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A nonlinear stability analysis of pattern formation in thin liquid films
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The development of spontaneous stationary equilibrium patterns in thin liquid films is investigated
by means of a hexagonal-planform weakly nonlinear stability analysis applied to the appropriate
governing evolution equation for this phenomenon. In the long-wavelength limit the mathematical
system modeling the liquid film can be reduced to such a single nonlinear partial differential time-
evolution equation describing the layer thickness on an unbounded two-dimensional spatial domain
and including the effects of gravity, intermolecular forces, and temperature-dependent surface
tension. The main result of this analysis is that supercritical equilibrium patterns can occur for
an interval of mean layer thickness with subcritical rupture occurring outside that interval. These
patterns consist of surface ridges and hexagonal network-like cells or close-packed configurations
of nanodroplets separated by relatively flat ultra thin films. In particular those morphological phase
separation patterns are generated by the coupling between the long-range attractive and short-range
repulsive intermolecular forces with cells being stable for the thicker layers; nanodroplets, for the
thinner ones; and ridges, for layers of intermediate thickness. These theoretical predictions are in
accord with both relevant experimental evidence involving thin liquid polymer, crystal, and metal
films coating a solid substrate and numerical simulations of similar model equations as well as being
consistent with dewetting-type rupture occurring for such situations by hole formation in relatively
thick layers but by drop formation in thinner ones.

Keywords: Thin liquid films; nonlinear stability analysis; hexagonal pattern formation; morphologi-
cal phase separation.

1. Introduction and formulation of the problem

Rayleigh–B́enard buoyancy-driven convection has to date provided perhaps the best studied
example of nonlinear pattern selection (reviewed by Koschmieder [10]). One of the methods
traditionally used to predict such pattern selection is a weakly nonlinear stability analysis
that, although incorporating the nonlinearities of the relevant model system, basically pivots a
perturbation procedure about the critical point of linear stability theory (reviewed by Wollkindet
al. [32]). The advantage of such an approach over strictly numerical procedures is that it allows
one to deduce quantitative relationships between system parameters and stable patterns which are
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valuable for experimental design and difficult to accomplish using simulation alone. Recently, there
has been considerable interest generated in pattern formation and selection during the controlled
plane-front solidification of a dilute binary alloy under the influence of an imposed temperature
gradient and during chemical reactions occurring in an open gel continuously fed unstirred tank
reactor. In order to predict the sequence of interfacial morphologies and Turing patterns actually
observed during such solidification and chemical reactions, respectively, Wollkindet al. [33] and
Wollkind and Stephenson [34] performed the same weakly nonlinear stability analysis as originally
developed by Segel [20] to study Bénard convection cells on the governing systems of diffusion
equations appropriate for modeling these phenomena. In particular all those investigations employed
a hexagonal-planform weakly nonlinear stability analysis to determine the relevant parameter range
for the transition between one-dimensional and hexagonal pattern formation.

We wish to continue our examination of nonlinear phenomena by investigating spontaneous
pattern formation in thin liquid films. In this case an appropriate governing mathematical system
can be reduced to a single nonlinear partial differential time-evolution equation describing the layer
thickness on an unbounded two-dimensional spatial domain and including the effects of gravity,
intermolecular forces, and temperature-dependent surface tension. We shall perform a hexagonal-
planform weakly nonlinear stability analysis on that model equation and then compare the results
obtained with both relevant experimental evidence and numerical simulations as well as place them
in the context of some recent pattern formation studies. We begin below with a brief description of
the phenomenon, a sketch of the reduction procedure required to derive the model equation, and a
discussion of the methodology to be employed.

Liquid layers thinner than about 1µm (≡ 10−6 m) are often unstable and spontaneously
form various stationary equilibrium morphologies including surface ridges which exhibit a clearly
defined critical wavelength and hexagonal cellular patterns or uniform distributions of nanodroplets
separated by very thin films as depicted in the photographic reproductions of Sharma and Reiter
[24], Xie et al. [36], Reiter [18, 19], and Herminghauset al. [5]. These experiments involved thin
liquid polymer, crystal, or metal films coating a solid substrate that were open above to the ambient
air. Governing equations for situations of this sort have been developed by Williams and Davis
[30], Sharma and Ruckenstein [25], Kheshgi and Scriven [9], Mitlin [13], Sharma and Jameel [22],
Jameel and Sharma [6], Mitlin and Petviashvili [14], Khanna and Sharma [8], and Sharma and
Khanna [23]. More generally the long-scale evolution of thin liquid films has been reviewed recently
by Oronet al. [16].

Consider a thin liquid layer of mean thicknessh0 bounded from below by a planar solid surface
located atz = 0 and from above by an interface satisfyingz = h(x, y, τ ) which separates it from a
passive gas (see Fig. 1). The liquid layer is assumed thin enough so that intermolecular forces must
be taken into account but thick enough so that a continuum mechanical approach will still be valid.
Then in the long-wavelength limit the Navier–Stokes and continuity equations for the liquid layer
are given by

(p + ρ0gz + φ)z = Pz = 0, µuzz = Px, µvzz = Py, ux + vy + wz = 0; (1.1a, b, c, d)

with no-slip and no-penetration boundary conditions at the solid surface

u = v = w = 0 atz = 0; (1.2a, b, c)

and balance of the tangential and normal components of momentum and the kinematic boundary
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FIG. 1. The physical configuration showing the dimensional Cartesian coordinate system.

condition at the interface

µuz = γx, µvz = γy, p0 − p = γ (hxx + hyy), hτ + uhx + vhy = w at z = h. (1.3a, b, c, d)

Here τ is time and the Cartesian coordinate system(x, y, z) with corresponding velocity
components(u, v,w) has been employed whileµ and ρ0 are the constant shear viscosity and
density of the Newtonian fluid liquid layer. In additiong is the acceleration due to gravity whilep
andp0 refer to the pressure in the liquid layer and passive gas, respectively. Further,φ = φ(h) and
γ = γ (h) are the intermolecular body force potential per unit volume and interfacial surface tension
coefficient per unit length, both of which depend on the layer thicknessh, the latter dependence
being due to a nonzeroγ ′(h) caused by the Marangoni effect (see below). Basically the long-
wavelength asymptotic procedure [30] entails introducing a nondimensional scaling parameter
k > 0 such thatx, y, τ, w = O(k); z, u, v, h = O(1); P, γ ′

= O(1/k); andγ = O(1/k3).
Then taking the limit ask → 0 in the full system of partial differential equations and boundary
conditions, one retains only those terms appearing in (1.1)–(1.3).

Solving equations (1.1) and boundary conditions (1.2) and (1.3a,b) for the velocity components,
we obtain

µu = Px(z
2/2 − hz) + γxz, µv = Py(z

2/2 − hz) + γyz, (1.4a, b)

µw = −(Pxx + Pyy)z
3/6 + [(Pxh)x + (Pyh)y − (γxx + γyy)]z

2/2, (1.4c)

which upon subsititution into the kinematic boundary condition (1.3d) yields the result

3µhτ − (h3Px)x − (h3Py)y + 3[(h2γx)x + (h2γy)y ]/2 = 0 atz = h. (1.5a)

Finally using the definition ofP from (1.1a) in conjunction with (1.3c), we can represent (1.5a) in
the higher dimensional form

3µhτ + ∇ · [h3
∇{γ (h)∇2h}] − ∇ · [h3

{φ′(h) + ρ0g}∇h] + 3∇ · [h2γ ′(h)∇h]/2 = 0 (1.5b)

where∇ denotes the two-dimensional gradient operator(∂/∂x, ∂/∂y) and∇
2

≡ ∇ · ∇ .
We complete our formulation of this problem by letting [13]

φ(h) = a/h3
− b/h9, a, b > 0, (1.6a)
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where the terms proportional toa andb in (1.6a) are due to the long range Van der Waals attraction
and extremely short range Born repulsion, respectively, and

γ (h) = Γ (T ) = γ0 − γ1(T − T0) at z = h, γ0,1 > 0, (1.6b)

where consistent with the long-wavelength approximation the temperatureT satisfies

Tzz = 0 for 0 < z < h, T = T0 > 0 atz = 0, Tz = −m0 6 0 atz = h. (1.7a, b, c)

Here we are assuming that the planar solid surface is a perfect conductor maintained at a fixed
temperatureT0 = O(1) while the interface is a poor conductor with an imposed heat fluxm0 =

O(1) to the environment [3]. Then defininghc by φ′(hc) = 0 and solving (1.7) forT we find that

b = ah6
c/3 and T = T0 − m0z, (1.8a, b)

which upon substitution into (1.6) yields

φ(h) = (a/h3
c)[(hc/h)3

− (hc/h)9/3] and γ (h) = γ0 + γ1m0h, (1.9a, b)

where thea = O(1/k) in (1.9a) is related to the Hamaker constant andγ0 = O(1/k3), γ1 =

O(1/k) in (1.9b) are the capillarity and thermal Marangoni coefficients, respectively. Now
incorporating the functions of (1.9) into (1.5b) and nondimensionalizing the resulting equation by
introducing the scale factorsρ0h

2
c/µ for time andhc for both length and layer thickness, we obtain

hτ + S∇ · [h3
∇(∇2h)] + A∇ · [(h−1

− h−7)∇h] − G∇ · (h3
∇h) + M∇ · (h2

∇h)/2 = 0 (1.10a)

where

S =
γ0ρ0hc

3µ2
, A =

aρ0

µ2hc

, G =
gρ2

0h3
c

3µ2
, M =

γ1m0ρ0h
2
c

µ2
, (1.10b)

and a second term proportional toM, ∇ · [h3
∇(h∇

2h)], has been neglected in (1.10a) since it is
negligible with respect to the one retained by virtue of the long-wavelength approximation. Finally
we introduce the rescaled variables [30]

t = A2τ/S, (r1, r2) = (A/S)1/2(x, y), H(r1, r2, t) = h(x, y, τ ), (1.11)

which transforms (1.10) into

Ht+∇2·[H
3
∇2(∇

2
2H)]+∇2·[(H

−1
−H−7)∇2H ]−ε∇2·(H

3
∇2H)+β∇2·(H

2
∇2H) = 0 (1.12a)

where

ε =
G

A
=

ρ0gh4
c

3a
> 0, β =

M

2A
=

γ1m0h
3
c

2a
> 0, (1.12b)

and∇2 ≡ (∂/∂r1, ∂/∂r2).
This is the model spatio-temporal evolution equation we wish to analyze for the type of

interfacial morphologies catalogued earlier. Although bifurcation analyses relevant to the linear
problem and numerical simulations relevant to the nonlinear one were conducted on evolution
equations of that sort in the references already cited, except for Sharma and Khanna [23] their
primary emphasis was on the related phenomenon of thin film rupture and none of them included
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all of the features contained in (1.10). Specifically, Williams and Davis [30] performed a numerical
simulation on a one-dimensional version of (1.12) withε = β = 0 in the absence of short-range
repulsive forces while Sharma and Ruckenstein [25] and Kheshgi and Scriven [9] performed similar
analyses on that equation withε = 0 or β = 0, respectively, where in the former instance the
Marangoni effect was due to surfactant concentration. Then Sharma and Jameel [22] and Jameel
and Sharma [6] performed both a linear stability analysis and a numerical simulation on a one-
dimensional version of an equation similar to (1.12) but withε = β = 0 and the repulsive force
term in (1.6a) taken proportional to exp(−h/`0) for a prescribed correlation length̀0. Sharma and
Khanna [23] extended this numerical simulation to two-dimensions. Mitlin [13] and Mitlin and
Petviashvili [14] also performed both a linear stability analysis and a numerical simulation on a
one-dimensional version of (1.12) withβ = 0. Khanna and Sharma [8] extended this numerical
simulation to two-dimensions withε = 0 as well. Very recently Oron and Bankoff [15] performed
both a weakly nonlinear stability analysis and a numerical simulation on a one-dimensional version
of an evolution equation similar to (1.12) but withε = 0, our thermal Marangoni effect replaced
by one appropriate for more general heat transfer, and the repulsive force term of (1.6a) taken
proportional toh−4 rather than toh−9. In particular they felt that such a term was superior to
one proportional toh−9 for representing actual substrates which are often coated or microscopically
rough since the latter Lennard–Jones Born potential had been deduced for an idealized clean smooth
surface. We shall defer a discussion of this matter until the comparisons included in our last section.

To date no two-dimensional weakly nonlinear stability analysis has been performed on any of
the thin liquid film lubrication-type evolution equations described above. In order to alleviate this
deficiency we wish to perform a hexagonal-planform weakly nonlinear stability analysis on (1.12).
Toward this end we note that there exists a planar interface solution

H0(α) = α = h0/hc > 0 (1.12c)

of (1.12a) which satisfies the implicit far-field condition

H remains bounded asr2
1 + r2

2 → ∞ (1.12d)

and represents a layer of uniform depth. It is the weakly nonlinear stability of this solution to one-
dimensional and hexagonal-planform perturbations with which we shall be concerned in Sections 2
and 3, respectively, the former being a special case of the latter.

2. One-dimensional analysis: Linear and nonlinear stability results

We first perform a one-dimensional analysis of (1.12) by considering a solution to it through third
order terms of the form (see below for a justification of this truncation procedure)

H(r1, r2, t) ∼ α + A1(t) cos(qr1) + A2
1(t)[H20 + H22 cos(2qr1)]

+ A3
1(t)[H31 cos(qr1) + H33 cos(3qr1)] (2.1a)

where the amplitude functionA1(t) satisfies the Landau equation

dA1

dt
∼ σA1 − a1A

3
1 (2.1b)

and q = 2π/λ, λ being the wavelength of the class of spatially periodic perturbations under
investigation. Substituting the solution of (2.1) into (1.12), we obtain a sequence of problems,



6 E. M . TIAN & D . J. WOLLKIND

one for each pair of values ofm andn, which corresponds to a term of the formAm
1 (t) cos(nqr1)

appearing explicitly in (2.1a).
Then the linear stability problem form = n = 1 yields the secular equation

σ = (βα2
− εα3

+ α−1
− α−7)q2

− α3q4
= σ0(q

2
; β, ε), (2.2a)

from which we can deduce the stability criterion

β 6 β0(α; ε) = εα − α−3
+ α−9. (2.2b)

When (2.2b) is violated we arrive at the instability criterion

β > β0(α; ε). (2.2c)

Under this condition, after Sekimuraet al.[21] who used an identical approach on a secular equation
of the same form, we select a fixed valueβc satisfying

β > βc > 0 (2.3a)

such that for
q2

= q2
c = Qc(α; βc, ε) = α−4

− α−10
+ βcα

−1
− ε > 0, (2.3b)

σ = α2Qc(α; βc, ε)(β − βc) = α3Q2
c(α; βc, ε)/4 = δ2 > 0. (2.3c)

This scenario is depicted in Fig. 2a. There is some merit in our offering a more detailed explanation
of the Sekimuraet al. [21] approach at this point. It involves selecting a critical valueβc > 0 of
the bifurcation parameter so that the associated parabolic dispersion relationσ = σ0(q

2
; βc, ε)

has its maximum which occurs atq2
= q2

c /2 satisfyingσ0(q
2
c /2; βc, ε) = δ2

� 1 where the
critical wavenumberq2

c > 0 is defined byσ0(q
2
c ; βc, ε) = 0. Then the bifurcation parameter

β is perturbed around this critical valueβc in such a way that the resulting dispersion relation
σ = σ0(q

2
; β, ε) satisfiesσ0(q

2
c ; β, ε) = δ2. The constraint of (2.3b) or equivalently the instability

criterion (2.2c) particularized toβc occurs whenever the nondimensional mean layer thicknessα

satisfies the spinodal-decomposition [2]-like condition

α1 < α < α2. (2.4a)

Whenβc = 0 as was true for the isothermal problem of Mitlin [13],

α1 ∼= 1 + ε/6, α2 ∼= ε−1/4 shouldε � 1, (2.4b)

which is typically the case (see Fig. 2b). Given the representative values [9, 13]

ρ0g = 104 kg/(m2sec2), 3a = 10−21 kg m2/sec2, hc = 10−9 m ≡ 1nm, (2.5)

we find from (1.12) and (2.4b) thatε = 10−11 and α2 ∼= 562, for example. We plot theσ of
(2.3c) versusα for these representative values in Fig. 2c. Observe that forε = 0, α2 → ∞, which
was Mitlin’s [13] rationale for including that gravity effect. In what follows we shall equate the
q contained in (2.1a) toqc identically. We plot theq2

c of (2.3b) versusα for these same values in
Fig. 2d.



PATTERN FORMATION IN THIN LIQUID FILMS 7

(a) (b)

β
     

β c 

q2 

σ 

q
c
2 q

c
2/2 

 

 o

δ2

        

−1

0

1

2

3

4

5

3.16 

ε =10−2 
β

c
 

β
c
=β

0
 

α 
1 

(c) (d)

1 1.2 1.4 1.6 1.8 2
0

0.01

0.02

0.03

0.04
σ 

α 
1 2 3 4

0

0.1

0.2

0.3

α

q
c
2

     

=10−11 ε
        

FIG. 2. (a) A schematic plot of (2.3) in theq2-σ plane. (b) The stability curveβc = β0(α; ε) of (2.2b,c) forε = 10−2. Note
that its intercepts satisfyα1 ∼= 1 andα2 ∼=

√
10 ∼= 3.16. Plots of (c)σ = α3Q2

c(α; βc, ε)/4 and (d)q2
c = Qc(α; βc, ε) of

(2.3b,c) versusα for βc = 0 andε = 10−11.

Continuing with our description of the results of this one-dimensional expansion procedure, the
second-order problems corresponding tom = 2 andn = 0 or 2 can be solved in a straightforward
manner to yield

H20 = 0, H22 =
10α−9

− 4α−3
− βc + 2(β − βc)

2α2[6q2
c + (βc − β)/α]

. (2.6)

Although there are also two third-order problems, it is permissible to concentrate our attention
exclusively on the one corresponding tom = 3 andn = 1 which contains the Landau constant
a1 for the Fredholm-type method of solvability we shall use. That problem may be represented
symbolically as

a1 − 2σ(β)H31(β) = (21α2q2
c + α−2

− 7α−8
+ 3εα2

− 2βα)q2
c H22(β)/2

+ q2
c (3αq2

c + 28α−9
− α−3

+ 3εα − β)/4. (2.7)

Here we have only explicitly denoted theβ-dependence of the quantities in question for ease of
exposition. Now taking the limit of (2.7) asβ → βc or equivalently asδ → 0, employing (2.3) and
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(2.6), and assuming the requisite continuity atβ = βc, we obtain the solvability condition

a1 = (22α−4
− 28α−10

− 18ε + 19βcα
−1)(10α−9

− 4α−3
− βc)/24

+ (2α−3
+ 25α−9

+ 2βc)(α
−4

− α−10
− ε + βcα

−1)/4. (2.8)

For the examination of the sign ofa1 to be presented below, it is convenient to rewrite the expression
of (2.8) in the form

a1 = c0(β1 − βc)(βc − β2) with c0 = 7α−1/24 (2.9)

whereβ1,2 are the roots of the associated quadratic

7β2
− c1β + c2 = 0 (2.10a)

with

c1 = 356α−9
−74α−3

+6εα, c2 = 430α−18
−470α−12

+76α−4
+10ε(33α−8

−6α−2), (2.10b)

and hence given explicitly by

β1,2(α; ε) = [c1 ± (c2
1 − 28c2)

1/2]/14. (2.10c)

A main feature of the weakly nonlinear stability theory implicit to the formulation of our
expansion (2.1) withq ≡ qc is a phenomenological interpretation of the problem under examination
based upon the long-time behavior of the solutionA1(t) to the truncated amplitude equation (2.1a).
In general the dynamics of such a Landau equation with real coefficients can be divided into the four
qualitatively different cases represented by the possibility ofσ , its growth rate, anda1, its Landau
constant, being either positive or negative. These cases can be catalogued as follows:

Case (i):σ, a1 > 0. There exists a stable equilibrium solutionA2
e = σ/a1. Sinceσ > 0 (βc > β0),

linear theory would predict instability whereas our nonlinear analysis shows the existence of this
finite amplitude supercritically stable equilibrium state.

Case (ii):σ > 0, a1 < 0. The undisturbed stateA1 = 0, which corresponds to a planar interface
solution, is unstable in this case, as well; however now finite amplitude effects tend to enhance such
disturbance growth.

Case (iii):σ, a1 < 0. There exists an unstable equilibrium solutionA2
e = σ/a1. This is an instance

of a subcritical instability in that linear theory predicts stability of the planar interface solution to
infinitesimal disturbances sinceσ < 0 (βc < β0) whereas nonlinear theory shows it can be unstable
to disturbances the amplitudes of which satisfyA2

1 > σ/a1. Such an occurrence is often termed a
metastable state.

Case (iv):σ < 0, a1 > 0. The planar interface solution is stable to both infinitesimal and finite
amplitude disturbances.

From the description of the four cases just summarized we can see that the stability behavior of
the Landau equation is crucially dependent upon the sign ofa1. Hence in order to determine this
behavior it is necessary that we next examine the formula fora1 given by (2.8) or equivalently by
(2.9) and (2.10). Toward that end we plot the lociβc = β1,2 of (2.10) on whicha1 = 0 as well as the
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relevant portion of the marginal stability curve of linear theoryβc = β0 of (2.2) in theα-βc plane
of Fig. 3a for theε = 10−11 of (2.5). From this figure in conjunction with (2.9), we observe that,
for a given value ofβc = β

(0)
c > 0, a1 > 0 whenever

α1 < α3 < α < α4 < α2 (2.11a)

where
β(0)

c = β0(α1; ε) = β2(α3; ε) = β1(α4; ε) = β0(α2; ε). (2.11b)

Thenα3 = 1.02, α4 = 1.31; α3 = 0.93, α4 = 1.27; α3 = 0.80, α4 = 1.16; shouldβc = 0, 1, 7;
theseβc corresponding toγ1m0hc = 0, 2/3, 14/3 dynes/cm, respectively, which are typical values
for that parameter as employed by Sharma and Ruckenstein [25]. We demonstrate these results
explicitly for the isothermal situation of Fig. 2c by graphinga1 of (2.8) versusα in Fig. 3b with
βc = 0 andε = 10−11.
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FIG. 3. (a) Plots ofβc = β0(α; ε) of (2.2b,c) andβc = β1,2(α; ε) of (2.10) forε = 10−11 explicitly denoting the relevant
regions ofα-βc parameter space corresponding to the three possible cases represented by the growth rateσ and the Landau
constanta1 being either positive or negative. Observe that the fourth caseσ < 0, a1 > 0 cannot occur. (b) A plot ofa1 of
(2.8) versusα for βc = 0 andε = 10−11.

Having identified those regions in Fig. 3a corresponding to the cases catalogued above, we now
offer a phenomenological interpretation of each of these cases.

Case (i). Since as can be seen from Fig. 3a,β0 < β2 < β1 for α satisfying (2.11a), it
follows thatσ, a1 > 0. Thus we can conclude that in this parameter range the instability of (2.3)
represents a periodic one-dimensional equilibrium pattern consisting of stationary parallel liquid
ridges separated by very thin films and having a characteristic wavelength of

λc = 2π/Q
1/2
c (α; βc, ε), (2.12)

in qualitative agreement with Oron and Bankoff’s [15] supercritical prediction. For the isothermal
problem of Figs. 2c and 3b we can deduce that

0 < σ = δ2 6 .045, 0 < a1 6 1.2; (2.13a)
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and hence
A2

e = σ/a1 ∼= δ2, (2.13b)

which implies
lim

t→∞
H(r1, r2, t) ∼ α + δ cos(2πr1/λc) asδ → 0 (2.13c)

and is a necessary requirement for the justification of the truncation procedure inherent to the
asymptotic representation of (2.1) withλ ≡ λc. That truncation can be most easily accomplished by
rewriting the full amplitude equation associated with (2.1b) in the form [32]

1

a1

dA1

dt
=

σ

a1
A1 − A3

1 + O(A5
1), (2.13d)

introducing the rescaled variables

η = σ t, A(η) =
A1(t)

δ
, (2.13e)

employing (2.13b), cancelling the resulting commonδ3 factor to obtain

dA
dη

= A−A3
+ O(δ2), (2.13f)

and neglecting terms ofO(δ2) in (2.13f). Similarly the truncation inherent to (2.1a) results upon
neglect of terms ofO(δ4) while retaining those throughO(δ3) for the full expansion. In this context
we can deduce from Fig. 2d that

0 < q2
c < .325 or 0< qc < .57 (2.13g)

and hence concludeqc = O(1) in essence for theα-range of (2.11a) which is a consequence of the
proper selection of scale factors and introduction of nondimensional variables in Section 1 [32].

Case (ii). For
α1 < α < α3 or α4 < α < α2 (2.14a)

the instability of (2.3) results in a dewetting-type rupture of the thin liquid film sinceσ > 0 and
a1 < 0 [15] as indicated in Fig. 3a.

Case (iii). For
α < α1 or α > α2 (2.14b)

sinceσ, a1 < 0 there is a subcritical instability or a metastable state. We note that numerical
simulations of analogous equations in the absence of all intermolecular forces by Van Hooket al.
[29] and in the absence of the short-range repulsive force and the Marangoni effect by Khesghi and
Scriven [9] both resulted in rupture. Since oura1 of (2.8) reduces to the asymptotic representations
−7α−1β2

c /24 and−19α−7/6, respectively, asε → 0 for these two cases, we also identify such
subcritical(a1 < 0) behavior with thin film rupture [15].

Case (iv). Since the conditions (2.11a) and (2.14b), corresponding toa1 > 0 and σ < 0,
respectively, are mutually exclusive this case can never occur. Hence the planar interface solution is
always unstable for our thin liquid film problem.
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3. Two-dimensional analysis: Hexagonal-planform stability results

Wishing to refine the predictions of our one-dimensional analysis contained in Fig. 3a we next
perform a two-dimensional analysis of (1.12) by seeking a hexagonal-planform solution of it which
to lowest order satisfies

H(r , t) − α ∼ f (r1, r2, t) = A1(t) cos[qcr1 + φ1(t)]

+ A2(t) cos[qc(r1 −
√

3r2)/2 − φ2(t)]

+ A3(t) cos[qc(r1 +
√

3r2)/2 − φ3(t)] (3.1a)

wherer = (r1, r2) and

dAi

dt
∼ σAi − 4a0AjAk cos(φi + φj + φk) − Ai [a1A

2
i + 2a2(A

2
j + A2

k)], (3.1b)

Ai

dφi

dt
∼ 4a0AjAk sin(φi + φj + φk), (i, j, k) = even permutation of(1, 2, 3). (3.1c)

In doing so we shall be closely following the approach of Wollkind and Stephenson [34] and
Wollkind [31] for their chemical Turing pattern formation analyses. Hence it is our intention merely
to sketch this methodology with a focus on the relevant stability results while observing that those
references and Tian [28] contain the complete details of both the general procedure and its specific
application to the thin liquid film problem, respectively. The weakly nonlinear stability behavior of
the amplitude-phase equations (3.1b,c) to be described below depends only on the values of their
growth rate and Landau constants. We can determine the solvability conditions for these Landau
constants most easily by introducing the transformation [34]

A2(t) = A3(t) = B1(t)/2, φ1(t) = φ2(t) = φ3(t) ≡ 0 (3.2a)

which reduces (3.1) to

f (r1, r2, t) = A1(t) cos(qcr1) + B1(t) cos(qcr1/2) cos(
√

3qcr2/2) (3.2b)

where

dA1

dt
∼ σA1 − a0B

2
1 − A1(a1A

2
1 + a2B

2
1), (3.3a)

dB1

dt
∼ σB1 − 4a0A1B1 − B1[2a2A

2
1 + (a1 + 2a2)B

2
1/4]. (3.3b)

We note that the forms of the second- and third-order terms in the expansions of (3.1a) in conjunction
with (3.2) and of (3.3a,b) can be deduced by examining the functional dependence of and the
amplitude functions proportional to cos(qcr1) and cos(qcr1/r2) cos(

√
3qcr2/2), respectively, in

f 2(r1, r2, t) andf 3(r1, r2, t). Observe in this context that by takingB1(t) ≡ 0 these expansions
can be further reduced to those of (2.1) withq ≡ qc once we make the identificationHmn = Hm0N0
for N = 2n where the notationHmkN` is being employed to represent the coefficient of each higher
order term in (3.1a) and (3.2) of the formAm

1 (t)Bk
1(t) cos(Nqcr1/2) cos(`

√
3qcr2/2). Thusσ and

a1 are given by (2.3) and (2.8) and we need only evaluate the remaining Landau constantsa0 anda2.
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If we proceed in the same manner as we did with the one-dimensional expansion of the last section,
the Fredholm-type solvability conditions forH0220 andH1220, respectively, then yield

a0 = (α−4
− α−10

− ε + βcα
−1)(4α−2

− 10α−8
+ βcα)/8, (3.4a)

a2 = (13α−4
− 19α−10

− 9ε + 10βcα
−1)(10α−9

− 4α−3
− βc)/16

+ (2α−3
+ 25α−9

+ 2βc)(α
−4

− α−10
− ε + βcα

−1)/4. (3.4b)

Having determined formulae (2.3), (2.8), and (3.4a,b) for their growth rate and Landau
constants, we now return to the six-disturbance hexagonal-planform amplitude-phase equations
(3.1b,c). In cataloguing the critical points of these equations and summarizing their orbital stability
behavior it is necessary to employ the quantities

σ−1 = −4a2
0/(a1 + 4a2), σ1 = 16a1a

2
0/(2a2 − a1)

2, σ2 = 32(a1 + a2)a
2
0/(2a2 − a1)

2. (3.5)

There exist equivalence classes of critical points of (3.1b,c) given byφ1 = φ2 = φ3 = 0 and
I: A1 = A2 = A3 = 0; II: A2

1 = σ/a1, A2 = A3 = 0; III ±: A1 = A2 = A3 = A±

0 = {−2a0 ±

[4a2
0 + (a1+4a2)σ ]1/2

}/(a1+4a2); IV: A1 = −4a0/(2a2−a1), A2
2 = A2

3 = (σ −σ1)/(a1+2a2);

where it is assumed thata1, a1 + 4a2 > 0. The orbital stability conditions for these critical points
can be posed in terms ofσ . Thus critical point I is stable in this sense forσ < 0 while the stability
behavior of II and III± which depends upon the signs ofa0 and 2a2−a1 as well has been summarized
in Table 1 under the further assumption thata1 + a2 > 0.

TABLE 1
Orbital stability behavior of critical points II and III±

a0 2a2 − a1 Stable structures
+ −, 0 III− for σ > σ−1
+ + III − for σ−1 < σ < σ2, II for σ > σ1
0 − III ± for σ > 0
0 + II for σ > 0
− + III + for σ−1 < σ < σ2, II for σ > σ1
− −, 0 III+ for σ > σ−1

In this parameter rangeA+

0 > 0 andA−

0 < 0. Finally critical point IV, which reduces to II for
σ = σ1 and to III± for σ = σ2 and hence is called a generalized cell, is not stable for any value
of σ .

We next offer a morphological interpretation of the potentially stable critical points catalogued
above relative to the thin liquid film patterns under investigation. Then critical points I and II
represent the planar films of uniform depth and the surface ridges, respectively, described in the
previous section. Observing that to lowest order the layer depth associated with critical points III±

satisfies
H(r , t) − α ∼ A±

0 f0(r1, r2) (3.6a)

where
f0(r1, r2) = cos(2πr1/λc) + 2 cos(πr1/λc) cos(

√
3πr2/λc) (3.6b)
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and noting that the functionf0 exhibits hexagonal symmetry, we can deduce that these critical
points represent hexagonal cellular patterns possessing individual cells with elevated boundaries and
depressions at their centers for III− and with elevations at their centers and depressed boundaries
for III +. Hence we make the following morphological identifications: III−, a network-like structure
of regular hexagonal cells; and III+, a close-packed array of nanodroplets; each of these patterns
being separated by relatively flat ultra thin films. Although the latter assertion may seem somewhat
conjectural due to our use of weakly nonlinear stability theory, we have confidence in it given that
the numerical analyses of similar equations catalogued earlier yielded patterns of precisely this sort
as will be described in Section 4.

Having summarized those stability criteria and morphological identifications, we now return to
our expressions for the Landau constants of equations (3.1b,c) given by (2.8) and (3.4). First we
examine the signs ofa0, 2a2 − a1, a1 + 4a2, anda1 + a2 as functions ofα for βc = 0, 1, 7 and
ε = 10−11. Then from the results of this examination we observe that besidesα3 andα4 defined in
(2.11) there exist the following other significant values ofα:

α3 < α5 < α6 < α7 < αc < α4 < α8 < α9 (3.7a)

such that

a1 + a2 = 0 for α = α5 or α8, a1 + a2 > 0 for α5 < α < α8; (3.7b)

a1 + 4a2 = 0 for α = α6 or α9, a1 + 4a2 > 0 for α6 < α < α9; (3.7c)

a0 = 0 for α = αc, a0 < 0 for α < αc, a0 > 0 for α > αc; (3.7d)

2a2 − a1 = 0 for α = α7, 2a2 − a1 < 0 for α < α7, 2a2 − a1 > 0 for α > α7. (3.7e)

These values ofα are compiled in Table 2.

TABLE 2
Theα values of (3.7) versusβc for ε = 10−11

βc α5 α6 α7 αc α8 α9
0 1.023 1.026 1.037 1.165 1.321 1.328
1 0.935 0.938 0.950 1.110 1.293 1.306
7 0.805 0.808 0.821 0.988 1.187 1.209

We again demonstrate our results explicitly for the parameter values of Fig. 3b by graphinga1 +

4a2, 2a2 − a1, a0, anda1 + a2 versusα in the two parts of Fig. 4 withβc = 0 andε = 10−11.
Here we are focusing our attention on this case since the numerical simulations and experimental
observations with which the predictions to follow will be compared in the next section are for such
an isothermal situation. Given that the stability behavior outlined in Table 1 depends not only on the
signs ofa0 and the various combinations of Landau constants appearing in Fig. 4 but also on the
relative sizes ofσ, σ−1, σ1, andσ2, we next plot this growth rate and those quantities of (3.5) versus
α in Fig. 5 forβc = 0 andε = 10−11.

We are finally ready to make theoretical pattern formation predictions based upon the existence
and morphological stability conditions for our critical points summarized earlier. We begin by
noting that since critical point I was not stable over any parameter range for the one-dimensional
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FIG. 4. Plots of (a)a1 + 4a2, 2a2 − a1, a0, and (b)a1 + a2 of (2.8) and (3.4) versusα for βc = 0 andε = 10−11.
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FIG. 5. Plots ofσ−1, σ1, andσ2 of (3.5) as well asσ of Fig. 2c versusα for βc = 0 andε = 10−11.

analysis, it is unstable for the hexagonal-planform two-dimensional analysis as well, the latter
conclusion following from the one-dimensional perturbation expansion being a special case of the
two-dimensional one. Recalling that critical point IV also is never stable, we need only investigate
critical points II and III± in this regard. As can be seen from the definitions of these critical points
and Table 1, they must satisfy certain inequality constraints as necessary conditions to yield stable
patterns:a1, 2a2−a1 > 0 for II; a1+4a2, a1+a2 > 0 anda0 < 0 for III+; a1+4a2, a1+a2, a0 > 0
for III −. Hence from Fig. 3b, Table 2, and Fig. 4, we deduce the relevantα-interval of interest
associated with each critical point:(1.037, 1.311) for II; (1.026, 1.165) for III +; (1.165, 1.321) for
III −. It alone remains to refine these predictions by employing the stability criteria of Table 1 in
conjunction with Fig. 5. Toward this end we generate Fig. 6, the six parts of which comprise both
an extension and enlargement of Fig. 5 emphasizing thoseα-subintervals that exhibit qualitatively
different morphological stability behavior. Let us examine the parts of this figure on a case by case
basis as follows:

(a)α ∈ (1.026, 1.037]: Thena0 < 0 and 2a2 −a1 6 0. Hence, sinceσ > 0 > σ−1 over the whole
range of Fig. 6 (see Fig. 5), we can conclude from the last row of Table 1 that nanodroplets are the
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FIG. 6. An extension (a)α ∈ (1.026, 1.037], (b) α ∈ (1.037, 1.113] and enlargement, (c)α ∈ (1.113, 1.135), (d) α ∈

[1.135, 1.20], (e)α ∈ (1.20, 1.305], (f) α ∈ (1.305, 1.321) of theσ, σ1, andσ2 plots of Fig. 5 indicating the morphological
stability predictions catalogued in Table 3.
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only stable pattern. Note thatσ1,2 play no substantive role in this regime and have only been plotted
in Fig. 6a for the sake of completeness.

(b) α ∈ (1.037, 1.113]: Thena0 < 0 and 2a2 − a1 > 0. Hence, since 0< σ 6 σ1 < σ2, we can
conclude from the fifth row of Table 1 that nanodroplets are the only stable pattern.

(c) α ∈ (1.113, 1.135): Thena0 < 0 and 2a2 − a1 > 0. Hence, since 0< σ1 < σ < σ2, we can
conclude from the fifth row of Table 1 that there is bistability between nanodroplets and ridges.

(d) α ∈ [1.135, 1.20]: We shall further partition this case into the three subcases:

(i) α ∈ [1.135, 1.165): Thena0 < 0 and 2a2 − a1 > 0. Hence, since 0< σ1 < σ2 6 σ , we
can conclude from the fifth row of Table 1 that ridges are the only stable pattern.

(ii) α = 1.165: Thena0 = 0 and 2a2 − a1 > 0. Hence, sinceσ > 0 = σ1 = σ2, we can
conclude from the fourth row of Table 1 that ridges are the only stable pattern.

(iii) α ∈ (1.165, 1.20]: Thena0 > 0 and 2a2 − a1 > 0. Hence, since 0< σ1 < σ2 6 σ, we
can conclude from the second row of Table 1 that ridges are the only stable pattern.

Taken together these subcases yield the result that ridges are the only stable pattern in this whole
subinterval.

Note that for the rest of the cases to be catalogued below,a0, 2a2 −a1 > 0 as in the subcase just
examined and thus we shall employ the second row of Table 1.

(e)α ∈ (1.20, 1.305]: We shall further partition this case into the two subcases:

(i) α ∈ (1.20, 1.24): Hence, since 0< σ1 < σ < σ2, we can conclude that there is
bistability between ridges and cells.

(ii) α ∈ [1.24, 1.305]: Hence, since 0< σ 6 σ1 < σ2, we can conclude that cells are the
only stable pattern.

(f) α ∈ (1.305, 1.321): We shall further partition this case into the three subcases:

(i) α ∈ (1.305, 1.311): Hence, since 0< σ1 < σ < σ2, we can conclude that there is
bistability between cells and ridges.

(ii) α ∈ [1.311, 1.32): Thena1 6 0. Hence, sinceσ1 6 0 < σ < σ2, we can conclude that
cells are the only stable pattern because ridges do not exist.

(iii) α ∈ [1.32, 1.321): Thena1 < 0. Hence, sinceσ1 < 0 < σ2 6 σ , we can conclude that
there are no stable patterns because ridges do not exist and cells are unstable.

These morphological stability predictions are summarized in Table 3.
Observe from Fig. 4a that

|a0| � a1 + 4a2 (3.8a)

in the parameter range of interest and thusσ−1 although negative is virtually indistinguishable from
zero over much of that range (see Fig. 5). Further to justify the truncation procedure inherent to the
asymptotic representation of (3.1) it is necessary that the Landau constants of its amplitude-phase
equations satisfy the additional size constraint [32]

|a0|/(a1 + 4a2)
2

� 1. (3.8b)

Noting that the inequality condition (3.8a) also guarantees the satisfaction of this constraint, we can
conclude that such a truncation procedure is valid for our hexagonal-planform weakly nonlinear
stability analysis of the thin liquid film model system under investigation.
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TABLE 3
Morphological stability predictions versusα

α range Stable pattern
(1.026, 1.113] Nanodroplets
(1.113, 1.135) Nanodroplets & Ridges
[1.135, 1.20] Ridges
(1.20, 1.24) Ridges & Cells
[1.24, 1.305] Cells
(1.305, 1.311) Cells & Ridges
[1.311, 1.32) Cells

4. Comparisons, discussion, and conclusions

To facilitate comparison of our morphological stability predictions with the results of the pattern
formation studies involving thin liquid films referenced earlier, we describe those theoretical and
experimental outcomes in more detail. The three photographs of different morphologies exhibited
by unstable thin polymer films appearing in Reiter [19] depict an undulation pattern and the early
and late stages of cellular pattern formation in which the elevated rims of the initial circular
cylindrical depressions coalesce to form network-like regular hexagonal cells of nearly identical
size. In previous work Reiter [18] described that pattern as a polygonal cellular structure where the
most often found polygon was a hexagon with its vertices joining three edges and these hexagons
were of uniform size by virtue of the coalescence process of the elevated rims of the initial
depressions. The morphologies exhibited by these stages are precisely the topographies expected
for type III− structures; hence, our identification of the latter with cells. Let us turn to the other
morphology described by Reiter [19], the undulation pattern. We have identified such patterns with
surface ridges characteristic of type II structures. This identification is consistent with Oron and
Bankoff’s [15] theoretical prediction for a one-dimensional weakly nonlinear stability analysis of
their evolution equation. There also exist numerical simulations of one-dimensional versions of such
equations which produced stationary solutions by Sharma and Jameel [22], Mitlin and Petviashvilli
[14], and Oron and Bankoff [15]. Restricting their analyses to a single disturbance wavelength,
they found a stationary arch-type solution for certain layer thicknesses. Mitlin and Petviashvilli [14]
and Oron and Bankoff [15] interpreted this solution as a one-dimensional spatially periodic stable
liquid ridge-type pattern while Sharma and Jameel [22] made the interpretation that it represented
nanodroplets separated by relatively flat ultra thin films. In deciding between these interpretations
it is instructive to point out Reiter’s [19] having reported that none of his experimental states
represented an equilibrium situation of isolated droplets. Although we feel that isolated nanodroplets
do not represent the best identification of stationary one-dimensional periodic patterns, a uniform
close-packed distribution of such droplets referred to as morphological phase separation by Sharma
and Jameel [22] and Jameel and Sharma [6] is consistent with the topography of type III+ structures
for thin liquid films. Hence we have identified the III+ critical point with morphological phase
separation of this sort.

Returning to the parallel surface ridges predicted by one-dimensional nonlinear stability
analyses and numerical simulations, Khanna and Sharma [8] point out that such regular
arrangements of cylindrical hills and valleys represent a pattern never witnessed in thin liquid film
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experiments. Instead interconnected bicontinuous patterns are observed. Since the equivalence class
of critical points designated as II in the last section actually contains the three solutions [20]

A2
i = σ/a1, Aj = Ak = 0, (i, j, k) = even permutation of (1,2,3), (4.1)

each of theα-intervals of Table 3 identified with ridges is itself a locus of multiple stable states.
These represent a family of ridges aligned parallel to ther2-axis as per our original identification,
plus two similar families of ridges making angles of±60◦ to them for which stable co-existence with
a member of either the original family or one another is impossible [20]. Then, as initial conditions
vary from point to point on the interfacial surface, such families of ridges can give rise to polygonal
arcs the boundaries of which would appear quite random in orientation. Indeed the interconnected
bicontinuous pattern classified as an undulation by Reiter [19] has the appearance of such curved
elongated ridges in the relevant photographic reproduction contained therein.

We are now ready to compare our two-dimensional morphological stability predictions with the
isothermal numerical simulations and experimental observations mentioned previously. Sharma and
Khanna [23] performed two-dimensional numerical simulations on an equation analogous to (1.12)
for ε = β = 0 but with the repulsive force term of (1.6a) taken proportional to exp(−h/`0) with
the correlation length̀0 = 2.5 nm. They found two completely different morphological patterns
by which pseudo-dewetting—i.e., elevations separated by ultra thin flat films—could occur based
upon the mean layer thickness. For relatively thick films the rims of the circular depressions which
formed first from an initial bicontinuous pattern developed into a polygonal structure by repeated
coalescence. In contrast to this scenario for relatively thin films the bicontinuous pattern fragmented
directly to produce a uniform array of microdroplets. For a range of intermediate thickness the
bicontinuous structure composed of long hills and valleys resolved itself into a mixture with these
other two patterns, the type and proportion of which depended, in our notation, on the relative
distanceh0 − hc.

Xie et al. [36] investigated true dewetting of polystyrene films on a silicon substrate at a fixed
annealing temperatureT ≡ T0 = 388◦K as a function of mean layer thickness in the rangeh0 ∈

[4.5 nm, 35 nm]. Forh0 = 7.5 nm they observed a bicontinuous surface pattern while forh0 =

12.5 nm they saw a bistable state between configurations resembling Voronoi tessellation patterns
and these surface undulations. For even thinner films such ash0 = 4.5 nm the initial bicontinuous
pattern broke up into small uniformly distributed droplets that subsequently coarsened to form large
isolated drops by coalescence and hence dewetted the surface. They contrasted this behavior to the
dewetting of much thicker films such ash0 = 35 nm in which rupture occurred by the formation of
circular holes.

From the two-dimensional morphological stability predictions of Table 3 in conjunction with
the one-dimensional results of Section 2, we can draw the following general conclusions: Although
the planar interface solution is never stable, supercritical equilibrium patterns occur for an interval
of mean layer thicknessα ∈ (1.026, 1.32) with subcritical rupture occurring outside this interval.
These patterns consist of bicontinuous surface ridges and hexagonal network-like cells or close-
packed configurations of nanodroplets separated by relatively flat ultra thin films. In particular
those morphological phase separation patterns are crucially dependent upon the inclusion of the
short-range intermolecular repulsive force with cells tending to be stable for the thicker layers;
nanodroplets, for the thinner ones; and ridges, for layers of intermediate thickness. These theoretical
predictions are in qualitative accord with both the relevant isothermal experimental evidence and
numerical simulations of similar model equations cited above as well as being consistent with
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dewetting-type rupture occurring for such situations by hole formation in relatively thick layers
but by drop formation in thinner ones.

In order to make these qualitative comparisons of theoretical prediction with experimental
evidence and numerical simulation more quantitative in nature, we next examine the effect on our
results of taking a different choice forhc, this critical thickness being a measure of the coupling
between the long-range attractive and short-range repulsive intermolecular forces. Recall from
(1.12c) thath0 is related toα by

h0 = αhc (4.2)

andα = αc corresponds to the crossover value of mean layer thickness at which the morphology
switches its character. Further note that whenβc = 0,hc only influences our problem by its presence
in the dimensionless parameterε which may be rewritten as

ε = (hc/hg)
4 where hg =

(
3a

ρ0g

)1/4

. (4.3a)

We observe in this context that the results of our one-dimensional problem are extremely robust
with respect to changes inε. In particularα1, α3, andα4 are virtually invariant asε ranges over
a wide range of values since Fig. 3a is altered very little during this process. Then, althoughα2
varies drastically withε sinceα2 ∼ ε−1/4 asε → 0 whenβc = 0, observe that the asymptotic
representation for the corresponding dimensional thickness

h2 = α2hc
∼= ε−1/4hc = hg (4.3b)

is actually independent ofhc. Similarly the results of our two-dimensional problem are also robust
with respect to changes inε. Hence, to determine the isothermal predictions of our problem for
different hc, we need only employ the significant values ofα for hc = 1 nm from Table 3 in
conjunction with (4.2). For example by taking

hc = 7.725 nm, (4.4a)

we would deduce a crossover layer depth related toαc = 1.165 of

hcr = αchc = 9 nm (4.4b)

in quantitative agreement with the observations of Xieet al. [36] and the simulations of Sharma and
Khanna [23]. For thehc value of (4.4a) our patterned layer intervalα ∈ (1.026, 1.32) corresponds
to h0 ∈ (7.926 nm, 10.197 nm) while ε = 3.56× 10−8 and the upper instability bound is retained
athg = 562 nm.

In the same vein we develop an expression for the dimensional wavelengthλ∗
c which from the

length scale factors of (1.10) and (1.11) is related toλc of (2.12) by

λ∗
c = hc(S/A)1/2λc = h2

c

(
γ0

3a

)1/2 2π

qc

. (4.5)

Forβc = 0,
1/qc ∼ (α−4

− α−10)−1/2 asε → 0 (4.6a)

while
(α−4

− α−10)−1/2
∼ α2 whenα � 1. (4.6b)
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Then, observing that withα = 2 the left- and right-hand sides of this relation yield the results 4.03
and 4, respectively, we substitute (4.6) into (4.5) and obtain

λ∗
c ∼ 2π

(
γ0

3a

)1/2

(hcα)2
= 2π

(
γ0

3a

)1/2

h2
0, (4.7a)

which upon taking the typical valueγ0 = 50 dynes/cm [25] in conjunction with (2.5), becomes

λ∗
c ∼ 10

√
2πh2

0/nm . (4.7b)

Note that this asymptotic expression is independent ofhc and consistent with the results of Xieet
al. [36] and Sharma and Khanna [23] who both deduced thatλ∗

c was proportional toh2
0 as well as

with those of Bischofet al.[1] whose thin liquid metal film patterns exhibited the same relationship.
Having examined the effect of varyingε on our model equation, we turn to itsβc-dependence.

Unlike many Marangoni-type convection problems [3], increasingβc from zero in ours only has
the quantitative effect of decreasing all the significantα values of Fig. 3a and Table 2 rather
than producing any qualitatively different stability behavior. Also unlike most other such Bénard–
Marangoni model systems, our thin liquid film problem satisfies the truncation criterion (3.8b).
As Thess and Orszag [27] pointed out, although bifurcation theory has significantly improved
our understanding of nonlinear convection, a mathematical inconsistency remained present in all
applications of this theory to actual Bénard–Marangoni model systems developed up to that time;
namely, the violation of condition (3.8) caused by

a0 = O(a1 + 4a2) = O(1). (4.8)

Davis [3] noted that the results of such a hexagonal-planform analysis of these model systems can
then be merely considered suggestive at best. We finish this discussion by observing that even in the
isothermal case ofβc = 0 it was still necessary to include the Marangoni effect during our evolution
equation derivation in order subsequently to employ the approach of Sekimuraet al. [21].

It only remains for us to place our thin liquid film results in the context of some recent pattern
formation studies. We begin this commentary with a comparison of our morphological stability
predictions to equilibrium structures characteristic of systems used to model chemical Turing pattern
formation in gel reactors. Wollkind and Stephenson [34] investigated the development of one- and
two-dimensional Turing patterns observed in chlorite-iodide-malonic acid (CIMA)/indicator gel
reactor experiments by performing both rhombic and hexagonal planform weakly nonlinear stability
analyses on the appropriately scaled general reaction-diffusion activator-inhibitor/immobilizer
model system of Stephenson and Wollkind [26]. Then they particularized their results to the Lengyel
and Epstein [11, 12] chlorine dioxide-iodine-malonic acid (CDIMA)/indicator model system used
to represent this chemical reaction. The stable critical points of the hexagonal-planform amplitude-
phase equations which can potentially have a variety of phenomenological interpretations in this
instance corresponded to the following Turing instability distribution patterns: I, homogeneous;
II, stripes; III+, a hexagonal net-like pattern of relatively low iodide concentration or honeycombs;
and III−, a hexagonal close-packed array of nearly-circular dot-like regions of relatively low
iodide concentration or spots. Since these Turing patterns have been characterized by low iodide
concentration the roles of the honeycombs and spots of that phenomenon have been reversed from
those of the nanodroplets and cells of our thin liquid film model where the morphologies are formed
by surface elevations. The Landau constants for this chemical Turing pattern problem satisfied
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relationships similar to the ones of (3.7) and (3.8) whenα was identified with a nondimensional
malonic acid concentration except that (3.7a) and (3.7e) were replaced by the more symmetric

α3 < α5 < α6 < α7 < αc < α10 < α9 < α8 < α4 (4.9a)

and
2a2 − a1 = 0 for α = α7 or α10, 2a2 − a1 > 0 for α7 < α < α10,

2a2 − a1 < 0 for α < α7 or α > α10,

(4.9b)

respectively. Hence theα-interval of interest for this chemical Turing pattern problem wasα ∈

(α6, α9). Note that for our problem withε = 10−11 andβc = 0, α10 = 1.36 > α9 > α8 and thus
did not have to be considered explicitly. From those results Wollkind and Stephenson [34] were able
to determine the parameter range corresponding to the Turing patterns catalogued above and found
that for a1 + 4a2 > 0 all (when 2a2 − a1 6 0) or part (when 2a2 − a1 > 0) of the parameter
space where Stephenson and Wollkind [26] predicted stripes was further divided into two subspaces
characterized by hexagonal patterns consisting of either spots (whena0 > 0) or honeycombs (when
a0 < 0) with a0 = 0 for α = αc = 1.88. They then compared these Turing pattern predictions with
both CIMA/indicator experimental observations and theoretical results relevant to the analogous
morphological stability analysis of the prototype alloy solidification problem of Wollkindet al.
[33]. In the former instance that comparison was quite favorable while in the latter it was very
similar whenα was identified with a dimensionless rate of solidification. In particular the stable
critical points had the following solid-liquid interfacial identifications: I, planar interface; II, bands;
III +, dome-shaped regular hexagonal cells or nets; and III−, a hexagonal close-packed array of
circular depressions of liquid into the solid or nodes. Indeed Wollkind and Stephenson [35] actually
exploited this similarity when offering their suggested explanation for the black-eye Turing patterns
of Ouyang and Swinney [17] as being a superposition of spots and honeycombs occurring on the top
and bottom of the thin patterned layer. In this context we note that a number of the Turing patterns
classified as stripes by Ouyang and Swinney [17] in their relevant photographic reproductions bear
a striking resemblance to our bicontinuous ridges.

Contemporaneously Judd and Silber [7] extended this six-disturbance hexagonal-planform
analysis of the Lengyel and Epstein CDIMA model system to a twelve-disturbance superlattice
one developed by Dionneet al. [4]. That approach allowed them to investigate the possibility of
occurrence of both our simple patterns periodic on a length scale of the critical wavelength of
linear theory and superlattice patterns periodic on a much longer scale. They found that unless
a0 = 0 all patterns bifurcated unstably and unfolding this degeneracy by considering 0< |a0| � 1
obtained morphological stability predictions involving only simple periodic patterns consistent with
those of Wollkind and Stephenson [34]. Given the dependence of the experimentally observed thin
liquid film patterns onλ∗

c and the similarity ina0 behavior between the CDIMA model system and
evolution equation (1.12), the six-disturbance hexagonal-planform analysis of it presented in the
last section would seem to be sufficient for our purposes.

Since the existence of anα = αc at whicha0 vanishes plays such a fundamentally important
part in our morphological stability predictions, there is some merit in examining this behavior more
thoroughly. From (2.3b) and (3.4a) we see thata0 can be represented in the form

a0 = Qc(α; βc, ε)(4α−2
− 10α−8

+ βcα)/8 (4.10a)
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and hence conclude thatαc satisfies

4α−2
c − 10α−8

c + βcαc = 0, (4.10b)

which is independent ofε and yields the explicit solution forβc = 0 of

αc = (5/2)1/6 ∼= 1.165. (4.10c)

Then (4.10b) in conjunction with (2.8) and (3.4b) implies that

a1 = a2 for α = αc (4.11a)

or
2a2 − a1 = a1 = Qc(αc; βc, ε)(2α−3

c + 25α−9
c + 2βc)/4 > 0. (4.11b)

Thus the vanishing of the quadratic terms in the amplitude-phase equations guarantees that ridges
alone but never hexagonal patterns can be stable for our thin liquid film problem. Therefore in spite
of the potentiality of bistability existing between the two types of hexagonal states whena0 = 0
and 2a2 − a1 < 0 (see the appropriate entry of Table 1 which actually only refers to neutrally stable
structures in this instance) that particular possibility is precluded for our specific model system.

We conclude with a final comparison between our one-dimensional results and those obtained
if the repulsive force term used by Oron and Bankoff [15] is employed. Recall that the latter
authors felt their repulsive potential term proportional toh−4 was superior to one proportional to
h−9. We wish to explore this matter further by comparing the morphological stability predictions
corresponding to each of these choices for the repulsive potential. Toward that end we consider the
intermolecular force potential

φ(h) = (a/h3
c)[(hc/h)3

− 3(hc/h)4/4] (4.12)

instead of (1.9a) and produce an evolution equation which differs from (1.12) only in the
replacement of itsH−7 term byH−2. Next we perform the same one-dimensional weakly nonlinear
stability analysis of Section 2 on that equation and obtain a growth rate still satisfying

σ = α3Q2
c(α; βc, ε)/4 (4.13a)

but now with
Qc(α; βc, ε) = α−4

− α−5
+ βcα

−1
− ε (4.13b)

and a Landau constant formula

a1 = (22α−4
− 23α−5

− 18ε + 19βcα
−1)(5α−4

− 4α−3
− βc)/24

+ (α−3
+ βc)(α

−4
− α−5

− ε + βcα
−1)/2.

(4.14)

Then in the isothermal case ofβc = 0 andε = 10−11 we can deduce from (4.13) and (4.14) that for
α ∈ (α3, α4) whereα3 = 1.027 andα4 = 1.47,

0 < σ 6 .0036, 0 < a1 6 .037. (4.15)

Given the relative sizes of the upper bounds for these quantities in comparison to those of (2.13)
we observe that the truncation procedure inherent to our development in Section 2 will not be as
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simple to implement in this instance. Hence we feel that the form of our repulsive potential force
term is more appropriate for the purpose of weakly nonlinear stability theory than the one chosen
by Oron and Bankoff [15]. We now reiterate a point made above about Bénard–Marangoni model
systems. Weakly nonlinear stability analyses of this type do not necessarily apply to all pattern-
forming systems but only hold under certain restricted conditions that need to be established on a
case by case basis.

In summary this thin liquid film problem, involving a single evolution equation, is compatible
with our long range aim of developing the simplest reasonable natural science models which
preserve the essential features of pattern generation and are still consistent with observation. We
believe that a procedure which employs analytical stability techniques to establish the parameter
range of interest for pattern formation such as our weakly nonlinear methods and only then examines
this regime more fully numerically is advantageous both scientifically and economically to one
which attempts to use numerical techniques alone in order to accomplish the same end.

We close by offering an additional rationale for our research. The study of long-wavelength
hydrodynamic instabilities generated by intermolecular forces in thin films has a wide variety of
applications ranging from industrial processes to biological phenomena all of which involve a
liquid layer coating a solid substrate. The development of various models of thin liquid films to
be analyzed for their stability such as our prototype evolution equation (1.12) has been motivated
by the desire to provide a better understanding of these diverse applications. Reiter [19] stated
that Herminghauset al.’s [5] major achievement was their demonstration that the same coupling
mechanism between Van der Waals attractive and Born repulsive forces could account for the
different patterns produced in a given experiment and their subsequent suggestion that the exact
form of the associated intermolecular potential could be inferred from knowledge of interfacial
morphology together with layer thickness as an inverse problem. He then declared that unfortunately
it was still unclear why almost the same patterns can be found in both polystyrene and gold films.
The primary reason for our thin liquid film research is to answer questions of this sort by explaining
more completely the pattern formational behavior of (1.12).
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