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For several nonlinear hyperbolic models of interest we investigate the stability and large-
time behavior of undercompressive shock waves characterized by a kinetic relation. The
latter are considered as interfaces between two materials with distinct constitutive relations.
We study nonclassical entropy solutions to scalar conservation laws with concave-convex
flux-function and a non-genuinely nonlinear, strictly hyperbolic model of two conservation
laws arising in nonlinear elastodynamics. We use Glimm’s random choice scheme but
we replace the classical Riemann solver with tlenclassicalone described recently

in [21,124]. Our numerical experiments demonstrate the robustness and accuracy of the
random choice scheme for computing nonclassical shock waves which are known to be
very sensitive to dissipation and dispersion mechanisms. In this paper, we study carefully
various issues related to nonclassical shocks and their stability under perturbations. This
numerical study yields important hints for further theoretical investigation on, for instance,
the double N-wave patterput forward when studying the time-asymptotic behavior of
periodic nonclassical solutions.

1. Introduction

We are interested in computing weak solutions of the initial-value problem for one-dimensional,
nonlinear systems of conservation laws of the form

du+dfu)=0, ux,n)eRY xeR, >0, (1.1
u(x,0) =uog(x), xekR. 1.2
Such systems arise in a broad spectrum of problems in compressible fluid dynamics, nonlinear

elastodynamics, etc. Due to the nonlinearfty RY — R¥, solutions are generally discontinuous
and it is well known that weak solutions (in the integral sense) are not uniquely determined by their

TEmail: chalons@onera.fr
iEmaiI: lefloch@cmap.polytechnique.fr

© European Mathematical Society 2003



130 C. CHALONS & P. G. LEFLOCH

initial dataug : R — R, and must be constrained by antropy inequalityf the form
U(u)+9,Fu) <0 1.3

in the weak sense, whe(®, F) denotes an entropy-entropy flux pair for the systen (1.1), satisfying
by definition DFT = DUT Df. Here, we will focus on solutions containingidercompressive
shock wavesthe number of characteristics (wave modes) impinging on the discontinuity is less
than what is usually required for the linearized stability. Undercompressive waves turn out to be not
uniquely determined by (11.3). However, under some assumptions to be specified in several examples
below, the uniqueness of tleatropy solutiorof the problem[(L]1){(1]3) is ensured whekimetic
relation is added along each undercompressive discontinuity connecting a left-hand _state
right-hand state :
uy =" (u_). (14
The kinetic functiong” : RY — RV is a Lipschitz continuous mapping satisfying the basic
conditions
2P U) (o) —u) + f@ @) — fu) =0 (L5)
and
2 =) (U@ (u-)) = U@-)) + F(¢" u-)) — Fu-) <O, (16)
whereA”(u_) denotes the speed of propagation. The nonclassical shocks are also referred to as
phase transition boundariesr interfaces For a complete discussion of the notion of kinetic relation
we refer to the recent monograph [21] and the references therein.

Our general aim is to investigate numerically the stability and large-time behavior of
undercompressive waves using, as a tool, Glimm'’s random choice scheme [9]. In the present paper,
we focus attention ononclassical shocksf strictly hyperbolic systems which fail to be globally
genuinely nonlinear in the sense of Lax. That is, the Jacobian maftix) admits real and distinct
eigenvalues.;(«) and independent eigenvectorgu) (1 < j < N) and for one wave family at
least the producVA; (u) - rj (1) does not keep a constant sign. Specifically, we consider the scalar
conservation law with cubic flux-function (Sectiph 2) and a hyperbolic model arising in nonlinear
elastodynamics (Sectign) 3). In a next study, we will consider phase boundaries of a hyperbolic-
elliptic model arising in phase dynamics.

Let us recall some basic features of the random choice method. Glimm’s scheme [9, 26, 5] is
based on an equidistributed sequerieg),—12, .. of values in the interval0, 1) satisfying, by
definition, for eachv c (0, 1),

1
—cardn |1<n<m anda, € J} - measJ)
m

asm — oo. The scheme is based on solviRiemann problemsorresponding to the piecewise
constant initial data:

wor) = " * =9 @n

ugr, x>0,

whereu; andug are constant states. The Riemann solution has a rather simple form: explicitly,
it is made of several shock waves and rarefaction waves separated by constant states. Glimm’s
scheme proceeds as follows. First, the initial dajan (1.2) is replaced by a piecewise constant
approximatiom@x whereAx > 0 represents the constant mesh size of a regular meshk Ax
fork=...,-1,0,1,.... At each initial discontinuity a Riemann problem is solved locally, using
a classical or a nonclassical Riemann solver. (Such solvers are deried in [21].) At some sufficiently



COMPUTING UNDERCOMPRESSIVE WAVES 131
small timeAr satisfying the stability condition

Ax
At sup|r;(u)| < -
a value is picked up “randomly” within each local Riemann solutions. This provides us with the new
approximation at timeiz. The construction is continued inductively in time until the approximation
uleAt = yA%Al(x 1) is determined for all times. Throughout the present paper, following a
proposal by Collela [5] we use the van der Corput random sequence (see Test 1 below).
All the figures in this paper represent plots— u(x, ) of (1.1) for various examples of
equations and systems and various initial data. The timadixed, and the horizontal and vertical
axes always represent the space coordinate and conservative variable, respectively (unless otherwise
stated). In our study of the time-asymptotic behavior below, we often indicate the number of
iterations needed rather than the timat which the result is shown. Note that we always use a
CFL number equal to.6 (as in [[1.8) above).

Note added in proof. The double N-wave pattern put forward numerically in this paper was
first discovered analytically by C. M. Dafermos in “Large time behavior of periodic solutions of
hyperbolic systems of conservation laws”, J. Differential Equations 121 (1995), 183—-202, and in
“Regularity and large time behavior of a conservation law without convexity”, Proc. Roy. Soc.
Edinburgh 99 (1985), 201-239.

(1.8)

2. Conservation law with cubic flux
To begin with, we consider the nonlinear conservation law
du+0,u®=0, u(x,1)€R, (2.1)

which is the simplest example of a nonlinear hyperbolic equation which fails to be globally
genuinely nonlinear. Following [12, 21] we consider solutions satisfying the conservation Taw (2.1)
in the integral sense, the initial condition

u(x,0) =ug(x), xeR, (2.2
the entropy inequality
3
du® + > du* <0 (2.3
in the integral sense and (for definiteness in our numerical investigations) a kinetic function in the
form
9w =—pu, Pell/21) 2.4)
The parametep is a measure of “how far” the solution is from the classical regime. Precisely,
aspB — 1/2, the Riemann solution converges (pointwise, away from jump discontinuities) to the
classical entropy solution selected by the@ile entropy inequalities. The choige= 1 is not truly
allowed in the general theory af [21], but is a limiting case, referred to amtheémally dissipative
kinetic relation: the corresponding shock waves have zero-entropy dissipation and achieve the

largest propagation speed among all admissible nonclassical shocks.
Observe tha{ (2]4) satisfies the standard assumption made on kinetic functlonis in [21]:

—u < gob(u) < —u/2, u=>0,
—u/2 < gob(u) < —-u, u<D0.
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We also set
O ) = —u—¢"(w).
Given constant stateg, andu g, thenonclassical Riemann solvessociated with (2]1)=(2.4) and

the initial data
up, x<20,
uo(x) =

ugr, x>0,
is given as follows, assuming for definiteness that- 0:

(1) If ugr > ur, the solution is a rarefaction wave connectingto uy.

(2) Ifug €[e*(ur), ur), the solution is a classical shock wave connectipdo u z.

(3) Ifug € (¢°(ur), 9*(ur)), the solution contains a nonclassical shock conneatjn ¢” (i),
followed by a classical shock connectip®(uy) to ug.

(4) Ifug < ¢°(ur), the solution contains a nonclassical shock conneatin ¢” (), followed
by a rarefaction connecting (i) to ux.

Test 1: Van der Corput sequence

We start by comparing the efficiency of the van der Corput sequence versus an “arbitrary” random
sequence. Recall that the van der Corput sequence is defined by

m
ay = Zikz_(k+l)»
k=0

wheren = Y /', ir2%, iy = 0,1, denotes the binary expansion of the integees 1,2, .... The
first few elements of this sequence are

1= 1, a1= 05 2= 1%, a= 025
3= 11, az= 075 4= 100, as= 0125
5=101, a5=0625 6= 110, as= 0375
7=111, a7=0.875 8=1000, ag=0.0625

This sequence is equidistributed within the interval. In particular one can prove that

a; < 0.5, ieven,
a; > 0.5, i odd.

Excellent numerical results in the smooth parts of the solution are obtained with this sequence, as
we now illustrate.
Consider the Riemann data
2, x <0,

=1, 20

The solution is made of a single rarefaction wave and the kinetic function is here irrelevant. The
mesh contains 300 points and the solution is plotted in Figure 1 atrtin6.007. We observe that

the van der Corput sequence gives much more accurate and regular results than an arbitrary random
sequence. That is the reason why from now on we will always make use of this sequence in the next
experiments.



COMPUTING UNDERCOMPRESSIVE WAVES 133

exact ——
van der Corput sampling sequence -------
random sampling sequence --------

L L L L
0 0.1 0.2 0.3 0.4 0.5

FiG. 1. Two random sequences.

Test 2: The Riemann solver
Next, we display the four qualitative behaviors of the Riemann solution for the proplem [2.1)-(2.4),
with

@) urp, x < —0.375
uolx) =
0 ug. x> —0375

and the parameter valyg = 2/3. The mesh contains 300 points and the numerical solutions are
plotted in Figures 2.

e Figure 2A:A single classical shock waveWe plot here the numerical solution at time= 0.05,
corresponding to the datg, = 2 andug = 1.

e Figure 2B:A single rarefaction wave. We plot the solution obtained witly, = 1 andug = 2,
at timer = 0.05.

e Figure 2C:A nonclassical shock wave followed by a classical shock wawe plot the numerical
solution at time = 0.6, corresponding to the Riemann data= 1 anduz = —0.4.
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0.8 L L L L L 08 L L L L
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

FIG. 2A & 2B. Typical solutions: single classical wave.
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FiG. 2C & 2D. Typical solutions: classical wave and nonclassical wave.

e Figure 2D:A nonclassical shock wave followed by a rarefaction wawale plot the numerical
solution at timer = 0.05, corresponding te; = 1 andug = —2.

We observe that the numerical solutions agree with the above nonclassical Riemann solver.
Shock waves are represented by sharp discontinuities which is a main feature of the random choice
scheme: all values taken by the numerical solutions are actual values taken by the exact solutions.
The location of the discontinuities however depends on the random sequence. By contrast, finite
difference schemes generate intermediate points within a propagating discontinuity and a discrete
numerical shock profile (see for instanté [4] and the references therein).

Test 3: Splitting of shock waves

We present three related approaches illustrating an important numerical difficulty encountered with
nonclassical shock waves: the nonclassical Riemann solver depends continuously upon its end states
in the L norm butnotin the pointwise sense. As a matter of fact, this is a major difficulty dealt with
in the general existence theory developed.in [21]. Because of this lack of continuity, some “spikes”
may be observed in the numerical solution, which are genuine features of the exact sblution [21].
Interestingly enough, as demonstrated by our experiments, Glimm’s scheme allows us to determine
the exact value of the solution “inside” the spikes. In general, this feature of the exact solution is
more difficult to observe properly using finite difference schemes which smooth out discontinuities
and spikes; see|[4], [13], [23]).

The Riemann problem associated with

ur, x < —0.375
uo(x) =4
o*(uy), x> —0.375
can be solved with a single classical shock wave.
e Figure 3A:Small perturbations of a classical shocklf we perturb the above initial data by an
arbitrarily small amount¢ > 0, specifically

. _Jur, x < —0.375
ug(x) =
o' (ur) —e, x> —0.375
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T T T T T T —
2 epsilon=0. —— -
epsilon=0.01 -------
epsilon=0.05 --------
epsilon=0.1

L L L L L L L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

FiG. 3A. Small perturbations of a classical shock.

- eps\fon:(). — 2 eps\\0n=‘0. — 1
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Bl . . . . . 15 . . . . . . .
-0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

FiG. 3B. Interaction of a classical shock and a rarefactioa 0 andr = 0.2).

the solution now contains @vo-wave, nonmonotone pattemprecisely a nonclassical shock con-
nectingu ;. to ¢”(u;) followed by a classical shock connectipd(u;) to ¢*(u;) — €.

In Figure 3A, usinge = 0.01,¢ = 0.05, ande = 0.1 successively, we plotted the numerical
Riemann solution for a mesh containing 300 points, at tirme0.18, and with3 = 2/3. We observe
that ase diminishes, the wave speeds of the two shocks become closer and the solution exhibits a
spike,while the intermediate value is determinexiactlyby Glimm’s scheme. This feature ot
shared by finite difference schemes and the presence of spikes may be an important source of error
in numerical computations performed with finite difference schemes.

e Figure 3B:Interaction of a classical shock and a rarefactionSecond, consider the initial data

ur, x < —0.40,
uo(x) = {1 @f(ur) +¢, —040<x < —0.38,
o*(ur) —e, x> —0.38

The solution contains, for small times, a classical shock wave plus a rarefaction wave (with
arbitrarily small strength) which interacts in finite time and generates a nonclassical shock. In
Figure 3B, fore = 0.01,¢ = 0.05, ande = 0.1 successively, we plot the numerical solution
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obtained with 300 points, at time= 0.2 with 8 = 2/3. We note that the total variation of the
solutionafter the interaction is muchreaterthan the total variation of the initial data:

TV (u(t)) > TV (uo).

e Figure 3C:Large perturbations. This last test is different in nature. We demonstrate here
that nonclassical shocks (as well as classical shocks) are stable under large perturbations, in the
following sense: when a large perturbation is added at the initial time within a classical shock wave
(Figure 3C(I)) or a nonclassical shock wave (Figure 3C(ll)), the solutamverges asymptotically

in time to the unperturbed initial wave. More precisely, this is true up to a posshifein the
location of the discontinuity. The phenomenon is clear for small perturbations, at least: in the
nonclassical case, small oscillations on the left-hand side of the nonclassical shock propagate
faster than the shock itself, and so pass on its right-hand side in finite time. During the process,
the location of the shock is shifted. Next, the oscillations are absorbed by the classical (and then
compressive) shock. In the numerical experiments, the amplitude of the perturbation lies between
—0.42 et—0.35. At the time under consideration in Figure 3C(l), the unperturbed shock should be
located at the point-0.42.

' ' initial data

' 1=0.06261
t=0.06261 without oscillations ------- B

B ‘ ‘ ‘ ‘
0.6 0.2 0 02 0.4 0.6 o4 o2 o 02 02

FiG. 3C(l). Large perturbations (classical shock).

initial data

' 1=0.388
1 1=0.38806 without oscillations ------- R
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FiG. 3C(ll). Large perturbations (nonclassical shock + classical shock).
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Test 4: Periodic data

We begin with the initial condition
4
uo(x) = —05+ ) cogbix), xe[-05,05],
i=0

with periodic boundary conditions
u(—=0.5,1) = u(0.5,1).

The average of the solution over one period is constant and, in our experiments, equals about
0.61826856. Throughout, we use a mesh containing 300 points.

e Figure 4A:Classical Riemann solution with positive averag&o begin with, we use the classical
kinetic function corresponding & = 1/2. In Figure 4A, we see that the number of phase transitions

is decreasingn time and that the numerical solution converges to a constant value. In the last figure
we recognize the so-calldd-wavewhich is well known for scalar conservation laws with convex
flux. Since the average value is positive, for sufficiently large times the solution takes positive values
only, and the convex part of the flux only is relevant.

5 T T T T T 0.63 T T T T —
- - 12000 iterations
initial data ------- 32000 iterations -------
300 iterations --------
600 iterations

0.625 -

0.62 -

0.615 -

L L L L L 0.605 L L L
0.6 -0.6

-2
-0.6 -0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.6

5 T T T T T 0.63 T T T T —
- - 12000 iterations
initial data ------- 32000 iterations -------
300 iterations --------
600 iterations

0.625 -

0.615 -

0.61 -

2 L L L L L 0.605 L L L L L
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

FI1G. 4B. Nonclassical Riemann solution with positive average.
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FIG. 4C. Maximally dissipative, nonclassical Riemann solution with positive average.
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FIG.4D(l). The casgg =1 —e.
0.8 T T T T — 0.637 T T T T —
12000 iterations 32000 iterations
32000 iterations -------
0.6 - i 4 0.636 - 4
0.635 - 1
0.4 q
0.634 - q
0.2 1
0.633 - 1
ot 1
0.632 - q
-0.2 q
0.631 - 1
04| 1
0.63 - 4
-0.6 - I 1 0.629 | i
08 . . . . . 0.628 . . . . .
-0.6 -0.4 -0.2 0 0.2 0.4 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

FIG.4D(ll). The case8 =1 —e.

e Figure 4B:Nonclassical Riemann solution with positive averagé/e now use8 = 2/3. We
observe that the number of phase transitions isditireasingand that the solution converges to a
constant state. Again, we recognizeNwwave.Since the average value is positive, for sufficiently
large times the solution takes positive values only, the convex part of the flux only is relevant
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-0.0014 |- q
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FiIG. 4E. Classical Riemann solution with zero average.

and the nonclassical solver coincides with the classical solver in this region, and the solution is
eventually entirely classical. The behavior turns out to be very different when the average value
under consideration is 0 (see Test 4 below and the following ones). Observe also that Figures 4A
and 4B are qualitatively similar, the maximal value in the asymptotic nonclassical solution being
larger than the one in the classical solution.

e Figure 4C:Maximally dissipative, nonclassical Riemann solution with positive averagmally,

we usef = 1 and observe that the numerical solution no longer converges to a constant state.
Instead, the number of phase transitions remeimstantand the solution converges to a piecewise
constant function made skveral phase transitiongith coinciding propagation speeds.

e Figure 4D:The case3 = 1 — € with e small. Takinge = 0.01, we observe that the qualitative
behavior of the solution is quite analogous to Figure 4B. However, the convergeserg gowand

there is a transient regime during which the solution may appear to behave like the one in Figure 4C.
The number of phase transitionsvisry slowly decreasinbut the solution does eventually converge

to the average value of the initial data.

e Figure 4E:Classical Riemann solution with zero averagén the remaining tests in this series,
we consider the periodic initial condition with periog2t

uo(x) = co94nx),
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FIG. 4F. Nonclassical Riemann solution with zero average.

which haszero averageThis property is the starting point of a new feature in the time-asymptotic
behavior we are now highlighting (see also Test 5). Throughout, the mesh contains 300 points and
to begin with we takg8 = 1/2. We observe here that the number of phase transitichscieasing

and that the solutiomonverges to zerm a pointwise sense (see mesh refinements below). More
precisely, a new feature must be pointed out: there is a transient regime during which the solution
exhibits what we will call a “double N-wave pattern”, which is somewhat made of two standard well
known N-wave profiles with opposite monotonicity. To the best of our knowledge, these double N-
wave patterns have never been observed numerically. Note that the p&ialelentually lost as

the numerical solution converges in time to a standard N-wave profile. We refer to Test 5 below for
further mesh refinements.

e Figure 4F:Nonclassical Riemann solution with zero averagblext, we use a coefficieng

strictly between 12 and 1, say8 = 2/3 for instance. The number of phase transitiordeisreasing

and the solution converges to zero. Again, we observe a double N-wave which eventually disappears
and gets transformed into a more familiar single N-wave. See again Test 5 below for a discussion.

e Figure 4G:Maximally dissipative, nonclassical Riemann solution with zero averagmally, we

useB = 1 and notice that the number of phase transitions is comstantin time. The numerical
solution converges to a function made of several phase transitions with coinciding propagation
speeds.
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FiG. 4G. Maximally dissipative, nonclassical Riemann solution with zero average.

Test 5: Mesh refinements

Two mesh refinement experiments are described here. First, fising/3 and

3, x < —0.375
uo(x) =

-3, x> —0375
in Figure 5(I) we plotted the numerical solution corresponding to finer and finer mesh lengths, at
timer = 0.023. As expected, the numerical solution approaches the exact solution determined by
our nonclassical Riemann solver. This illustrates the convergence property of the random choice
scheme to nonclassical entropy solutions.

Second, we plotted in Figure 5(11) the solution with the initial periodic data

uo(x) = cog4nx)

for several mesh lengths. As expected, we observe that the numerical solution gets closer to the
exact asymptotic solution (that is, 0) pointwise as the mesh is refined. Moreover, we do observe
a convergence to the double N-wave profile discovered in Test 4. Let us mention that the precise
asymptotic shape of the exact solution is not known for large values of fimg we conjecture that

it is composed of a double N-wave. It would be very interesting to check this conjecture from the
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Fi1G. 5(1). Mesh refinement (global solution and zooms).
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FI1G. 5(I). Mesh refinement (periodic data).

analytical standpoint. To conclude this test, note that the averaged mass of the two lower solutions
in Figure 5(11) is not zero: this is due to the fact that Glimm’s schenmotconservativieOf course,

this also explains the fact that for very large times the double N-wave patterns eventually disappear
in the previous simulations.
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3. Hyperbolic model of nonlinear elastodynamics

We now turn to the study of the extension of the properties we have pointed out in the
previous section to a model of nonlinear elastodynamics. We consider the following model of two
conservation laws for the mass and momentum of some nonlinear material, with prescribed initial
data(vg, wo):

ov—oyo(w)=0, xeR,t>0,

oyw — dyv =0, 3.1

(v(x,0), w(x, 0)) = (vo(x), wo(x)), x €R,

wherev andw represent the velocity and the deformation gradient of the material, respectively. The
strain-stress functioa is taken to be

o(w) = w + mw, (3.2

with m = 2 for the numerical experiments below (except when mentioned otherwise). The Cauchy
problem [[3.11) is supplemented with the followitkinetic functionfor each undercompressive
nonclassical shock:

P () = —pw, @3

whereg € [1/2,1) is a parameter. We refer tb [24] for a detailed discussion of the nonclassical
Riemann solver corresponding to this problem. We simply recall here that when1/2 the
nonclassical Riemann solver actually coincides with the classical solver characterized, for instance,
by the Liu entropy criterion. Whef > 1/2, the Riemann solution may contain shock waves which
violate the Liu criterion, are undercompressive, and satisfkietic relation

wy =¢P(w_) for shock with positive speed, @4
w_ = ¢P(wy) for shock with negative speed. '

As was noticed for scalar conservation laws, the maximally dissipative kinetic relation corres-
ponding tog = 1 is not strictly allowed in the general theory (seel[21]) but can be regarded as an
interesting limiting case. The corresponding shock waves have zero-entropy dissipation and achieve
the largest propagation speed (in modulus) among all admissible nonclassical shocks.

Test 6: Splitting of shock waves
e Figure 6A:Small perturbations of a classical shockWe consider the Riemann initial data

1,1+¢€), x <05

vo(x), wo(x)) =

(vo(x), wo(x)) (—11. -3). x > 05.
and we plot the corresponding numerical solution for several values\Whene = 0, the exact
solution of the Riemann problem is a single classical shock. We see that the structure for arbitrary
small values is entirely different from the one witk = 0. In particular, theL.*°-norm of the
solution isnot continuousase — 0. We use a mesh with 600 points by unit intervak 0.4, and

B =2/3.
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Fi1G. 6B(ll). Interaction of two classical shocka component).

e Figure 6B:Interaction of two classical waves.As in the scalar case, two incoming waves (of

the same family) may interact and can generate a nonclassical shock wave. The total variation
of the solution increases at the interaction anditheomponent becomes nonmonotone after the
interaction. Of course, it is well known that for hyperbolic systems of conservation laws, the total
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variation may increase at interactions; however, the increase here is not of the order of the product
of the strengths of the incoming waves. Specifically, we consider the initial data

(1, 1.2, x < —0.1,
(vo(x), wo(x)) = § (—1.72814176—-0.337385342, —0.1<x < 0.1,
(=11, -3), x>01,

and we plot the solutions after various iteration numbers. We use a mesh with 300 points per unit
interval.

e Figure 6C:Large perturbations. Finally, we observe that the nonclassical Riemann solver (as
well as the classical one) is stable under possibly large perturbations. Oscillations ranging between
—0.03 and 0 are introduced in a given initial data. The discontinuity is located at 0 when no
oscillations are present. The left-hand state is taken tewpew;) = (0, 1) and the right-hand

state is(vg, wg) = (—6.71190015066—2). We use a mesh containing 200 points per unit interval.

We observe that the unperturbed profile is recovered asymptotically in time, but the position of the
discontinuity is shifted.

3

T T
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: H 2000 iterations -----
2+ q i | 4000 iterations ---
0 6000 iteration:

T
initial data —

L L L L 7 L L L L
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FiG. 6C(l). Large perturbation® (component).
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T
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-0.5
Ak
a4k
15+
2 15+
25 2 !
3 . . . . . 25 . . . .
0.4 0.2 0 0.2 0.4 210 5 0 5 10 15

FiG. 6C(ll). Large perturbationsu( component).
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Test 7: Periodic data

As in the scalar case, we now study the asymptotic behavior of the solutions for several kinetic
functions. We use the stress function given by (3.2), but now mwith 0.05, and a mesh containing
1000 points.

e Figure 7A:The classical case. First, we consider the cage= 1/2 and the following periodic
initial data:
(0,0.9), X < X,
(vo(x), wo(x)) = 1 (0, —0.2), x0 < x < x1, (3.5
(0,0.9), X > X1,

wherexg andx; will be specified shortly. Each of the following computations is performed over the
unit interval [-0.5, 0.5] with periodic boundary conditions.

First, we choosep = 0 andx; = 0.3 so that the corresponding average of wg is positive,
preciselywg = 0.22. Thev and w components are plotted in Figures 7A(l) and 7A(ll), while
Figure 7A(l1l) shows the two Riemann invariants

w w
v — / vo'(x)dx and v+ / Vo'(x)dx
after linearization near the average vaitg that is,

v—+o'(wo)w and v+ /o/(wo) w.

We observe that as the time evolves, these variables exiibistandardV-waves propagating at

speed with opposite signs, as is well known from the general theory of genuinely nonlinear systems.
Second, we choosggy = —0.3 andx; = —0.3 + 2/3, so that the averages o and wg

are both 0. Figures 7A(IV) and 7A(V) show theandw components, respectively. TiRiemann

invariantslinearized near 0, that is,

v—+/od’Ow and v+ +/0c’(0)w,

exhibit adouble N-wave pattern;see Figure 7A(VI). We recall that the same behavior of the
conservative variable was observed in the scalar case. (Compare with Figures 4E, 4F and 5(ll).)
Recovering this new feature for a system of conservation laws is an interesting issue.

e Figure 7B:The nonclassical case.We now study the nonclassical valge= 3/4 together with
the following periodic initial data:

0.1,0.4), x < xo,
(vo(x), wo(x)) = 3 (0, —0.2), xg < x < x1,
(0.1,04), x > x1.

Figures 7B(l), 7B(ll), and 7B(lll) correspond to the choige= 0 andx; = 3 (so that the average

of wo is 0.22), while Figures 7B(1V), 7B(V), and 7B(VI) show the cagge= —0.3 andx; = —0.3—

2/3 for which the average afg equals zero. The same asymptotic behaviors as in the classical case
are observed for the linearized Riemann invariants, thatasdardN -waves(Figure 7B(lll)) and
doubleN-wavegFigure 7B(VI)), depending on the averageua.



COMPUTING UNDERCOMPRESSIVE WAVES 147

0.15 ! ! T . — 0.008 ! ! ! . —
initial data —— 40000 iterations
300 iterations ------- 60000 iterations -------
= 0.006 |- 1
01 1
0.004 [ 1
0.05 | ]
0.002 | ]
of 1 of 1
-0.002 | 1
0.05 - 1
-0.004 | 1
04 1 1
-0.006 1
0.15 . . . . . 0,008 . . . \ \
06 0.4 0.2 0 0.2 04 0. 0.6 0.4 0.2 0 02 0.4 0.
FiG. 7A(l). Classical Riemann solution component).
0.24
05 . - - T Al data 40000 iterations
300 iterations ------- 60000 iterations -------
04 1
0.235 |- 1
0.3 L 1
A\
\ 023 1
02} 4 1
01 J 0.225 ]
of ]
022 | 1
01 1
! ] 0.215 |- 1
02} ! ! 4
03 . . . . . 0.21 . . . . .
“06 04 0.2 0 0.2 04 06 08 04 02 0 02 04 o€
FIG. 7A(ll). Classical Riemann solution(component).
0.09 ! ! ! — 0.106 T T . . —
40000 iterations 40000 iterations
60000 iterations ------- 60000 iterations -------
0092 L 1 o104t 1
0.102 |- ]
-0.004 J fee
011 1
-0.096 - 1
0.098 |- 1
-0.098 | 1
0.096 |- 1
01 1
0.094 |- 1
-0.102 | N
0.092 |- 1
-0.104 [ 1 0.09 - 1
0.106 . . . . . 0.088 . . . \ \
0.6 0.4 0.2 0 02 0.4 0. 06 0.4 02 0 0.2 04 0.

FiG. 7A(Il). Classical Riemann solution. (Linearized Riemann invariants.).
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FiG. 7A(VI). Classical Riemann solution. (Linearized Riemann invariants.).
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FiG. 7B(Ill). Nonclassical Riemann solution (Linearized Riemann invariants).
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e Figure 7C:The maximally dissipative nonclassical casélere we investigate the choige= 1,
with the following periodic initial data:

(-0.3,0.4), x < -0.3,
(vo(x), wo(x)) = 1 (0, —0.2), —-03<x <—-0.3+2/3,

(-0.3,0.4), x> -03+2/3.
Here, the average of the component equals zero. Figure 7C(l) shows the compoweatter
various numbers of iterations. For large times, we observe (as in the scalar case) that the solution
tends to a piecewise constant function made of two phase transitions satisfying the prescribed kinetic
relation. Sinces = 1, they have the same propagation speed. Observe also that the number of phase
transitions isequalto the number of phase transitions in the initial data.

It is worth pointing out that another qualitative behavior can be observed with the maximally

dissipative solver. Indeed, if we consider the periodic initial data

(0,0.4), x < —0.3,
(vo(x), wo(x)) = § (0, -0.2), —0.3 <x <—-0.3+2/3,
(0,0.4), x> —03+2/3,
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0.5

140000 iterations'

initial data’
100 iterations -------

0.4

03f |
02}

01

<04

0.2 1 ~H = T 1 0.15 |

03} : ! ; ] 02l

L L L L L L L L L
-0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 0.4

FiG. 7C(VI). Initial data made of four phase transitions ¢omponent).

(the average ofvg is 0, as is the average of), we now observe @ouble N-wave patternon
the linearized Riemann invariants, and for large times, the solution does not seem to converge to a
solution made of phase transitions with equal propagation speeds. Asymptotically, the solution does
contain two phase transitions, that is, exactlyshenenumber as there were in the initial data.

We give another test of interest which demonstrates that the number of phase transitions may be
asymptoticallylarger than the one in the initial data. Consider the periodic initial data

(-0.3,04), x < -03,
(vo(x), wo(x)) = {(0.15,-0.2), —-0.3<x < —-0.3+2/3,
(-0.3,0.4), x> -0.3+2/3

We plotted thew component of the solution in Figure 7C(V). For large times, we observe a solution
made offour phase transitions with coinciding propagation speeds.
To conclude this section, consider a periodic initial data made of four phase transitions, precisely

(0.1,0.9), x < —0.4,
0.2,-0.3), —-04<x < -01,
(vo(x), wo(x)) = 1 (0, 0.4), —01<x<01,
(0, —-0.2), 0.1<x <03,
(0.1,0.9), x> 03

We plotted thav component of the numerical solution in Figure 7C(VI). Observe that here none of
the averages afy or wq is zero. For sufficiently large times, we obtain a solution made of two phase
transitions (propagating with the same speed), so that the number of transitions has decreased with
respect to the one in the initial data.

Test 8: Mesh refinements
Consider the initial data
1, 3), x <0,

(vo), wolx)) = {(0.2, —4), x>0
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FIG. 8A. System case: convergence (globabmponent and zooms).

We plot the numerical solution in Figures 8A and 8B for several mesh lengths, at 106 and
for g = 2/3. This test illustrates that the random choice method converges very sharply to the exact
nonclassical solution of the problem under consideration.

4. Conclusions

In this paper, we have studied from a numerical point of view two hyperbolic models giving rise

to nonclassical undercompressive shock waves, namely the scalar conservation laws and the model
of elastodynamics when the flux is a cubic function. We have investigated the stability and time-
asymptotic properties of classical and nonclassical entropy solutions.

(1) We have demonstrated that Glimm’s scheme converges to exact solutions, even when the
classical Riemann solver is replaced with a nonclassical Riemann solver.

(2) It is well known that for classical entropy solutions the total variation is a nonincreasing
functional for scalar conservation laws, and for systems, it may increase only by the quadratic
product of the incoming wave strengths at mast [9]. This is no longer true for nonclassical
solutions[[21]. We have numerically observed that, under small perturbations, classical shock
waves may besplit into a nonclassical shock and a classical ongjch is the reason why
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FIG. 8B. System case: convergence (globatomponent and zooms).

thetotal variation of nonclassical solutions may increase drastica#ijthe solution evolves in

time. From a theoretical standpoint, this was already known when considering the nonclassical
Riemann solvers (see [21] for more details). The present paper contributes to stress this feature
from the numerical perspective. Glimm’'s scheme allows one to compute fine structures of
exact solutions with high accuracy. On the other hand, finite difference schemes smooth out
discontinuities, which may be disastrous when computing small-scale sensitive waves such as
nonclassical shocks (and phase boundaries).

We have studied the time-asymptotic behavior of periodic solutions. We found that any
periodic solution asymptotically converges to a constant state and, more precisely, approaches
a well knownN-wave patterrwhen the average of the initial data is nonzero but approaches

a “double N-wave pattern”if this average equals zero. In the latter, nonclassical double
N-waves contain two interfaces propagating with a speed fulfilling the Rankine—Hugoniot
relation and the kinetic relation. These conclusions hold for the conservative variable in the
scalar case (Secti¢n 2) and for the linearized Riemann invariants for the system (Bection 3).
It would be very interesting to determine this pattern analytically. It is conceivable that the
existence of a double N-wave pattern is typical of classical and nonclassical solutions of
general hyperbolic systems which fail to have globally genuinely nonlinear characteristic
fields.
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(4) Special attention was devoted to the maximally dissipative kinetic function, which allows us to

exhibit still another interesting behavior of nonclassical entropy solutions. Generally speaking,
the numerical solution converges for large times to an oscillating pattern involving only two
constant values and a finite number of transitions propagating with the same speed. In addition,
this number may decrease as well as increase in time.

A follow-up paper will investigate to which extent our conclusions remain valid for the

hyperbolic-elliptic version of (3]1). Additional difficulties arise in this context, for instance the lack
of continuous dependence and uniqueness of the nonclassical solvér {see [25]), which we will have
to address from the numerical standpoint.

To close this paper, we emphasize that Glimm’'s scheme compares favorably with numerical

methods for computing nonclassical shock waves. In particular, by taking into account diffusive and
dispersive terms directly within a finite difference scheme, it is possible to compute nonclassical
shock waves with arbitrary accuracy and to approach a prescribed kinetic relation generated by a
zero diffusion-dispersion limit. See [13], [23], [31./[4], [22]. However the accuracy deteriorates with
shocks with large strength and with large-time computations.

10.

In contrast, Glimm’s scheme

e converges to the correct solution satisfying the prescribed kinetic relation for all nonclassical
shock waves, even with arbitrary strength,

e is very flexible and encompasses arbitrary kinetic functions, which need not be generated by a
specific diffusive-dispersive mechanism, but may be determined by experiments (for instance),

e and allows one to determine reliable large-time asymptotics of nonclassical solutions.
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