

(
vs√

u2
s + v2

s + w2
s

)
s

+ Gvs√
u2

s + v2
s + w2

s

= 0, (6)

wt − 1√
u2

s + v2
s + w2

s

(
ws√

u2
s + v2

s + w2
s

)
s

+ Gws√
u2

s + v2
s + w2

s

= 0. (7)

Useful simplifications can be made by choosingG appropriately. For instance, by setting

G =
(

1√
u2

s + v2
s + w2

s

)
s

,

we can sets = z. Then the evolution of the curve given byq = (u(z, t), v(z, t), z) is governed by
the coupled system

ut = uzz

(1 + u2
z + v2

z )
, (8)

vt = vzz

(1 + u2
z + v2

z )
. (9)
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In terms of this parametrization the curvatureκ is given by

κ =
[
(vzuzz − uzvzz)

2 + u2
zz + v2

zz

]1/2

(1 + u2
z + v2

z )
3/2

.

Another useful formulation is obtained by writing

u = r(θ, t) cosθ, v = r(θ, t) sinθ, w = z(θ, t),

settings = θ and

G = 1(
r2
θ + z2

θ + r2
)1/2

(
2rθ

r
− rθrθθ + zθ zθθ + rrθ

r2
θ + z2

θ + r2

)
.

This results in a system which describes the evolution of the curve in terms of the cylindrical polar
coordinatesr , θ andz:

rrt = rrθθ − r2 − 2r2
θ

r2
θ + z2

θ + r2
, (10)

r zt = r zθθ − 2rθ zθ

r2
θ + z2

θ + r2
. (11)

In terms of this parameterisation the curvature is

κ =
[
(zθθrθ − zθrθθ )

2 + (r zθθ − rθ zθ )
2 + (r2

θ − rrθθ )
2 + (r2 + 3r2

θ − 2rrθθ )(r2 + r2
θ + z2

θ )
]1/2

(r2 + r2
θ + z2

θ )
3/2

.

In the next section we use the formulation (8)–(9) to derive all classical Lie symmetries of (2);
these are equally applicable to all formulations of (2). In Section 3 we use these symmetries to write
down the similarity reductions for the formulation (10)–(11) (which turns out to be convenient
to work with). In Sections 4 and 5 we look for the corresponding similarity solutions. Note that
although we work with (10)–(11) we are in fact able to find solutions which are not graphs inθ

by investigating the finiteθ blow-up of the similarity solutions. Finally, in Section 6, we draw our
conclusions.

2. Symmetries

We apply the usual Lie group method for determining the classical symmetries of (8)-(9) (see, for
example, Hydon [10]), in the first instance by determining the infinitesimal transformations of the
form

t∗ ∼ t + εT (t, u, v, z), u∗ ∼ u + εU (t, u, v, z),

v∗ ∼ v + εV (t, u, v, z), z∗ ∼ z + εZ(t, u, v, z),

which leave equations (8)-(9) unchanged to orderε, whereε � 1. (The notationA ∼ B means that
A − B is much smaller than the smallest term contained inB in the limit of interest (in this case
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ε → 0).) Omitting the details of the derivation, we find that the symmetry group of (8)-(9) has eight
parameters taking the form

T = 2αt + t0, (12)
 U

V
Z


 =


 α d −b

−d α −c
b c α





 u

v

z


 +


 u0

v0
z0


 , (13)

whereα, t0, b, c, d, u0, v0 and z0 are all arbitrary constants. We can in the usual way use the
infinitesimal versions of the groups to construct the global forms of the transformations under which
equations (8)-(9) are invariant. These are given by solving the initial value problem

∂t∗

∂ε
= T (t∗, u∗, v∗, w∗), ∂u∗

∂ε
= U (t∗, u∗, v∗, w∗), ∂v∗

∂ε
= V (t∗, u∗, v∗, w∗),

∂z∗

∂ε
= Z(t∗, u∗, v∗, w∗)

(14)

with

t∗ = t, u∗ = u, v∗ = v, z∗ = z on ε = 0.

We can simplify the solution of (14) by first making a rotation of the(u∗, v∗, z∗) coordinates
about an appropriate axis to leave equation (14) in the form

∂t∗

∂ε
= 2αt∗ + t0, (15)



∂u∗

∂ε

∂v∗

∂ε

∂z∗

∂ε




=

 α −M 0

M α 0
0 0 α





 u∗

v∗
z∗


 +


 u0

v0
z0


 . (16)

We note thatt0, u0, v0 and z0 represent translation invariants,α a rescaling invariant andM a
rotation invariant; the parametersb, c andd in (12)–(13) relate toM and the axis about which the
rotation occurs. We now integrate the system (15)–(16) with respect toε. In the caseα = 0 and
M = 0 we have

t∗ = t + εt0, u∗ = u + εu0, v∗ = v + εv0, z∗ = z + εz0, (17)

corresponding to a translation in each variable. By rotating the axes appropriately we can, without
loss of generality, setu0 = v0 = 0. In the caseα = 0, M �= 0 we have (where we setu0 = v0 = 0
by translation ofu andv)

t∗ = t + εt0, u∗ = u cos(εM) − v sin(εM),

v∗ = u sin(εM) + v cos(εM), z∗ = z + εz0,

in terms of the polar coordinatesr , θ andz,

t∗ = t + εt0, r∗ = r, θ∗ = θ + εM, z∗ = z + εz0. (18)
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Integrating (15)–(16) with respect toε in the caseα �= 0 (where we setu0 = v0 = z0 = t0 = 0 by
translation ofu, v, z andt) weobtain

t∗ = exp(2αε)t,

u∗ = exp(αε) (u cos(εM) − v sin(εM)) ,

v∗ = exp(αε) (u sin(εM) + v cos(εM)) ,

z∗ = exp(αε)z.

This corresponds to a rotation about an arbitrary axis, one rescaling and four translations, as we
might expect in advance from the geometrical interpretation of the motion but probably not from
the partial differential equation formulation (8)-(9). Writing this in terms of the polar coordinatesr ,
θ andz gives

t∗ = exp(2αε)t, r∗ = exp(αε)r, θ∗ = θ + Mε, z∗ = exp(αε)z. (19)

3. Similarity reductions

The case α = 0, M = 0. We now note the invariants (i.e. quantities which are not functions ofε)
of the global transformation (17) whenu0 = v0 = 0; they are

u, v z − qt,

whereq = z0/t0. This leads to a travelling wave reduction to (8)-(9) of the form

u = U (z − qt), v = V (z − qt). (20)

The case α = 0, M �= 0. Invariants of the global transformation (18) are

θ − ct, r =
(

u2 + v2
)1/2

, z − qt,

wherec = M/t0. These suggest that we should use the equations describing the evolution of the
filament in polar coordinates, namely (10) and (11), to look for a travelling rotating wave solution
to v = κn of the form

r = R(θ − c t), z = q t + f (θ − c t), (21)

where the arbitrary constantsq andc are, respectively, the velocity of the wave in thez-direction
and its angular velocity about thez-axis. Note that the travelling wave ansatz (20) corresponds to
the special case of the travelling rotating wave ansatz (21) wherec = 0. We return to both of these
reductions shortly. In the exceptional case wheret0 = 0 as well asα = 0 the invariants of the
transformation are

z − kθ, t, r,

wherek = z0/M and we therefore look for a similarity reduction to equations (10) and (11) of the
form

z = k θ + f (t), r = R(t), (22)
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wherek is some constant. This gives rise to a contracting helix (see for example [2, 6]) such that
when we substitute (22) into (10) and (11) we find thatf is a constant (which may, without any loss
of generality, be taken to be zero) andR(t) is given by

t = 1

2
(R2

0 − R2) + k2 log

(
R0

R

)
,

whereR(0) = R0. Hence ast → ∞ the radius decreases as exp(−t/k2).

The case α �= 0. Invariants of the global transformation (19) are

r2

t
= u2 + v2

t
,

z2

t
, θ − M

2α
log |t |.

Wethus look for similarity reductions to (10)-(11) either of the form

r = √
t R(θ − p log t), z = √

t f (θ − p log t), (23)

or of the form

r = √−t R(θ + p log(−t)), w = √−t f (θ + p log(−t)), (24)

wherep is an arbitrary constant.
Wenow have a complete catalogue of the classical similarity reductions to the system of partial

differential equations (8) and (9) describing motion by curvature of a curve parametrised byz and
t and equivalently to the system of partial differential equations (10) and (11) describing motion by
curvature of a curve parametrised byθ andt .

4. Rotating travelling waves

4.1 Formulation

In light of (21), we look for a solution to (10)–(11) of the form

r = R(η), z = qt + f (η), η = θ − ct.

This ansatz results in the following system of ordinary differential equations:

R′′ + cR′ (R2 + f ′2 + R′2) −
(

R + 2R′2

R

)
= 0, (25)

f ′′ + (
c f ′ − q

) (
R2 + f ′2 + R′2) − 2R′ f ′

R
= 0, (26)

which is a third-order autonomous system forR and f ′; the only symmetries of the original partial
differential equations inherited by this coupled system are invariance under translations inf andη.
It is, however, invariant under the discrete transformation

η → −η, c → −c

and we therefore choose, without any loss of generality,c > 0 in all that follows. It should also
be noted that, for non-zeroc, we can reduce the number of free parameters in the problem to one,
namelyq/

√
c, by rescaling f and R with 1/

√
c. We first describe the possible asymptotic forms

of solutions to (25)–(26) and then outline how they can be used to formulate initial value problems
which furnish meaningful solutions to (10)–(11).
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4.2 Finite η blow-up

The balance

R′′ ∼ −cR′ ( f ′2 + R′2) , f ′′ ∼ −c f ′ ( f ′2 + R′2) ,

in (25) and (26) arises in describing blow-up at finiteη (in this case toR′ and f ′ becoming
unbounded). The corresponding asymptotic expressions forR and f are thus

R ∼ d +
(

2(η − η0)

c

)1/2

cosα, f ∼ h +
(

2(η − η0)

c

)1/2

sinα, (27)

or

R ∼ d −
(

2(η − η0)

c

)1/2

cosα, f ∼ h −
(

2(η − η0)

c

)1/2

sinα, (28)

whereα, d, h andη0 are all arbitrary constants. It is clear that there are four degrees of freedom for
this asymptotic behaviour (since it contains four arbitrary constants), the maximum possible for the
fourth-order system (25) and (26), so this is a generic form of blow-up. There is also a second type
of blow-up which can occur asR → 0. Here there is a local balance of the form

R′′ + cR′ ( f ′2 + R′2) ∼ 2R′2

R
, f ′′ + c f ′ ( f ′2 + R′2) ∼ 2R′ f ′

R
,

with the corresponding asymptotic behaviour

R ∼
(

6(η − η0)

c

)1/2

cosα, f ∼ h +
(

6(η − η0)

c

)1/2

sinα, (29)

or

R ∼ −
(

6(η − η0)

c

)1/2

cosα, f ∼ h −
(

6(η − η0)

c

)1/2

sinα. (30)

In this case it is not obvious how many degrees of freedom are contained in this asymptotic
behaviour; to assess this we perturb about (29) (an equivalent analysis applies to (30)) by
substituting

R ∼
(

6(η − η0)

c

)1/2

cosα + R1, f ∼ h +
(

6(η − η0)

c

)1/2

sinα + f1,

into equations (25)–(26), linearizing inR1 and f1 and seeking the eigenmodes (and therefore
neglecting the forcing terms) to obtain a fourth-order homogeneous system. The solution of this
linear system (at leading order in(η − η0)) reveals the eigenmodes

R1 = 0

f1 = 1

}
; R1 ∼ cotα(η − η0)

−1/2

f1 ∼ (η − η0)
−1/2

}
;

R1 ∼ − tanα(η − η0)
1/2

f1 ∼ (η − η0)
1/2

}
; R1 ∼ cotα(η − η0)

−1

f1 ∼ (η − η0)
−1

}
.

(31)
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The first of these corresponds to a small change inh, the second to a small change inη0 and the third
to a small change inα; the fourth is larger than (29) and is hence asymptotically inconsistent, from
which we conclude that (29) and (30) have three degrees of freedom. This is as might be expected
since the degree of freedomd in (27)–(28) is lost by requiring blow-up to occur asR → 0.

We believe these to be the only types of finiteη blow-up which can occur for (25)–(26). Note
that forc > 0 blow-up can only occur asη tends toη0 from above and forc < 0 only asη tends to
η0 from below. Hence only one blow-up can occur along any given solution.

4.3 Behaviour of the solution for large η

As η → +∞ we find the following balance between terms in equations (25)–(26):

cR2R′ ∼ R, cR2 f ′ ∼ q R2,

with asymptotic behaviour

R ∼
(

2η

c

)1/2

, f ∼ qη

c
. (32)

Wenow again determine the number of degrees of freedom exhibited by this asymptotic behaviour.
Writing

R ∼
(

2η

c

)1/2

+ R1, (33)

f ∼ qη

c
+ f1, (34)

substituting into (25)–(26), linearizing inR1 and f1 and neglecting forcing terms gives a
homogeneous system forR1 and f1 which has the following possible asymptotic behaviours for
largeη:

R1 = 0

f1 = 1

}
;

R1 ∼ η−1/2

f1 ∼ q

2(2c)1/2
η−2


 ;

R1 ∼ −exp(−η2)

2η

f1 ∼ −q

(
2

c

)1/2

η−1/2 exp(−η2)




;
R1 ∼ q

(
2

c

)1/2

η−1/2 exp(−η2)

f1 ∼ −exp(−η2)

2η




.

None of these expressions leads to a violation of the asymptotic expansions (33)–(34), so there are
four degrees of freedom exhibited by the behaviour (32) which is therefore generic.

Wealso consider the asymptotic behaviour of solutions which do not exhibit finiteη blow-up in
the limit asη → −∞, by making the ansatz

R ∼ k exp(αη), f ∼ dη, α > 0. (35)
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Substitution into (25)–(26) gives two relations forα andd:

cd3 − qd2 − 2αd = 0, α2 − c d2α + 1 = 0,

so that

d = ±

 q2

2c2
+

(
q4

4c4
+ 4

c2

)1/2



1/2

, α = 1

2
d(c d − q), (36)

andk is an arbitrary constant. Again, we can determine the number of degrees of freedom exhibited
in this behaviour by linearizing about (35):

R ∼ k exp(αη) + R1, f ∼ dη + f1,

implying thatR1 and f1 are made up of linear combinations of the following expressions:

R1 = 0

f1 = 1

}
;

R1 ∼ exp(αη)

log f1 ∼ 2αη

}
; R1 ∼ exp((α − cd2)η)

(
kα

d
sin(dµη) + kµ

2
cos(dµη)

)
f1 ∼ exp(−cd2η) sin(dµη)


 ;

R1 ∼ exp((α − cd2)η)

(
kα

d
cos(dµη) − kµ

2
sin(dµη)

)
f1 ∼ exp(−cd2η) cos(dµη)


 .

Hereµ2 = √
q4/4 + 4c2 − q2/2. The first and second of these behaviours represent a change inf

by a small constant and a small change ink. However, since we look at the behaviour asη → −∞
and have assumedc > 0 we require that the third and fourth of these be absent in order that the
asymptotics are not violated. It follows that there are only two degrees of freedom represented in
the behaviour (35).

4.4 Construction of rotating travelling wave solutions to v = κn

Three distinct types of solution tov = κn may be formed using solutions to (25)–(26) with different
asymptotic behaviours. Examples of these three sorts of solution are given in Figs 1 and 2, in which
the solution is represented by a curve, fattened for visibility, plotted as a function ofR(η) cos(η),
R(η) sin(η) and f (η) (in other words, showing the curve as it appears in Cartesian coordinates
(x, y, z) at timet = 0). Outlined below are the three possible ways in which it is possible to form a
smooth rotating travelling wave solution.

(1.) We can join a solution with asymptotic behaviour (29) asη → η+
0 to one with asymptotic

behaviour (30) asη → η+
0 to find a regular solution ofv = κn in which R and f are

multivalued. Both branches exhibit the asymptotic behaviour (32) asη → +∞ (which
has four degrees of freedom). In practice this construction involves choosingη0, h andα

shooting fromη slightly larger thanη0 towardsη = ∞ along one branch (using (29)) and
then repeating the process along the other branch. An example (withη0 = 0, h = 0 and
α = π/4) of such a solution is given in Fig. 1(a). The curve shown in this figure rotates in
an anti clockwise direction about thez (i.e. the f ) axis while translating in the positivez
direction. An animation of the motion of this curve can be found in [15].
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FIG. 1. Examples of rotating travelling waves. (a) A solution withc = 1.5 and q = 1.0 with initial conditions R ∼
± cos(π/4)

√
4η and f ∼ ± sin(π/4)

√
4η asη → 0. (b) A solution withc = 2.0 andq = 1.0 with initial conditions

R ∼ cos(3π/8)(3 ± √
η) and f ∼ sin(3π/8)(3 ± √

η) asη → 0.
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FIG. 2. Examples of a further kind of travelling rotating wave withc = 2.0 andq = 0.5 and initial data compatible with the
asymptotic behaviour given by (35) asη → −∞. In (a) the positive root ofd is taken and in (b) the negative.
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(2.) We can also join a solution with asymptotic behaviour (27) asη → η+
0 to one with asymptotic

behaviour (28) asη → η+
0 . The resulting curve is a regular solution ofv = κn but is again

multivalued in R and f . The two branches both exhibit the asymptotic behaviour (32) as
η → +∞, which has four degrees of freedom. The practical details of the computation
are the same as above. An example of such a solution is given in Fig. 1(b) (withη0 = 0,
h = 3sin(3π/8), d = 3cos(3π/8), andα = (3π/8)). The curve shown in this figure again
rotates in an anti clockwise direction about thez (i.e. the f ) axis while translating in the
positivez direction.

(3.) We can find solutions with asymptotic behaviour (35) asη → −∞ and asymptotic behaviour
(32) asη → +∞. This involves using (35) in shooting fromη = −∞, where there are
two degrees of freedom, toη = ∞ where there are four degrees of freedom. Examples of
such solutions are given in Figs 2(a) and (b). In both casesk = 0.1, c = 2.0 andq = 0.5
andα andd are calculated using (36). However, in the former the positive root ofd is taken
while in the latter the negative root is taken. The curve shown in Fig. 2(a) rotates in an anti
clockwise direction about thez (i.e. the f ) axis and propagates in the positivez direction
leaving a straight line in its wake. The curve in Fig. 2(b) rotates and translates in a similar
fashion. However, as it does so it consumes the half-line lying along thez-axis.

Solutions to the ODEs (25)–(26) were calculated numerically using a fourth-order Runge–Kutta
method. In cases 1 and 2 we used the appropriate asymptotic behaviours aboutη = η0 to construct
the initial values for the solution at an initial pointη = η0 + δ where 0< δ � 1. In case 3 we used
(35) to construct initial values for the solution atη = −1/δ, where again 0< δ � 1. Solutions of
type 1 are characterized by three arbitrary parametersα, h andη0 (since three degrees of freedom
are exhibited by the initial conditions (29) and (30)); the last of these parametersη0 corresponds
to a translation of the curve along thef -axis. Such solutions pass through the axis of rotation.
Solutions of type 2 are characterized by four parametersα, d, h and η0 (since four degrees of
freedom are exhibited by the initial conditions (27) and (28)); againη0 corresponds to a translation
of the curve along thef -axis. Solutions of type 3 are characterized by two arbitrary parameters
(since two degrees of freedom are exhibited by (35)). In all cases considered the numerical behaviour
for large positiveη was compatible with (32) which should not be surprising as it has four degrees
of freedom.

4.5 Special cases

4.5.1 q = 0: rotating waves. When q = 0 in equations (25)–(26) the equations describe a
rotating wave with angular velocityc. While these have the same asymptotic behaviour as before
close to blow up (i.e. (27)–(28) and (29)–(30)), they exhibit different behaviour asη → +∞ where
the balance is of the form

cR′ R2 − R ∼ 0, f ′′ + c f ′ R2 ∼ 0,

with asymptotic behaviour

R ∼
(

2η

c

)1/2

, f ∼ d, (37)

whered is an arbitrary constant. Hence asη → +∞ the solution tends towards a planar solution.
We determine the number of degrees of freedom exhibited by this behaviour by linearizing about
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(37) in the form

R ∼
(

2η

c

)1/2

+ R1, f ∼ d + f1,

and find thatR1 and f1 are composed of linear combinations of

R1 = 0

f1 ∼ 1

}
;

R1 ∼ η−1/2

f1 = 0

}
; R1 ∼ 1

2η
exp(−η2)

f1 = 0


 ;

R1 = 0

f1 ∼ 1

2η
exp(−η2)


 .

Since none of these behaviours violates the asymptotic expansion (37) in the limitη → +∞ four
degrees of freedom are exhibited by (37).

Rotating waves can be constructed in an identical manner to rotating travelling waves. Examples
of rotating waves computed from equations (25)–(26) are plotted in Figs 3 and 4. In Fig. 3(a) the
curve is formed from two solutions with initial data given by (27) and (28) whilst in Fig. 3(b) it
is formed from two solutions with asymptotic behaviours (29) and (30). Figure 4 shows a rotating
wave which has asymptotic behaviour of the form (35) asη → −∞. In all three cases the curve
rotates in an anti clockwise fashion about thef -axis. Figure 4 is of particular interest because it
suggests that, when the forcing term(∇ ∧ B) ∧ t is retained in the superconducting vortex equation
of motion (1), that it is possible to form a three-dimensional superconducting analogue of the Frank–
Read source seen in disclination dynamics. In this scenario a superconducting vortex is pinned on
two semi-infinite lines and curves round from the top of one line to meet the top of the other. When
a current (i.e. an external force) is applied to this structure it seems likely that it would generate a
lengthening double-spiral vortex that would, after sufficient time, reconnect with itself releasing a
vortex ring.

4.5.2 c = 0: travelling waves. Whenc = 0, equations (25)–(26) describe a travelling wave
moving with velocityq in thez-direction. In particular, we can now identify the similarity variable
asθ and write equation (25) in the form

d2R

dθ2
−

(
R + 2

R

(
dR

dθ

)2
)

= 0. (38)

This has general solution

R = k

sin(θ − θ0)
,

wherek andθ0 are arbitrary constants. It follows that the solution curve lies in the planey cos(θ0)−
x sin(θ0) = k and, as such, is equivalent to the planar solutions studied previously by Mullins [9]
and Wood [16].



MOTION BY CURVATURE OF A THREE-DIMENSIONAL FILAMENT 409

–3
–2

–1
0

1
2

3
4

–3
–2

–1
0

1
2

–1

0

1

(a)

–4

–2

0

2

4
–3

–2
–1

0
1

2
3

–1

0

1

(b)

FIG. 3. (a) An example of an asymmetric rotating wave with initial conditionsR ∼ cos(−π/4)(1 ± √
2η) and f ∼

sin(−π/4)(1 ± √
2η) asη → 0. (b) An antisymmetric rotating wave with initial conditionsR ∼ ± cos(π/4)

√
6η and

f ∼ ± sin(π/4)
√

6η asη → 0. In both casesc = 1.

5. Logarithmic similarity reductions

5.1 Expanding case

Wenow investigate similarity solutions to equations (10) and (11) of the form

r = √
t R(η),

z = √
t f (η),

η = θ − p log(t).
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FIG. 4. An example of a further kind of rotating wave withc = 3.0 and initial data compatible with the asymptotic behaviour
f ∼ dη, R ∼ 0.1 exp(αη) asη → +∞.

Substituting this into (10) and (11) yields the autonomous system

R′′ = 1

2

(
R − 2pR′) (

R2 + f ′2 + R′2) +
(

R + 2R′2

R

)
, (39)

f ′′ = 1

2

(
f − 2p f ′) (

R2 + f ′2 + R′2) + 2R′ f ′

R
. (40)

Since these equations are invariant under the transformation

η → −η, p → −p,

we can, without loss of generality, choosep > 0. As with the rotating travelling wave we find two
types of blow-up in finiteη, namely

R ∼ d ±
(

2(η − η0)

p

)1/2

cosα, f ∼ h ±
(

2(η − η0)

p

)1/2

sinα, (41)

and

R ∼ ±
(

6(η − η0)

p

)1/2

cosα, f ∼ h ±
(

6(η − η0)

p

)1/2

sinα, (42)

whered, h, η0 andα are all arbitrary constants. It follows that there are four degrees of freedom for
the asymptotic behaviour (41). In order to determine the number of degrees of freedom exhibited
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by the asymptotic behaviour (42) we follow the procedure adopted in the case of the equivalent
behaviour of the rotating travelling wave. The result is identical to that found in (31) if we replace
c by p and, as in the case of equation (29), the asymptotic behaviour (42) has three degrees of
freedom.

The largeη behaviour differs from the previous case. Equations (39) and (40) have no finite
stationary points and hence forη increasing the only possible asymptotic behaviour is for at least
one of f andR to tend to infinity. Hence we find that

f ∼ 2p f ′, R ∼ 2pR′,

so that the asymptotic behaviour is given by

R ∼ e1 exp

(
η

2p

)
, f ∼ e2 exp

(
η

2p

)
, asη → +∞, (43)

wheree1 is a non-zero, but otherwise arbitrary, constant ande2 is an arbitrary constant. If we
linearise inR1 and f1 via the ansatz

R ∼ e1 exp

(
η

2p

)
+ R1,

f ∼ e2 exp

(
η

2p

)
+ f1,

we find that the asymptotic behaviour forR1 and f1 is a linear combination of

R1 ∼ exp

(
η

2p

)
+ O

(
− exp

(
η

2p

))

f1 = O

(
exp

(
− 3η

2p

))

 ;

R1 = O

(
exp

(
− η

2p

))

f1 ∼ exp

(
η

2p

)

 .

and two very rapidly decaying solutions each of which satisfies

log R1 ∼ −p2E2 exp

(
η

p

)
log f1 ∼ −p2E2 exp

(
η

p

)
,

asη → +∞, whereE2 = e2
1 + (e2

1 + e2
2)/(4p2). An appropriate combination of the first two of

these solutions represents translational invariance (inη) of (39) and (40). Corrections to the last
two solutions can be determined by proceeding to next order in the expansion (43). None of the
expressions we have found forR1 and f1 violate the asymptotic behaviour (43); it hence exhibits
four degrees of freedom.

Looking at the asymptotic behaviour (43) it might be conjectured that (by choosinge1 = 0 and
e2 �= 0) it is possible to find solutions to (39) and (40) which asymptote to thef -axis asη → +∞.
However, if f ∼ e2 exp(η/(2p)) asη → +∞ andR � f thenR obeys the approximate equation

R′′ ∼ e2
2

8p2
exp

(
η

p

) (
R − 2pR′) +

(
R + 2R′2

R

)
.

In this limit the above equation has possible asymptotic behaviours

R ∼ exp

(
η

2p

)
C1 exp

(
e2

2

4
exp

(
η

p

))
, R ∼ C2 exp

(
η

2p

)
,
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whereC1 andC2 are arbitrary constants. This suggests that the only solutions to (39) and (40) which
asymptote to thef -axis asη → ∞ are those for whichR ≡ 0 (i.e. lie along thef -axis).

We conjecture that there is no solution to (39)–(40) which does not exhibit finiteη blow up for
sufficiently large negativeη.

Numerical solutions. In a manner similar to that outlined above, we may join two solutions with
asymptotic behaviours (41) (but different signs) to each other. We calculate the two branches
separately using the positive sign in (41) to give initial conditions atη = η+

0 of one branch and
the negative sign in (41) to give initial conditions atη = η+

0 for the other branch. For both branches
we then integrate forward inη using a fourth-order Runge–Kutta numerical scheme. The behaviour
asη → +∞ is then found to be given by (43). A typical curve obtained using this procedure is
plotted in Fig. 5(b). In a similar fashion we can use the positive sign in the asymptotic behaviour
(42) to provide initial conditions to calculate one branch of a continuous curve and the negative sign
in equation (42) to calculate the other branch and, as before, the behaviour asη → +∞ is given
by (43). An example of such a curve is plotted in Fig. 5(a). In both cases the curve rotates in an
anti clockwise direction about thef -axis with slowing angular velocity; it expands as it does so. An
animation of the curve in Fig. 5(b) can be found in [15].

The initial value problem. We may interpret solutions to (39)–(40) as satisfying an initial value
problem for the original partial differential equations (10)–(11). For any fixed value ofθ the
corresponding value ofη as t → 0 tends to+∞ if p > 0. Initial data att = 0 is thus given
by the largeη behaviour (43). On substituting this into the similarity ansatz (23) we see that the
initial data is given by two logarithmic spirals, joined atr = 0 z = 0 and distorted in thez-direction
to lie on the surface of a cone, that is

r = e+
1 exp

(
θ

2p

)
, z = e+

2 exp

(
θ

2p

)
, at t = 0,

and

r = e−
1 exp

(
θ

2p

)
, z = e−

2 exp

(
θ

2p

)
, at t = 0.

This initial value problem gives a dramatic demonstration of the curve shortening property, since the
spiral is initially of infinite length in the neighbourhood of the origin but instantaneously shortens
to a finite length there.

5.2 Contracting case

Welook for solutions to (10) and (11) of the form

r = √−t R(η), w = √−t f (η), η = θ + p log(−t),

yielding

R′′ + 1

2

(
R + 2pR′) (

R2 + f ′2 + R′2) −
(

R + 2R′2

R

)
= 0, (44)

f ′′ + 1

2

(
f + 2p f ′) (

R2 + f ′2 + R′2) − 2R′ f ′

R
= 0. (45)
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FIG. 5. (a) An example of an expanding logarithmic similarity solution withp = 3 and initial conditionsR ∼
± cos(π/4)

√
2η and f ∼ ± sin(π/4)

√
2η asη → 0. (b) An asymmetric expanding logarithmic similarity solution with

p = 2 and initial conditionsR ∼ cos(3π/8)(2 ± √
η) and f ∼ sin(3π/8)(2 ± √

η) asη → 0.
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As with the expanding case these equations are invariant under

η → −η, p → −p,

and this allows us to choose, without any loss of generality,p > 0. With this choice of sign forp
we find the system (44)–(45) exhibits identical finiteη blow-up to equations (39)–(40), namely that
given by (41) and (42), and these again have four and three degrees of freedom, respectively.

Unlike equations (39)–(40) for the expanding case, equations (44)–(45) have a critical point at
R = √

2, f = 0. Furthermore, this critical point is stable forp > 0. We conjecture that all solutions
(with p > 0) tend towards this point asη → +∞.

As η → −∞ those solutions which do not exhibit finiteη blow-up have asymptotic behaviour

R ∼ e1 exp

(
− η

2p

)
, f ∼ e2 exp

(
− η

2p

)
. (46)

We investigate the number of degrees of freedom exhibited in this behaviour by making a
perturbation to it of the form

R ∼ e1 exp

(
− η

2p

)
+ R1, (47)

f ∼ e2 exp

(
− η

2p

)
+ f1, (48)

and linearizing inR1 and f1. Wefind that the asymptotic behaviour ofR1 and f1 is given by a linear
combination of

R1 = exp

(
− η

2p

)
+ O

(
exp

(
η

2p

))

f1 = O

(
exp

(
3η

2p

))

 ,

R1 = O

(
exp

(
η

2p

))

f1 ∼ exp

(−η

2p

)

 ,

and two rapidly decaying solutions whose leading-order behaviour is given by

log R1 ∼ −p2E2 exp

(
− η

p

)
log f1 ∼ −p2E2 exp

(
− η

p

)
,

whereE2 = e2
1+(e2

1+e2
2)/(4p2). Corrections to the leading-order behaviour of these two solutions

can be determined by proceeding to the next order in the expansion (46). Since we consider the limit
η → −∞ and p > 0 the first and second solutions we found forR1 and f1 violate the asymptotics
while the third and fourth do not. Hence there are only two degrees of freedom for the asymptotic
behaviour (47) and (48).

Numerical solutions. Again, as for the expanding case, we may join two solutions with initial
conditions given by the asymptotic behaviours (41) (but different signs) to each other to construct
a contracting logarithmic similarity solution; and we may also join two solutions with initial
conditions given by asymptotic behaviours (42) (but different signs) to form a different type of
contracting logarithmic similarity solution. In both cases, asη → +∞, the curve asymptotes to
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the critical pointR = √
2, f = 0 making infinitely many rotations as it does so but never self-

intersecting. Examples of a curve with initial conditions of the form (41) and (42) are given in
Figs 6(a) and (b) respectively. In Fig. 6(a) we haveη0 = 0, h = 0 andα = 3π/8 while in Fig. 6(b)
we haveη0 = 0, d = h = 3cos(3π/8) andα = 3π/8. In both case the curves rotate about the
f -axis in an anti clockwise sense contracting to a point in finite time. An animation of the motion
of the curve in Fig. 6(b) can be found in [15]. A third type of solution can be constructed by taking
the asymptotic behaviour (46) as an initial condition asη → −∞. This again asymptotes to the
critical point R = √

2, f = 0 asη → +∞. An example of this third type of solution can be found
in Fig. 7. Here the curve rotates in a clockwise sense and contracts as it does so.

5.3 The special cases p = 0

In both the case where we search for an expanding similarity solution of the form

r = √
t R(θ), z = √

t f (θ),

and the case where we search for a contracting similarity solution of the form

r = √−t R(θ), z = √−t f (θ), (49)

it is possible to show that

d2

dθ2

(
f

R

)
+ f

R
= 0.

It follows that f may be expressed in the form

f = k R cos(θ + α),

wherek and α are arbitrary constants, and hence that the solutions are always planar. As such
solutions have again been investigated previously in Mullins [9] and Wood [16] we again say no
more on the subject, except to note the circular case of (49), namely

r = √−2t, z = 0,

which is known [7] to provide the extinction behaviour of closed curves in the planar case and also
seems likely to in the three-dimensional case.

6. Discussion

In this work we have investigated the motion of a space curve evolving in accordance to the velocity
law v = κn. We started by using the Lie group method to classify the symmetries of the partial
differential equations describing this evolution. We used the results of this analysis to write down
all possible classical similarity reductions to these equations. When we formulated the system in
terms of cylindrical polar coordinatesr , θ and z (as in equations (10) and (11)), these similarity
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FIG. 6. (a) An example of an antisymmetric contracting logarithmic similarity solution with initial conditionsR ∼
± cos(3π/8)

√
6η and f ∼ ± sin(3π/8)

√
6η as η → 0. (b) An asymmetric contracting logarithmic similarity solution

with initial conditionsR ∼ cos(3π/8)(3 ± √
2η) and f ∼ sin(3π/8)(3 ± √

2η) asη → 0. In both casesp = 1.
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FIG. 7. An example of a contracting similarity solution with the asymptotic behaviourR ∼ exp(−η/(2p)) and f ∼
exp(−η/(2p)) asη → −∞. Here p = 1.

solutions take the form

r = R(θ − c t), z = q t + f (θ − c t), (50)

r = R(t), z = k θ + f (t), (51)

r = √
t R(θ − p log t), z = √

t f (θ − p log t), (52)

r = √−t R(θ + p log(−t)), z = √−t f (θ + p log(−t)), (53)

wherec, q, k and p are all arbitrary constants. The similarity form (50) gives rise to rotating
travelling waves, special cases of which are rotating wavesq = 0 and travelling wavesc = 0.
In respect of the travelling wave we were able to show that solutions of this form must be planar.
Solutions to (10) and (11) of the form (51) are contracting helices and the similarity forms (52) and
(53) we term expanding logarithmic similarity solutions and the contracting logarithmic similarity
solutions. The special cases of (52) and (53) in whichp = 0 give rise to so-called shape preserving
solutions; as with the travelling waves, we were able to show that these shape preserving solutions
are necessarily planar.

When the modelv = κn is used to describe the motion of a line singularity, such as a
superconducting vortex or a line disclination, it is useful and interesting to consider the behaviour
of the curve where it meets a boundary. The natural boundary condition associated with the law of
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motionv = κn is

t ∧ N = 0, (54)

wheret is the tangent to curve andN is the normal to boundary. Typically we expect the boundary
to be held fixed as the curve evolves. It follows that the only similarity solutions which can be used
to describe the motion of a curve which connects to planar boundaries are the shape preserving
and travelling wave solutions. It is significant that, as noted above, these are necessarily planar.
Such planar shape preserving solutions have been used in [16] to describe the evolution of a curve
connected at both ends to a wedge, for example.

It is also of interest to speculate on whether there is any closed curve similarity solution to
v = κn other that the obvious contracting circle. It is clear from the catalogue of similarity solutions
in (50)–(53) that the only one capable of describing the evolution of a closed curve is (53). Recall
that we were unable to find any other behaviour than attraction to the stable critical point atR = √

2,
f = 0, asη → +∞ for p > 0 and that we could find no evidence of finiteη blow-up for increasing
η. Furthermore, numerical evidence suggests that, asη → +∞, all trajectories are attracted to this
critical point and hence that it is unlikely that closed curve similarity solutions exist other that the
obvious oneR = √

2, f = 0. However, it is perfectly possible to find long closed curves whose
behaviour is approximately described by similarity solutions of the form (53). One has only to think
of taking the curve in Fig. 7(b), rotating it byπ and joining it back onto its unrotated self somewhere
on the planef = 0 with the aid of four judicious cuts and two joins which get rid of the infinite
portion of the two curves along the circleR = √

2, f = 0. The resulting finite, but very long, closed
curve will follow the evolution of the similarity solution asymptotically, at least until the coils lying
along the circleR = √

2, f = 0 are close to unwinding (i.e. haveO(1) length in the similarity
variables).

Our final comments relate to coupled diffusion equations of the form

∂α

∂t
= ∂

∂z

(
D1(α, β)

∂α

∂z

)
,

∂β

∂t
= ∂

∂z

(
D2(α, β)

∂β

∂z

)
,

(55)

which have a large number of applications. By writing

α = ∂u

∂z
, β = ∂v

∂z
,

this system can be re-expressed as

∂u

∂t
= D1

(
∂u

∂z
,
∂v

∂z

)
∂2u

∂z2
,

∂v

∂t
= D2

(
∂u

∂z
,
∂v

∂z

)
∂2v

∂z2
,

(56)

and so as an indirect consequence of our analysis we are able to identify the special case

D1(α, β) = 1

1 + α2 + β2
= D2(α, β), (57)
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of (55) as having a very rich (albeit non-local) eight-parameter symmetry group; more precisely, two
of the rotation groups of (2) correspond to non-local symmetries of (55) with (57) while rotation
about thez-axis corresponds to a local symmetry of (55). This result suggests that an analysis of
(56) to identify the non-local symmetries of (55) would be highly worthwhile. In particular, we may
extend the above result by applying the following geometrical reasoning (or, at the cost of some
algebra, by a systematic procedure based on the relevant infinitesimals). For rotation about an axis
in the(u, v, z) = (a, b, c) direction it is clear that

aα + bβ + c

(1 + α2 + β2)1/2
,

(which is the component of the tangent to the curve in the(a, b, c) direction) is an invariant
depending only upon the first derivativesα and β. The angle that the projection of the tangent
to the curve onto the plane normal to(a, b, c) makes with the vector(0, c, −b) is

Θ = tan−1

(
(b2 + c2)α − abβ − ac

(a2 + b2 + c2)1/2(cβ − b)

)
.

Under rotation about(a, b, c) this angle changes by the angle of rotation. Thus

v = eµΘΛ
(

aα + bβ + c

(1 + α2 + β2)1/2

)
κn (58)

is invariant under a translation inΘ and a rescaling in time for any functionΛ. Formulating this
velocity law as a PDE and differentiating with respect toz gives the following system of nonlinear
diffusion equations:

∂α

∂t
= ∂

∂z

[
Λ

(
aα + bβ + c

(1 + α2 + β2)1/2

)
exp

(
µ tan−1

(
(b2 + c2)α − abβ − ac

(a2 + b2 + c2)1/2(cβ − b)

))
1

1 + α2 + β2

∂α

∂z

]
,

∂β

∂t
= ∂

∂z

[
Λ

(
aα + bβ + c

(1 + α2 + β2)1/2

)
exp

(
µ tan−1

(
(b2 + c2)α − abβ − ac

(a2 + b2 + c2)1/2(cβ − b)

))
1

1 + α2 + β2

∂β

∂z

]
,

(59)

which inherits as a non-local (unlessa = b = 0) symmetry the symmetry of (58) under translations
of Θ . The corresponding results for the planar case underpin the analysis of [11] (and references
therein) though those examples (of scalar nonlinear diffusion equations) have not previously been
given the geometrical interpretation

v = eµΘκn, (60)

in two dimensions withΘ = tan−1(∂u/∂z). Equation (60) implies that

∂α

∂t
= ∂

∂z

(
eµ tan−1 α

1 + α2

∂α

∂z

)
,
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so settingµ = −2in, α = ic is often expedient, leading to

∂c

∂t
= ∂

∂z

(
(1 + c)n−1

(1 − c)n+1

∂c

∂z

)
.

Havingµ andα imaginary obscures the geometrical derivation and content, however.
Finally, it is worth noting the similarity of such results toλ–ω reaction diffusion systems. For

a = b = 0, the relevant symmetry of (58) is a local one. Fora = b = µ = 0, (59) takes the form

∂γ

∂t
= ∂

∂z

(
D(|γ |)∂γ

∂x

)
(61)

with γ = α+iβ; (61) is evidently invariant underγ → γ eiφ for constantφ, and the result represents
a nonlinearly diffusive version of that for theλ–ω reaction diffusion systems, readily generalizing
to

∂γ

∂t
= ∂

∂z

(
D(|γ |)∂γ

∂x

)
+ (λ(|γ |) + iω(|γ |)) γ, (62)

for example. Systems such as (62) thus warrant further attention.
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