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Parabolic differential inclusions with convex constraints in a finite-dimensional space are considered
with a small ‘diffusion’ coefficiente at the elliptic term. This problem arises for instance in
multicomponent phase-field systems. We prove the strong convergence of solutions @go the
solution of the singular limit equation and show the connection to elementary hysteresis operators.
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1. Introduction

This paper is motivated by problems arising in phase transition models described by systems of
equations involving parabolic inclusions of the form

wy — e Aw +dlg(w) 3 y(w,u’) for (x,t) € Q7 :=N2x]0, T[ (1.1)

with appropriate initial and boundary conditions, whé&e- R" is a Lipschitzian domain/ is the
Laplace operator iif2, 3l is the subdifferential of the indicator functidig of a convex closed
setKk ¢ RN, w : Qt — RN is the unknown functionyé¢ : Qt — R¢ is a control variable,

y : K x Rt - RN is a given Lipschitz-continuous mapping, and> 0 is asmall constant.
This ‘diffusion’ parameter is often physically controversial, and its value cannot be identified
in a straightforward way. A natural question therefore concerns the stability of the model with
respect to the transition — O+. The caseN = 1 andK = [0, 1] was lved in [2], wherew
played the role of order parameter (phase fraction)#&hdas the inverse temperature in a phase-
field system of Penrose—Fife type. The well-posedness of phase-field systems with a vector order
parameter in the limit case = 0 in a hysteresis setting has been established in [8, 9]. The idea
consists in reformulating the inclusion (1.1) as an equation involving the so-chtipaperator

with characteristic K with a possible extension to more general hysteresis operators. A typical
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problem of phase-field type, where some knowledge of the limit behavieura®+ for equations
like (1.1) would have been of interest, was recently considered in [5] in the form

O+ 200 — Aa @) = f(x, 1), (1.2)
wt —yAw — a(@)N (x) =0, 1.3)
xt —mAx +3lz(0) +0(x) > w (1.4)

as a model for the dynamics of a multicomponent phase transition with non-conserved vector order
parameter and with double diffusion. The above reference contains also a detailed justification of
the model.

The question of limit passage as— 0+ which remained unsolved in [5] has motivated this
research, in particular Theorem 2.2 below. Our strategy here consists in suggesting a ‘hysteresis’
framework for the transitiom — 0+, and showing that solutions of (1.1) converge strongly in
the L2-norm to the solution of the formal limit equation providgaf} converges strongly ta®.

Our approach is based on a suitable penalty approximation and thus goes back to classical works
of the French school of variational inequalities: see, for example, [4]. This is certainly not the only
possible way to prove Theorem 2.2 itself—for instance the Yosida approximation is very likely to
work as well. We also refer the reader to the paper of Shirahal. [10]. The main reason for

using our particular penalty argument is that it enables us to justify the formal integration-by-parts
formula for the stop operator in Lemma 4.2 which is of independent interest for applications in the
theory of partial differential equations with hysteresis.

The paper is divided into five sections. In Section 2 we state Theorem 2.2 as our main result.
Section 3 is devoted to a short survey of basic concepts from convex analysis. In Section 4 we give
an overview of results on the stop operator and prove Lemma 4.2 which constitutes a substantial
step in our argument. The proof of Theorem 2.2 is given in Section 5.

2. Statement of the problem
Throughout the paper, we make the following hypotheses with fixed integéts¢ € N.

HYPOTHESIS2.1

(i) £ c R"is a bounded open domain with a Lipschitzian boundary; 0 is agiven final time,
and we seQt := 2x 10, T[;

(i) 0 € K c RN is a given convex closed (not necessarily bounded) set;

(i) o € WH2(2; RN),  o(x) e K fora.e.x € 2;

(iv)uf € L3(Qt; R forall e > 0,u¢ — uO strongly inL2(Qt; RY) ase — 0+;

(v) There exists a constaht > 0 such that the functiop : K x R¢ — RN satisfies the inequality
ly(w,u) —y @, 0)] < L(lw—w|+|u—10]) VYw, e K, u,ieR". (2.1)

Under the above hypotheses, we consider the system

wt — e Aw + dlg (w) > y(w,u®) for a.e.(x,t) € Qr, (2.2)
Jw

Fo 0 for a.e.(x,t) €92x10,T[, (2.3)
v

w(X, 0) = p(X) for a.e.x e 2. (2.4)
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We rewrite (2.2) in the form

w(X, 1) e K for a.e.(x,t) € Qr, (2.5)

(w—eAw—yw,u%),z—w)>0 ae. VzeK, (2.6)

where(., -) is the Euclidean scalar producti.
The main result of this paper can be stated as follows.

THEOREM 2.2 Let Hypothesis 2.1 hold. Then problem (2.3)—(2.6) has for e¢ery 0 aunique
solutionw = w® € L?(Qt; RN) such thatwf, Aw® € L2(Qr;RN), problem (2.4)—(2.6) has a
unique solutionw = w® € L2(Q1; RN) such thaw? e L?(Qt; RN) for ¢ = 0, and we have

T
lim gf / [Vwe||?dx dt = O, (2.7)
e—>0+ 0 I?)

lim sup [ |w®—w%?x,s)dx =0, (2.8)

=0+ e[0T/ 02

where|| - || denotes the norm iR"N.

3. Convex sets

In this section, we recall some elements of convex analysis which are needed in the sequel. We use
the notation from Part Il of [3].

For anyr > 0 we denote byB, (zo) the ball inRN centred inzg € RN with radiusr. By
P, Q : RN — RN we denote th@rojection pair associated with K according to the formula

z=Pz+Qz, QzeK, |Pz=dist(z,K) VzeRN. (3.1)
Wethen have
(Pz,Qz—¢)>0 VzeRN, veek, (3.2)
in particular
(Pz1 — P2, Qz1 — Qz0) >0 Vzy1,2p € RN, (3.3)

We further introduce th&linkowski functional (or gauge) of thesetK by the formula
1
M(z) = inf{s>0;§ze K} for ze RN, (3.4)

The subdifferentiabM () of M at a pointz € Dom(M) := {z € RN : M(2) < oo} is defined
in a usual way as the set of glle RN such that
V,z2—2)>M@ -M©@  VzeRN. (3.5)

We list the following straightforward consequences of (3.4), (3.5).
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LEMMA 3.1 The mappingM : RN — [0, oo] is convex, and we have

IM(@z1) - M(@)| < M(z1 —22)  Vz1,22 € RV, (3.6)
M(z) =AMz  VzeRN va>0, (3.7)
dM(A2) =dM(z)  Vze Dom(M) Vi > 0, (3.8)
(y,2) = M(2 Vz e Dom(M) Vy € aM(2), 3.9

where we seM(z) := max{M (z), M(—2)} for z € RN. If moreoverB; (0) c K c Bgr(0) for some
R>r > 0, then

2|

Z
U<M@<T

R\

The following result is an approximation of the dom&inby smooth bounded convex sets.

vze RN, (3.10)

LEMMA 3.2 For§ > 0putKs := K N By ;2(0), Ks := Ks + Bs(0). Let M; be the Minkowski
functional associated witKs. ThendMs(z) contains for every # 0 asingle point denoted again
by dMs(2), and we have

OMs(2)| < 1/8  Vz#0, (3.11)
|0Ms(z1) — OMs(22)] <8781+ 2632|121 — 2]  Vz1,2 e RN\ IntKs.  (3.12)
Proof. Let us first note thaBs(0) Cc Ks C Bs1(1/52)(0), and (3.10) yields that

2

1
mm < Ms(2) < S|Z| vze RN, (3.13)

Let Ps, Qs be the projections associated with according to (3.1), and let € 0Ks, ¢ € K
be arbitrary. We then hay®;sz| = §, |Ps¢| < §, and from (3.2) we obtain that

(Psz,z—¢) = (Psz, Qsz— Qs¢) + (Psz, Psz— Ps¢) > 0. (3.14)

Assume that a unit vectar ¢ RN belongs to the outward normal coneKg at the pointz, that is
(n,z— &) > Ofor everyé € Ks. Then, puttingg := Qsz + én we obtain that < (Psz, n), hence
n = (1/8)Psz. We thus conclude thats(z) = (1/8)Psz is the uniquely determined unit outward
normal toK; at the pointz, and by (3.3) we have

1
lvs(z1) — vs(22)| < 3 |lz1 — 22| Vz1, 22 € 9K;. (3.15)
By (3.5), (3.9) we have

vs(2)

M@ =122

vz € 0Ky, (3.16)
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where (3.14) with; = Pszimplies that{vs(z), z) > §. From (3.8) we thus obtain that far# 0 we
have|dMs(2)| = |dMs(z/Ms(2))| < 1/8, and (3.11) follows.
To prove (3.12), consider;, zo € RN \ IntKs, andput 21 := z3/Ms(z1) € dKs, 22 =
25/Ms(22) € 9K;s. Then|2i| < (14 8%)/8%, Ms(z) > 1fori = 1, 2. By (3.8) we have that
|0Ms(21) — dM;(22)| = [Ms(Z1) — IM5(22)]

1, . . s . L
<3 |vs(21) (v5(22), 22) — vs(22) (vs(20), 21}

1
< 5 ([(vs(22), 21 — 22)| + |vs(22) (vs(22), 21) — vs(22) (vs(21), 21)))

~2)

1
52

<
)

s 4 N R A 1 PN
(121 = 2ol +121llvs (2) = w5(2)]) < 5A+2Hn -2, (317)
where we used (3.15) and the elementary inequality
| (b,c)a—(a c)b| < 3la—b|la+b]

for everya, b, c € RN, |a| = |b| = |c| = 1. Furthermore, (3.6) and (3.10) yield that

A A R 1
121 — 22| < (121 — 22| + 21| M5 (21 — 22)) < (Z—i- 8_3) |21 — 22, (3.18)

Ms(z2)
and the proof follows easily. O
In the next section we apply the penalty argument based on the following lemma.

LEMMA 3.3 Fa anys > 0 we define the functionalzs : RN — [0, oo[ by the formula

Ms(2) (3.19)

(Ms(2) — 1)2 N
U@ =1 Mz for ze R™\ K,
0 for z e Ks.

Then ¥; is a convex functional of clagg?, and its derivative

(3.20)

Ys(2) = 0Us(2) = IM;(2) (1—

for ze RN\ Kg,
Mﬁ@)

for ze Ks

is a bounded monotone Lipschitz-continuous mappifig— RN.

Proof. We only have to check that; is Lipschitz continuous: that is, find a constant > 0 such
that

lWs(z1) — ¥s(z2)| < Lslzs — 22| Vz1,22 € RN, (3.21)
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Letz;, z» € RN be arbitrary. Inequality (3.21) is trivial if bothy, z» belong toKg. If bothzy, 2, €
RN \ Ks,thenM;(z) > 1fori =1, 2, and using Lemma 3.2 we obtain that

Ms(21)? — Ms(22)?

[Vs(z1) — %(Zz)lé(l ) [0M5(Z1) — IMs(22)| + |0 Ms(Z1)]

- Ms(z2)2 Ms(21)2M;(22)2
2 _
< [0Ms(z1) — aMs(22)| + EM(S(Zl —22)
< (25*2 +581+ 253)2) |21 — 72, (3.22)

hence (3.21) holds. Finally, #; ¢ Ks, z> € Ks, then

Ms(z1)? — 1

[¥s(z21) — ¥5(22)| < [Ms(Z0)] M (20)2

2
< E(Ma(zl) -1

>N

2 - 2
< E(MS(Zl)_ Ms(z2)) < —Ms(za — 22) < 8_2|Zl_22|’ (3.23)

and Lemma 3.3 is proved. O

4. The stop operator

Let us first consider the variational inequality

w(t) € K vt € [0, T], (4.2)
(wt) —v®),z—w®)) >0 ae. Vz e K, (4.3)

independently of the space variablgassuming that € W1(0, T; RN) andy € K are given, and
denoting by a dot the derivative with respectto
The solution operator

Sk - K x W0, T: RNy — wti, T: RV)

defined by the formulak [¢, v](t) := w(t) fort € [0, T] constitutes one of the main building
blocks in the theory of hysteresis operators, and its analytical properties have been studied in detail
in[1, 6,7, 11] in connection with complex hysteresis models.

We list here only a few results which are needed in the sequel. In particulaypif v2 €
W1, T; RN) are input functionsg, ¢1, 92 € K are initial conditions, andw, w1, wy €
W21, T; RN) are the corresponding solutions to (4.1)—(48)t) = Skleg, v1t), wit) =
Sklei, vil(t),i =1, 2, then we have

[w(t)| < o) a.e. (4.4)

(V2(t) — V2(D), wa(t) — w2(t)) > lwi(t) —w2(t)]* a.e. (4.5)

NI =
&lo
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From (4.5) it follows in particular thafx maps the seik x W-1(0, T; RN) Lipschitz continuously
into C([0, T]; RN). This rough property will be sufficient here due to the regularizing effect of
the parabolic equation. In other applications, finer continuity results are required, and we refer the
reader to, for example, [7].

We now define the output of the stop for input functians), v(x, t) depending also or, using
the same symbd&k for the mapping

Sk lg, vI(X, 1) = Skle(), v(X, )I(1)

whenever(x) € K anduv(x, -) € WH1(0, T; RV).

Especially, ifp € C(£2;K), andv € C(2; Wh1(0, T; RN)), then (4.5) yields thatv =
Sk [, v] € C(Qr). If v e LI9(2; WHL(0, T; RN)) for some 1< q < oo andg € LI(02; K),
then by density ofC(Qt) in L9(f2; C([0, T]; RN) we conclude thatw as a mapping? —
C([0, T]; RN) is strongly measurable, and (4.5) entails that the operdigor: L9(2; K) x
LA(2; Wi, T; RN)) — L9(12; C([0, T]; K)) is Lipschitz continuous.

We are now ready to solve problem (2.4)—(2.6) fo& 0.

LEMMA 4.1 Let Hypothesis 2.1 hold. Then there exists a unigde= L2(£2; C([0, T]; RN)) such
thatw? e L?(Qr; RV), and

wO(x, 0) = (X) for a.e.xe £, (4.6)
wl(x, 1) € K for a.e.(x,t) € Qr, 4.7)
(wP —y@O u), z— wo) >0 ae. VzeKkK. (4.8)

Proof. We define the set) := {x € 2; u%x,-) € L%(0, T; RN)} ¢ 2, meag? \ U) = 0. For
fixedx € U we consider the equation

v2(x, 1) = y(Sk[p(x), v2(x, )1V, u0x, 1)),  v%x,0)=0. (4.9)

We define a mappin@y : L0, T; RN) — L0, T; RN) in the following way. For an arbitrary
¢ € L0, T; RN) andt € [0, T] put

t
v(t) ::/ ¢(r)dr, (4.10)
0

Gx[£1(t) := y (Sk[e(X), v1(t), u%(x, 1)). (4.11)

ThenvO(x, 1) := v(t) given by (4.10) is a solution of (4.9) if and only §fis a fixed point of the
mappingGy. For eachzy, &2 € L0, T; RN) we have by Hypothesis 2.1(v) and inequality (4.5)
that

IGl2a](®) — Gxle2l®)] < L[Sk [0, v1l(®) — Sk [0 (), v2] )]
t
<aL /O 11(1) — c2(1)] . (4.12)

Denoting byGK the kth iteration ofGy, that iSG} = Gy, GK*1 = G4[GK] fork = 1,2, ..., we
easily obtain by induction that
(2L)ktkfl

Kk k
IGxI61]®) = Gl&I O < =

)
/O 1(0) — £a(0)| (4.13)
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henceG§ is a contraction for sufficiently large By the Banach contraction principl€y admits a
unique fixed point € L1(0, T; RN), hence (4.9) has a unique solution, and the function

w = Sk e, vO] (4.14)

has the properties (4.6)—(4.8). The uniqueness is obtained in a standard wa¥; k&t be two
solutions. Puttingz := (1/2)(w® + ©°) in the inequality (4.8) successively far® and w°® and
summing the resulting inequalities up, we obtain the assertion from the Gronwall argument. Using
(4.9), (4.4), and again Gronwall's inequality, we easily check tav?, w®, w? € L?(Qt; RN),
and Lemma 4.1 is proved. O

The main result of this section which will play a crucial role in the proof of Theorem 2.2 reads
as follows.
LEMMA 4.2 Let Hypothesis 2.1(i)—(iii) hold, and let w € L?(Qt; RN) be such that
() v, Aw € L2Qr; RY),

(i) w = Sklg, v],
(i) ow/dv(x,t) = Ofora.e.(x,t) € 92x 10, T[.

Then for everys € [0, T] we have that

S
—f / (v, Aw) (X, t) dx dt > %(/ ||Vw||2(x,s)dx—/ ||V<p||2(x)dx>. (4.15)
0 J 2 2

Proof. Weintroduce the functiorf := v — Aw € L2(Q1; RN). Inequality (4.15) can be written
equivalently in the form

S S
/ / |vt|2dxdt+%/ [Vw|l2(x,s)dx < %/ ||V(p||2(x)dx+/ / (vr, f) dxdt (4.16)
0 Jn 2 2 0 Jn

foreverys € [0, T].
Using Lemma 3.3, we consider the penalized problem

w® — Aw® 4 Lysw®) = f in Qr,
qw®
w5 on a2x10,T[ (4.17)
v
w®(x, 0) = () in 2

with the intention to le6 tend to G+. The mappingy; is for every fixeds > 0 bounded, monotone,
and Lipschitz continuous, hence problem (4.17) admits a unique solutidne L2(Qt;RN)
such thatw”, Aw® e L2(Qt; RN). In order to derive suitable a priori estimates, we denote by
C1, Cy, ... any positive constant independentsof

Testing (4.17) byut(‘s) we see that the identity

s 1
f / |w§5)|2(x,t)dxdt+/ (%||Vw<5>||2+—%(w<5>)> (X, S) dx
0 JR N é

S
- / }Lflg(gﬂ(x))dx—i—%/ IV (x)|I? dx +/ / <wt(5),f>(x,t)dxdt, (4.18)
o) 17 0 Jo
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holds for everys > O ands < [0, T]. Let us check that

. 1
a|—|>n8+f9 E%Qp(x)) dx = 0. (4.19)

Indeed, fors > 0 we define the sets
Fs:={Xe2; lpx)]|>832}. (4.20)

By the Sobolev embedding theoregg LP({2) for somep > 2 (more preciselyp = 2n/(n — 2)
if n > 3, p> 2arbitrary ifn < 2). This yields that

Ci> [ lex)[Pdx > 6 2PmeagFs),
Fs

hence meagF;) < C182P. By definition of ¥s, we have¥s (¢(x)) = 0 wheneveip(x) < §~2. This
yields that

1 1 1 1
/ —%((/)(X))dx=/ < Us(p(x)) dx < —/ Ms(p(x)) dx < —2/ lp(x)| dx
o Fs O 8 Jr 8% Jr

1/p
<52( |</>(x)lpdx> (meagFy))P-/P < Cp%P72 (421)
Fs

and (4.19) follows. Using the Cauchy—Schwarz inequality we thus obtain for everf0, T] the
estimate

s 1
/ / |w§5>|2(x,t)dxdt+/ (||Vw(5)||2+gW5(w(8))) (x,s)dx < Cs. (4.22)
0 J 2
We further test (4.17) by-Aw®. Then we have

1 ®)2 ° @2, L ®) ®)
—/ 1vw®| (x,s>dx+// 4w P 4 < (Vs ®). u®) ) o axt
2)0 0 Jo )

S
< 3/ IIV¢(X)|I2dx+/ / (A4w®, £} o, v dxet, (4.23)
2Ja o Jo

where (-, -)) denotes the scalar productR"N. The monotonicity and Lipschitz continuity afs
entails that

/()s[(2<<VW3(w(5)),Vw(5)>> x.tydxdt > 0,

and we obtain the estimate

S
/ / (|w§5>|2+|Aw<5>|2) (x,t)dxdt+/ IVw®|2(x, s)dx < Ca. (4.24)
0 J 2
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Wefinally test (4.17) byw(® + 1y (w®) and obtain analogously as above that

s @ 1 5
//‘wt + P w®)
o Jn 8

S
< 1/ ||V¢(x)||2dx+/ / <w§‘”+}w5(w<5)), f>(x,t)dxdt.(4.25)
2)0 0o Jn 8

2
(X, t)dx dt + %/ IVw®|2(x, s) dx
(0}

Combining the above estimates we conclude that for esery0, T] we have

1
/ <||Vw<‘”||2 +5 %(w“))) (X, 8) dx < Cs, (4.26)
2

s 2 2 |1
/ / ‘wt(a)’ + ‘Aw(‘s)’ + ‘—w(s(w(‘s))
0 Jo 3

We naw let § tend to G+. Passing to a subsequence, if necessary, we find functions €
LZ(QT; RN) such thaﬁDt, Aw € LZ(QT; RN), and

2
) (x,t)dx dt < Cs. (4.27)

1 i
w® > @, Aw® - Aw, gwg(w<3>)_> ¥ weaklyin L2(Q7;RN),  (4.28)

w® — @ strongly in L2(Qt; RV). (4.29)
Consequently, the functiom satisfies the same initial and boundary conditionsvasdVe now
use (4.26) to check thab(x,t) € K a.e. To this end, assume that there exists aAset Qr,
meagqA) > 0, such thaiw(x, t) ¢ K for (x,t) € A. Putting fork e N

A = {(x, 1) € A; Jw(x, t)| <k, dist(w(x,t), K) > 1/k},

we haveA = U ; Ag, hence there existg > 0 andkp € N such that mea@Ay,) = 1 > 0. Put

.
K (8) ::f /|w(‘”—w|2(x,t)dxdt.
0 0}

Then lims_ o+ ¥ (8) = 0, and we may findp > 0 such that
n
8 — for 6 < 8. 4.30
k() < 8e 0 (4.30)
PutBs := {(x,1) € Q7 ; [w®(x,t) —w(x,t)| > 1/(2ko)}. Then
meas(Bs) < 4k3«(5) < % for § < So, (4.31)

and there exists a sét C Axgs meagA) > u/2, such that

1 _
lw®(x,t) — w(x, t)| < ET V(x,t) € A V§ < 8o, (4.32)
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hence
distw®(x,t), K) > i V(x,t) € A V8 < 8o, (4.33)
and
dist(w® (x, t), Ks) > i V(x,t) € A V8 < 81 := min{do, 1/(4ko)}. (4.34)
We havelw® (x, t)| < ko + 1/(2ko) for (x,t) € Aands < 81, hence
(1— 4kgl+ 2) wPx,t) ¢ IntKs V(X t) € A V5 < 81. (4.35)
This yields for everyx, t) € Aands < 8; that
Ms(w®(x, 1)) > 1+ Wlﬂ Tsw®(x, 1) > e 1)1( Wi (4.36)
which contradicts (4.26), and we thus checked thét, t) € K a.e.
We continue by putting
v(X, 1) = v(X, O)+zI)(x,t)+/0t1/_f(x, ) dr. (4.37)
We see that
w® + ;—LI//a(w(S)) — & weaklyin L2(Qt; RV), (4.38)

and passing to the limitin (4.17), (4.25) we obtain that
v — Aw = f, (4.39)

S S
//waz dxdt+%/ ||Vw||2(x,s)dx<%/ ||Vg0||2(x)dx+/ / (0, f) dxdt. (4.40)
0 J 0 0 0 J

We now claim that

1 ]
<3wa<w@>>, w® — a)> >0 aevweK,. (4.41)

Indeed, ifw® (x,t) € Ks, thenys(w®(x,t)) = 0, and ifw® (x,t) ¢ Ks, then we have that
Ms(w®(x, t)) > 1. The definition of the subdifferential yields that

<a Ms(w® (x, 1)), w® (x, t) — w) > Ms(w® (x, 1)) — Ms(ib) > 0, (4.42)
and (4.41) follows. Passing to the limit in (4.41) we obtain that
(B —w,w—w) =0 aeViek, (4.43)
that isw = Sk [¢, v]. Testing the identity
v — 0 = A(w —w) (4.44)

by w — w and using the inequality (4.5) we conclude that w, v = v, and the assertion follows
from (4.40) and (4.16). O
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5. Proof of Theorem 2.2

The existence and uniqueness resultsfee 0 has been established in Lemma 4.1. For each fixed
¢ > 0, the unique solution can be constructed by the penalty method with the same penalty function
¥s as in the proof of Lemma 4.2 and we do not repeat the standard argument here. Instead, we
derive a priori estimates which will enable us to pass to the limit-as 0+. We continue to denote
by C; any positive constant independentsof

Putvi(x,t) := fé(s Aw® + y(w, u®)) (X, t) dr for (x,t) € Qt. By (2.6) we then hava® =
Sk [¢, v¥] according to the notation introduced in Section 2, and we obtain that

vi —eAw® = y(w®,u®) ae. foralle >0 (5.1)

analogously as in the proof of Lemma 4.1 foe 0.
Lemma 4.2 enables us to test (5.1) for O by v{, and obtain for everg € [0, T] that

S
//|vf|2(x,t)dxdt+£/ I Vw?|I?(x, s) dx
0 J £

S
<e/ IIV¢||2(X)dX+/ / Iy (wf, ) 2(x, £ dx i
2 0 JN?

S
< Cy <1+/ / |w€|2(x,t)dxdt>. (5.2)
0 Jn

From (4.4) and the Gronwall argument we thus obtain for egeryf0, T ] the estimate

S
/ / (|w8|2+|wf|2+|vf|2) (x,t)dxdt+s/ IVt |2(x,5)dx < Cg.  (5.3)
0 J? 2

From (5.1) and (5.3) it further follows that

.
82/ / |Aw?|?(x, t) dxdt < Co. (5.4)
0 {2

Letn : Qr — RN be any smooth test function. We have by (5.2) that

T T
/ / e(Aw®, n) dx dt‘ < \/E/ / JeE|Vwe | | V| dx dt (5.5)
0 N 0 N

T 12
<¢Eclof ([ ||Vn||2dx) dt.
0 2

Together with (5.4), (5.2) this yields that

eAw® — 0 weaklyin L2(Qr;RN) ase — 0+. (5.6)

The last step of the proof consists in testing (5.1)ufy— w® with w® as in Lemma 4.1. We then
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obtain fors € [0, T] that

S S
/ / <uf 0wt — w0> (x, t) dx dt + sf / IVw® [2(x, t) dx dt
0 Jn 0 J

S S
= —/ / 8<Aw8, w0> (X, t)dxdt + f f <y(w8, u®) — y w° u%, w® — w0> (X, 1) dx dt.
0 JQ 0 JQ
(5.7)
Using (4.5) and Hypothesis 2.1(v) we conclude that

S S
%/ lw® — w|2(x, s) dx + e[ / IVwe [12(x, 1) dx dt < —/ f e<Aw€,w°> (X, t) dx dt
02 0JNR 0J

S S
+Cn1 (/ / lw® — wO2(x, t)dx dt + f / lu® — u%?(x, t) dx dt) (5.8)
0 J 0 J

for everys € [0, T]. In order to pass to the limit in (5.8) as — 0+, it suffices to use (5.6),
Hypothesis 2.1(iv), and Gronwall's argument. The proof of Theorem 2.2 is thus complete.[]
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