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Motivated by a model of solid combustion in heterogeneous media, we investigate the time-
asymptotic behaviour of flame fronts evolving with a periodic space-dependent normal velocity;
using the so-called “level set approach” we are led to study the large time behaviour of solutions
of eikonal equations. We first provide a general approach which shows that the asymptotic normal
velocity of such a flame front depends only on its normal direction and is given by the homogenized
Hamiltonian of the eikonal equation. Then we turn to a more precise study of the asymptotic
behaviour of the flame front when the initial front is a graph of a periodic function: in this case,
the front moves asymptotically with a constant normal velocity and we are able to prove that, in
coordinates moving with this constant velocity, the front has a time-periodic asymptotic behaviour
in the following two cases: (i) when there is a straight line of maximal speed, and (ii) when the space
dimension is 2. These results are obtained by using homogenization, control theory and dynamical
systems methods (Aubry—Mather sets).

Keywords Front propagation; level set approach; eikonal equations; periodic solutions; homogeniza-
tion; Aubry—Mather set.

1. Introduction

The problem under study is the large time behaviour of multi-dimensional fronts propagating under
eikonal equations. The propagation law of the front reads

Vi = R(X), (1.1)

whereV,, is the normal speed of the front at the palhaindR : RY — R is a smoothZ" -periodic
function which is bounded from below by a positive constant. The main underlying motivation is a
model of solid combustion in heterogeneous media where the flame front is assumed to propagate
in RN with a periodic, space dependent normal velocity. We refer to Namah and Roquéjoffre [25]
and reference therein for a more detailed presentation of the model.
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This type of models was proposed by Landau in the 40’s, in particular a simpler example when
R is a constant: even in this case, it is known that fronts which are smooth for all time do not
exist in general, and in Barle5s![3], a weak formulation to study the simple Landau model was
proposed; it was based on the idea that the moving front can be identified as the O-level set of
the unique viscosity solution of an eikonal equation. This kind of idea was first used for numerical
computations by Osher and Sethian|[27] who extended it to more general normal velocities (in
particular curvature dependent ones). Then Evans and Spruck [16] and Chen, Giga and Goto [12]
developed the theoretical basis of the so-called “level set approach”.

In our case, the level set approach for[1.1) consists in solving the eikonal equation

ur + R(x)|Du| =0 in(0, +00) x RY, (1.2)

the flame front at time, denoted by}, being identified as the O-level setwft, -).

Equation [(1.R) generates a nonlinear semigroup denotesl(hyand below we also use the
fact that the solution of the Cauchy problem for {1.2) is given by an explicit formula coming from
control theory, namely

inf u(0, y (0)) (1.3)

u(t,x) = I
y(®)=x, [VI<R(y)

wherey is taken among all piecewisg! curves.

In this framework, the problem of studying the asymptotic behaviour of the flame front
leads to the investigation of the large time behaviour of the nonlinear semigi@umnd/or of
the geodesicy in (1.3) and we will address this question under various assumptions on the initial
datumu(0, -).

In two space dimensions, and when the functibis constant along parallel lines, the problem
is treated in[[25] where two results are obtained.

e For anyp € R2—not necessarily parallel to the lines along whikhis constant—there is a
uniqueV, > 0 such tha2) has solutions of the fopmx — V,,t + ¢ (p* - x), wherep™ is
any vector orthogonal tp. Hence, for flat initial front, there is an asymptotic velocity.

o If the front is forced to propagate in directignor, in other words, if the initial datumg is
such that

lim  wuo(x) = £1,
p-x— %00
and is periodic in the directiop* orthogonal top, thenS(t)uo(p - x — Vyt, p* - x) converges
to a time-periodic solution; therefore, moving at velodity, an observer would see the front
having a periodic behaviour. Technically, this problem could basically be solved by reduction
to an essentially 1-D problem, where explicit computations are tractable.

The aim of this paper is to examine what can be said in a greater generality, first about the asymptotic
normal velocity ofl'; and then on a more precise behaviour, which can be viewed as looking at a
second term in an expansion.

Using homogenization theory, and in particular Lions, Papanicolaou and Varadhan’s [23] results,
we first show that the asymptotic normal velocityHSn) wheren stands for the normal direction
to the front andH is the homogenized Hamiltonian associated to the Hamiltodidn, p) =
R(x)|p|. This result can be viewed as the analogue of the propagation results in Aronson and
Weinbergerl[1] for the nonlinear diffusion equation— Au = (u + 1)(1 — u): the front{u = 0} is
shown to move—at least for initial data that are equalfooutside a compact set—as the solution
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of u; + ¢*|Du| = 0, wherec* is the minimal speed of the travelling waves solutions of the 1-D
equation.

When the initial front is a hyperplane, namély = {x : p -x = 0} with p € R", or a bounded
perturbation of it, this result implies thdf, looks like T, = {x : p - x = tH(p)} for larget
and the next step consists in studying the behaviouf;ah coordinates moving witl";, which
typically leads to consider the asymptotic behaviour @f -) — t H(p) whereu is the solution of
) with initial datau (0, x) = p - x + vo(x), vo being a continuousZ" -periodic function. With
this formulation, it is clear that we look for the second term in the asymptotic expansidn, af).

It is worth pointing out anyway that, in Section 4, we use a little bit more complicated (but natural)
change of the: variable in order to obtain a more precise behaviour of the front and that we have
not been able to do it differently.

We are able to prove the convergence:of, -) — t H(p) to a space-time periodic function in
two cases: (i) when there are lines of maximum velocity (corresponding to lines of maximal value
for R) and the hyperplane is orthogonal to these lines, and (ii) when the space dimension is 2. We
point out that the information is obtained on the functioitself (or on suitable functions obtained
by changing thex variable, e.gu(t, -) — t H(p)) and not on its O-level set: indeed, we do not know
whether the empty interior property is satisfied asymptotically in time, even if it is satisfied at time
t=0.

We conclude this introduction by providing few additional references on the study of the
asymptotic behaviour of solutions of Hamilton—Jacobi equations and homogenization, which are
the two main themes here. The first results on the convergence of thelOleax semigroup—the
analogue of th& above—in the case when the limiting behaviour was the convergence to a solution
of the stationary equation, were obtained by Namah and the second author [26]: under a certain
structure condition of the Hamiltonian, they were able to prove such a result by mixing the classical
half-relaxed limit method and monotonicity properties of the solution of the evolution equation
on some subset @&". The complete result for convex, superlinear and smooth Hamiltonians was
obtained by Fath[[17, 18, 19], using dynamical system methods: in this series of works, Fathi shows
the importance of the Aubry—Mather set and provides several very interesting properties of the
solutions of the related Hamilton—Jacobi equations. A PDE proof of Fathi's result, and even of an
extension to not necessarily convex nor smooth Hamiltonians, was given in Barles and Souganidis
[6] who also show in[[[7] that several assumptions, though apparently restrictive, are necessary to
have such asymptotic behaviour.

Not so many results exist on the convergence to time-periodic solutions: one reason for that is
the counter-example of Fathi and Mather][20] (see also Barles and Souganidis [7] for a simpler,
explicit example) showing that even for a strictly convex, smooth time-periodic Hamiltonian, the
convergence may fail. The second authot [28] provides such results but, and this is a key difference
with the present work, he assumes the Hamiltonian to be strictly convex and time-periodic (none
of these assumptions is satisfied here) and proves the convergence to solutions whose periods in
time are multiples of the period of the Hamiltonian: here, at least in Section 5, the period in time is
given by the asymptotic behaviour of the geodesicp i (1.3) and is not a priori given in the problem.
Nonetheless, in Section 5 we will use the ideas presentédlin [28] in a crucial way.

The recent paper of Evans and Gomes [15] connects homogenization with some features of the
time-asymptotic behaviour of solutions of Hamilton—Jacobi equations, and in particular, the Aubry—
Mather set. Here we will not use such approach since the homogenization part is used only to have
the “rough” asymptotic velocity and not the more precise behaviour. We also point out the work
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of Concordel[[18, 14] who obtained explicit formulas for the homogenized Hamiltonian, a difficult
task in general.

The paper is divided into four sections. In Section 2, we provide the general approach to the
asymptotic behaviour of the front. Section 3 is devoted to explicit computations, and in particular to
the connections with the approach(inl[25]. Section 4 is devoted to the case when there exist lines of
maximal value forR, and Section 5 treats the 2-dimensional case.

2. The asymptotic normal velocity

In this section we present a general approach to the study of the asymptotic behavier-aso
of the flame front(I;), and in particular we show the existence of an asymptotic normal velocity.
In order to be more specific, we introduce an open su2gaif R" which, in terms of our solid
combustion model, can be interpreted as the burnt region; the initial flamelfgaatnothing but
9820 and the unburnt region Eg. The burnt region is allowed to be either bounded or unbounded.
As is rather standard in the level set approach, we introduce the signed distdicelémoted
by d(x, I'v), which is negative in2g and positive inﬁg.
We solve equatior (1.2) with the initial data

u(©,x) =d(x, Ip) inRV. (2.1)

Our result is

THEOREM 2.1 Under the above assumptions Bnthere existsifunctioﬁ : RY — R such
that (77); moves asymptotically as— +oo with normal velocityH (n) wheren denotes the unit
normal to the front; pointing in the direction of unburnt gas. More precisely:

(i) if there exists some subsdto of RV such thatd(¢lo, o) — O whene | 0 with
{d(-, 'o) < 0} nonempty and if(I";), is the evolution ofl"g with normal velocity H (n)
then

1 _

;d(]“,, ry)—0 ast— +oo.
(i) If d(eIp, To) = O(e) whene | O then

d(I;,T,) = 0(l) ast— +oo.

It is worth remarking that the two results (i) and (ii) of Theoffen] 2.1 take into account two situations
that area priori different; indeed, iflp is bounded, theii"g is nothing but{0} and the assumption
on{d(-, I'p) < O} cannot be satisfied; therefore (i) does not apply at all to this bounded case. On
the contrary, (ii) does apply.

If Iy is unbounded, then both cases (i) and (i) may apply and they do in particularisfa
hyperplane (likep - x = a), showing that the distance betweEnandT"; := {x : p-x = tH(p)}
is bounded.

It is worth pointing out that, in any case, whély exists, it is a cone with vertex at the origin.

Proof of Theorem 2.1 As already mentioned, in order to study the behaviour of the moving front
(I'})¢, we study the behaviour of appropriate solutiong of|(1.2)-as co.
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First we perform a scalingt, x) — (t/e, x/e) and introduce the function® defined by
ut(t, x) := eu(t/e, x/¢). This new function solves

ué + R(x/e)|Duf| =0 in (0, +o00) x RV, (2.2)
ut(x,0) =ed(x/e, Ip) =d(x,elp) iNRY. (2.3)

In order to deal with bounded functions, we take advantage of the invariance of the equation with
respect to the change& — ¢ (u®) whereg is, say, aCc?, Lipschitz continuous, bounded function
such thaty’ > 0 in R. We still denote by:¢ this new function.

Assuming at least thad(sIp, T'9) — O whene | 0 and applying the results of Lions,
Papanicolaou and Varadhdn [23], we deduce that there exists a Hamili@niaRY — R such
thatu® converges locally uniformly t@ which is the unique viscosity solution of

i, + H(Du) =0 in(0, +00) x RV, (2.4)
u(x,0) =up(x) = p(d(x, T)) IinRY. (2.5)

In order to proceed, we first remark that this local uniform convergence is enough to study the
behaviour of the moving front: indeed, using the fact that R(x) < M in RN for some constants
m, M > 0, we have

xel;y = mt <dx,Ip) < Mt.

And therefore, after the scaling it is enough to control the behaviowf af a bounded region.
Moreover, coming back to the above change of variables thrgugfe same argument shows that
if p(s) = s for, say,|s| < 1, then the change plays no role except simplifying the arguments.

On the other hand, as we will see in the example below treating the evolution of a bounded
initial front, the e-transformation that we did above arhas the disadvantage of discarding some
information on the burnt region.

To point out the main difficulties and differences, we first assume that the seft(x, I"g) < 0}
is nonempty and for any> 0, we denote by, the set{u(z, -) = 0}.

If (t/¢,x/¢e) € It for somer > 0, the above result yields

O=cu(t/e, x/e) =u(t,x) + o(1).

Thereforei(z, x) = o(1); but in order to relate this property 0, and in particular to show that
is close tol";, we need the assumption tHat(-, I"g) < 0} is not empty (see the example below).

If this assumption holds, we can use the result of Ley [22, Thm. 4.2, p. 557] which implies that
d(x,T;) =o0(),i.e.del;, I'y) > 0ase — 0 orequivalentyl(+I'r, I';) — 0asT — +oo.

In particular, forr = 1, we see thaf’y ~ TT 1 for largeT > 0.

Next, we have to comparEl"; andI" 7. We first remark that, because of its definitidrg is
acone, i.e. for any > 0,al’g = I'o. Then the level set approach shows that the sigrs arfe
independent op and in particular we may choosgeto be the identity ofR. With this choice, using
the fact thatH is positively homogeneous of degree 1, one shows easily that, far ang,

au(x/a,t/a) =u(x,t) in (0, +o0) x RV,

and the equality”, = aTI"; follows immediately for any: > 0.
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We deduce from this property that
1d(F T'r)y=d 1F 1F d 1F r 0
— = — — = — —>
T T4 T T TvT T T T,11

asT — +o0, which ends the proof of (i).

We first prove (i) in the case when the $@t-, I'g) < 0} is not empty. Ifd(I'p, T'o) = O(e),
combining the maximum principle with (the easy part of) the estimates relating to convergence of
u® tou given in Capuzzo-Dolcetta and IsHii [11], we have

eu(x/e,t/e) =u(x,t)+ 0O(¢).

Choosing agairix /¢, t/¢) € I}/, for somer > 0 yieldsu(x,t) = O(e) and by the results of [22],
we are led this time td (eI e, T';) = O(e) or equivalently, for largg", d(I'r, T't) = O(1).

Now we turn to case (i) when the st : d(x, ') < O} is empty; in this case, for any> 0, we
denote byr"; the boundary of the s¢&(-, t) > 0}. To obtain the result, we apply an idea presented
in Soravia[29] and using an approach by optimal control and minimum time function: let us denote
by 29 the set{x : d(x, Ip) < 0} and let us introduce the functiong : R¥ — R satisfying
x(x) = 0 one2p and

R(x/e)|Dxfl =1 inRN —¢Q,.

Itis proved in [29] that, for any > 0, the functiong¢®(x) — r andu®(x, t) have the same strict
signs. This can be seen rather easily here by using the representation formylasfwolu® or by
remarking that I —;~0; — Ly x)—r<oy and Ie~0 — Ly <oy are two lower semicontinuous
viscosity solutions of (2]2) with the same initial data, and by a result of Barron and Jenhsen [8] (see
also Barlesl[4] or Barles, Soner and Souganidis [5]) such a Isc solution is unique.

On the other handy? converges locally uniformly iR” to the unique viscosity solutiog of

HDy) =1 inRY —Ty,

with X (x) = 0 onTo. Therefore, if as abovet /¢, x /¢) € I, for somer > 0, theny®(x) = ¢ and
therefore
xX(x) =1 =o(1).
In order to conclude, we remark that,ifis defined as above, then the sgi§-, 1) < 0} and
{x () —t < 0} coincide: to prove this, it suffices to use the equality

Liyeor—10) — Lipen—r<0) = Lue=0) — Lpueoy i [0, +00) x RY,
and to pass to the limit in a suitable way. |

EXAMPLES 1. If Iy is bounded, then it is easy to see thdtx /e, Iy) — uo(x) := |x| and g
= {0}. Sinceuyp is convex andd is only a function ofp, Hopf’s formula applies and we have (fer
equal to the identity)
u(x,t) = sup[p-x —tH(p)].
IpI<1
But, from [23], H is convex and homogeneous of degree 1; therefore there exists some convex
compact subsek of RV such that the Fenchel conjugd_ﬁ of H is given by

0 ifg e K,

H(q) = { :
@) +o0o otherwise.
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Because of the form af, it is also clear thai&(x, ) has the same behaviourzd_sl*(x/t) and more
precisely that
u,x)=0 ifx/t ek,
{ﬁ(r, x) > 0 otherwise.

In crystalline evolutionk is called awulff shapeAs is the case here, Wulff shapes govern the
asymptotic behaviour of moving fronts; we refer to Soralid [29] and references therein for a more
complete discussion.

2. The second example concerns the asymptotic evolution of flat frontggix®.= p - x — a
for p e RY — {0} anda e R. Here since the scaling just transformginto p - x, all computations
are straightforward and we have

ut,x)=p-x — tﬁ(p).

Therefogf, = {x : p-x —tH(p) = 0}, which means that, asymptotically, the front has normal
velocity H (p).

3. An explicit computation

In this section, we consider iR? a functionR of the form

if yeZ,

M
Rix. vy = {m otherwise,

wherem, M are positive constants. We have in mind tiat< M.

The aim of this section is to make explicit all the quantities appearing in the previous section. Of
courseR is discontinuous and therefore neither the result nor the arguments of the preceding section
can be applied: this is why the computations below are formal but we justify them by showing at the
end of the section a “stability result” which says essentially that if we have a sequence of Lipschitz
continuous(R, ), which converge in a suitable senseRpthen the corresponding, converge to
the H we are going to compute now.

To do this computation, we come back to the equation

R(x/e, y/e)IDx"| =1,

which was set in the proof of Theorém P.1RA — £12,. In fact, since we are only interested/if
we may as well consider it iRY — {(0, 0)}; and to compute explicitly the solution, we remark that
x¢is given byy®(x, y) = ew(x/e, y/e) where the functionw is the solution of

R(x,y)|Dw| =1 inR?— {0},

with w(0, 0) = 0.
Formally (sincer is discontinuousy is given by

w(x, y) = inf{T : there existy : [0, T] — R? with y(0) = (x, y),
y(T) = (0,0) and|y| < R(y)},

wherey is taken among all piecewigg! paths.
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Because of the special form &, the computation ofv is rather easy; indeed, it is clear that
optimal trajectories can be taken of the following form: a straight line ff@my) to some point
(xo0, 0) with |y (s)| = m and then another horizontal line frofag, 0) to (0, 0) with |y (s)| = M. An
optimization with respect teg yields

(XZ 4 y2)1/2

. M
if [yl > —|x|,
m m

— - — —( | = 1 otherwise.
L) 2((2) 52) 1 amen

Sincew is homogeneous of degree 1, the computation of the Wulff sikagesimple: indeed,
the burnt region at time looks like {(x, y) : w(x, y) < t} which is nothing but K with K =
{(x,y) : w(x,y) < 1} because of the homogeneityof Then a rather simple optimization provides

H(p) = sup(p - q) = max(M|pa|, m|pl)
qek

if p = (pl,...,pN).

It remains to consider the stability of this formula.
PropPOsSITION3.1 Assume thatR;). is a decreasing sequence of Lipschitz continuous, periodic
functions defined oiit such thatn < R.(y) < M onR, which converges pointwise ®. Then, for
any p € R?, the correspondindl . (p) converges tdH (p) = max(M|p1|, m|p)).

Proof. We first remark that, since the sequen@.). is decreasing, the seqﬂan(ﬁg)g is
decreasing as well and therefore convergent because of the estimates we hav# gs,thamely
m|p| < He(p) < M|pl|.

Because of the symmetries in the problems, we may assume without loss of generality that
p1, p2 = Oand|p| = 1.

The H.(p) can also be viewed as the velocities of travelling waves and it is shownlin [25] that
these velocities are given by the following formulas whergenotes the slope between thaxis
and the planar front, i.ec = p2/p1:

o ff 1 2 12
[ Re |l
a>a8:=/( °°—1) dz
0 Jo \Re(2)?

thenH . (p) is the unique solutio of

1 5 V2 1/2
o :/0 ((1+Ot )Rs(z)z — 1) dz.

o If @ <af, thenH.(p) = [|Relloc/ (1 + a2,

By letting e go to 0, therw§ — ag := (M?/m? — 1)*2 and fora > ao, H:(p) converges to the

unigue solutionV of
1 V2 1/2
a= / ((1+a2)—2 - 1) dz,
0 m

i.e.V = m. If, on the contrarye < ao, thenH,(p) = M/ + a®2 Forpy > 0and|p| = 1,
this provides the right answer, i.8..(p) = Mp1.
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4. Existence of a line of maximal speed

In this section, we study in a more precise way the propagation of flame fronts in the case when
R has lines of maximal speed and when the initial front is a graph with respect to variables which
are orthogonal to these lines. Our aim is to show that, as in the previous section, the combustion is
driven by these lines of maximal speed as it was driven abovéd igr p = (1, 0), and to find a
more accurate asymptotic behaviour of the front.

To be more specific, for € RV, we setx = (x1, x2) with x1 € R andx, € RV~ and we

assume that
vn e ZV7Y, Rp(x1) i= R(x1,n) = max R(x1, x2), and
szRN’]'

Vxo ¢ ZN_]', Vx1 € R, R(x1, x2) < Ro(x1).

We point out that the second part of the above assumption is purely technical; the convergence
theorem below would not be altered without it.
We consider the solutiorigt, x1) of the ordinary differential equation

£(t,x1) = Ro(£(t, x1)),  &(0,x1) = x1. (4.1)

One checks easily that the solutions|of [4.1) are 1-periodig &nd if T' is given by

1
T — / dr 4.2)
o Ro(x)

then&(t + T, x1) = &£(¢, x1) + 1 for anyr andx;.

For the initial frontlp, we suppose that it is of the form = ¢ (x2), whereg is a continuous,
ZN—1-periodic function and we represent it through a Lipschitz continuous initial dag,strictly
increasing incy, ZV~1-periodic inxo, such that-1 < ug < 1inRY, ug(x1, x2) < 0if x1 < ¢ (x2),
uo(x1, x2) > 0if x1 > ¢(x2) and

im  wug(xy, x2) = —1, lim  ug(x1,x2) =1, uniformlyinx; € RN-1, 4.3)
—>—00 —+00

X1 X1

We still denote byu(z, x1, x2) the solgtion of the Cauchy problem with initial datg, by I} the
O-level set ofu(z, -, -) at timet and byI; the front driven byRg, which is nothing but

{(§(, x1), x2) * (x1, x2) € To}.
Our main result is
THEOREM4.1 The following properties hold:

() The distance betweeR, andI; remains bounded.
(i) There exists a Lipschitz continuous functiog, (¢, x1, x2), satisfying [[4.B) I -periodic int
andz"N—1-periodic inxy, such that

llm ||M(t,§(tyxl)ax2)_uoo(t,xlv)CZ)”oo =0
t—>+400

This result can be viewed as an asymptotic expansion of the fidiarr large times: (i) means that
the first term in this expansion i5, which justifies our above claim that the combustion is driven by
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lines of maximal speed, and (ii) provides the second term since it essentially means diféers
from I; by a periodic motion: in fact, through the change, x1), we essentially observe the front
propagation in coordinates moving with and what we see is a periodic phenomenon.

Proof of Theorenj 4]1lt is a variant of [25]. Following[[25], one shows easily tHat; [ and
| Du]l o are uniformly bounded and by a comparison result we also have

1< u(t,x1,x2) <1 in[0, +00) x RN

To get compactness, we simply need to be a little bit more careful and the following special lemma
is devoted to this question. Moreover, (i) is also an easy consequence of this lemma.

LEMMA 4.1 We have

lim  u(, &(t, x1), x2) = =1, lim  u(r, &z, x1), x2) = +1,
X1—>—00 X1—>+00

uniformly with respect taz, xp) € Ry x RV=1,
Proof.

1. The limit whenx; — +o00. Here we just use the fact th&(x1, x2) < Ro(x1) in RY and
we are going to build a suitable, one-dimensional subsolutiaf the Cauchy problem. We set
ug(xy) = minxzeRN_l uo(x1, x2). Letu be the solution of

u, + Ro(x1)|Du| =0 in (0, +00) x RY,

u(x1, x2,0) = ug(x1) inRY, (4.4)

Clearly,u is a subsolution t2£0 < ug in RV, therefore we have
u(t, x1, x2) <u(t,x1,x2) in[0, +o0) x RN

Moreover, we can compute explicitly by using the method of characteristics: faf, x) € RY
andr > 0, we have

u(t, x1, x2) = ug(§(—1, x1)),

and plugging this in the above inequality yields
ug(x1) <ut, £, x1),x2) in [0, +00) x RV

Now the result forc; — +oo follows from the assumptions an.
2. The limit whenx; — —oo. In this case we use the representation formula given in the
Introduction, which reads here

u(t, x1, x2) = uo(y(0)),

inf
y(H)=(x1,x2), [VI<R(y)

wherey is taken among all piecewigg! curves.
To estimateu (¢, x1, x2) from above we are going to use a particular pattOf course we may
assume thatis large, otherwise the behaviour just follows from the finite speed of propagation.
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Let us denote byxp] € ZN 1 the point ofZ" ~1 closest tor, (or one of such points). We assume
that [x2] # x2 (otherwise the argument is even easier) and we se{[x2] — x2)/|[x2] — x2| and

(s) = (x1,x2) +m(t —s)(0,e) ift—7<s <1,
V=1 €6 - ¢ —1).x). [xa]) foro<s <7,

wherer > 0 is defined by, + mie = [x2]. It is easy to see that is an admissible trajectory (i.e.
|1 < R(y)) and by the dynamic programming principle or the semigroup property of the equation,
we have

u(t, x1, x2) < u(t — 1, x1, [x2]) < uo€@ — 1, x1), [x2]).
From this we deduce the inequality
u(t, &(t, x1), x2) < uo(§(t —t,&(t, x1)), [x2]) = uo(§ (7, x1), [x2]).
Sincer is clearly bounded, the limit atoo of u(z, £(z, x1), x2) follows easily. O
We come back to the proof of Theorém}4.1. We set
v(t, x1, x2) = u(t, £(t, x1),x2)  in [0, +00) x RV,

In order to study the properties of we first notice that (¢, x1) := %(t, x1) is a solution of

{=Ro®)t, ¢(1.0) =1,
and therefore by uniqueness for this ordinary differential equation, we have
§(t.x1) _ RE( x1)
Ro(x1) Ro(x1)

In particular,n M1 < ¢ (¢, x1) < Mm~1 for anyx; € R andr > 0.
Becausd(r, x1) +— &(t, x1) is smooth, the chain rule applies ands a viscosity solution in
[0, +00) x RY of the equation

¢(t, x1) =

R 2
%’% +vf, — Ro(r)vy = 0. (4.5)

We make the following remarks which will permit us to end the proof:

Ut + R(t7 «‘;:(I,X]_),XZ)\/

e Because of the preceding remark and Lerimh 4.1, the famly -, -)) is relatively compact
in C(RM).

e Because of the definition a®o, we see that, for alix, y) € R x ZV~1, the functions
v(t, x1, x2) iS nonincreasing: indeed, on this set the nonlinearity of the equation is positive.
Hence, orR x ZN~1, v(r, x1, x2) converges to a steady state on this set; this steady state is
strictly between-1 and 1 due to the preceding remarks.

e On the complement of this set, i.e. & — (R x ZV¥~1), the functionx; — tanhxy) is a
strict subsolution td (4]5).

Finally, the Hamiltonian of equation (4.5) being periodia iandx», the arguments of the proof of
Theorem 1 in[[25] apply, yielding the convergencevdf, -, -) to a solution of[(4.5) which is also
periodic int andx,. Thus the proof is complete. O
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REMARK 4.1 The role played by the straight line of maximum speed is obvious in view of
formula [I.2): it is simply a geodesic for the distance function

Ly e))?

§(X,Y) = 5 ds.
yO=X,y®)=Y Jo R(y)

As a consequence we could generalize Thedrein 4.1 by removing the periodigiiy of, and by
only keeping the assumption of a line of maximal speed. The outcome is then that the dynamics of
the solutions of the whole equatidn ([L.2) is driven by the dynamiés=efRo(&).

5. Time-asymptotic behaviour in two space dimensions

In this section, we assum€ = 2 and we consider a vectgr € Z2; in order to model a motion
whose general direction of propagation is the vegtowe impose an initial datag for (1.2) of the
form

up(x) = p - x + vo(x) (5.1)

whereug is a bounded, continuoug?-periodic function.
We write the solution: of (1.2) associated to this initial data in the form

u(t,x)=p-x — H(p)t + v, x), (5.2)

whereH (p) is the homogenized Hamiltonian of Section 1. The funciida Z2-periodic inx and

solves - _
v, + R(x)|Dv + p| =H(p) in (0, +00) x R?,

v(0, x) =vp(x) inR2 (5-3)

Itis well known that equatior@ﬁ) generates a nonlinear semigS@uithat is weakly contracting
in the space&pe; of continuousZ--periodic functions, i.e.

Vt > 0, Y(uo, vo) € Cpern  IS(D)uo — S()volles < llo — volloe- (5.4)
Once and for all, we chooseZ£-periodic solutionp of the equation
R()|D$ + pl =H(p) inR2 (5.5)

We may trapvg betweeny — C and¢ + C, whereC > 0 is a large enough constant, and then a
comparison result for viscosity solutions implies

Vi >0, ¢x)—C<vt,x)<¢pkx)+C. (5.6)

Moreover, since we may assume, without loss of generality [(sée [23}) be Lipschitz continuous,
we also have a uniform bound foy and Dv. Hence the orbifS(¢)vg is relatively compact it€per.
This allows us to ask whether we may have a more precise result. The answer is given by

THEOREMS5.1 There existd’(p) > 0 such that, for everyg € Cper, there is a function (¢, x)
which isT (p)-periodic in time and such that

Mim IS (#)v0 — Voo (t, )lloo = O. (5.7)
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Outline of the proof.First, because of the periodicity, we may assume that the problem is posed
on the 2-dimensional toru§2. The method of proof follows closely the scheme used if [28]
which can, roughly speaking, be described in the following way: in order to study the asymptotic
behaviour ofv in R?, it is enough to study it on the so-called Aubry—Mather 8¢ c R? (see

the definition below). Indeed, Theorem 4.8[in][28] says that two solutions which coinciddpn
coincide everywhere and, in particular, a solution which is time-periodidnis time-periodic
everywhere. This implies that the convergence to a time-periodic solutiokgrnmeans such a
convergence everywhere.

Next the study of the behaviour of the solutions iy is done in two steps: the first one
is independent of the space dimension, and aims at proving a time invariance property of the
trajectories ofS(1) on the Aubry—Mather set associated to the geodesids. In [28], the strict convexity
of the Hamiltonian implies that, i solves|[(5.p) an@/ € w(uo), thenyr — ¢ does not depend op
on the Aubry—Mather set. A relaxed semi-limit argument concludes the proof.

However, strict convexity is missing here. The only way we have to replace it, is a better
knowledge of the dynamics of the extremals, which is very complicated in space dimension larger
than 2, but available in 2-D: see Bangeéit [2]. The core of the argument is a ReiBeardixson type
argument: two trajectories cannot cross, hence—at least in the case of a rational rotation number—
the Poincaé map is increasing.

5.1 Monotonicity

If ¢ solves[(5.b) then it is also a viscosity solution to
F(X,D¢)=0 with F(x.q) = R(x)?|q+ p|*— H(p)>. (5.8)

The HamiltonianF is, this time, strictly convex with respect o Recall that ifL is the Legendre
transform ofF with respect tay, then for all¢ solving [5.8) we have

t
Vi >0, ¢kx)= inf (qb()/ 0) +/0 L(y(s), y(s)) ds). (5.9)

yeCY([0,1],T2), y(t)=x

By results of Fathi[[17]¢ is C* on the Aubry—Mather sebg and it is classical that the geodesic
problem in [(5.9) generates in fact a nonlinear backward semigfpum

Mgy = {y(0) : y extremal in[(5.P).

Indeed, this dynamical system is given by the associated Hamiltonian system(r)set y (¢)
andq(t) = D¢ (y(¢)); then the solutiorix(¢), ¢(¢)) of the F-Hamiltonian system is related to the
geodesics through(t) = L, (y (1), y ().

LetH be the set of solutions df (5.9). The Aubry—Mather.A¢$ can be defined by the following
algorithm given in[[28]:

Mi@) = | a0, Mo@) = | o5, Mo= [ Mo(@). (5.10)
xeMy xeMi peH

As is classicalg s (x) (resp.w7 (x)) is thea-limit (resp.w-limit) set of the pointc under the action
of the semigrou . As already mentioned at the beginning of the proof but in a slightly different
context, two elements ¢# coinciding onMg coincide onT?.
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The first ingredient is

LEMMA 5.1 (Dynamic Programming Principle) Letbe an extremal td (5.9) which is defined on
[0, T]. We set

y(t) = — . 5.11
70 =7 (5 (,,)> (5.11)
Then the function — v(t, y (1)) — ¢ (y(¢)) is nonincreasing on [@].

Proof. We first give a formal proof and then justify it. If everything is smooth, using the fact that
y = Fy(y, Dé(y)), we have

d .
a(v -9, y(®) =v+Dw—9)-y()

1
= —— D(w—¢)-F,(y, Do
vz+2H(p) (v—9) - Fy(y, Do(y))

. — R(7(1))?
—R(y®)|Dv+ p|+ H(p)+ (ﬁy((p))) (D +p)-Dv—¢). (512)
But R(x)| D¢ (x) + p| = H(p) and this last expression can be rewritten as
_WDetp
D¢ + pl
by the convexity of the norm, we finally have

—R(f(t)>[|Dv+p| (v —¢>)] + H(p);

d —
pACEE 2 y(®) < =Ry )|D¢ + pl+ H(p) = 0.

Let us justify this formal proof. Becauggis differentiable at every point(¢) with ¢ € ]0, T, the
derivative%qb()?(t)) exists. Hence we only have to care ab#;ut(t, 7(1)). Here, the argument is
classical: we regularize into v* = 3. * v where(§,). is a sequence of approximations of unity;
from Jensen’s inequality, we have

ID (3¢ * v) + p| < 8¢ % [Dv + pl,
and an integration between 0 and [0, T'] allows the passage to the limit as— O. O

REMARK  This proof can also be done without differentiating the equation using the usual form
of the Dynamic Programming Principle—equivalent here to the semigroup propesty-ofhich
yields forv and¢ the following properties: sincg is an extremal fof (5]9), we have, forQ ¢ <
s<T,

¢ (y(s)) =o(y) + / L(y(7),y (D) dr.
t
The Lagrangiarl. is given by

lq/?
4R (x)?

and sincey is a solution of the ODE (1) = 2R(y (1))2(Dé (v (1)) + p) while ¢ solves|(5.5), this
can be rewritten as

Py () = ¢y (1) + 2H(p)*(s — 1) — p - (¥ (s) — ¥ ().

L(x,q) = +H(p)?—q-p
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On the other hand, again becaus(5.5), we have)| < 2R(y(t))H (p) and therefor¢7'7(r)| <
R(y(1)). Hence, the Dynamic Programming Principle foyields

u(s, y(s)) <ut,y()),
while changingy into 7 in the property satisfied hy yields
PG () =pF®) + H(p)s —1) — p- (7(s) = 7(1)).
Subtracting them we obtain

u(s, 7()) = p-y() + H(p)s — (7 () <u(y @) — p-y(t) — H(p)t — (7 (1)),
which, according to the definition af, is exactly what we wanted to prove.

A consequence is an analogue of Corollary 3.2 in [28].

PROPOSITION5.1 Lety be an orbit of7; in Mo, andy defined by). Then, it € ws(uo),
the function

t> SOy — ¢
is constant alongr.
Proof. Seel[28], Corollary 3.2. O

Let us pause here to examine a consequence of the above proposition, on an equation given by
Barles and Souganidis|[6] as a counter-example to convergence to steady solutions in the case of
non-strictly convex Hamiltonians:

v+ +1-1=0 xeT? (5.13)

The global extremals are
yt)=x+t, x eTL

Propositior] 5.]L implies that any elementwfuo) is constant along an extremal. Let us check it
directly: the functioru(z, x) = v(¢, x + t) solves

Vit +1—vy—1=0, xeT?

which is clearly seen to converge monotonically.

5.2 Convergence

A large part of the study below is well known (Morse [24], Hedlund [21] for instance). An abstract

setting, designed to encompass very different settings, such as geodesics, twist diffeomorphisms

and extremals for the Frenkel-Kontorova model, and providing further properties, is givén in [2].
The main idea is that the global trajectories/gfwill have some periodicity in a direction. This

can be seen by a PoinéaBendixson type argument, that we provide for the reader’s convenience.
Also, for convenience again, equati5.3) will be assumed to be pos&d with periodic

conditions in both directions. Also, we will assume without loss of generalityghamot parallel

to the vectol,.
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First, we introduce a few definitions. geodesic segmebttween two points andy is a path
(v (s))ogs<: Which minimizes the action

Y 205
A ¥) '_/o RG/)2

among all piecewis€' curvesy such thaty(0) = x andy (r) = y. A minimal geodesic segmeist
a geodesic segment such that = R(y).

LEMMA 5.2 A global orbit of7y is a minimal geodesic.

Proof. Lety be defined as in Lemnja $.1. Singés a solution of[(5.p), the function— p -y (1) —
tH(p) + ¢(y (1)) is constant; then, becauges differentiable at all points of the orbit, we have
p-y(®)—H(p)+7 D7) =0,

which yields ) o
y - (Dé(y) + p) = H(p).
Next we use the fact that

2R()2(Dp(7) + p) =y = 2H(p)7 (1),
which yields|y| = R(). O

In order to use a PoincarBendixson argument, we first need a global section for the geodesic flow.
This is not so easy as in differential equations, since a global geodesic satisfies an ODE whose
vector field is not defined everywhere—in fact, only almost everywhere. We use the following two
properties of minimal geodesics, which are basic to the theory of [2].

THEOREM5.2 (Hedlund[[21l]) Two minimal geodesics may only cross once.

Then we construct a global section as follows: choese (x10, x20) € [0, 1]% which is an absolute
minimum for the function

x = (x1, x2) € [0, 1]2 — i]r)f A(x, x + (0, 1); y)

where the infimum is taken among all piecewigkfunctions such thaty| = R(y), havingx and
x + (0, 1) as end points. Lefy be the curve corresponding ¢e10, x20).

THEOREM5.3 (Busemann and Pederseh [9]) 8&t {70 + (0, j) : j € Z}. Thenyy is a global
minimal geodesic.

It is worth mentioning here a generalization of this theorem in spatial dimensi@is [10], where
geodesic lines are replaced by minimal surfaces.

LEMMA 5.3 A global orbit of7y intersects/q once and only once.
Proof. Let (y(s))scr be such an orbit; set = y (0) and look at the relation

s . 2
Py + o) =p -y +¢x) +sH(p) +/ ly (@)l

—————do; 5.14
o 4R(y(@)Z * (5-14)
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because is bounded we have
|i|11 p -y (s) = too. (5.15)
§—> 00

Hence—recall thap is not parallel toeo—there is at least one point of intersectionyofind yp.
Unigueness follows from the last three results. |
Proof of Theorerp 5]1In two steps: convergence oWl first, then outsideMo.

1. Convergence oM. Starting from an orbit oM, we may define a homeomorphigmof v
as follows: ifx € Mo N yo, let y; be the only intersection point of the orlgify (1)x),cr and the
line e1 + yo. Then set

h(x) = yy — e1. (5.16)

This construction can be done for all points/efo N yo; hence we may define—by taking the values
modulo 1—a homeomorphismof a part of the circle. Lek be its rotation number.

Case 1o = 0. Thenk has a fixed point. Because two extremals cannot intersect, the sequence of
iterationsh” (x) is monotone for every € Mo(¢); henceMy is made up of periodic orbits, i.e.
orbits that have the same period as the network. Let us compute the time Peaidtiz)y on Mo.

To do that, it is equivalent to compute the time period of the orbitsyLieé an orbit ofM. If T’

is the time period of the orbits then we have

YT =y +e1. ¥ =2R¥)*D$()+ p). (5.17)
which yields, after multiplication by ¢ (y) + p,
d _
@) +py) =2R(*De() + pl = 2H(p)*
Integration between 0 ariif yields, by [(5.1F)

y— 5 hence T = 2% .
2H(p) H(p)

This implies that all orbits ifM have the same time peridd. Due to the Dynamic Programming
Principle (Lemml), the functian(z, -) becomed”’-periodic inr on Mg as time goes te-co.

2. Convergence outsid&1o. The argument is more routine and will only be sketched. The flow
S generates a bounded semiflow @y, we may define the-limit set of an initial datavg in the
usual way, and denote it lay(vg). Then the pointwise relaxed semi-limits

Vo (1, %) 1= IMSUPS (1 + nT")vo(x),  Too(t, ) = liminf S(z +nT")vo(x)
o

n—4-o00 n—
converge to &’ time-periodic subsolution (resp.7d time-periodic supersolution) of the equation
inv:
ST = v,
coinciding onMo. The upshot is thaf (7”)v, (0, x) andS(T”)T (0, x) coincide onMo; for this
we argue exactly as in the proofs of Theorems 1 and 3 ih [28] for Hamilton—Jacobi equations with

strictly convex Hamiltonians, the only difference is that here we should use formula (1.3) instead of
the Lax—Olénik formula for strictly convex Hamiltonians.
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Hence we have constructed twdl'’ time-periodic solutions of3) coinciding oMo
and between which the whole se{vg) lies. On the other hand, still because of the Dynamic
Programming Principle, the s@tlg is a uniqueness set: namely, twd’ time-periodic solutions of
(5.3) coinciding onM coincide everywhere; see once again [28] of [19] for more details.

Case 2« # 0. The orbity has then an asymptotic slopgw). It suffices therefore to
perform a rotationp_, of angle —27¢(«). The HamiltonianR(x)|Du + p| is replaced by
R(pax)|Du + p—a pl. O

Let us end this paper by giving two examples related to combustion.

1. Combustion enhancementAs is stated in Sections 2 and 3, the presence of lines of maximal
speed is enough for the velocity of the front to adjust to the burning velocity on these lines. In
practice, this line of maximal speed models a copper wire that is placed in the solid medium in
order to accelerate the combustion, but is not of zero thickness. In our context, we may be more
explicit: let us consider a front propagating orthogonally to two parallel straight line enclosing an
area of large speed.

THEOREM5.4 Assume the existence &k ]0, 1[andA > 1 such that

Vx e R, Vy €0, 8], R(x,y) > A, (5.18)
Vx eR, Vy €[25,1], R(x,y) <1l '

Then, if A is large enough, we hav(e1) = H (e1) L.

We simply notice that the global orbits @} are enclosed in the strig = R x [, n 4 6], which
implies thate = 0. The time period tends té—1.

2. Combustion inhibition. It occurs in certain applications that some parts of the solid propellants
are prevented from burning. This can be modelled by putting the burningrat® on these parts.

Assume therefore that
VxeR, VneN, R(x,+n)=0,

VxeR, Vy¢Z, R(x,y)>D0. (5.19)

Let us first notice the existence of a homogenized Hamiltowlgp): indeed, we may pass to the
limit ase — 0 in the sequence of problems

(R(x,y) 4+ ¢€)|Du + p| = H°(p), u 1-periodic inRZ2. (5.20)

Because we havB*(p) < ||R|l« + &, the corresponding sequence of solutign?),, normalized

so that¢®(0) = 0, converges locally uniformly. This yields the existence of a solution to the
homogenized problem. Also notice thd{p) > 0. Once again the global orbits @}, are enclosed

in the stripsR x ]n, n 4+ 1[. If the initial front is the y-axis, the front will converge, at least on
Upez R x In, n + 1], to periodic fronts of period (e1) L.
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