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A direct variational approach to a problem arising in image reconstruction

LuiGl AMBROSIO
Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy

AND

SIMON MASNoOU*

Laboratoire Jacques-Louis Lions, B.C. 187, Universtierre-et-Marie-Curie,
75252 Paris Cedex 05, France

[Received 14 May 2002 and in revised form 31 August 2002]

We consider a variational approach to the problem of recovering missing parts in a panchromatic
digital image. Representing the image by a scalar funatiowe propose a model based on the
relaxation of the energy

/|Vu|<a+ﬁ

which takes into account the perimeter of the level sets aé well as the B norm of the mean
curvature along their boundaries. We investigate the properties of this variational model and the
existence of minimizing functions in BV. We also address related issues for integral varifolds with
generalized mean curvature iff L

. Vu |P
dlvﬁ‘ ) a,B>0 p=>1,
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1. Introduction

Many problems in digital image processing require the ability to recover missing parts of an image
or to remove spurious or undesired objects. One can mention for instance the removal of scratches
in old photographs and films, the recovery of pixel blocks corrupted during a binary transmission
(or analogously the removal of impulse noise) or the removal of undesired publicity, text or subtitles
from a photograph. One can also think of special effects for movie postproduction, e.g. the removal
of a microphone appearing in a scene.

A digital image is usually modeled as a functierirom a bounded domain &" (N = 2 for
usual snapshotgy = 3 for medical images or movied] = 4 for moving medical images) onto
RM (M = 1 for a grey level image) = 3 for colour images). Since it is now well admitted that
the essential features of any natural image are contained in its grey level representation, we shall
concentrate on the panchromatic cdg¢e= 1. To extend to the colour case an operator designed
for grey level images, it is generally enough to process separately each channel in the colour
representation, e.g. the red-green-blue representation or, more appropriately, any representation with
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two channels for the chromaticity and one channel for the luminosity (see [9] and the references
therein).

After the work of L. Rudin and S. Osher [34], the usual representation of a panchromatic image
is a sum of two components; € BV(RY) anduy € L2(R"Y). The component; is supposed
to describe thgeometryof the image, i.e. its objects and their boundaries, whjleontains all
information aboutextureandadditive noise The assumption that the geometry of the image can
be described by a function of bounded variation sounds quite natural, for it means that there can be
discontinuities in the image but supported on rectifiable curves. The necessity of another component
that does not necessarily belong to BV can be corroborated by an experimental procedure that seems
to indicate that, given a digital image, the underlying “real” image may be often too oscillating to
belong to BV (seel[2] for the details and [11] for related theoretic issues). The reader may refer
to [4,120] for a detailed survey of the space BV.

Among the large literature that has been published in recent years on the recovery of missing
parts in a digital image, one can basically distinguish between two approaches and each of them
corresponds in some way to the processing of one component in the decomposition above:

e The stochastic approach, which is based on the modeling of an image as a realization of a
random process. Usually, itis assumed that the image intensity derives from a Markov random
field and, therefore, has the properties of locality and stationarity, i.e. each pixel is only
related to a small set of neighboring pixels and different regions of the image are perceived
similar. This modeling is particularly adapted for texture images (thus to the processing of the
componenti:, in the previous decomposition) and has motivated numerous works on texture
analysis and synthesis|[5,/14]15,[25/32| 33,42, 44].

e The deterministic approach, whose main purpose is to recover the geometry of the image. The
model we shall discuss in this paper belongs to this category.

A pioneering work on the recovery of plane image geometry is due to D. Mumford, M. Nitzberg
and T. Shiota[31]. They did not directly address the problem of recovering missing parts in an image
but rather tried to identify occluding and occluded objects in order to compute the image depth map.
Their algorithm starts with the detection of the boundaries of image objects. The next step is the
identification of occluded and occluding objects. To this end, Nitzberg, Mumford and Shiota had
the luminous idea to mimic a natural ability of human vision to complete partially occluded objects,
the so-calledamodal completioprocess described and studied by the Gestalt school of psychology
and particularly G. Kanizs@ [23]. From a series of perceptual experiments, Kanizsa found out that
our vision system detects occlusion at a very low level, actually as soon as it defaatgions
which are points where an object outline abruptly abuts against the outline of another object and
forms a junction in the shape of the letter “T”. In particular, our perception of occlusion has nothing
to do with a prior recognition of the objects. Having detected the T-junction, our brain performs a
continuation of object boundaries between T-junctions (see Higure 1).

As pointed out by Kanizsa, this continuation process relies on many different[lais [23] and
there is actually no obvious way to model it, even in relatively simple situatioris [18]. Again, it
seems that no process of recognition is involved (see Figure 2). The idea of Mumford, Nitzberg and
Shiota was to adapt the theory of Kanizsa to their framework. Given the object boundaries, it is easy
to detect T-junctions. Hereafter, the main problem is the completion of object boundaries between
T-junctions. As we said, there is no simple model for amodal completion. However, it can be proved
that completion curves are in general as short as possible while respecting a pringipde afon-
tinuationwith respect to the edges being completed. Thus, the model proposed by Mwehé&ird
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FIG. 1. This example, due to G. Kanizéa[23], illustrates the amodal completion process. Starting from the four objects in the
left column, the addition of either four white rectangles or a white cross produces T-junctions (middle column) that conduce
our brain to perceive occlusions that, in reality, do not exist. This illustrates perfectly the link between the presence of T-
junctions and the perception of occlusions. Then, our visual system recovers the virtually occluded objects (four black disks
in one case and a black square in the other) by connecting T-junctions with completion curves, follgartbcantinuation
principle. We have represented those curves with dash lines in the right column.

e Xmtm

FIG. 2. No recognition process seems to be involved in amodal completion. In this figure (from G. Kanizsa [23]), our brain
creates a hybrid animal that obviously contradicts reality.

is the following: given two T-junction®s, p2 and the tangents, r» of the respective terminating
edges, the continuation curve is the Euler elasficghat is, the curve minimizing the energy

/ (a + Br?) dH,
r

subject to the boundary conditions of beginningat, +1) and ending atp», r0). Here, ! denotes
the one-dimensional Hausdorff measuréhe curvature o™ ande, g are positive reals. Of course,
this model is far from being fully satisfactory and, in particular, it does not allow creating corners.
However, it sounds reasonable in a first approximation, particularly when the angle betvaeen
t2 is small, and offers a good compromise between shortness and good continuation.

The energy above has in fact a long history. It has been initially studied by Euler [16] in 1744,
who investigated the bending of a thin roq"—:ez dH?! is the total bending energy—by forces and
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couples applied at its ends. Then, it was first applied to visual completion by Uliman [41] and
Horn [21] and has more recently motivated numerous works [see [24,137]89) 40, 43] and the very
interesting justification of the model in [30]).

In their paper, Mumford, Nitzberg and Shiota recover partially occluded objects in the following
way: among all possible T-junction pairings, the algorithm first disqualifies those for which
intensities are too different, based on the underlying reasonable assumption that intensity cannot
vary too much along an edge. Then, the algorithm finds the pairings of minimal energy, from which
the complete objects can be easily deduced.

Though it was not initially designed for that purpose, it is not difficult to adapt this approach to
the problem of recovering missing parts of an imaged ldenotes a hole that we want to fill, we
can consideb A as an edge, compute all T-junctions@# and try to find optimal pairings between
them. The result would be a family of overlapping objects given by their boundaries. The grey level
at each point of an obje? is known only outsided but one can easily imagine a way to define it
also onO N A, e.g. simply putting the average value computed @¥&rA, and this strategy applied
to each object would finally give an image wherdnas been filled.

It is easily seen that the strategy has however a major drawback: its dependence on a prior edge
detection process. It is well known indeed that edges are not reliable features in the sense that they
cannot be defined in a reliable way. Actually, each edge detector provides a particular definition
of edges and, consequently, the image resulting from the strategy above depends as much on the
image itself as on the edge detector! In addition, edges furnish a very poor representation of the
original image, actually a coarse approximation to the compomgtitat we defined previously.

The image reconstructed with a stratéghpa Mumford et al.is therefore rather incomplete since the
information outside the missing zoreis not taken into consideration.

|

N

T- junctions

S

FiG. 3. The algorithm in[[28] first detects T-junctions as the intersection points between the occlusion’s boundary and the
outer level lines (left). Then it computes optimal pairings between compatible T-junctions and draws the corresponding
completion curves (middle). Finally, the occlusion is removed by simply filling with the appropriate grey levels (right).

To remedy these drawbacks, it was proposed_in [28] (see [al$o [27]) to adapt Muenfakd
strategy to théevel linesframework (see Figufg 3). Level lines have many advantages in our setting:

e They provide acompleterepresentation of any Borel function given theupper level sets
X,u = {x 1 u(x) > A}, the image can be easily reconstructed with the formula

u(x) =supr:x e X,u} (1)

which holds almost everywhere.
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e They are perfectly adapted to the description of image geometry. In particular, the family of
level sets is globally invariant with respect to any increasing contrast change, exactly like
image objects (the shape of a bird remains the shape of a bird after a contrast change). In
contrast, edges are fully contrast-dependent features.

e They are well suited to the BV setting for mainly three reasons:

— almost every level set of a function of bounded variation has finite perimeter (see the
next section). In addition to all properties that it implies, the notion of finite perimeter
is compatible with a weak notion of connectednéss [3] which can be particularly useful for
the description of image shapes;

— by the Cavalieri formula, the LLnorm of a measurable function &" depends on the
N-dimensional measure of its level sets;

— by the coarea formula, the total variation of a BV function®h depends on theV — 1)-
dimensional Hausdorff measure of its level lines.

In [28], the authors calilisocclusiontheir method for recovering missing parts of a grey level
two-dimensional image, since missing parts can obviously be considered as occlusions “hiding”
some information one wants to recover. It is assumed:thiata BV function on the plane known
everywhere except on a bounded simply connected opes séth smooth boundary. T-junctions
are defined as those points wheéré intersects the level lines af The algorithm presented in [28]
tries to find optimal pairings between compatible T-junctions, i.e. associated to the same level set,
such that the orientation dbu is the same at both points and the optimal associated curve does not
cross another completion curve. Both conditions ensure that the new sets obtained by the addition
of the completion curves still are level sets. Given two compatible T-junctjgremd j» on 9 A
and61, 62 the corresponding orientations fu (computed for instance as an average over some
neighborhood), the optimal completion curve proposed_in [28] is a clinthat lives inA and
minimizes the criterion

/ (a0 + Bl|”) dHY + (61, n1) + (62, n2).
r

Here, a, B are positive realsp > 1 is a real parameter introduced to generalize the elastica
energy and the last two terms denote the angles betégen and the normals td™ at j; and

Jjo respectively. These terms guarantee that, at least in a first approximation, the good continuation
principle is satisfied. The global energy to minimize is finally of the form

/ > (/ ( + Blc|”) dH + (61, n1) + (62, nz)) dx, )
- r

X reF;

with F, denoting the family of completion curves associated to the leveluset A}. It must be
emphasized thaf, is generically finite for almost every, which explains the finite sum [26].

Given an initial BV function outsided, the existence of an optimal solution with respect to
criterion [2) has been proven in_[26] for apy > 1, with the additional assumption in the case
p > 1 that the restriction ofi to dA takes finitely many values. In contrast to most variational
problems, one does not prove directly the existence of an optimal function interpolating the image
in A but rather the existence of an optimal family of interpolating level lines from which a function
can be recovered.

Recall now that the angle terms were introduced to guarantee the good continuation principle.
Another way, more restrictive, to guarantee this principle is to replace the angle constraint with
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a higher order constraint. This can be done in a very logical way by computing the criterion
[+ Blkl?) dH?! not only on the completion curve but also on a small piece of the associated

level lines outsidet. If A denotes a set slightly bigger than our criterion ) becomes

[D> | @+ pin are @)

OQIWEF)L

where, now, the elements @, are unions of a completion curve and the restrictiond to A of

the associated level lines. Of course, this criterion makes sense under the assumption that the level
lines of the initial BV function are essentially%” in A \ A. In a forthcoming papef[29], the
existence of an optimal solution with respect to this new criterion is proved fopanyl without

the assumption of finiteness required[inl[26]. Again, the minimization is performed over a family

of curves rather than on a function. Roughly speaking, the existence of optimal curves is proven for
a dense family ok using martingale arguments, then a density argument and a series of diagonal
extractions give an optimal family of completion curves, from which a solution can be deduced.

Our initial motivation in this paper was precisely to study the disocclusion problem from the
viewpoint of the direct method of the calculus of variations. To this end, we first need to rewrite
criterion [3) according to a function rather than a family of curves. Assuming for a moment that the
curvesr” in (3) are the level lines of a smooth functianit is easily seen that the criterion becomes

/ (/ ~(o¢+5|,c|!’)dﬁl> dx.
—oo \Jo{u=>r}NA

This criterion can be easily generalized to higher dimensions;nibw denotes a function on
RN (N > 2), the curvature can be replaced with the mean curvature vektaf the hypersurface
d{u > A} N A and the criterion becomes

/ (f _(a+/3|H|1’)dHN1> dx, (4)
—oo \Ja{u=A}NA

with H#N—1 the (N — 1)-dimensional Hausdorff measure. Analogously to the two-dimensional case,
the minimization of this criterion is equivalent to seeking optimal interpolation hypersurfaces with
respect to the energf(a + B|H|?) dHN~1. Then, itis very easy to formulate the problem according
to the functionu rather than its level sets by applying equalty (7) below, observing¥matVu|

is orthogonal to the hypersurfadééu > A} at every point wherévVu| > 0, and using the change of
variables formula. One finally gets the new criterion:

F(u)—/ |Vu|(a+,3 div %
Ja |Vu|

P
) dx (5)

with the convention that the integrand is O where\%éi| = 0.

Of course, this criterion makes sense only for a certain class of smooth functions and requires
to be relaxed in order to deal with more general functions. As usual in the direct method of the
calculus of variationsF is first extended to the whole spac&R") and then the relaxed functional
associated witlF is defined as

Fu) = inf{liminf F(up) : up — u € L1).
h— 00
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As we will see in this paper, this relaxed criterion is well adapted to the study of our minimization
problem.

Another approach by relaxation, taken by C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro and
J. Verderal[B], is based on the functional

G(u,v):/_ |diw|1’(a+,3|Vk*u|)dx+A/_(|W|—vu.v)dx
A A

wherev is a vector field such thgv| < 1 andk is a smoothing kernel introduced for technical
reasons. The advantage of this formulation is the cancellation of the difficulty due to the term
div(Vu/|Vul) in F. Intuitively, the vector field plays the role ofVu/|Vu| but may remain well
defined even whefVu| vanishes. The existence of a minimizing couglev) is proved in[[6] but

it remains unclear whether this approach and ours are equivalent.

We did not mention until now any numerical implementation of the disocclusion model. A
practical algorithm for theglobal minimization of criterion[(R) in the casl¥ = 2, p = 1, based on
dynamic programming for finding an optimal set of completion curves, has been proposed in [28].
Its performance is illustrated in Figure 4.

FiG. 4. Left: original image where occlusions are in white. Right: disocclusion performed by the algorithm propbséd in [28].

In [10], T. Chan and J. Shen derive the Euler—-Lagrange equation associated with cfiterion (5),
inthe caseV = 2, p > 1. Itis a fourth-order equation that raises many problems of unstability and
computational time. In addition, the solutions are dolyal.

Finally, the algorithm proposed inl[6] computéscal solutions to the minimum problem
associated with the functional defined above. These solutions are obtained through evolutionary
equations of order three, thus much handier from the numerical viewpoint than the fourth-order
equation in[[10]. This approach gives actually very convincing results.

The Euler-Lagrange equation proposed![inl [10] is obtained through a formal derivation of
criterion [§) but is in fact ill-posed. The usual method in such a situation consists in approximating
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F by aI'-converging family of more regular functionals, i.e. a family satisfying:

Fu) < I|m|nf Fc(ue) foreveryue — u (I'-liminf property),

ue — u such that F(u) > limsupF.(u) (I'-limsup property.

e—>0

A crucial fact onI"-convergence is that limits of sequences of minimizers oftheare minimizers

of F. Thus, the solutions to the well posed Euler—Lagrange equations derived from the functionals
F. can be considered as good approximations of local minimizer,ofvhich is particularly
interesting from the numerical point of view. Before we introduce the appropriate regular functionals
for our problem, let us recall that, in a different context, it has been proveh_ in [17] that an
approximation of the solution to

v
wy = |V div[ —= ) in(0,00) x RY, (0, ") = uo
[Vul

is given by the solutions€ of

Vu
u = Je2+ |Vu|2div<—) (6)
t Ve [Vul2

if the initial functionug is Ct1 and constant at infinity (see [17] for details). To understand better
this result, it suffices to remark thatif: (0, co) x RV *1 — Ris defined byw(z, x, z) = u(r, x)+ez

then [6) can be rewritten as
Vv
= |Vv|div
Vol

which coincides with the initial equation.
In the same spirit, let us consider the family of functionals

F.(u) = /,/|Vu|2+62<a+/3 d|v(\/W> p>dx
u 6

which take finite values for any € C2(R"). Considering. : RVt — R defined byv, (x, z) =
u(x) + €z, itis easily seen that
P
) d

Fe(u Vel a + dlv( )
= /| ( ﬂ‘ [Vve|
1/2 ve \ |7
=// Ve | (oc~|—,3‘dlv< > )dxdz
AJ-1/2 [Vve|

which is exactly th&N + 1)-dimensional version of . This observation combined with Theorgin 6
in Sectlorﬂl shows that thE- liminf property is satisfied by and the family(F,).-o. We were
unfortunately unable to prove more than that and can only state the following

CONJECTURE Fore > 0, letF, : LYR") — [0, oo] be defined by

Fu) = / JIVul?2 + €2 <a+,3’dlv

p
)dx if u e C2(RV),
|Vu|2 +e2
otherwise.
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Then, forN < p < oo and for every(e,)peny — O,
F=r-lim F,.
h— o0

This paper is organized as follows. Sectign 2 introduces some notations and basic facts about
tools from geometric measure theory that we shall need. In Sgdtion 3, we prove a locality result
for the mean curvature vectét of integral(N — 1)-varifolds whenH € L, p > N —1,p > 2
(Theoren{ P). A direct consequence of this result is the lower semicontinuity (Th¢drem 4) of the
functional

/ A+ HgPHdHN L, p>N-1 N>3,
oE

with respect to convergence irt in the class of set8 ¢ RY with 9 E € C2. This result extends to
higher dimensions a previous result due to G. Bellettini, G. Dal Maso and M. Paolini [F] fer2,
p > 1

Sectior 4 is devoted to the study of the disocclusion problem in dimemgioVe prove the
existence of an optimal solution (Theorgn 5), the coincidence betWee the associated relaxed
functionalF for smooth functions (Theore@ 6) and give some results on the regularity of the optimal
solution in the particular cas§ = 2 (Corollary[1). For the sake of simplicity and with absolutely
no loss of generality, we shall assume in what follows that g = 1.

2. Notations and main facts about varifolds

We collect below, for the reader’s convenience, the main facts about varifolds (see for instance
[4[19]38)).

We let £(R"**) denote the space of linear maps fri#* onto itself, equipped with the usual
scalar productA e B = trac€A*B). G(n + k, n) denotes the space afdimensional unoriented
subspaces dk”** and we shall often identify am-subspaceS € G (n + k, n) with the associated

orthogonal projectiorps € L(R"*) given by the matriXp‘S’ = ¢; - ps(ej) with respect to the
standard orthonormal basis, . . ., e, for R"**. G(n + k, n) is equipped with the metric
n+k . . 1/2
Ips = prili= (Y ¢ = p)?)

ij=1

induced by the scalar produebn £(R*+%). The tensor produat ® w of two vectorsv, w € R"**
is in L(R"**) and satisfies, for any € G(n + k, n),

vQweS=SW)ew=veS(w)=3SWw)eS(w).
For a subseft ¢ R"+* we define the Grassmannian
G,(A)=AxGn+k,n

equipped with the product metric. By anvarifold on an open subséf of R*tk we mean any
Radon measur® on G, (U). It is associated with a Radon measurg on U (called theweight
of V) defined by

wv(A) = V(r~(A)), A cC U Borel,

wherer is the projectionx, S) — x of G,(U) ontoU.
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GivenM, a countablyi"-rectifiable subset dk"+*, andd, a positive and locall§"-integrable
function onM, we define the associateerectifiable varifoldV = v(M, 6) by

V(A = uy(@(TMnNA), AcCG,U)Borel,

whereu, = H"L 6 is the weight ofV, TM = {(x, TyM) : x € M*} andM* stands for the set of
all x € M such that has an approximate tangent spdg@/ with respectt@ atux, i.e.

lim A~" / FOTHz = x)0(2) dH" (z) = 6(x) f FOYAH (y)  Vf € CUR™H).
A0 M TeM

We say thatV = v(M, 6) is anintegral varifold if the functioné is integer-valued. We remark
thatH" (M \ M*) = 0 and that the approximate tangent space& ofith respect to two different
positiveH"-integrable functions, 6 coincideH"-a.e. inM.

Thefirst variation of then-varifold V, denoted by V, is the linear functional on ﬁU, Rtk
defined by

SV(X) = / divs X dV (x, S),
Gn(U)

where, for any§ € G(n + k, n),

n+k n
divs X 1= ) VX' =) (i, Dy X),
i=1 i=1

wherezy, ..., 7, is an orthonormal basis fof andVy = ¢;.VS with VS £ (x) = S(Vf(x)), f €
clw).

A varifold V is said to havdocally bounded first variatioin U if for eachW cc U there is
a constant < oo such thafsV (x)| < csup, |X| for any X e CL(U, R"*) with spt|X| c W.
By the Riesz representation theorem, it follows that there exist a Radon méia$uren U—the
total variation measure &fV—and a||§V |-measurable functiom with |v| = 1 ||§V|-a.e. inU
satisfying

SV (X) = —/ v-Xd|sV| VX e CLu,R"M).
U

A varifold V is said to have mean curvature iff lif |8V || is absolutely continuous with respect
to uy and its density belongs tb”. The density will be denoted by, and it will be called the
generalized mean curvatugé V.

In the case whe is a smoothi-dimensional submanifold dR”** with M \ M N U = 9,
the divergence theorem on manifolds implies that the generalized mean curvature of the varifold
V(M, 1) is exactly the classical mean curvaturedf Whenk = 1 (i.e. codimension 1 manifolds)
the mean curvature vector can be locally computed by

H = —div(v)v (7)

wherev is a unit vector field orthogonal t .
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3. Locality of the mean curvature and applications

The main result of this section is stated in Theofgm 2, whose proof is based on the quadratic decay
of the tilt-excess established by R. &tHe in [36]. We recall his result below.

THEOREM 1 (Quadratic tilt-excess decéy [36, Thm. 5.1]) Let= v(M, 0) be an integral N — 1)-
varifold in an open se®2 < RY with H, € Lﬁ;c([LU), p > N —1,p > 2. Then foru,-almost all
x € sptuy, the tilt-excess

ttex, (. p) i= o [ T = TR )
BY ()

decays quadratically, that is,
tiltex,, (x, p) = O, (p?).

THEOREM 2 (Locality of the mean curvature) Léf = v(M,0y), V = v(M’,0y) be integral
(N — D-varifolds in2 € RV, If H, e L} (1y) andH, € L{ (1y) for somep > N — 1,
p = 2then

Hy(x) = Hy(x)

for HN-1l-almost allx € M N M.
Proof. Given nonzero integei, 61, we callx € M N M’ ageneric poinof order (6, 61) if

(i) ON"I M N M, x) =1andbg = 0N L(uy, x), 01 = OV L(uy, x);
(ii) x is a Lebesgue point dfl, andH;
(i) @y, Hypy, wy andHy, wy have the same approximate tangent plang(atith multiplicities
6o, 6oHy (x), 61 and61H, (x) respectively) which in turn coincide with the approximate
tangentplang =T, M = T\ M’;
(iv) Hy(x) andHy (x) are orthogonal t@'.

The theory of rectifiable sets and of rectifiable measures (see for instdince [4, 38]) ensures that
HN—1-almost all points inc € M N M’ have properties (i), (ii), (ii). The proof that also condition
(iv) holds HV~1-a.e. is much harder (see [8, Thm. 5.8]). Therefat®—1-almost every point of
M N M’ is generic of ordeKdp, 61) for somedp, 6;. We fix 6y, 81 and a generic point of the
corresponding order.

Following the proof of Lemma 6.3 in [35], we chooges Cgo(B{V(O)) rotationally symmetric
with0< x < landy =1on B{V/Z(O). Settingy, (v) := x (r—1(y — x)), using (iii) we have

lim r1"NsU (%) = — lim rl_N/ xrHu duy = 6gHy (x) x dHN L
r—0t r—0t BN (x) TXMﬂBiV(O)
and
lim rl_NSV(Xr) =— lim rl_Nf x-Hy duy = 601H, (%) X dHN 1,
0t r—0t BN (x) T.M'NB} (0)

Now we chooses(x) normal toT, M = T, M’ and we deduce by (iv) that,(x),H, (x) €
sparfv(x)}. Hence, in order to show that they actually coincide, it suffices to prove that

lim rN1618U (xr) — 008V ()] (x) = 0. (8)
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Let us now denote byl the collection of all generic points of ordéfg, 61). We assume, in
addition, that

(v) Iin(1)+ rINHN=L(BN (x) \ A) = 0.

Itis a consequence of Theorem 2.9.117n [19] thét*-almost every generic point of ordé, 6;)
has this property. Then, we notice faf = U or W = V that

/ X Hy ity = —/ T, W(Dx,) diew (7),
BN (x) BN(x)

thus

|:/ xr01Hy dy — / xr6oHy d//«vi|
BN (x) BN (x)

= —[/ TyM (D x,)601duy () —/ TyM'(D ;)60 duv(y)]-
BN (x) BN (x)

r

Then, by looking at the (x) component, we get

[/ x61Ho ity — / XrQOHVdMV]'V(x)
BN (x) BN(x)

= —[/BN( )(Dxr(Y) Q v(x)TyM 61duy(y) — fN

r

)(DXr () ®v()TyM' o duv(y)]-

(x

Now we use the fact that(x) is normal to7', that7,M = T,M’, 6y (y) = 6p andfy (y) = 61 on A
to obtain

[/ xr01Hy duy —/ xr6oHy dej| “v(x)
BN (x) BN (x)

- _ [ / (D () ® V() (Ty M — TY601 das(7)
BN (x)

- / (Dxr(y) @ v(x)(TyM' — T)6o dl/«v()’)i|
BN (x)

- [01/ (Dxr(y) @ v)(TyM — T) duy (y)
BN (0)\A

- Hof (Dxr(y) @ v(X))(TyM' —T) duv(y)]-
BN (x)\A

Setting
Ryw = rl’N/ (Dxr () @ vO)(TyW — T) dwy ()
BN (x)\A
for W = U, V we obtain

lim rN[018U (x,) — 008V (x)]v(x) = lim [01Rr.v — 6oR,.v].
r—0t r—0t
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Then we estimate, foW = U, V,

Rt <Cr ™V [ W = T dun)
BN (x)\A ©)
1/2
< Crr N (B () \ A>)1/2<r—l—N fB v 1V = Tllzduw(y)> ,
- (x

whereC, is such that SURY (g IDx| < C,. By conditions (iv), (v) and by Theorem 1 the first

factor is infinitesimal as — 0 and the second factor is bounded, he@]:e (8) holds and the proof is
complete. O

Theorenj R is a key point in the proof of the lower semicontinuity of the mean curvatuteierim,

stated in Theorerp]4 below, which is a generalization to higher dimensions of a previous result
obtained in dimension two by G. Bellettini, G. Dal Maso and M. Paoliriin [7]. We recall their result
below.

THEOREM 3 ([7, Thm. 7.1]) Let$2 be an open subset &2, let p > 1 and letE be an open
bounded subset @2 such thab £ N 22 € C2. Then

/ (14 [c|”) dH* < liminf (L+ |k |7y dH*
IENSQ h=oco JoEune

for any sequencéE;,),en of bounded open sets such thdt, N2 € C2andE;, — E in L1(2) as
h — oo.

THEOREM 4 (Lower semicontinuity of the mean curvature’® horm) Lets2 be an open subset of
RN, N >3,andp > N — 1. Let{E;},en C RN converge in £(£2) to E, with 9E;, N 2 € C2 and
dE N e C2 Then

/ (L+ [HelP) dHN 1 < liminf L+ [Hy, [Py dHN 1,
IENR2 h—o0 JyE,NQR
whereH (resp.H, ) denotes the mean curvature vectoradnn £2 (resp.d E; N £2).

Proof. Due to the lower semicontinuity of the perimeter, it is clearly enough to prove the part of
the claim that involves curvature. We can assume that the right hand side of the above inequality is
finite, otherwise the result is trivial. In addition, possibly taking a subsequence, there is no loss of
generality if we assume that

sup L+ Hg, 1P dHVN 1 < € < .
heNJOE,N§2

LetV, = V(0E, N £2,1) be the unit-density rectifiablev — 1)-varifolds associated with the sets
EpN 2 andletuy, = HN-1L 9 E; N 2 be the corresponding weights. By the divergence theorem,
the first variation of thé/,’s in £2 can be written as
SV (X) = —/ X -Hg, duy, VX eCi2,RY),
2

hence the E norms ofé v, with respect tqu,, are uniformly bounded.
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By Allard’s compactness theorem (séé [1] or Theorem 42.7_ih [38]) we find, possibly passing
to a subsequence, that there exists a limit integval- 1)-varifold V in £2 such thatV, — V and
V =V(M,0y)with M a countablyN ~1-rectifiable set andy a positive integer-valued and locally
HN~Lintegrable function or2. As sV}, = Hg, duy, — 8V, a well-known lower semicontinuity
theorem (see for instance Example 2.36.in [4]) implies $hat= Hy y with Hy € L? (uy) and

/ Oy Hy |7 dHY 1 < lim inf/ IHg, |7 dHN L (10)
M h—oo JyE,N2
Notice that so far we used only the fact that- 1.

Now we show that{"—1-almost all points id E N £2 belong toM andH, coincides with the
classical mean curvatuké, for #~~1-almost every point 0§ E N 2 wheneverp > N — 1.

Letx € dE N £2. SinceE has finite perimeter, for all > 0 except possibly for a countable set,
v (@BN (x)) = 0, hence

(BN () = lim puy, (BY () = lim HYHBY (o) NoE, N 2) > 1Y HBN () NIENK),

by the lower semicontinuity of the perimeter. It follows thais a point where the loweiN — 1)-
dimensional density ofi, is strictly positive. Asuy, = Oy HN 1L M, HVN~1-almost every point
with this property belongs té/.

Let U := v(0E N £2, 1) be the unit-density rectifiablev — 1)-varifold in £2 associated with
9E N £2. By the divergence theorem we have

Hy(x) = Hg(x)

for HV~1-almost allx € 9E N £2. SincedE N 2 € C?, itis easily seen thatl, € LP (1y). By
Theoreni P we obtain
He(x) =Hy(x) =Hy(x)

for HN-1-almost allx € M N dE N §2 and therefore for¥—1-almost allx € 9E N 2.
Plugging this into[(100) and usiny (x) > 1 for HV~1-almost everyc € M, we finally obtain

f |HE|PdHN—1</ IHy [P0y dHV 1 < Iiminf/ IHg, |7 dHN 1
IENS AENS AE),

h— o0

and the theorem follows. O

REMARK 1 The varifold arguments we use require the technical assumption 2, which
prevents the result by Bellettiet al. from being a particular case of Theorgin 4 whenevVer 2
and 1< p < 2.

REMARK 2 Whenevef{VN1(0E N 2) = limj_. o HN "L E}, N £2), the lower semicontinuity is
true for anyp > 1. This is an easy consequence[of|(10) and of Reshetnyak’s continuity theorem
(see for instance [4, Thm. 2.39]), which implies tvat= V(OE N £2, 1).

4. Analysis of the disocclusion problem

Let 22 be a bounded open set B (N > 2) with Lipschitz boundary, representing the image
domain, letA cc £2 be an open, connected set with Lipschitz boundary representing the occlusion
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and letug € BV (2 \ A) be the original image. By Theorem 3.87in [4], for ang R, the function
given byu|9\/§ = ug andu|s = A belongs to B(£2). This ensures that the occlusion can always
be filled in.

Let O(£2) denote the family of open subsets®@f We consider the functional mapping () x
O(£2) onto [0 oo] and defined for everyu, B) € L1(£22) x O(£2) by

/|v (14 [div 2~ Nae it e C2(B)
Fpyu,B):=1 J,'"" V| " ’
(%) otherwise,

with the convention that the integrand is O where\%é| = 0.
The relaxed functional associated withis defined for everyu, B) € L1(£2) x O(£2) by

— P LY(B
F,(u, B) ;= inf{liminf F,,(uy, B) . uy L&) u}.
h—o0

SinceF,(u, B) > fB |Vu| dx whenevemn: € C2(B) the lower semicontinuity of the total variation
yields o
F,(u, B) > |Du|(B) Y(u, B) € LY(2) x O(£2). (12)

In the following we assume that there exist an ogenﬁsei £2 such thatdA o> A and a function
u € L1(£2) such that: = ugon £ \ A and F,(u, A) < oo. This could be considered as a mild
regularity and compatibility condition between the image and the occlusion.

THEOREM5 The problem
Min {F,(u, A) : u =ugon \ A} (12)

has at least one solutione BV (£2).

Proof. Let (vy)reny C LL(£2) be a minimizing sequence. Without loss of generality we may
assume that sypy F,(vy, A) < oo. Then ) yields sypy [Dvil(A) < oo, and therefore
sup,cn | Dvp|(£2) < oo becausey, = ug on §2 \ A. Since the values ofy, are fixed ons2 \ A,

the generalized Poindainequality in Theorem 5.11.1 df [45] shows that thg®2) norms ofv,

are uniformly bounded. Hence spg llvillBv(2) < oo and there exists a subsequence, still denoted
by (vi)ren, COnverging in (£2) to a functionu € BV (£2). Obviously,u = ugon 2 \ A. From the
lower semicontinuity 0127,7 we finally obtain

Fy(u, A) < Iihm inf F, (v, A) = inf(F,(v, A) : v =ugon \ A},
—00

and the theorem follows. O

Now we can show that the relaxed functional coincides Wjton C functions. The proof is based
on the geometric lower semicontinuity results of the previous section and on the identity

Fp(u,3)=// L+ Huon ) dHY1de  Vu e CX(B). (13)
R Jo{u>t}

The identity is a straightforward consequence of the coarea formula and of (7) wit¥u /| Vu|.
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THEOREMG6 LetB C £ be an open set and assume tNat- 2 andp > N — 1. The functional
F,(-, B) is lower semicontinuous onli2) N C2(B) with respect to the Ltopology. In particular

Fy(u, B) = F,(u, B)  Vu € C*(B).

Proof. Let (up)peny C LL(82) N C3(B) be converging in £(B) to u € C%(B) and setL =
liminf,_ o0 Fp(up, A), assuming with no loss of generality thiat< oo, that the liminf is a limit
and thatu, converges a.e. to. By the dominated convergence theorem, >, — x> in L1(B)
whenever{u = r} is Lebesgue negligible, hence for &.& R. In addition, by the Morse Theorem,
for almost everyr € R, {u, > t}, h € N, and{u > t} have smooth boundaries. Therefore, by
applying either Theorefn 3 or Theor¢in 4 we obtain

f (A4 Hysy P dHV "1 < Iiminff (L4 Hyy50P) dH V2
o{u>t}NB o{up>t}NB

h—o00
for a.e.r € R. Integrating oveiR and using Fatou’s Lemma arjd {13) yields

Fy(u, B) < liminf F,(up, B). O
h— o0

In the two-dimensional case we can say something more about the structure of the solutions. The
following theorem is easily deduced from the proofs of Theorems 4.1 and 7.11 in [7]. In particular, it
suffices to replac8 E by 9*E in the last part of the proof of Theorem 7.1, page 292.

THEOREM7 ([7]) Let£2 c R?be an open setand> 1. LetE be a Borel set such that there exists
a sequencéE}, },<n of bounded open sets of clas$(@) converging toE in L1(£2) and satisfying

sup 1+ |«|?) dH? < .
heNJIOE,NS$2

Then E has finite perimeter if2 and there exists a locally finite family = {y;};c; of regular
curves of class \&? such that

1. 3*EN2 C U i)

2. I' is without crossings, i.é{”;,%l)//% whenevely; (1) = yj(t2) € £2 andry, 1, € [0, 1].
COROLLARY 1 LetB C £2 C R? be an open set and e L1(£2) such thatF, (u, B) < oo, with

p > 1. Then, for almost every € R, there exists a locally finite family™* = {y/};¢;, of regular
curves of class W? such that*{u > 1} N B C Uiey, v/ @ndI™" is without crossings.

Proof. Let {up}pen C CZ(Q be a sequence that convergesitin L1(£2) and a.e. and satisfies
L :=limy_,o Fy(uy, B) = F,(u, B) < oo. Using Fatou’s Lemma an@S) we get

/Iiminf/ (L+ Hyy-nlP) drV 1
R h—>o0 Ja{u,>t})nB

< Iiminf/ f (L+ HpyonIP)dHY L = L < 00,
h—o0o JR Jy{u,>1)nB

thus liminf,_ 5 fa{uh>z}m3(l + [Hy=017) dHN—1is finite for aimost every € R. The conclusion

follows by the application for aimost everye R of Theorenj ¥, possibly passing to a subsequence

(depending om). O
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An obvious consequence of this result is thia¢ same regularity holdéor the boundaries
9*{u > t} N A (for almost everyr € R) of any solution of the disocclusion problem R?. In
addition, since this regularity holds i and not only within the occlusiod, it gives a necessary
condition for the existence of a solution, namely that the level lines of the initial funegtionust
satisfy this regularity property, at least near the boundarj.dks a consequence, the only way—
essentially—for these level lines to intersectdhis to form a cusp point.

REMARK This regularity result cannot be extended to higher dimensions, due to the fact that
controlling the mean curvature does not necessarily guarantee the regularity of a hypersurface. By
Allard’s regularity theorem (segl[1] or Theorem 23.1[inl[38]) (& 1)-varifold with density 1 and
generalized mean curvature ifilp > N —1, is supported on a set that can be represented locally as
the graph of a E1-(W-D/P function (J. Duggar [13] showed that3# regularity actually holds).
Unfortunately, this regularity does not hold any more in the multiple density case. An example
is given in [8] of a varifoldV with boundedmean curvature whose support contains aseff

strictly positive measure such thatife A then sptV does not correspond to the graph of even a
multiple-valued function in any neighborhoodafThus, controlling only the mean curvature is not
enough.

On the other hand, it has been shown by J. Hutchirisan [22] that #gbend fundamental form
ofavarifoldVisin L?, p > N — 1, thenV is locally supported on the graph of a multiple-valued
CL1=(N=D/P function.

In our disocclusion problem, we can neither ensure that the varifolds supported on the sets
a{u, > t} converge to unit-density varifolds, nor that the second fundamental form is uniformly
bounded in 12, except in the particular cagé = 2 where the mean curvature coincides with the
second fundamental form. This explains why our regularity result is stated only fer2.
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