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Motivated by a model of solid combustion in heterogeneous media, we investigate the time-
asymptotic behaviour of flame fronts evolving with a periodic space-dependent normal velocity;
using the so-called “level set approach” we are led to study the large time behaviour of solutions
of eikonal equations. We first provide a general approach which shows that the asymptotic normal
velocity of such a flame front depends only on its normal direction and is given by the homogenized
Hamiltonian of the eikonal equation. Then we turn to a more precise study of the asymptotic
behaviour of the flame front when the initial front is a graph of a periodic function: in this case,
the front moves asymptotically with a constant normal velocity and we are able to prove that, in
coordinates moving with this constant velocity, the front has a time-periodic asymptotic behaviour
in the following two cases: (i) when there is a straight line of maximal speed, and (ii) when the space
dimension is 2. These results are obtained by using homogenization, control theory and dynamical
systems methods (Aubry–Mather sets).

Keywords: Front propagation; level set approach; eikonal equations; periodic solutions; homogeniza-
tion; Aubry–Mather set.

1. Introduction

The problem under study is the large time behaviour of multi-dimensional fronts propagating under
eikonal equations. The propagation law of the front reads

Vn = R(X), (1.1)

whereVn is the normal speed of the front at the pointX andR : RN → R is a smooth,ZN -periodic
function which is bounded from below by a positive constant. The main underlying motivation is a
model of solid combustion in heterogeneous media where the flame front is assumed to propagate
in RN with a periodic, space dependent normal velocity. We refer to Namah and Roquejoffre [25]
and reference therein for a more detailed presentation of the model.
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This type of models was proposed by Landau in the 40’s, in particular a simpler example when
R is a constant: even in this case, it is known that fronts which are smooth for all time do not
exist in general, and in Barles [3], a weak formulation to study the simple Landau model was
proposed; it was based on the idea that the moving front can be identified as the 0-level set of
the unique viscosity solution of an eikonal equation. This kind of idea was first used for numerical
computations by Osher and Sethian [27] who extended it to more general normal velocities (in
particular curvature dependent ones). Then Evans and Spruck [16] and Chen, Giga and Goto [12]
developed the theoretical basis of the so-called “level set approach”.

In our case, the level set approach for (1.1) consists in solving the eikonal equation

ut + R(x)|Du| = 0 in (0,+∞)× RN , (1.2)

the flame front at timet , denoted byΓt , being identified as the 0-level set ofu(t, ·).
Equation (1.2) generates a nonlinear semigroup denoted byS(t) and below we also use the

fact that the solution of the Cauchy problem for (1.2) is given by an explicit formula coming from
control theory, namely

u(t, x) = inf
γ (t)=x, |γ̇ |6R(γ )

u(0, γ (0)) (1.3)

whereγ is taken among all piecewiseC1 curves.
In this framework, the problem of studying the asymptotic behaviour of the flame frontΓt

leads to the investigation of the large time behaviour of the nonlinear semigroupS(t) and/or of
the geodesicsγ in (1.3) and we will address this question under various assumptions on the initial
datumu(0, ·).

In two space dimensions, and when the functionR is constant along parallel lines, the problem
is treated in [25] where two results are obtained.

• For anyp ∈ R2—not necessarily parallel to the lines along whichR is constant—there is a
uniqueVp > 0 such that (1.2) has solutions of the formp · x − Vpt + φ(p∗

· x), wherep∗ is
any vector orthogonal top. Hence, for flat initial front, there is an asymptotic velocityVp.

• If the front is forced to propagate in directionp or, in other words, if the initial datumu0 is
such that

lim
p·x→±∞

u0(x) = ±1,

and is periodic in the directionp∗ orthogonal top, thenS(t)u0(p · x−Vpt, p
∗
· x) converges

to a time-periodic solution; therefore, moving at velocityVp, an observer would see the front
having a periodic behaviour. Technically, this problem could basically be solved by reduction
to an essentially 1-D problem, where explicit computations are tractable.

The aim of this paper is to examine what can be said in a greater generality, first about the asymptotic
normal velocity ofΓt and then on a more precise behaviour, which can be viewed as looking at a
second term in an expansion.

Using homogenization theory, and in particular Lions, Papanicolaou and Varadhan’s [23] results,
we first show that the asymptotic normal velocity isH(n) wheren stands for the normal direction
to the front andH is the homogenized Hamiltonian associated to the HamiltonianH(x, p) :=
R(x)|p|. This result can be viewed as the analogue of the propagation results in Aronson and
Weinberger [1] for the nonlinear diffusion equationut −∆u = (u+ 1)(1− u): the front{u = 0} is
shown to move—at least for initial data that are equal to−1 outside a compact set—as the solution
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of ut + c∗|Du| = 0, wherec∗ is the minimal speed of the travelling waves solutions of the 1-D
equation.

When the initial front is a hyperplane, namelyΓ0 = {x : p · x = 0} with p ∈ RN , or a bounded
perturbation of it, this result implies thatΓt looks like Γ t = {x : p · x = tH(p)} for large t
and the next step consists in studying the behaviour ofΓt in coordinates moving withΓ t , which
typically leads to consider the asymptotic behaviour ofu(t, ·) − tH(p) whereu is the solution of
(1.2) with initial datau(0, x) = p · x + v0(x), v0 being a continuous,ZN -periodic function. With
this formulation, it is clear that we look for the second term in the asymptotic expansion ofu(t, x).
It is worth pointing out anyway that, in Section 4, we use a little bit more complicated (but natural)
change of theu variable in order to obtain a more precise behaviour of the front and that we have
not been able to do it differently.

We are able to prove the convergence ofu(t, ·) − tH(p) to a space-time periodic function in
two cases: (i) when there are lines of maximum velocity (corresponding to lines of maximal value
for R) and the hyperplane is orthogonal to these lines, and (ii) when the space dimension is 2. We
point out that the information is obtained on the functionu itself (or on suitable functions obtained
by changing theu variable, e.g.u(t, ·)− tH(p)) and not on its 0-level set: indeed, we do not know
whether the empty interior property is satisfied asymptotically in time, even if it is satisfied at time
t = 0.

We conclude this introduction by providing few additional references on the study of the
asymptotic behaviour of solutions of Hamilton–Jacobi equations and homogenization, which are
the two main themes here. The first results on the convergence of the Oleı̆nik–Lax semigroup—the
analogue of theS above—in the case when the limiting behaviour was the convergence to a solution
of the stationary equation, were obtained by Namah and the second author [26]: under a certain
structure condition of the Hamiltonian, they were able to prove such a result by mixing the classical
half-relaxed limit method and monotonicity properties of the solution of the evolution equation
on some subset ofRN . The complete result for convex, superlinear and smooth Hamiltonians was
obtained by Fathi [17, 18, 19], using dynamical system methods: in this series of works, Fathi shows
the importance of the Aubry–Mather set and provides several very interesting properties of the
solutions of the related Hamilton–Jacobi equations. A PDE proof of Fathi’s result, and even of an
extension to not necessarily convex nor smooth Hamiltonians, was given in Barles and Souganidis
[6] who also show in [7] that several assumptions, though apparently restrictive, are necessary to
have such asymptotic behaviour.

Not so many results exist on the convergence to time-periodic solutions: one reason for that is
the counter-example of Fathi and Mather [20] (see also Barles and Souganidis [7] for a simpler,
explicit example) showing that even for a strictly convex, smooth time-periodic Hamiltonian, the
convergence may fail. The second author [28] provides such results but, and this is a key difference
with the present work, he assumes the Hamiltonian to be strictly convex and time-periodic (none
of these assumptions is satisfied here) and proves the convergence to solutions whose periods in
time are multiples of the period of the Hamiltonian: here, at least in Section 5, the period in time is
given by the asymptotic behaviour of the geodesics in (1.3) and is not a priori given in the problem.
Nonetheless, in Section 5 we will use the ideas presented in [28] in a crucial way.

The recent paper of Evans and Gomes [15] connects homogenization with some features of the
time-asymptotic behaviour of solutions of Hamilton–Jacobi equations, and in particular, the Aubry–
Mather set. Here we will not use such approach since the homogenization part is used only to have
the “rough” asymptotic velocity and not the more precise behaviour. We also point out the work
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of Concordel [13, 14] who obtained explicit formulas for the homogenized Hamiltonian, a difficult
task in general.

The paper is divided into four sections. In Section 2, we provide the general approach to the
asymptotic behaviour of the front. Section 3 is devoted to explicit computations, and in particular to
the connections with the approach in [25]. Section 4 is devoted to the case when there exist lines of
maximal value forR, and Section 5 treats the 2-dimensional case.

2. The asymptotic normal velocity

In this section we present a general approach to the study of the asymptotic behaviour ast → +∞

of the flame front(Γt )t and in particular we show the existence of an asymptotic normal velocity.
In order to be more specific, we introduce an open subsetΩ0 of RN which, in terms of our solid

combustion model, can be interpreted as the burnt region; the initial flame frontΓ0 is nothing but
∂Ω0 and the unburnt region isΩ

c

0. The burnt region is allowed to be either bounded or unbounded.
As is rather standard in the level set approach, we introduce the signed distance toΓ0, denoted

by d(x, Γ0), which is negative inΩ0 and positive inΩ
c

0.
We solve equation (1.2) with the initial data

u(0, x) = d(x, Γ0) in RN . (2.1)

Our result is

THEOREM 2.1 Under the above assumptions onR, there exists a functionH : RN → R such
that (Γt )t moves asymptotically ast → +∞ with normal velocityH(n) wheren denotes the unit
normal to the frontΓt pointing in the direction of unburnt gas. More precisely:

(i) if there exists some subsetΓ 0 of RN such thatd(εΓ0, Γ 0) → 0 when ε ↓ 0 with
{d(·, Γ 0) < 0} nonempty and if(Γ t )t is the evolution ofΓ 0 with normal velocityH(n)
then

1

t
d(Γt , Γ t ) → 0 ast → +∞.

(ii) If d(εΓ0, Γ 0) = O(ε) whenε ↓ 0 then

d(Γt , Γ t ) = O(1) ast → +∞.

It is worth remarking that the two results (i) and (ii) of Theorem 2.1 take into account two situations
that area priori different; indeed, ifΓ0 is bounded, thenΓ 0 is nothing but{0} and the assumption
on {d(·, Γ 0) < 0} cannot be satisfied; therefore (i) does not apply at all to this bounded case. On
the contrary, (ii) does apply.

If Γ0 is unbounded, then both cases (i) and (ii) may apply and they do in particular ifΓ0 is a
hyperplane (likep · x = a), showing that the distance betweenΓt andΓ t := {x : p · x = tH(p)}

is bounded.
It is worth pointing out that, in any case, whenΓ 0 exists, it is a cone with vertex at the origin.

Proof of Theorem 2.1.As already mentioned, in order to study the behaviour of the moving front
(Γt )t , we study the behaviour of appropriate solutions of (1.2) ast → ∞.
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First we perform a scaling(t, x) 7→ (t/ε, x/ε) and introduce the functionuε defined by
uε(t, x) := εu(t/ε, x/ε). This new function solves

uεt + R(x/ε)|Duε| = 0 in (0,+∞)× RN , (2.2)

uε(x,0) = εd(x/ε, Γ0) = d(x, εΓ0) in RN . (2.3)

In order to deal with bounded functions, we take advantage of the invariance of the equation with
respect to the changeuε 7→ ϕ(uε) whereϕ is, say, aC1, Lipschitz continuous, bounded function
such thatϕ′ > 0 in R. We still denote byuε this new function.

Assuming at least thatd(εΓ0, Γ 0) → 0 when ε ↓ 0 and applying the results of Lions,
Papanicolaou and Varadhan [23], we deduce that there exists a HamiltonianH : RN → R such
thatuε converges locally uniformly tou which is the unique viscosity solution of

ut +H(Du) = 0 in (0,+∞)× RN , (2.4)

u(x,0) = u0(x) = ϕ(d(x, Γ 0)) in RN . (2.5)

In order to proceed, we first remark that this local uniform convergence is enough to study the
behaviour of the moving front: indeed, using the fact thatm 6 R(x) 6 M in RN for some constants
m,M > 0, we have

x ∈ Γt ⇒ mt 6 d(x, Γ0) 6 Mt.

And therefore, after the scaling it is enough to control the behaviour ofuε in a bounded region.
Moreover, coming back to the above change of variables throughϕ, the same argument shows that
if ϕ(s) = s for, say,|s| 6 1, then the change plays no role except simplifying the arguments.

On the other hand, as we will see in the example below treating the evolution of a bounded
initial front, theε-transformation that we did above onu has the disadvantage of discarding some
information on the burnt region.

To point out the main difficulties and differences, we first assume that the set{x : d(x, Γ 0) < 0}

is nonempty and for anyt > 0, we denote byΓ t the set{u(t, ·) = 0}.
If (t/ε, x/ε) ∈ Γt/ε for somet > 0, the above result yields

0 = εu(t/ε, x/ε) = u(t, x)+ o(1).

Thereforeu(t, x) = o(1); but in order to relate this property toΓ t and in particular to show thatx
is close toΓ t , we need the assumption that{d(·, Γ 0) < 0} is not empty (see the example below).

If this assumption holds, we can use the result of Ley [22, Thm. 4.2, p. 557] which implies that
d(x, Γ t ) = o(1), i.e.d(εΓt/ε, Γ t ) → 0 asε → 0 or equivalentlyd

(
t
T
ΓT , Γ t

)
→ 0 asT → +∞.

In particular, fort = 1, we see thatΓT ∼ T Γ 1 for largeT > 0.
Next, we have to compareT Γ 1 andΓ T . We first remark that, because of its definition,Γ 0 is

a cone, i.e. for anya > 0, aΓ 0 = Γ 0. Then the level set approach shows that the signs ofu are
independent ofϕ and in particular we may chooseϕ to be the identity onR. With this choice, using
the fact thatH is positively homogeneous of degree 1, one shows easily that, for anya > 0,

au(x/a, t/a) = u(x, t) in (0,+∞)× RN ,

and the equalityΓ a = aΓ 1 follows immediately for anya > 0.
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We deduce from this property that

1

T
d(ΓT , Γ T ) = d

(
1

T
ΓT ,

1

T
Γ T

)
= d

(
1

T
ΓT , Γ 1

)
→ 0

asT → +∞, which ends the proof of (i).
We first prove (ii) in the case when the set{d(·, Γ 0) < 0} is not empty. Ifd(Γ0, Γ 0) = O(ε),

combining the maximum principle with (the easy part of) the estimates relating to convergence of
uε to u given in Capuzzo-Dolcetta and Ishii [11], we have

εu(x/ε, t/ε) = u(x, t)+O(ε).

Choosing again(x/ε, t/ε) ∈ Γt/ε for somet > 0 yieldsu(x, t) = O(ε) and by the results of [22],
we are led this time tod(εΓt/ε, Γ t ) = O(ε) or equivalently, for largeT , d(ΓT , Γ T ) = O(1).

Now we turn to case (ii) when the set{x : d(x, Γ 0) < 0} is empty; in this case, for anyt > 0, we
denote byΓ t the boundary of the set{u(·, t) > 0}. To obtain the result, we apply an idea presented
in Soravia [29] and using an approach by optimal control and minimum time function: let us denote
by Ω0 the set{x : d(x, Γ0) < 0} and let us introduce the functionsχε : RN → R satisfying
χε(x) = 0 onεΩ0 and

R(x/ε)|Dχε| = 1 in RN − εΩ0.

It is proved in [29] that, for anyt > 0, the functionsχε(x)− t anduε(x, t) have the same strict
signs. This can be seen rather easily here by using the representation formulas forχε anduε or by
remarking that 11{χε(x)−t>0} − 11{χε(x)−t60} and 11{uε>0} − 11{uε60} are two lower semicontinuous
viscosity solutions of (2.2) with the same initial data, and by a result of Barron and Jensen [8] (see
also Barles [4] or Barles, Soner and Souganidis [5]) such a lsc solution is unique.

On the other hand,χε converges locally uniformly inRN to the unique viscosity solutionχ of

H(Dχ) = 1 in RN − Γ 0,

with χ(x) = 0 onΓ 0. Therefore, if as above,(t/ε, x/ε) ∈ Γt/ε for somet > 0, thenχε(x) = t and
therefore

χ(x)− t = o(1).

In order to conclude, we remark that, ifu is defined as above, then the sets{u(·, t) 6 0} and
{χ(·)− t 6 0} coincide: to prove this, it suffices to use the equality

11{χε(x)−t>0} − 11{χε(x)−t60} = 11{uε>0} − 11{uε60} in [0,+∞)× RN ,

and to pass to the limit in a suitable way. 2

EXAMPLES 1. If Γ0 is bounded, then it is easy to see thatεd(x/ε, Γ0) → u0(x) := |x| andΓ 0
= {0}. Sinceu0 is convex andH is only a function ofp, Hopf’s formula applies and we have (forϕ
equal to the identity)

u(x, t) = sup
|p|61

[p · x − tH(p)].

But, from [23],H is convex and homogeneous of degree 1; therefore there exists some convex
compact subsetK of RN such that the Fenchel conjugateH

∗
of H is given by

H
∗
(q) =

{ 0 if q ∈ K,
+∞ otherwise.
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Because of the form ofu, it is also clear thatu(x, t) has the same behaviour astH
∗
(x/t) and more

precisely that {
u(t, x) = 0 if x/t ∈ K,
u(t, x) > 0 otherwise.

In crystalline evolution,K is called aWulff shape. As is the case here, Wulff shapes govern the
asymptotic behaviour of moving fronts; we refer to Soravia [29] and references therein for a more
complete discussion.

2. The second example concerns the asymptotic evolution of flat fronts, i.e.u0(x) = p · x − a

for p ∈ RN − {0} anda ∈ R. Here since the scaling just transformsu0 into p · x, all computations
are straightforward and we have

u(t, x) = p · x − tH(p).

ThereforeΓ t := {x : p · x − tH(p) = 0}, which means that, asymptotically, the front has normal
velocityH(p).

3. An explicit computation

In this section, we consider inR2 a functionR of the form

R(x, y) =

{
M if y ∈ Z,
m otherwise,

wherem,M are positive constants. We have in mind thatm � M.
The aim of this section is to make explicit all the quantities appearing in the previous section. Of

course,R is discontinuous and therefore neither the result nor the arguments of the preceding section
can be applied: this is why the computations below are formal but we justify them by showing at the
end of the section a “stability result” which says essentially that if we have a sequence of Lipschitz
continuous(Rε)ε which converge in a suitable sense toR, then the correspondingH ε converge to
theH we are going to compute now.

To do this computation, we come back to the equation

R(x/ε, y/ε)|Dχε| = 1,

which was set in the proof of Theorem 2.1 inRN − εΩ0. In fact, since we are only interested inH ,
we may as well consider it inRN − {(0,0)}; and to compute explicitly the solution, we remark that
χε is given byχε(x, y) = εw(x/ε, y/ε) where the functionw is the solution of

R(x, y)|Dw| = 1 in R2
− {0},

with w(0,0) = 0.
Formally (sinceR is discontinuous)w is given by

w(x, y) = inf{T : there existsγ : [0, T ] → R2 with γ (0) = (x, y),

γ (T ) = (0,0) and|γ̇ | 6 R(γ )},

whereγ is taken among all piecewiseC1 paths.
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Because of the special form ofR, the computation ofw is rather easy; indeed, it is clear that
optimal trajectories can be taken of the following form: a straight line from(x, y) to some point
(x0,0) with |γ̇ (s)| = m and then another horizontal line from(x0,0) to (0,0) with |γ̇ (s)| = M. An
optimization with respect tox0 yields

w(x, y) =


(x2

+ y2)1/2

m
if |y| >

M

m
|x|,

1

M

(
|x| −

m

M
|y|

)
+

1

m

((
m

M

)2

+ 1

)1/2

|y| otherwise.

Sincew is homogeneous of degree 1, the computation of the Wulff shapeK is simple: indeed,
the burnt region at timet looks like {(x, y) : w(x, y) 6 t} which is nothing buttK with K =

{(x, y) : w(x, y) 6 1} because of the homogeneity ofw. Then a rather simple optimization provides

H(p) = sup
q∈K

(p · q) = max(M|p1|, m|p|)

if p = (p1, . . . , pN ).
It remains to consider the stability of this formula.

PROPOSITION3.1 Assume that(Rε)ε is a decreasing sequence of Lipschitz continuous, periodic
functions defined onR such thatm 6 Rε(y) 6 M onR, which converges pointwise toR. Then, for
anyp ∈ R2, the correspondingH ε(p) converges toH(p) = max(M|p1|, m|p|).

Proof. We first remark that, since the sequence(Rε)ε is decreasing, the sequence(H ε)ε is
decreasing as well and therefore convergent because of the estimates we have on theH ε ’s, namely
m|p| 6 H ε(p) 6 M|p|.

Because of the symmetries in the problems, we may assume without loss of generality that
p1, p2 > 0 and|p| = 1.

TheH ε(p) can also be viewed as the velocities of travelling waves and it is shown in [25] that
these velocities are given by the following formulas whereα denotes the slope between they-axis
and the planar front, i.e.α = p2/p1:

• If

α > αε0 :=
∫ 1

0

(
‖Rε‖

2
∞

Rε(z)2
− 1

)1/2

dz

thenH ε(p) is the unique solutionV of

α =

∫ 1

0

(
(1 + α2)

V 2

Rε(z)2
− 1

)1/2

dz.

• If α 6 αε0, thenH ε(p) = ‖Rε‖∞/(1 + α2)1/2.

By letting ε go to 0, thenαε0 → α0 := (M2/m2
− 1)1/2 and forα > α0, H ε(p) converges to the

unique solutionV of

α =

∫ 1

0

(
(1 + α2)

V 2

m2
− 1

)1/2

dz,

i.e.V = m. If, on the contrary,α < α0, thenH ε(p) = M/(1 + α2)1/2. Forp1 > 0 and|p| = 1,
this provides the right answer, i.e.H ε(p) = Mp1.
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4. Existence of a line of maximal speed

In this section, we study in a more precise way the propagation of flame fronts in the case when
R has lines of maximal speed and when the initial front is a graph with respect to variables which
are orthogonal to these lines. Our aim is to show that, as in the previous section, the combustion is
driven by these lines of maximal speed as it was driven above byM for p = (1,0), and to find a
more accurate asymptotic behaviour of the front.

To be more specific, forx ∈ RN , we setx = (x1, x2) with x1 ∈ R andx2 ∈ RN−1 and we
assume that

∀n ∈ ZN−1, R0(x1) := R(x1, n) = max
x2∈RN−1

R(x1, x2), and

∀x2 /∈ ZN−1, ∀x1 ∈ R, R(x1, x2) < R0(x1).

We point out that the second part of the above assumption is purely technical; the convergence
theorem below would not be altered without it.

We consider the solutionsξ(t, x1) of the ordinary differential equation

ξ̇ (t, x1) = R0(ξ(t, x1)), ξ(0, x1) = x1. (4.1)

One checks easily that the solutions of (4.1) are 1-periodic inx1 and ifT is given by

T =

∫ 1

0

dx

R0(x)
, (4.2)

thenξ(t + T , x1) = ξ(t, x1)+ 1 for anyt andx1.
For the initial frontΓ0, we suppose that it is of the formx1 = φ(x2), whereφ is a continuous,

ZN−1-periodic function and we represent it through a Lipschitz continuous initial datumu0, strictly
increasing inx1, ZN−1-periodic inx2, such that−1 6 u0 6 1 in RN , u0(x1, x2) < 0 if x1 < φ(x2),
u0(x1, x2) > 0 if x1 > φ(x2) and

lim
x1→−∞

u0(x1, x2) = −1, lim
x1→+∞

u0(x1, x2) = 1, uniformly in x2 ∈ RN−1. (4.3)

We still denote byu(t, x1, x2) the solution of the Cauchy problem with initial datau0, by Γt the
0-level set ofu(t, ·, ·) at timet and byΓ̃t the front driven byR0, which is nothing but

{(ξ(t, x1), x2) : (x1, x2) ∈ Γ0}.

Our main result is

THEOREM 4.1 The following properties hold:

(i) The distance betweenΓt andΓ̃t remains bounded.
(ii) There exists a Lipschitz continuous functionu∞(t, x1, x2), satisfying (4.3),T -periodic int

andZN−1-periodic inx2, such that

lim
t→+∞

‖u(t, ξ(t, x1), x2)− u∞(t, x1, x2)‖∞ = 0.

This result can be viewed as an asymptotic expansion of the frontΓt for large times: (i) means that
the first term in this expansion is̃Γt , which justifies our above claim that the combustion is driven by
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lines of maximal speed, and (ii) provides the second term since it essentially means thatΓt differs
from Γ̃t by a periodic motion: in fact, through the changeξ(t, x1), we essentially observe the front
propagation in coordinates moving with̃Γt and what we see is a periodic phenomenon.

Proof of Theorem 4.1.It is a variant of [25]. Following [25], one shows easily that‖ut‖∞ and
‖Du‖∞ are uniformly bounded and by a comparison result we also have

−1 6 u(t, x1, x2) 6 1 in [0,+∞)× RN .

To get compactness, we simply need to be a little bit more careful and the following special lemma
is devoted to this question. Moreover, (i) is also an easy consequence of this lemma.

LEMMA 4.1 We have

lim
x1→−∞

u(t, ξ(t, x1), x2) = −1, lim
x1→+∞

u(t, ξ(t, x1), x2) = +1,

uniformly with respect to(t, x2) ∈ R+ × RN−1.

Proof.

1. The limit whenx1 → +∞. Here we just use the fact thatR(x1, x2) 6 R0(x1) in RN and
we are going to build a suitable, one-dimensional subsolutionu of the Cauchy problem. We set
u0(x1) := minx2∈RN−1 u0(x1, x2). Letu be the solution of

ut + R0(x1)|Du| = 0 in (0,+∞)× RN ,
u(x1, x2,0) = u0(x1) in RN . (4.4)

Clearly,u is a subsolution to (1.2),u0 6 u0 in RN , therefore we have

u(t, x1, x2) 6 u(t, x1, x2) in [0,+∞)× RN .

Moreover, we can computeu explicitly by using the method of characteristics: for(x1, x2) ∈ RN
andt > 0, we have

u(t, x1, x2) = u0(ξ(−t, x1)),

and plugging this in the above inequality yields

u0(x1) 6 u(t, ξ(t, x1), x2) in [0,+∞)× RN .

Now the result forx1 → +∞ follows from the assumptions onu0.

2. The limit whenx1 → −∞. In this case we use the representation formula given in the
Introduction, which reads here

u(t, x1, x2) = inf
γ (t)=(x1,x2), |γ̇ |6R(γ )

u0(γ (0)),

whereγ is taken among all piecewiseC1 curves.
To estimateu(t, x1, x2) from above we are going to use a particular pathγ . Of course we may

assume thatt is large, otherwise the behaviour just follows from the finite speed of propagation.
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Let us denote by [x2] ∈ ZN−1 the point ofZN−1 closest tox2 (or one of such points). We assume
that [x2] 6= x2 (otherwise the argument is even easier) and we sete = ([x2] − x2)/|[x2] − x2| and

γ (s) =

{
(x1, x2)+m(t − s)(0, e) if t − t 6 s 6 t ,
(ξ(s − (t − t), x1), [x2]) for 0 6 s 6 t ,

wheret > 0 is defined byx2 + mte = [x2]. It is easy to see thatγ is an admissible trajectory (i.e.
|γ̇ | 6 R(γ )) and by the dynamic programming principle or the semigroup property of the equation,
we have

u(t, x1, x2) 6 u(t − t, x1, [x2]) 6 u0(ξ(t − t, x1), [x2]).

From this we deduce the inequality

u(t, ξ(t, x1), x2) 6 u0(ξ(t − t, ξ(t, x1)), [x2]) = u0(ξ(t, x1), [x2]).

Sincet is clearly bounded, the limit at−∞ of u(t, ξ(t, x1), x2) follows easily. 2

We come back to the proof of Theorem 4.1. We set

v(t, x1, x2) = u(t, ξ(t, x1), x2) in [0,+∞)× RN .

In order to study the properties ofv, we first notice thatζ(t, x1) := ∂ξ
∂x1
(t, x1) is a solution of

ζ̇ = R′

0(ξ)ζ, ζ(x1,0) = 1,

and therefore by uniqueness for this ordinary differential equation, we have

ζ(t, x1) =
ξ̇ (t, x1)

R0(x1)
=
R(ξ(t, x1))

R0(x1)
.

In particular,mM−1 6 ζ(t, x1) 6 Mm−1 for anyx1 ∈ R andt > 0.
Because(t, x1) 7→ ξ(t, x1) is smooth, the chain rule applies andv is a viscosity solution in

[0,+∞)× RN of the equation

vt + R(t, ξ(t, x1), x2)

√
R0(x1)2

R0(ξ(t, x1))2
v2
x1

+ v2
x2

− R0(x1)vx1 = 0. (4.5)

We make the following remarks which will permit us to end the proof:

• Because of the preceding remark and Lemma 4.1, the family(v(t, ·, ·))t is relatively compact
in C(RN ).

• Because of the definition ofR0, we see that, for all(x, y) ∈ R × ZN−1, the functiont 7→

v(t, x1, x2) is nonincreasing: indeed, on this set the nonlinearity of the equation is positive.
Hence, onR × ZN−1, v(t, x1, x2) converges to a steady state on this set; this steady state is
strictly between−1 and 1 due to the preceding remarks.

• On the complement of this set, i.e. onRN − (R × ZN−1), the functionx1 7→ tanh(x1) is a
strict subsolution to (4.5).

Finally, the Hamiltonian of equation (4.5) being periodic int andx2, the arguments of the proof of
Theorem 1 in [25] apply, yielding the convergence ofv(t, ·, ·) to a solution of (4.5) which is also
periodic int andx2. Thus the proof is complete. 2
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REMARK 4.1 The role played by the straight line of maximum speed is obvious in view of
formula (1.2): it is simply a geodesic for the distance function

δ(X, Y ) = inf
γ (0)=X, γ (t)=Y

∫ t

0

|γ̇ (s)|2

R(γ )2
ds.

As a consequence we could generalize Theorem 4.1 by removing the periodicity ofR in x1 and by
only keeping the assumption of a line of maximal speed. The outcome is then that the dynamics of
the solutions of the whole equation (1.2) is driven by the dynamics ofξ̇ = R0(ξ).

5. Time-asymptotic behaviour in two space dimensions

In this section, we assumeN = 2 and we consider a vectorp ∈ Z2; in order to model a motion
whose general direction of propagation is the vectorp, we impose an initial datau0 for (1.2) of the
form

u0(x) = p · x + v0(x) (5.1)

wherev0 is a bounded, continuous,Z2-periodic function.
We write the solutionu of (1.2) associated to this initial data in the form

u(t, x) = p · x −H(p)t + v(t, x), (5.2)

whereH(p) is the homogenized Hamiltonian of Section 1. The functionv is Z2-periodic inx and
solves

vt + R(x)|Dv + p| =H(p) in (0,+∞)× R2,

v(0, x) =v0(x) in R2.
(5.3)

It is well known that equation (5.3) generates a nonlinear semigroupS̃(t) that is weakly contracting
in the spaceCper of continuousZ2-periodic functions, i.e.

∀t > 0, ∀(u0, v0) ∈ Cper, ‖S̃(t)u0 − S̃(t)v0‖∞ 6 ‖u0 − v0‖∞. (5.4)

Once and for all, we choose aZ2-periodic solutionφ of the equation

R(x)|Dφ + p| = H(p) in R2. (5.5)

We may trapv0 betweenφ − C andφ + C, whereC > 0 is a large enough constant, and then a
comparison result for viscosity solutions implies

∀t > 0, φ(x)− C 6 v(t, x) 6 φ(x)+ C. (5.6)

Moreover, since we may assume, without loss of generality (see [25]),v0 to be Lipschitz continuous,
we also have a uniform bound forvt andDv. Hence the orbitS̃(t)v0 is relatively compact inCper.
This allows us to ask whether we may have a more precise result. The answer is given by

THEOREM 5.1 There existsT (p) > 0 such that, for everyv0 ∈ Cper, there is a functionv∞(t, x)
which isT (p)-periodic in time and such that

lim
t→+∞

‖S̃(t)v0 − v∞(t, .)‖∞ = 0. (5.7)
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Outline of the proof.First, because of the periodicity, we may assume that the problem is posed
on the 2-dimensional torusT2. The method of proof follows closely the scheme used in [28]
which can, roughly speaking, be described in the following way: in order to study the asymptotic
behaviour ofv in R2, it is enough to study it on the so-called Aubry–Mather setM0 ⊂ R2 (see
the definition below). Indeed, Theorem 4.8 in [28] says that two solutions which coincide onM0
coincide everywhere and, in particular, a solution which is time-periodic onM0 is time-periodic
everywhere. This implies that the convergence to a time-periodic solution onM0 means such a
convergence everywhere.

Next the study of the behaviour of the solutions onM0 is done in two steps: the first one
is independent of the space dimension, and aims at proving a time invariance property of the
trajectories ofS̃(t) on the Aubry–Mather set associated to the geodesics. In [28], the strict convexity
of the Hamiltonian implies that, ifφ solves (5.5) andψ ∈ ω(u0), thenψ −φ does not depend onψ
on the Aubry–Mather set. A relaxed semi-limit argument concludes the proof.

However, strict convexity is missing here. The only way we have to replace it, is a better
knowledge of the dynamics of the extremals, which is very complicated in space dimension larger
than 2, but available in 2-D: see Bangert [2]. The core of the argument is a Poincaré–Bendixson type
argument: two trajectories cannot cross, hence—at least in the case of a rational rotation number—
the Poincaŕe map is increasing.

5.1 Monotonicity

If φ solves (5.5) then it is also a viscosity solution to

F(X,Dφ) = 0 with F(x, q) := R(x)2|q + p|
2
−H(p)2. (5.8)

The HamiltonianF is, this time, strictly convex with respect toq. Recall that ifL is the Legendre
transform ofF with respect toq, then for allφ solving (5.8) we have

∀t > 0, φ(x) = inf
γ∈C1([0,t ],T2), γ (t)=x

(
φ(γ (0))+

∫ t

0
L(γ (s), γ̇ (s))ds

)
. (5.9)

By results of Fathi [17],φ is C1 on the Aubry–Mather setM0 and it is classical that the geodesic
problem in (5.9) generates in fact a nonlinear backward semigroupTφ on

Mφ = {γ (0) : γ extremal in (5.9)}.

Indeed, this dynamical system is given by the associated Hamiltonian system: setx(t) := γ (t)

andq(t) = Dφ(γ (t)); then the solution(x(t), q(t)) of theF -Hamiltonian system is related to the
geodesics throughq(t) = Lq(γ (t), γ̇ (t)).

LetH be the set of solutions of (5.9). The Aubry–Mather setM0 can be defined by the following
algorithm given in [28]:

M1(φ) =

⋃
x∈Mφ

αTφ (x), M0(φ) =

⋃
x∈M1

ωTφ (x), M0 =

⋂
φ∈H

M0(φ). (5.10)

As is classical,αT (x) (resp.ωT (x)) is theα-limit (resp.ω-limit) set of the pointx under the action
of the semigroupT . As already mentioned at the beginning of the proof but in a slightly different
context, two elements ofH coinciding onM0 coincide onT2.
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The first ingredient is

LEMMA 5.1 (Dynamic Programming Principle) Letγ be an extremal to (5.9) which is defined on
[0, T ]. We set

γ̃ (t) = γ

(
t

2H(p)

)
. (5.11)

Then the functiont 7→ v(t, γ̃ (t))− φ(γ̃ (t)) is nonincreasing on [0, T ].

Proof. We first give a formal proof and then justify it. If everything is smooth, using the fact that
γ̇ = Fq(γ,Dφ(γ )), we have

d

dt
(v − φ)(t, γ̃ (t)) = vt +D(v − φ) · ˙̃γ (t)

= vt +
1

2H(p)
D(v − φ) · Fq(γ̃ ,Dφ(γ̃ ))

= −R(γ̃ (t))|Dv + p| +H(p)+
R(γ̃ (t))2

H(p)
(Dφ + p) ·D(v − φ). (5.12)

ButR(x)|Dφ(x)+ p| = H(p) and this last expression can be rewritten as

−R(γ̃ (t))

[
|Dv + p| −

(Dφ + p)

|Dφ + p|
·D(v − φ)

]
+H(p);

by the convexity of the norm, we finally have

d

dt
(v − φ)(t, γ̃ (t)) 6 −R(γ̃ (t))|Dφ + p| +H(p) = 0.

Let us justify this formal proof. Becauseφ is differentiable at every point̃γ (t) with t ∈ ]0, T [, the
derivative d

dt φ(γ̃ (t)) exists. Hence we only have to care aboutd
dt v(t, γ̃ (t)). Here, the argument is

classical: we regularizev into vε = δε ∗ v where(δε)ε is a sequence of approximations of unity;
from Jensen’s inequality, we have

|D(δε ∗ v)+ p| 6 δε ∗ |Dv + p|,

and an integration between 0 andt ∈ [0, T ] allows the passage to the limit asε → 0. 2

REMARK This proof can also be done without differentiating the equation using the usual form
of the Dynamic Programming Principle—equivalent here to the semigroup property ofS̃—which
yields forv andφ the following properties: sinceγ is an extremal for (5.9), we have, for 06 t 6
s 6 T ,

φ(γ (s)) = φ(γ (t))+

∫ s

t

L(γ (τ), γ̇ (τ ))dτ.

The LagrangianL is given by

L(x, q) =
|q|2

4R(x)2
+H(p)2 − q · p

and sinceγ is a solution of the ODĖγ (τ) = 2R(γ (τ))2(Dφ(γ (τ))+ p) while φ solves (5.5), this
can be rewritten as

φ(γ (s)) = φ(γ (t))+ 2H(p)2(s − t)− p · (γ (s)− γ (t)).
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On the other hand, again because of (5.5), we have|γ̇ (τ )| 6 2R(γ (τ))H(p) and therefore| ˙̃γ (τ)| 6
R(γ̃ (τ )). Hence, the Dynamic Programming Principle foru yields

u(s, γ̃ (s)) 6 u(t, γ̃ (t)),

while changingγ into γ̃ in the property satisfied byφ yields

φ(γ̃ (s)) = φ(γ̃ (t))+H(p)(s − t)− p · (γ̃ (s)− γ̃ (t)).

Subtracting them we obtain

u(s, γ̃ (s))− p · γ̃ (s)+H(p)s − φ(γ̃ (s)) 6 u(γ̃ (t))− p · γ̃ (t)−H(p)t − φ(γ̃ (t)),

which, according to the definition ofv, is exactly what we wanted to prove.

A consequence is an analogue of Corollary 3.2 in [28].

PROPOSITION5.1 Letγ be an orbit ofTφ inM0, andγ̃ defined by (5.11). Then, ifψ ∈ ωS̃(u0),
the function

t 7→ S̃(t)ψ − φ

is constant along̃γ .

Proof. See [28], Corollary 3.2. 2

Let us pause here to examine a consequence of the above proposition, on an equation given by
Barles and Souganidis [6] as a counter-example to convergence to steady solutions in the case of
non-strictly convex Hamiltonians:

vt + |vx + 1| − 1 = 0, x ∈ T2. (5.13)

The global extremals are
γ (t) = x + t, x ∈ T1.

Proposition 5.1 implies that any element ofω(u0) is constant along an extremal. Let us check it
directly: the functionu(t, x) = v(t, x + t) solves

vt + |vx + 1| − vx − 1 = 0, x ∈ T2,

which is clearly seen to converge monotonically.

5.2 Convergence

A large part of the study below is well known (Morse [24], Hedlund [21] for instance). An abstract
setting, designed to encompass very different settings, such as geodesics, twist diffeomorphisms
and extremals for the Frenkel–Kontorova model, and providing further properties, is given in [2].

The main idea is that the global trajectories ofTφ will have some periodicity in a direction. This
can be seen by a Poincaré–Bendixson type argument, that we provide for the reader’s convenience.

Also, for convenience again, equation (5.3) will be assumed to be posed onR2 with periodic
conditions in both directions. Also, we will assume without loss of generality thatp is not parallel
to the vectore2.
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First, we introduce a few definitions. Ageodesic segmentbetween two pointsx andy is a path
(γ (s))06s6t which minimizes the action

A(x, y; γ ) :=
∫ t

0

|γ̇ (s)|2

R(γ (s))2
ds,

among all piecewiseC1 curvesγ such thatγ (0) = x andγ (t) = y. A minimal geodesic segmentis
a geodesic segment such that|γ̇ | = R(γ ).

LEMMA 5.2 A global orbit ofTφ is a minimal geodesic.

Proof. Let γ̃ be defined as in Lemma 5.1. Sinceφ is a solution of (5.5), the functiont 7→ p ·γ (t)−

tH(p)+ φ(γ (t)) is constant; then, becauseφ is differentiable at all points of the orbit, we have

p · ˙̃γ (t)−H(p)+ ˙̃γ ·Dφ(γ̃ ) = 0,

which yields
˙̃γ · (Dφ(γ )+ p) = H(p).

Next we use the fact that

2R(γ )2(Dφ(γ̃ )+ p) = γ̇ = 2H(p) ˙̃γ (t),

which yields| ˙̃γ | = R(γ̃ ). 2

In order to use a Poincaré–Bendixson argument, we first need a global section for the geodesic flow.
This is not so easy as in differential equations, since a global geodesic satisfies an ODE whose
vector field is not defined everywhere—in fact, only almost everywhere. We use the following two
properties of minimal geodesics, which are basic to the theory of [2].

THEOREM 5.2 (Hedlund [21]) Two minimal geodesics may only cross once.

Then we construct a global section as follows: choosex0 = (x10, x20) ∈ [0,1]2 which is an absolute
minimum for the function

x = (x1, x2) ∈ [0,1]2 7→ inf
γ
A(x, x + (0,1); γ )

where the infimum is taken among all piecewiseC1 functions such that|γ̇ | = R(γ ), havingx and
x + (0,1) as end points. Let̃γ0 be the curve corresponding to(x10, x20).

THEOREM 5.3 (Busemann and Pedersen [9]) Setγ0 = {γ̃0 + (0, j) : j ∈ Z}. Thenγ0 is a global
minimal geodesic.

It is worth mentioning here a generalization of this theorem in spatial dimensions> 3 in [10], where
geodesic lines are replaced by minimal surfaces.

LEMMA 5.3 A global orbit ofTφ intersectsγ0 once and only once.

Proof. Let (γ (s))s∈R be such an orbit; setx = γ (0) and look at the relation

p · γ (s)+ φ(γ (s)) = p · γ (0)+ φ(x)+ sH(p)+

∫ s

0

|γ̇ (σ )|2

4R(γ (σ ))2
dσ ; (5.14)
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becauseφ is bounded we have
lim

s→±∞
p · γ (s) = ±∞. (5.15)

Hence—recall thatp is not parallel toe2—there is at least one point of intersection ofγ andγ0.
Uniqueness follows from the last three results. 2

Proof of Theorem 5.1.In two steps: convergence onM0 first, then outsideM0.

1. Convergence onM0. Starting from an orbit ofM0, we may define a homeomorphismh of γ0
as follows: ifx ∈ M0 ∩ γ0, let yx be the only intersection point of the orbit(Tφ(t)x)t∈R and the
line e1 + γ0. Then set

h(x) = yx − e1. (5.16)

This construction can be done for all points ofM0∩γ0; hence we may define—by taking the values
modulo 1—a homeomorphismh of a part of the circle. Letα be its rotation number.

Case 1: α = 0. Thenh has a fixed point. Because two extremals cannot intersect, the sequence of
iterationshn(x) is monotone for everyx ∈ M0(φ); henceM0 is made up of periodic orbits, i.e.
orbits that have the same period as the network. Let us compute the time periodT of S̃(t)ψ onM0.
To do that, it is equivalent to compute the time period of the orbits. Letγ be an orbit ofM0. If T ′

is the time period of the orbits then we have

γ (T ′) = γ (0)+ e1, γ̇ = 2R(γ )2(Dφ(γ )+ p), (5.17)

which yields, after multiplication byDφ(γ )+ p,

d

dt
(φ(γ )+ p · γ ) = 2R(γ )2|Dφ(γ )+ p| = 2H(p)2.

Integration between 0 andT ′ yields, by (5.17)

T ′
=

p1

2H(p)2
, hence T =

p1

H(p)
.

This implies that all orbits inM0 have the same time periodT ′. Due to the Dynamic Programming
Principle (Lemma 5.1), the functionu(t, ·) becomesT ′-periodic int onM0 as time goes to+∞.

2. Convergence outsideM0. The argument is more routine and will only be sketched. The flow
S̃ generates a bounded semiflow onCper; we may define theω-limit set of an initial datav0 in the
usual way, and denote it byω(v0). Then the pointwise relaxed semi-limits

v∞(t, x) := lim sup
n→+∞

S̃(t + nT ′)v0(x), v∞(t, x) = lim inf
n→+∞

S̃(t + nT ′)v0(x)

converge to aT ′ time-periodic subsolution (resp. aT ′ time-periodic supersolution) of the equation
in v:

S̃(T ′)v = v,

coinciding onM0. The upshot is that̃S(T ′)v∞(0, x) andS̃(T ′)v∞(0, x) coincide onM0; for this
we argue exactly as in the proofs of Theorems 1 and 3 in [28] for Hamilton–Jacobi equations with
strictly convex Hamiltonians, the only difference is that here we should use formula (1.3) instead of
the Lax–Olĕınik formula for strictly convex Hamiltonians.
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Hence we have constructed twonT ′ time-periodic solutions of (5.3) coinciding onM0
and between which the whole setω(v0) lies. On the other hand, still because of the Dynamic
Programming Principle, the setM0 is a uniqueness set: namely, twonT ′ time-periodic solutions of
(5.3) coinciding onM0 coincide everywhere; see once again [28] or [19] for more details.

Case 2: α 6= 0. The orbit γ has then an asymptotic slopeq(α). It suffices therefore to
perform a rotationρ−α of angle −2πq(α). The HamiltonianR(x)|Du + p| is replaced by
R(ραx)|Du+ ρ−αp|. 2

Let us end this paper by giving two examples related to combustion.

1. Combustion enhancement.As is stated in Sections 2 and 3, the presence of lines of maximal
speed is enough for the velocity of the front to adjust to the burning velocity on these lines. In
practice, this line of maximal speed models a copper wire that is placed in the solid medium in
order to accelerate the combustion, but is not of zero thickness. In our context, we may be more
explicit: let us consider a front propagating orthogonally to two parallel straight line enclosing an
area of large speed.

THEOREM 5.4 Assume the existence ofδ ∈ ]0,1[ andA > 1 such that

∀x ∈ R, ∀y ∈ [0, δ], R(x, y) > A,

∀x ∈ R, ∀y ∈ [2δ,1], R(x, y) 6 1.
(5.18)

Then, ifA is large enough, we haveT (e1) = H(e1)
−1.

We simply notice that the global orbits ofTφ are enclosed in the stripsSn = R × [n, n+ δ], which
implies thatα = 0. The time period tends toA−1.

2. Combustion inhibition. It occurs in certain applications that some parts of the solid propellants
are prevented from burning. This can be modelled by putting the burning rateR to 0 on these parts.
Assume therefore that

∀x ∈ R, ∀n ∈ N, R(x,±n) = 0,
∀x ∈ R, ∀y /∈ Z, R(x, y) > 0.

(5.19)

Let us first notice the existence of a homogenized HamiltonianH(p): indeed, we may pass to the
limit as ε → 0 in the sequence of problems

(R(x, y)+ ε)|Du+ p| = H e(p), u 1-periodic inR2. (5.20)

Because we haveH ε(p) 6 ‖R‖∞ + ε, the corresponding sequence of solutions(φε)ε, normalized
so thatφε(0) = 0, converges locally uniformly. This yields the existence of a solution to the
homogenized problem. Also notice thatH(p) > 0. Once again the global orbits ofTφ are enclosed
in the stripsR × ]n, n + 1[. If the initial front is they-axis, the front will converge, at least on⋃
n∈Z R × ]n, n+ 1[, to periodic fronts of periodH(e1)

−1.
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