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Fast subsonic combustion as a free-interface problem
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The paper is concerned with the recently identified fast, yet subsonic, combustion waves occurring
in obstacle-laden (e.g. porous) systems and driven not by thermal diffusivity but rather by the drag-
induced diffusion of pressure. In the framework of a quasi-one-dimensional formulation where the
impact of obstacles is accounted for through a frictional drag term, an asymptotic expression for the
wave propagation velocityD is derived. The propagation velocity is controlled by the temperature
(T+) at the entrance to the reaction zone rather than at its exit(Tb) as occurs in deflagrative
combustion. The evaluatedD(T+) dependence allows description of the subsonic detonation in terms
of a free-interface problem. The latter is found to be dynamically akin to the problem of gasless
combustion known for its rich pattern-forming dynamics.

1. Introduction

Premixed gas combustion is the combustion of gaseous reactants which are perfectly mixed prior
to ignition. The most distinctive feature of premixed combustion is its ability to assume the form of
a self-sustained reaction wave propagating subsonically or supersonically at a well-defined speed.
Apart from their technological relevance, combustion waves constitute a truly fascinating dynamical
system, displaying an amazingly rich variety of phenomena such as non-uniqueness of possible
propagation regimes, their birth (ignition) and destruction (extinction), chaotic self-motion and
fractal-like growth, various hysteretic transitions, etc.

One of the most effective practices in the theoretical exploration of combustion waves is their
description in terms of a free-interface problem where the reaction zone is considered as infinitely
thin compared to the other length-scales involved.

The current study is concerned with the formulation and analysis of a free-interface problem
associated with the recently identified new mode of subsonic combustion arising in hydraulically
resisted flows (e.g. porous beds), and where the combustion wave is driven by the drag-induced
diffusion of pressure, rather than thermal diffusivity as occurs in conventional unconfined flames.
In the simplest case (the so-called small-heat release approximation) the emerging free-interface
problem is described by a single filtration equation (Sec. 6),

Πτ = γ∇
2Π, (1.1)

whereΠ is the reduced pressure that vanishes far ahead of the reactive interfacef = 0, and
approaches unity far behind;γ is the ratio of specific heats. At the interface the following matching
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conditions are held:
γ [∇Π · n] = −Φ(Π) = −vf , [Π ] = 0, (1.2)

whereΦ(Π) is the Arrhenius-type source intensity,n = ∇f/|∇f | is the normal to the interface,
andvf = −fτ /|∇f | its normal velocity. For all its seeming simplicity the system (1.1)–(1.2) is
quite rich dynamically exhibiting both regular and complex behavior (Sec. 2).

The paper is organized as follows. Section 2 yields a brief physical overview of combustion
in hydraulically resisted flows, singling out the calculation of the equilibrium planar wave as a
crucial step in the passage to the free-interface formulation. Sections 3, 4 deal with the planar
wave and evaluation of the associated propagation velocity. The latter involves a non-conventional
eigenvalue problem solved by an asymptotic separation of variables in an appropriate phase-plane.
In Section 5 the relations obtained for the planar wave are extended over quasi-steady and quasi-
planar configurations. As a result one ends up with a reduced model for pressure-driven combustion
based on a free-interface formulation. To test its dynamical well-posedness the model is simulated
numerically (Sec. 6).

2. Physical overview

As is well known there are basically two mechanisms controlling propagation of combustion waves
in gaseous mixtures: molecular transport and adiabatic compression. The first mechanism pertains
to deflagrative combustion and the second to detonation. Normally the adiabatic compression is
provided by the shock and the resulting combustion wave (detonation) spreads at a supersonic speed.
In conventional detonation the shock and adiabatic compression are two inseparable ingredients.
This coupling, however, is not inevitable. In hydrodynamically resisted flows, as those developing
in porous beds, the burning velocity may fall significantly below its thermodynamic, Chapman–
Jouguet (CJ) value, and under certain conditions the propagation may well becomesubsonicand
thereforeshockless[12, 13, 16, 20]. The shockless propagation still involves pressure peaks and is
sustained by adiabatic compression which is now spread by the drag-induced diffusion of pressure.
The transition from supersonic to subsonic propagation normally occurs in a gradual manner, e.g.
by dilution of the mixture. In the near-sonic propagation the presence or absence of shocks is not
crucial and there is no major distinction between supersonic and subsonic combustion. The subsonic
mode emerges as a continuous extension of the supersonic one and hence may well be referred
to as subsonic detonation, two words that one would have thought could never be connected!
The idea of extending the concept of the detonation over the subsonic domain is not new and
has already been discussed by Mitrofanov in his 1987 review on non-classical combustion waves
[16]. In the concluding lines of the paper the author wrote, “It would be appropriate to extend the
notion of detonation over a certain subsonic range of wave velocities (D < a0) where there is a
continuous inD passage to this domain with the preservation of pressure and density peaks within
the front”. It is interesting that the issue was raised by the experimentalists ten years ahead of the
theoretical substantiation of the phenomenon. In [3, 4] employing the classical Zeldovich–Fanno
[22] formulation, it was shown that the conventional and subsonic modes are actually two special
cases of the general drag-affected detonation and in the velocity-drag plane belong to the same curve
of dynamically feasible states (Fig. 1). The conventional CJ-detonation corresponds to the limit of
low hydraulic resistance while the subsonic detonation to the limit of strong resistance.

In the subsonic detonation, due to the strong temperature dependence of the reaction rate, the
bulk of the reaction is localized in a narrow sublayer of the overall wave structure controlled by
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the pressure diffusivity and the wave speed. This observation suggests the possibility of describing
the pertinent dynamical system in terms of a free-interface problem, advantageous for theoretical
explorations. To make such a formulation possible one needs a relation between the intensity of the
localized reaction rate and the interface temperature. This, in turn, requires an analytical expression
for the reaction wave speed relative to the background flow-field. It transpires, however, that the
rational evaluation of this parameter cannot be carried out along the lines of the classical Zeldovich–
Frank–Kamenetsky approach employed in the deflagration theory [21]. The point is that in subsonic
detonation the temperature within the reaction zone undergoes an abrupt increase rather than being
a slowly varying function as occurs in deflagrative combustion. As a result the traditional multiple-
scale technique developed for analytical tackling of deflagrations appears unsuitable here. In the
current paper the difficulty is resolved by the asymptotic separation of variables in the pressure-
concentration phase-plane.

Curiously enough, in a certain parameter range, the emerging free-interface problem becomes
functionally identical to the problem of gasless combustion (self-sustained high-temperature
synthesis) known for its rich pattern forming dynamics, involving, among other things, galloping
and spinning structures as well as period-doubling cascades and chaos [1, 2, 6, 10, 14].

3. Model

To describe a reaction wave spreading through a hydraulically resisted flow the presence of obstacles
will be accounted for by means of the velocity-dependent drag-force term added to the momentum
equation. The current study is focused on the subsonic detonation only whereD < a0 (Fig. 1).
Moreover, we shall consider the limitD � a0, pertinent to strong hydraulic resistance. In this
case the impact of inertial effects may be discarded and the system of governing equations may be
written as

(cvρT )t + ∇(cvρT u + pu) = QW, energy, (3.1)

(ρC)t + ∇(ρCu) = −W, concentration, (3.2)

ρt + ∇(ρu) = 0, continuity, (3.3)

∇p = f, momentum, (3.4)

p = (cp − cv)ρT , state. (3.5)
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FIG. 1. Detonation velocity(D) vs. reciprocal of the particle diameter(dp) [3, 4]. DCJ , a0, ab correspond to the Chapman–
Jouguet detonation and sound speeds in the fresh and burnt gas, respectively.
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HereW is the reaction rate defined by a one-step first-order Arrhenius kinetics,

W = AρC exp(−E/RT ), (3.6)

whereE is a constant, specific to the reaction and called its activation energy,R is the universal
gas constant,Q is the heat release,C is the concentration of the deficient reactant,A is the pre-
exponential factor. Other notations are conventional.

The drag-forcef is specified by the classical Darcy–Forchheimer equation [7, 8, 17],

f = −

(
φν

K

)
ρu −

(
φ3F
√

K

)
ρu|u|. (3.7)

Hereν is the kinematic viscosity of the fluid,φ is the porosity, i.e. the fraction of the bulk volume
of porous bed occupied by void space.K is the permeability (conductivity) of the porous bed with
respect to permeation by a fluid. This parameter is independent of the nature of the fluid but depends
on the geometry of the medium.F is the Forchheimer coefficient controlling the impact of inertial
effects ignored in Darcy’s equation pertinent to the creeping flow limit. For packed-sphere beds,K

andF are expressed in terms of the porosityφ and the particle diameterdp by (see [8])

K =
φ3d2

p

Γ (1 − φ)2
, F =

Σ

Γ 1/2φ3/2
, (3.8)

whereΓ , Σ are empirical constants. According to [8],Γ = 150 andΣ = 1.75.
To reduce the number of parameters involved, the effects due to molecular transport and

heat losses are discarded. Aside from the obvious advantages for physical analysis (conservation
of enthalpy), the adiabatic limit may serve as quite a legitimate approximation away from the
quenching point where the Reynolds analogy is violated and the momentum loss emerges as a
dominating influence.

4. Traveling-wave solution

As mentioned in Section 2 the key point in converting the above formulation into a free-interface
problem is the evaluation of the propagation velocityD of the associated traveling-wave solution.

In the reference frame attached to the steady planar wave, Eqs. (3.1)–(3.4) yield

d[ρ(u − D)cvT + pu]/dx = QW, (4.1)

d[ρ(u − D)C]/dx = −W, (4.2)

d[ρ(u − D)]/dx = 0, (4.3)

dp/dx = f. (4.4)

The wave is assumed to propagate through an initially quiescent homogeneous premixture whose
temperature, pressure, density, and deficient reactant concentration are regarded as prescribed.
Hence the boundary conditions are

T (∞) = T0, C(∞) = C0, ρ(∞) = ρ0,

p(∞) = p0 = (cp − cv)ρ0T0, u(∞) = 0.
(4.5)
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Far behind the wave, due to the flow deceleration and the reactant consumption,

u(−∞) = 0, C(−∞) = 0, (4.6)

and the global integration of the enthalpy equation, (Eq.4.1)+Q(Eq.4.2),

d[ρ(u − D)(cvT + QC) + pu]/dx = 0, (4.7)

yields
T (−∞) = T0 + QC0/cv = Tb, p(−∞) = (cp − cv)ρ0Tb = pb. (4.8)

Thus, due to the boundary condition (4.8) and the absence of heat losses, the final temperature
and pressure of burnt gas appear to be identical to those reached in the constant volume adiabatic
explosion.

Integration of (4.3) and (4.7) subject to the boundary conditions (4.5), (4.6), (4.8) allows the flow
velocity, temperature and the specific volume,v = 1/ρ, to be expressed in terms of the pressure
and concentration. Specifically,

u = D[1 − (Tp0/T0p)], (4.9)

v = cp(1 − γ −1)(T /p), γ = cp/cv, (4.10)

T = γ −1Tb + (1 − γ −1)T0(p/p0) − γ −1(Tb − T0)(C/C0). (4.11)

At high activation energies (E/RTb � 1) the reaction zone shrinks, and on the length scale larger
than its width the reaction rate may be treated as a localized source,

W ' Mδ(x), (4.12)

whereM is the source intensity (to be found). Given (4.12), Eqs. (4.1)–(4.4) imply the following
jump conditions at the interface:

(x = 0)

[ρ(u − D)cvT + pu] = MQ, (4.13)

[ρ(u − D)C] = −M, (4.14)

[ρ(u − D)] = 0, (4.15)

[p] = 0. (4.16)

Since
C(x > 0) = C0 and C(x < 0) = 0, (4.17)

and by (4.3)–(4.5) andρ(u − D) = −ρ0D, Eq. (4.14) readily implies

M = C0ρ0D, (4.18)

where at this stageD remains undetermined.
Outside the reaction zone the overall problem is easily tractable and one ends up with the

following set of basic profiles. Atx < 0 (burnt gas),

C = 0, T = Tb, v = vb = v0, u = 0, p = pb. (4.19)
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At x > 0 (fresh mixture),

C = C0, T = γ −1p−1
0 T0(p0 + (γ − 1)p(x)),

v = γ −2(γ − 1)cpp−1
0 T0(p0 + (γ − 1)p(x))/p(x), (4.20)

u = γ −1D(p(x) − p0)/p(x),

wherep(x) is governed by the equation

dp/dx = f (v(p), u(p)), p(0) = p0. (4.21)

At the upstream (unburnt) side of the reaction zone,

T = T+ = T0 + (1 − γ −1)(Tb − T0). (4.22)

x0

x0

Figure 2.
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FIG. 2. Profiles of pressure(p) and temperature(T ) in subsonic detonation (outer view).

Thus within the reaction zone the temperature undergoes a sharp increase fromT+ to Tb (Fig. 2).
As has been shown by Goldfarbet al. [11], T+ plays a pivotal role in controlling the reaction time
scale τ ,

τ ∼ exp(E/RT+), (4.23)

not dissimilar to the situation with the post-shock (Neumann) temperature in supersonic
detonation [22].

5. Evaluation of the propagation velocity

To evaluate the propagation velocityD, it is helpful to introduce a set of scaled quantities,

Θ = (T − T0)/(Tb − T0), Π = (p − p0)/(pb − p0), Ψ = 1 − C/C0, V = v/v0,

U = u/D, ξ = x/l, τ = Dt/l, σ = T0/Tb, q = (1 − σ)/σ.
(5.1)
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Here the length scalel is defined by

l = qa2
0K1/2/γ φ3FD2, (5.2)

wherea0 =
√

γ (cp − cv)T0 is the velocity of sound in the unburnt gas. The scaled version of
Eqs. (4.2) and (4.4) thus becomes

Λ3 dΨ

dξ
= −

1

V
Ω(Ψ, Θ), (5.3)

dΠ

dξ
= −

U(κ + |U |)

V
, (5.4)

where according to (4.9)–(4.11),

Θ = (1 − γ −1)Π + γ −1Ψ, V = (1 + qΘ)/(1 + qΠ), U = q(Π − Ψ )/γ (1 + qΠ), (5.5)

Ω = (1 − Ψ ) exp[β(Θ − (1 − γ −1))/(σ + (1 − σ)Θ)], (5.6)

is the scaled reaction rate, whereβ = (1 − σ)E/RT+ is the effective Zeldovich number.Λ is the
scaled propagation velocity defined by

Λ3
= γφ3FD3 exp(E/RT+)/Aqa2

0K1/2, (5.7)

and

κ−1
= φ2FDK1/2/ν (5.8)

is the effective Reynolds number. Eqs. (5.3)–(5.4) are considered jointly with the boundary
conditions

Ψ (∞) = 0, Ψ (−∞) = 1, Π(∞) = 0, Π(−∞) = 1. (5.9)

To circumvent the familiar cold-boundary difficulty we shall introduce an auxiliary ignition
temperatureΘ = Θ∗ and redefineΩ so that

Ω = 0 at 0< Θ < Θ∗. (5.10)

For high enoughβ the final result should not depend on the specifics of the truncation.
At Θ < Θ∗, due to the absence of diffusion,Ψ = 0, and hence by Eq. (5.5),Θ = (1− γ −1)Π .

At the ignition point, therefore,

Π = Π∗
= Θ∗/(1 − γ −1). (5.11)

Assuming thatU > 0 and hence dΠ/dη < 0, the boundary conditions (5.9) immediately imply
thatΠ < 1 and by (5.11),Θ∗ < 1 − γ −1. Hence,Π may now be employed as a new independent
variable reducing Eqs. (5.3)–(5.4) to a single first-order ODE,

Λ3 dΨ

dΠ
= −

Ω(Ψ, Θ(Ψ,Π))

U2(Ψ, Π) + κ(Λ)U(Ψ,Π)
, (5.12)

considered jointly with the boundary conditions

Ψ (Π∗) = 0, Ψ (1) = 1. (5.13)
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Being overdetermined, the problem (5.12)–(5.13) should produce bothΨ (Π) and the scaled
propagation velocityΛ.

For further analysis it is helpful to recast Eq. (5.12) as

Λ3H(Ψ, Π)dΨ = G(Ψ, Π)dΠ, (5.14)

where

G(Ψ, Π) = γ q−2(1 + qΠ)2 exp

(
β(1 − γ −1)(Π − 1)

σ + (1 − σ)((1 − γ −1)Π + γ −1Ψ )

)
,

(5.15)

H(Ψ, Π) =
(Π − Ψ )(Π − Ψ + γ q−1κ(Λ)(1 + qΠ))

γ (1 − Ψ )

× exp

(
−

βγ −1Ψ

σ + (1 − σ)((1 − γ −1)Π + γ −1Ψ )

)
.

ConsideringG as a function ofΠ , andH as a function ofΨ , Λ3 is determined by the relation

Λ3J = I, (5.16)

where

I =

∫ 1

Π∗

G(Ψ (Π), Π) dΠ and J =

∫ 1

0
H(Ψ, Π(Ψ )) dΨ. (5.17)

At large Zeldovich numbers,Ψ is close to zero everywhere except for a small vicinity ofΠ = 1
where it sharply raises to unity. The asymptotic evaluation of the integrals (5.17) then yields (see
Appendix)

I =
γ (1 + q)2(σ + (1 − σ)(1 − γ −1))

βq2(1 − γ −1)
+ O

(
ln β

β3/2

)
, (5.18)

J =
(1 + γ q−1(1 + q)κ(Λ))(σ + (1 − σ)(1 − γ −1))

β
+ O

(
ln β

β3/2

)
. (5.19)

Substituting (5.18)–(5.19) into (5.16) one readily obtains

Λ3
=

γ (1 + q)2

q2(1 − γ −1)(1 + γ q−1(1 + q)κ(Λ))
+ O

(
ln β
√

β

)
. (5.20)

To test the rate of convergence, Figure 3 shows the numerical solution of the eigenvalue problem
(5.12), (5.13) corresponding toκ = 0, Π∗

= 0.25,σ = 0.15 (q = 5.667), γ = 1.2, 1.3, 1.4, and
5 < β < 50. For example, atγ = 1.3, T0 = 295◦K and E/RTb = 15, as follows from Eq. (4.22),
T+ = 681◦K and henceβ = (1− σ)E/RT+ = 37. In this caseΛ(37) = 1.95, Λ(∞) = 1.98 and
thus (Λ(∞) − Λ(37))/Λ(∞) = 0.015, which is quite a small error.

Finally, upon returning to the original dimensional parameters, (5.20) yields(
Fφ3σ(1 − σ)(γ − 1)

γAa2
0

√
K

)
D3

+

(
φνσ(γ − 1)

Aa2
0K

)
D2

= exp

(
−

E

RT+

)
. (5.21)
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FIG. 3. Scaled propagation velocity(Λ) vs. scaled activation energy(β) evaluated forγ = 1.2, 1.3, 1.4, κ = 0 and
σ = 0.15. Broken lines correspond to the asymptotics (5.20).

At A = 108 s−1, E/R = 10,000◦K, T0 = 295◦K, a0 = 350 m/s,dp = 0.25 cm,ν = 0.15 cm2/s,
φ = 0.4, σ = T0/Tb = 0.15, γ = 1.3, Eqs. (4.22), (5.21) yieldT+ = 681◦K, D = 74 m/s,
l = 23 cm andκ = 0.026. For fast reaction waves spreading through porous beds the parameterκ

(5.8) is normally quite small, which would justify omission of the linear (Darcy) term in Eq. (3.7)
and, hence, the quadratic term in Eq. (5.21). As a result one ends up with a cubic-root dependence
on the Arrhenius exponent,

D ∼ exp(−E/3RT+). (5.22)

Note that in the subsonic detonation the propagation speed is controlled by the temperature(T+) at
the entrance to the reaction zone rather than at its exit(Tb) as occurs in deflagrative combustion.

6. Free-interface problem and its numerical validation

The consumption rate,C0ρ0D(T+) (4.18), evaluated for steady planar waves will apparently hold
also for the waves whose reaction zone is merely quasi-steady and quasi-planar. In this situation
T+ is no longer obliged to coincide with its thermodynamic value (4.22), but should be determined
by the overall dynamics of the system. Due to the high activation energy even a mild variation
in T+ may strongly affectD(T+). This approach, long and successfully employed in deflagrative
combustion, allows description of subsonic detonation in terms of a free-interface problem. The
corresponding set of governing equations may thus be written as

(cvρT )t + ∇ · (cvρT u + pu) = QC0ρ0D(T+)δF , (6.1)

(ρC)t + ∇ · (ρCu) = −C0ρ0D(T+)δF . (6.2)

HereδF is the surfaceδ-function with the subscriptF labeling the flame-interface,F(x, t) = 0.
Eqs. (6.1), (6.2) should be considered jointly with Eqs. (3.3)–(3.5), (4.17), (5.21).
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FIG. 5. Galloping mode of subsonic detonation. Profiles of scaled pressureΠ (a) and temperatureΘ (b) at several
consecutive instants of time;γ = 1.3, σ = 0.15,κ = 0.025,β = 20.

Due to (4.17), integration of Eq. (6.2) across the interface yields

ρ+(VF − u+ · n) = ρ0D(T+), (6.3)

whereVF = −Ft/|∇F | is the normal velocity of the interface, andn = ∇F/|∇F | is its unit normal.
One thus ends up with a model involving only three equations (3.3), (3.4) and (6.1).

Although the constructed free-interface formulation involves discontinuities, the drag-induced
pressure diffusivity exerts a regularizing influence which should make the system well-posed
dynamically, i.e. free of pathological instabilities as occurs, for example in the Darrieus–Landau
[15] or Zaidel’s [9] problems also dealing with combustion interfaces. To test this point the current
model was simulated numerically for the simplest case of one-dimensional propagation (Figs. 4, 5).
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As one might anticipate, at sufficiently low Zeldovich numbers (β) the equilibrium traveling-wave
solution appears to be stable. Yet there is a critical valueβ = βcr(σ, γ ) above which the traveling
wave loses its stability and the propagation occurs in an oscillatory (galloping) mode. Otherwise the
model is quite well-behaved dynamically as far as pathological instabilities are concerned.

A more systematic approach to the stability question requires consideration of an eigenvalue
problem for a system of linear ODEs with variable coefficients. The latter stem from the non-
linear convective terms and constitute a major obstacle for an analytical tackling of the problem.
This difficulty, however, vanishes if one considers the limit of small-heat-release (σ → 1) which,
while suppressing convective transport, preserves much of the problem’s character including its
discontinuities. In this limit, as has recently been shown [2], the system of governing equations
(3.1)–(3.7) reduces to a piecewise-linear problem for the pressure. In the appropriately chosen units
(5.1) the resulting model reads

Πτ = γ∇
2Π + Φ(Π)δf , (6.4)

vf = Φ(Π). (6.5)

Herevf = −fτ /|∇f | is the normal velocity of the interface,f (ξ, τ ) = 0, and

Φ(Π) = exp

(
β̂(Π − 1)

2(σ̂ + (1 − σ̂ )Π)

)
(6.6)

with

β̂ =
(1 − σ)(1 − γ −1)(E/RTb)

1 − γ −1(1 − σ)
, σ̂ =

γ σ

γ − 1 + σ
(σ̂ < 1). (6.7)

Eq. (6.4) should be considered jointly with the conditionΠ → 0 far ahead of the advancing
interface.

The reduced model, as one may notice, is formally identical to the free-interface model for
gasless combustion (self-propagating high-temperature synthesis) ifΠ is regarded as the scaled
temperature;̂β, Zeldovich number and̂σ , the unburnt/burnt phase temperature ratio (σ̂ < 1). In this
context the model has been explored energetically in recent years and there is a sizeable volume of
analytical and numerical results on its intrinsic dynamics. The latter, among other things, involves
galloping and spinning waves as well as period-doubling cascades and chaos [1, 2, 6, 10, 14].

Note that for the reduced model (6.4)–(6.7) the basic traveling-wave solution becomes
oscillatingly unstable as soon as the scaled Zeldovich numberβ̂ ∼ (1 − γ −1)(1 − σ)(E/RTb)

exceeds some critical value [2]. Thus, for all the distinction in the underlying physics, the instability
criteria for both subsonic and supersonic detonation [5, 18] appear to be quite similar in form.

7. Concluding remarks

The multiplicity of drag-affected detonation regimes shown in Figure 1 is qualitatively similar to
that found by Stewart and Yao [19] in curved detonations. The major difference is that in the latter
case the additional (curvature) source term appears in the conservation of mass equation instead of
the momentum equation and the emerging detonation regimes appear to be essentially supersonic.

In general, drag-force based models can represent fast reaction waves in hydraulically resisted
flows only in some average sense. In the subsonic low Mach number detonation discussed in this
paper the developing reaction wave width,

lw = (pb − p0)(dp(+0)/dx)−1, (7.8)
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is normally much larger than the porous bed particle diameterdp and may easily extend over tens of
centimeters [13]. For example, for the parameter set considered in Section 4,lw = 74dp = 18.5 cm.
In such a situation the reaction wave is expected to be only mildly distorted by the porous
bed granules, and the adopted formulation is likely to be valid not only qualitatively but also
quantitatively.
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Appendix

In this section we construct ana priori estimate for the solutionΨ (Π) of the problem (5.12), (5.13)
and evaluateΛ atβ → ∞.

Step 1. Estimate ofΨ (Π). Suppose thatΛ ∼ O(1). Then there exist constantŝM ∼ O(1) and
M̌ ∼ O(1) such thatM̂ > Λ > M̌. Thereforeκ̂ > κ(Λ) > κ̌, whereκ̂ = κ(M̌) andκ̌ = κ(M̂).
Then an upper solution of Eq. (5.12) with the second boundary condition (5.13) is defined as a
solution of the equation

dΨ̃

dΠ
= M̃S(Ψ̃ , Π), (A.1)

whereS(Ψ, Π) is any function satisfying the condition

S(Ψ, Π) 6 G(Ψ, Π)/H(Ψ, Π) for anyΠ ∈ (Π∗, 1) andΨ > 0 (A.2)

andM̃ is any positive number such that̃M 6 M̂−3.
The solutionΨ̃ will obviously be as close to the true solutionΨ asG/H is close toS. Thus

to have some idea aboutΨ via Ψ̃ one has to ensure thatS retains the basic qualitative features of
G/H . Such a specific choice may be made if we observe that for anyΠ ∈ (Π∗, 1) andΨ > 0,

(1 − Ψ )(1 + qΠ)2

(Π − Ψ )(Π − Ψ + γ q−1κ(Λ)(1 + qΠ))
>

1

1 + γ q−1κ̂(1 + q)
, (A.3)

exp

(
β(1 − γ −1)(Π − 1)

σ + (1 − σ)((1 − γ −1)Π + γ −1Ψ )

)
> exp

(
β(1 − γ −1)(Π − 1)

σ + (1 − σ)(1 − γ −1)Π∗

)
, (A.4)

exp

(
βγ −1Ψ

σ + (1 − σ)((1 − γ −1)Π + γ −1Ψ )

)
> exp(βγ −1Ψ ), (A.5)

and set

S =
γ 2

q2(1 + γ q−1(1 + q)κ̂)
exp

(
β(1 − γ −1)(Π − 1)

σ + (1 − σ)(1 − γ −1)Π∗

)
exp(βγ −1Ψ ). (A.6)

As for M̃ we only assume that̃M ∼ O(1).
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Separating variables in (A.1) withS defined by (A.6) and taking into account the boundary
condition (5.13) atΠ = 1, we have∫ Ψ̃

1
exp(−βγ −1s) ds

=
γ 2

q2(1 + γ q−1(1 + q)κ̂)
M̃

∫ Π

1
exp

(
β(1 − γ −1)(s − 1)

σ + (1 − σ)(1 − γ −1)Π∗

)
ds, (A.7)

which gives

Ψ̃ (Π) = −
1

γ −1β
ln

(
M̃1

(
1 − exp

(
β(1 − γ −1)(Π − 1)

σ + (1 − σ)(1 − γ −1)Π∗

))
+ exp(−γ −1β)

)
, (A.8)

where M̃1 = M̃(σ + (1 − σ)(1 − γ −1)Π∗)/q2(1 + γ q−1(1 + q)κ̂)γ −1(1 − γ −1). If we also
require that

M̃ < q2(1 + γ q−1(1 + q)κ̂)γ −1(1 − γ −1)/(σ + (1 − σ)(1 − γ −1)Π∗)

(which is always possible) theñΨ (Π) will be positive for allΠ ∈ (Π∗, 1) and thus (A.8) is an
upper solution of (5.14) considered with both conditions (5.13).

The solution (A.8) possesses an interesting property (easily checked by direct substitution) that
Ψ ∼ O(β−1) at Π = 1 − β−1. MoreoverΨ ∼ O(β−1 ln β) at Π = 1 − β−n wheren > 0 is any
fixed number. These observations imply that

Ψ (Π) 6 a1β
−1 for Π 6 1 − a2β

−1, (A.9)

Ψ (Π) 6 a3β
−1 ln β for Π 6 1 − a4β

−n, for anyn > 0. (A.10)

Henceforth all constantsai are assumed to be of order of unity.
It is also important to note that jointly withΨ (Π) we can also consider the inverse function

Π(Ψ ) due to its monotonicity. The lower solution for this problem is merely an inversion ofΨ̃ (Π),
which implies

1 − Π 6 a5β
−1 for Ψ > a6β

−1, (A.11)

1 − Π 6 a7β
−1 ln β for Ψ > a8β

−n, for anyn > 0. (A.12)

Step 2. Evaluation ofΛ. To calculateΛ we have to obtain approximate values of the integralsI

andJ defined by (5.17).
ConsiderI first. Let us rewrite this integral as a sum of three terms,

I = I1 + I0 + I−1

=

∫ 1−1/
√

β

Π∗

γ q−2(1 + qΠ)2 exp

(
β(1 − γ −1)(Π − 1)

σ + (1 − σ)((1 − γ −1)Π + γ −1Ψ (Π))

)
dΠ

+

∫ 1−1/β2

1−1/
√

β

. . . +

∫ 1

1−1/β2
. . . (A.13)

The first and last terms in this expression are readily estimated as follows:

|I−1| 6 a9β
−2, |I1| 6 a10 exp(−a11

√
β), (A.14)
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while I0 ∼ β−1. The main contribution toI therefore comes fromI0. Let us calculate this integral.
Note that by (A.10),Ψ 6 a3β

−1 ln β for Π ∈ (1 − β−1/2, 1 − β−2) and therefore

exp

(
β(1 − γ −1)(Π − 1)

σ + (1 − σ)((1 − γ −1)Π + γ −1Ψ (Π))

)
=

(
1 + O

(
ln β
√

β

))
exp

(
β(1 − γ −1)(Π − 1)

σ + (1 − σ)(1 − γ −1)Π

)
(A.15)

which allows us to write

I0 = Ĩ0

(
1 + O

(
ln β
√

β

))
, (A.16)

where

Ĩ0 = γ q−2
∫ 1−1/β2

1−1/
√

β

(1 + qΠ)2 exp

(
β(1 − γ −1)(Π − 1)

σ + (1 − σ)(1 − γ −1)Π

)
dΠ. (A.17)

The last integral can be calculated using the Laplace technique which gives

Ĩ0 =
γ (1 + q)2(σ + (1 − σ)(1 − γ −1))

βq2(1 − γ −1)
+ O

(
1

β2

)
. (A.18)

Thus,

I =
γ (1 + q)2(σ + (1 − σ)(1 − γ −1))

βq2(1 − γ −1)
+ O

(
ln β

β3/2

)
. (A.19)

The second integralJ can be calculated using the same procedure. First we rewrite it as a sum

J = J−1 + J0 + J1

=

∫ 1/β2

0
γ −1 (Π(Ψ ) − Ψ )(Π − Ψ + γ q−1κ(Λ)(1 + qΠ))

1 − Ψ

× exp

(
−βγ −1Ψ

σ + (1 − σ)((1 − γ −1)Π(Ψ ) + γ −1Ψ )

)
dΨ +

∫ 1/
√

β

1/β2
. . . +

∫ 1

1/
√

β

. . . (A.20)

The termsJ−1 andJ1 are estimated as

|J−1| 6 a12β
−2, |J1| 6 a13 exp(−a14

√
β), (A.21)

andJ0 ∼ β−1 is the dominant term inJ . Using (A.12) we conclude that forΨ ∈ (β−2, β−1/2),

(Π(Ψ ) − Ψ )(Π − Ψ + γ q−1κ(Λ)(1 + qΠ))

1 − Ψ
= 1 + γ q−1(1 + q)κ(Λ) + O

(
ln β

β

)
, (A.22)

and

exp

(
−βγ −1Ψ

σ + (1 − σ)((1 − γ −1)Π(Ψ ) + γ −1Ψ )

)
=

(
1 + O

(
ln β
√

β

))
exp

(
−βγ −1Ψ

σ + (1 − σ)((1 − γ −1) + γ −1Ψ )

)
. (A.23)
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ThusJ0 can be represented as

J0 = J̃0

(
1 + O

(
ln β
√

β

))
, (A.24)

where

J̃0 = γ −1(1 + γ q−1(1 + q)κ(Λ))

∫ 1/
√

β

1/β2
exp

(
−βγ −1Ψ

σ + (1 − σ)((1 − γ −1) + γ −1Ψ )

)
dΨ. (A.25)

Employing the Laplace technique we obtain

J̃0 =
(1 + γ q−1(1 + q)κ(Λ))(σ + (1 − σ)(1 − γ −1))

β
+ O

(
1

β2

)
, (A.26)

and hence

J =
(1 + γ q−1(1 + q)κ(Λ))(σ + (1 − σ)(1 − γ −1))

β
+ O

(
ln β

β3/2

)
. (A.27)

Substituting (A.19), (A.27) into (5.16) we finally obtain

Λ3
=

γ (1 + q)2

q2(1 − γ −1)(1 + γ q−1(1 + q)κ(Λ))
+ O

(
ln β
√

β

)
. (A.28)

SinceΛ ∼ O(1), oura priori assumption concerning its scaling is fully corroborated and therefore
(A.28) yields a true asymptotics asβ → ∞.
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