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Computing undercompressive waves with the random choice scheme.
Nonclassical shock waves
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For several nonlinear hyperbolic models of interest we investigate the stability and large-
time behavior of undercompressive shock waves characterized by a kinetic relation. The
latter are considered as interfaces between two materials with distinct constitutive relations.
We study nonclassical entropy solutions to scalar conservation laws with concave-convex
flux-function and a non-genuinely nonlinear, strictly hyperbolic model of two conservation
laws arising in nonlinear elastodynamics. We use Glimm’s random choice scheme but
we replace the classical Riemann solver with thenonclassicalone described recently
in [21, 24]. Our numerical experiments demonstrate the robustness and accuracy of the
random choice scheme for computing nonclassical shock waves which are known to be
very sensitive to dissipation and dispersion mechanisms. In this paper, we study carefully
various issues related to nonclassical shocks and their stability under perturbations. This
numerical study yields important hints for further theoretical investigation on, for instance,
the double N-wave patternput forward when studying the time-asymptotic behavior of
periodic nonclassical solutions.

1. Introduction

We are interested in computing weak solutions of the initial-value problem for one-dimensional,
nonlinear systems of conservation laws of the form

∂tu + ∂xf (u) = 0, u(x, t) ∈ RN , x ∈ R, t > 0, (1.1)

u(x, 0) = u0(x), x ∈ R. (1.2)

Such systems arise in a broad spectrum of problems in compressible fluid dynamics, nonlinear
elastodynamics, etc. Due to the nonlinearityf : RN

→ RN , solutions are generally discontinuous
and it is well known that weak solutions (in the integral sense) are not uniquely determined by their
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initial datau0 : R → RN , and must be constrained by anentropy inequalityof the form

∂tU(u) + ∂xF(u) 6 0 (1.3)

in the weak sense, where(U, F ) denotes an entropy-entropy flux pair for the system (1.1), satisfying
by definitionDF T

= DUT Df . Here, we will focus on solutions containingundercompressive
shock waves:the number of characteristics (wave modes) impinging on the discontinuity is less
than what is usually required for the linearized stability. Undercompressive waves turn out to be not
uniquely determined by (1.3). However, under some assumptions to be specified in several examples
below, the uniqueness of theentropy solutionof the problem (1.1)–(1.3) is ensured when akinetic
relation is added along each undercompressive discontinuity connecting a left-hand stateu− to a
right-hand stateu+:

u+ = ϕ[(u−). (1.4)

The kinetic functionϕ[ : RN
→ RN is a Lipschitz continuous mapping satisfying the basic

conditions
−λ[(u−) (ϕ[(u−) − u−) + f (ϕ[(u−)) − f (u−) = 0 (1.5)

and
−λ[(u−) (U(ϕ[(u−)) − U(u−)) + F(ϕ[(u−)) − F(u−) 6 0, (1.6)

whereλ[(u−) denotes the speed of propagation. The nonclassical shocks are also referred to as
phase transition boundariesor interfaces. For a complete discussion of the notion of kinetic relation
we refer to the recent monograph [21] and the references therein.

Our general aim is to investigate numerically the stability and large-time behavior of
undercompressive waves using, as a tool, Glimm’s random choice scheme [9]. In the present paper,
we focus attention onnonclassical shocksof strictly hyperbolic systems which fail to be globally
genuinely nonlinear in the sense of Lax. That is, the Jacobian matrixDf (u) admits real and distinct
eigenvaluesλj (u) and independent eigenvectorsrj (u) (1 6 j 6 N ) and for one wave family at
least the product∇λj (u) · rj (u) does not keep a constant sign. Specifically, we consider the scalar
conservation law with cubic flux-function (Section 2) and a hyperbolic model arising in nonlinear
elastodynamics (Section 3). In a next study, we will consider phase boundaries of a hyperbolic-
elliptic model arising in phase dynamics.

Let us recall some basic features of the random choice method. Glimm’s scheme [9, 26, 5] is
based on an equidistributed sequence(an)n=1,2,... of values in the interval(0, 1) satisfying, by
definition, for eachJ ⊂ (0, 1),

1

m
card{n | 1 6 n 6 m and an ∈ J } → meas(J )

asm → ∞. The scheme is based on solvingRiemann problemscorresponding to the piecewise
constant initial data:

u0(x) =

{
uL, x < 0,

uR, x > 0,
(1.7)

whereuL anduR are constant states. The Riemann solution has a rather simple form: explicitly,
it is made of several shock waves and rarefaction waves separated by constant states. Glimm’s
scheme proceeds as follows. First, the initial datau0 in (1.2) is replaced by a piecewise constant
approximationu∆x

0 where∆x > 0 represents the constant mesh size of a regular meshxk = k ∆x

for k = . . . , −1, 0, 1, . . . . At each initial discontinuity a Riemann problem is solved locally, using
a classical or a nonclassical Riemann solver. (Such solvers are derived in [21].) At some sufficiently
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small time∆t satisfying the stability condition

∆t sup|λj (u)| <
∆x

2
, (1.8)

a value is picked up “randomly” within each local Riemann solutions. This provides us with the new
approximation at time∆t . The construction is continued inductively in time until the approximation
u∆x,∆t

= u∆x,∆t (x, t) is determined for all times. Throughout the present paper, following a
proposal by Collela [5] we use the van der Corput random sequence (see Test 1 below).

All the figures in this paper represent plotsx 7→ u(x, t) of (1.1) for various examples of
equations and systems and various initial data. The timet is fixed, and the horizontal and vertical
axes always represent the space coordinate and conservative variable, respectively (unless otherwise
stated). In our study of the time-asymptotic behavior below, we often indicate the number of
iterations needed rather than the timet at which the result is shown. Note that we always use a
CFL number equal to 0.5 (as in (1.8) above).

Note added in proof. The double N-wave pattern put forward numerically in this paper was
first discovered analytically by C. M. Dafermos in “Large time behavior of periodic solutions of
hyperbolic systems of conservation laws”, J. Differential Equations 121 (1995), 183–202, and in
“Regularity and large time behavior of a conservation law without convexity”, Proc. Roy. Soc.
Edinburgh 99 (1985), 201–239.

2. Conservation law with cubic flux

To begin with, we consider the nonlinear conservation law

∂tu + ∂xu
3

= 0, u(x, t) ∈ R, (2.1)

which is the simplest example of a nonlinear hyperbolic equation which fails to be globally
genuinely nonlinear. Following [12, 21] we consider solutions satisfying the conservation law (2.1)
in the integral sense, the initial condition

u(x, 0) = u0(x), x ∈ R, (2.2)

the entropy inequality

∂tu
2
+

3

2
∂xu

4 6 0 (2.3)

in the integral sense and (for definiteness in our numerical investigations) a kinetic function in the
form

ϕ[(u) = −βu, β ∈ [1/2, 1). (2.4)

The parameterβ is a measure of “how far” the solution is from the classical regime. Precisely,
asβ → 1/2, the Riemann solution converges (pointwise, away from jump discontinuities) to the
classical entropy solution selected by the Oleı̆nik entropy inequalities. The choiceβ = 1 is not truly
allowed in the general theory of [21], but is a limiting case, referred to as themaximally dissipative
kinetic relation: the corresponding shock waves have zero-entropy dissipation and achieve the
largest propagation speed among all admissible nonclassical shocks.

Observe that (2.4) satisfies the standard assumption made on kinetic functions in [21]:

−u < ϕ[(u) 6 −u/2, u > 0,

−u/2 6 ϕ[(u) < −u, u < 0.
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We also set
ϕ](u) = −u − ϕ[(u).

Given constant statesuL anduR, thenonclassical Riemann solverassociated with (2.1)–(2.4) and
the initial data

u0(x) =

{
uL, x < 0,

uR, x > 0,

is given as follows, assuming for definiteness thatuL > 0:

(1) If uR > uL, the solution is a rarefaction wave connectinguL to uR.
(2) If uR ∈ [ϕ](uL), uL), the solution is a classical shock wave connectinguL to uR.
(3) If uR ∈ (ϕ[(uL), ϕ](uL)), the solution contains a nonclassical shock connectinguL to ϕ[(uL),

followed by a classical shock connectingϕ[(uL) to uR.
(4) If uR 6 ϕ[(uL), the solution contains a nonclassical shock connectinguL to ϕ[(uL), followed

by a rarefaction connectingϕ[(uL) to uR.

Test 1: Van der Corput sequence

We start by comparing the efficiency of the van der Corput sequence versus an “arbitrary” random
sequence. Recall that the van der Corput sequence is defined by

an =

m∑
k=0

ik2−(k+1),

wheren =
∑m

k=0 ik2k, ik = 0, 1, denotes the binary expansion of the integersn = 1, 2, . . . . The
first few elements of this sequence are

1 = 12, a1 = 0.5, 2 = 102, a2 = 0.25,
3 = 112, a3 = 0.75, 4 = 1002, a4 = 0.125,
5 = 1012, a5 = 0.625, 6 = 1102, a6 = 0.375,
7 = 1112, a7 = 0.875, 8 = 10002, a8 = 0.0625.

This sequence is equidistributed within the interval. In particular one can prove that

ai < 0.5, i even,

ai > 0.5, i odd.

Excellent numerical results in the smooth parts of the solution are obtained with this sequence, as
we now illustrate.

Consider the Riemann data

u0(x) =

{
2, x < 0,

4, x > 0.

The solution is made of a single rarefaction wave and the kinetic function is here irrelevant. The
mesh contains 300 points and the solution is plotted in Figure 1 at timet = 0.007. We observe that
the van der Corput sequence gives much more accurate and regular results than an arbitrary random
sequence. That is the reason why from now on we will always make use of this sequence in the next
experiments.
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FIG. 1. Two random sequences.

Test 2: The Riemann solver

Next, we display the four qualitative behaviors of the Riemann solution for the problem (2.1)–(2.4),
with

u0(x) =

{
uL, x < −0.375,

uR, x > −0.375,

and the parameter valueβ = 2/3. The mesh contains 300 points and the numerical solutions are
plotted in Figures 2.

• Figure 2A:A single classical shock wave.We plot here the numerical solution at timet = 0.05,
corresponding to the datauL = 2 anduR = 1.

• Figure 2B:A single rarefaction wave. We plot the solution obtained withuL = 1 anduR = 2,
at timet = 0.05.

• Figure 2C:A nonclassical shock wave followed by a classical shock wave.We plot the numerical
solution at timet = 0.6, corresponding to the Riemann datauL = 1 anduR = −0.4.
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FIG. 2A & 2B. Typical solutions: single classical wave.



134 C. CHALONS & P. G. LEFLOCH

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

u

-2

-1.5

-1

-0.5

0

0.5

1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

u

FIG. 2C & 2D. Typical solutions: classical wave and nonclassical wave.

• Figure 2D:A nonclassical shock wave followed by a rarefaction wave.We plot the numerical
solution at timet = 0.05, corresponding touL = 1 anduR = −2.

We observe that the numerical solutions agree with the above nonclassical Riemann solver.
Shock waves are represented by sharp discontinuities which is a main feature of the random choice
scheme: all values taken by the numerical solutions are actual values taken by the exact solutions.
The location of the discontinuities however depends on the random sequence. By contrast, finite
difference schemes generate intermediate points within a propagating discontinuity and a discrete
numerical shock profile (see for instance [4] and the references therein).

Test 3: Splitting of shock waves

We present three related approaches illustrating an important numerical difficulty encountered with
nonclassical shock waves: the nonclassical Riemann solver depends continuously upon its end states
in theL1 norm butnot in the pointwise sense. As a matter of fact, this is a major difficulty dealt with
in the general existence theory developed in [21]. Because of this lack of continuity, some “spikes”
may be observed in the numerical solution, which are genuine features of the exact solution [21].
Interestingly enough, as demonstrated by our experiments, Glimm’s scheme allows us to determine
the exact value of the solution “inside” the spikes. In general, this feature of the exact solution is
more difficult to observe properly using finite difference schemes which smooth out discontinuities
and spikes; see [4], [13], [23]).

The Riemann problem associated with

u0(x) =

{
uL, x < −0.375,

ϕ](uL), x > −0.375,

can be solved with a single classical shock wave.

• Figure 3A:Small perturbations of a classical shock.If we perturb the above initial data by an
arbitrarily small amountε > 0, specifically

uε
0(x) =

{
uL, x < −0.375,

ϕ](uL) − ε, x > −0.375,
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FIG. 3B. Interaction of a classical shock and a rarefaction (t = 0 andt = 0.2).

the solution now contains atwo-wave, nonmonotone pattern,precisely a nonclassical shock con-
nectinguL to ϕ[(uL) followed by a classical shock connectingϕ[(uL) to ϕ](uL) − ε.

In Figure 3A, usingε = 0.01, ε = 0.05, andε = 0.1 successively, we plotted the numerical
Riemann solution for a mesh containing 300 points, at timet = 0.18, and withβ = 2/3. We observe
that asε diminishes, the wave speeds of the two shocks become closer and the solution exhibits a
spike,while the intermediate value is determinedexactlyby Glimm’s scheme. This feature isnot
shared by finite difference schemes and the presence of spikes may be an important source of error
in numerical computations performed with finite difference schemes.

• Figure 3B:Interaction of a classical shock and a rarefaction.Second, consider the initial data

u0(x) =


uL, x < −0.40,

ϕ](uL) + ε, −0.40 < x < −0.38,

ϕ](uL) − ε, x > −0.38.

The solution contains, for small times, a classical shock wave plus a rarefaction wave (with
arbitrarily small strength) which interacts in finite time and generates a nonclassical shock. In
Figure 3B, forε = 0.01, ε = 0.05, andε = 0.1 successively, we plot the numerical solution
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obtained with 300 points, at timet = 0.2 with β = 2/3. We note that the total variation of the
solutionafter the interaction is muchgreaterthan the total variation of the initial data:

T V (u(t)) > T V (u0).

• Figure 3C:Large perturbations. This last test is different in nature. We demonstrate here
that nonclassical shocks (as well as classical shocks) are stable under large perturbations, in the
following sense: when a large perturbation is added at the initial time within a classical shock wave
(Figure 3C(I)) or a nonclassical shock wave (Figure 3C(II)), the solutionconverges asymptotically
in time to the unperturbed initial wave. More precisely, this is true up to a possibleshift in the
location of the discontinuity. The phenomenon is clear for small perturbations, at least: in the
nonclassical case, small oscillations on the left-hand side of the nonclassical shock propagate
faster than the shock itself, and so pass on its right-hand side in finite time. During the process,
the location of the shock is shifted. Next, the oscillations are absorbed by the classical (and then
compressive) shock. In the numerical experiments, the amplitude of the perturbation lies between
−0.42 et−0.35. At the time under consideration in Figure 3C(I), the unperturbed shock should be
located at the point−0.42.
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Test 4: Periodic data

We begin with the initial condition

u0(x) = −0.5 +

4∑
i=0

cos(5ix), x ∈ [−0.5, 0.5],

with periodic boundary conditions

u(−0.5, t) = u(0.5, t).

The average of the solution over one period is constant and, in our experiments, equals about
0.61826856. Throughout, we use a mesh containing 300 points.

• Figure 4A:Classical Riemann solution with positive average.To begin with, we use the classical
kinetic function corresponding toβ = 1/2. In Figure 4A, we see that the number of phase transitions
is decreasingin time and that the numerical solution converges to a constant value. In the last figure
we recognize the so-calledN-wavewhich is well known for scalar conservation laws with convex
flux. Since the average value is positive, for sufficiently large times the solution takes positive values
only, and the convex part of the flux only is relevant.
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FIG. 4C. Maximally dissipative, nonclassical Riemann solution with positive average.
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• Figure 4B:Nonclassical Riemann solution with positive average.We now useβ = 2/3. We
observe that the number of phase transitions is stilldecreasingand that the solution converges to a
constant state. Again, we recognize anN-wave.Since the average value is positive, for sufficiently
large times the solution takes positive values only, the convex part of the flux only is relevant
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FIG. 4E. Classical Riemann solution with zero average.

and the nonclassical solver coincides with the classical solver in this region, and the solution is
eventually entirely classical. The behavior turns out to be very different when the average value
under consideration is 0 (see Test 4 below and the following ones). Observe also that Figures 4A
and 4B are qualitatively similar, the maximal value in the asymptotic nonclassical solution being
larger than the one in the classical solution.

• Figure 4C:Maximally dissipative, nonclassical Riemann solution with positive average.Finally,
we useβ = 1 and observe that the numerical solution no longer converges to a constant state.
Instead, the number of phase transitions remainsconstantand the solution converges to a piecewise
constant function made ofseveral phase transitionswith coinciding propagation speeds.

• Figure 4D:The caseβ = 1 − ε with ε small. Takingε = 0.01, we observe that the qualitative
behavior of the solution is quite analogous to Figure 4B. However, the convergence isvery slow,and
there is a transient regime during which the solution may appear to behave like the one in Figure 4C.
The number of phase transitions isvery slowly decreasingbut the solution does eventually converge
to the average value of the initial data.

• Figure 4E:Classical Riemann solution with zero average.In the remaining tests in this series,
we consider the periodic initial condition with period 1/2:

u0(x) = cos(4πx),
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FIG. 4F. Nonclassical Riemann solution with zero average.

which haszero average. This property is the starting point of a new feature in the time-asymptotic
behavior we are now highlighting (see also Test 5). Throughout, the mesh contains 300 points and
to begin with we takeβ = 1/2. We observe here that the number of phase transitions isdecreasing
and that the solutionconverges to zeroin a pointwise sense (see mesh refinements below). More
precisely, a new feature must be pointed out: there is a transient regime during which the solution
exhibits what we will call a “double N-wave pattern”, which is somewhat made of two standard well
known N-wave profiles with opposite monotonicity. To the best of our knowledge, these double N-
wave patterns have never been observed numerically. Note that the period 1/2 is eventually lost as
the numerical solution converges in time to a standard N-wave profile. We refer to Test 5 below for
further mesh refinements.

• Figure 4F:Nonclassical Riemann solution with zero average.Next, we use a coefficientβ
strictly between 1/2 and 1, sayβ = 2/3 for instance. The number of phase transitions isdecreasing
and the solution converges to zero. Again, we observe a double N-wave which eventually disappears
and gets transformed into a more familiar single N-wave. See again Test 5 below for a discussion.

• Figure 4G:Maximally dissipative, nonclassical Riemann solution with zero average.Finally, we
useβ = 1 and notice that the number of phase transitions is nowconstantin time. The numerical
solution converges to a function made of several phase transitions with coinciding propagation
speeds.
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FIG. 4G. Maximally dissipative, nonclassical Riemann solution with zero average.

Test 5: Mesh refinements

Two mesh refinement experiments are described here. First, usingβ = 2/3 and

u0(x) =

{
3, x < −0.375,

−3, x > −0.375,

in Figure 5(I) we plotted the numerical solution corresponding to finer and finer mesh lengths, at
time t = 0.023. As expected, the numerical solution approaches the exact solution determined by
our nonclassical Riemann solver. This illustrates the convergence property of the random choice
scheme to nonclassical entropy solutions.

Second, we plotted in Figure 5(II) the solution with the initial periodic data

u0(x) = cos(4πx)

for several mesh lengths. As expected, we observe that the numerical solution gets closer to the
exact asymptotic solution (that is, 0) pointwise as the mesh is refined. Moreover, we do observe
a convergence to the double N-wave profile discovered in Test 4. Let us mention that the precise
asymptotic shape of the exact solution is not known for large values of timet , but we conjecture that
it is composed of a double N-wave. It would be very interesting to check this conjecture from the
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analytical standpoint. To conclude this test, note that the averaged mass of the two lower solutions
in Figure 5(II) is not zero: this is due to the fact that Glimm’s scheme isnot conservative! Of course,
this also explains the fact that for very large times the double N-wave patterns eventually disappear
in the previous simulations.
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3. Hyperbolic model of nonlinear elastodynamics

We now turn to the study of the extension of the properties we have pointed out in the
previous section to a model of nonlinear elastodynamics. We consider the following model of two
conservation laws for the mass and momentum of some nonlinear material, with prescribed initial
data(v0, w0):

∂tv − ∂xσ(w) = 0, x ∈ R, t > 0,

∂tw − ∂xv = 0,

(v(x, 0), w(x, 0)) = (v0(x), w0(x)), x ∈ R,

(3.1)

wherev andw represent the velocity and the deformation gradient of the material, respectively. The
strain-stress functionσ is taken to be

σ(w) = w3
+ mw, (3.2)

with m = 2 for the numerical experiments below (except when mentioned otherwise). The Cauchy
problem (3.1) is supplemented with the followingkinetic functionfor each undercompressive
nonclassical shock:

ϕβ(w) = −βw, (3.3)

whereβ ∈ [1/2, 1) is a parameter. We refer to [24] for a detailed discussion of the nonclassical
Riemann solver corresponding to this problem. We simply recall here that whenβ = 1/2 the
nonclassical Riemann solver actually coincides with the classical solver characterized, for instance,
by the Liu entropy criterion. Whenβ > 1/2, the Riemann solution may contain shock waves which
violate the Liu criterion, are undercompressive, and satisfy thekinetic relation

w+ = ϕβ(w−) for shock with positive speed,

w− = ϕβ(w+) for shock with negative speed.
(3.4)

As was noticed for scalar conservation laws, the maximally dissipative kinetic relation corres-
ponding toβ = 1 is not strictly allowed in the general theory (see [21]) but can be regarded as an
interesting limiting case. The corresponding shock waves have zero-entropy dissipation and achieve
the largest propagation speed (in modulus) among all admissible nonclassical shocks.

Test 6: Splitting of shock waves

• Figure 6A:Small perturbations of a classical shock.We consider the Riemann initial data

(v0(x), w0(x)) =

{
(1, 1 + ε), x < 0.5,

(−11, −3), x > 0.5,

and we plot the corresponding numerical solution for several values ofε. Whenε = 0, the exact
solution of the Riemann problem is a single classical shock. We see that the structure for arbitrary
small valuesε is entirely different from the one withε = 0. In particular, theL∞-norm of the
solution isnot continuousasε → 0. We use a mesh with 600 points by unit interval,t = 0.4, and
β = 2/3.
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• Figure 6B:Interaction of two classical waves.As in the scalar case, two incoming waves (of
the same family) may interact and can generate a nonclassical shock wave. The total variation
of the solution increases at the interaction and thew component becomes nonmonotone after the
interaction. Of course, it is well known that for hyperbolic systems of conservation laws, the total
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variation may increase at interactions; however, the increase here is not of the order of the product
of the strengths of the incoming waves. Specifically, we consider the initial data

(v0(x), w0(x)) =


(1, 1.2), x < −0.1,

(−1.72814176, −0.337385342), −0.1 < x < 0.1,

(−11, −3), x > 0.1,

and we plot the solutions after various iteration numbers. We use a mesh with 300 points per unit
interval.

• Figure 6C:Large perturbations. Finally, we observe that the nonclassical Riemann solver (as
well as the classical one) is stable under possibly large perturbations. Oscillations ranging between
−0.03 and 0 are introduced in a given initial data. The discontinuity is located at 0 when no
oscillations are present. The left-hand state is taken to be(vL, wL) = (0, 1) and the right-hand
state is(vR, wR) = (−6.71190015066, −2). We use a mesh containing 200 points per unit interval.
We observe that the unperturbed profile is recovered asymptotically in time, but the position of the
discontinuity is shifted.
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Test 7: Periodic data

As in the scalar case, we now study the asymptotic behavior of the solutions for several kinetic
functions. We use the stress function given by (3.2), but now withm = 0.05, and a mesh containing
1000 points.

• Figure 7A:The classical case.First, we consider the caseβ = 1/2 and the following periodic
initial data:

(v0(x), w0(x)) =


(0, 0.4), x < x0,

(0, −0.2), x0 < x < x1,

(0, 0.4), x > x1,

(3.5)

wherex0 andx1 will be specified shortly. Each of the following computations is performed over the
unit interval [−0.5, 0.5] with periodic boundary conditions.

First, we choosex0 = 0 andx1 = 0.3 so that the corresponding averagew0 of w0 is positive,
preciselyw0 = 0.22. Thev and w components are plotted in Figures 7A(I) and 7A(II), while
Figure 7A(III) shows the two Riemann invariants

v −

∫ w √
σ ′(x) dx and v +

∫ w √
σ ′(x) dx

after linearization near the average valuew0, that is,

v −

√
σ ′(w0) w and v +

√
σ ′(w0) w.

We observe that as the time evolves, these variables exhibittwo standardN -waves,propagating at
speed with opposite signs, as is well known from the general theory of genuinely nonlinear systems.

Second, we choosex0 = −0.3 andx1 = −0.3 + 2/3, so that the averages ofv0 and w0
are both 0. Figures 7A(IV) and 7A(V) show thev andw components, respectively. TheRiemann
invariantslinearized near 0, that is,

v −

√
σ ′(0) w and v +

√
σ ′(0) w,

exhibit a doubleN -wave pattern;see Figure 7A(VI). We recall that the same behavior of the
conservative variable was observed in the scalar case. (Compare with Figures 4E, 4F and 5(II).)
Recovering this new feature for a system of conservation laws is an interesting issue.

• Figure 7B:The nonclassical case.We now study the nonclassical valueβ = 3/4 together with
the following periodic initial data:

(v0(x), w0(x)) =


(0.1, 0.4), x < x0,

(0, −0.2), x0 < x < x1,

(0.1, 0.4), x > x1.

Figures 7B(I), 7B(II), and 7B(III) correspond to the choicex0 = 0 andx1 = 3 (so that the average
of w0 is 0.22), while Figures 7B(IV), 7B(V), and 7B(VI) show the casex0 = −0.3 andx1 = −0.3−

2/3 for which the average ofw0 equals zero. The same asymptotic behaviors as in the classical case
are observed for the linearized Riemann invariants, that is,standardN -waves(Figure 7B(III)) and
doubleN -waves(Figure 7B(VI)), depending on the average ofw0.
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• Figure 7C:The maximally dissipative nonclassical case.Here we investigate the choiceβ = 1,
with the following periodic initial data:

(v0(x), w0(x)) =


(−0.3, 0.4), x < −0.3,

(0, −0.2), −0.3 < x < −0.3 + 2/3,

(−0.3, 0.4), x > −0.3 + 2/3.

Here, the average of thew component equals zero. Figure 7C(I) shows the componentw after
various numbers of iterations. For large times, we observe (as in the scalar case) that the solution
tends to a piecewise constant function made of two phase transitions satisfying the prescribed kinetic
relation. Sinceβ = 1, they have the same propagation speed. Observe also that the number of phase
transitions isequalto the number of phase transitions in the initial data.

It is worth pointing out that another qualitative behavior can be observed with the maximally
dissipative solver. Indeed, if we consider the periodic initial data

(v0(x), w0(x)) =
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(0, 0.4), x < −0.3,

(0, −0.2), −0.3 < x < −0.3 + 2/3,

(0, 0.4), x > −0.3 + 2/3,
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(the average ofw0 is 0, as is the average ofv0), we now observe adoubleN -wave patternon
the linearized Riemann invariants, and for large times, the solution does not seem to converge to a
solution made of phase transitions with equal propagation speeds. Asymptotically, the solution does
contain two phase transitions, that is, exactly thesamenumber as there were in the initial data.

We give another test of interest which demonstrates that the number of phase transitions may be
asymptoticallylarger than the one in the initial data. Consider the periodic initial data

(v0(x), w0(x)) =


(−0.3, 0.4), x < −0.3,

(0.15, −0.2), −0.3 < x < −0.3 + 2/3,

(−0.3, 0.4), x > −0.3 + 2/3.

We plotted thew component of the solution in Figure 7C(V). For large times, we observe a solution
made offour phase transitions with coinciding propagation speeds.

To conclude this section, consider a periodic initial data made of four phase transitions, precisely

(v0(x), w0(x)) =



(0.1, 0.4), x < −0.4,

(0.2, −0.3), −0.4 < x < −0.1,

(0, 0.4), −0.1 < x < 0.1,

(0, −0.2), 0.1 < x < 0.3,

(0.1, 0.4), x > 0.3.

We plotted thew component of the numerical solution in Figure 7C(VI). Observe that here none of
the averages ofv0 or w0 is zero. For sufficiently large times, we obtain a solution made of two phase
transitions (propagating with the same speed), so that the number of transitions has decreased with
respect to the one in the initial data.

Test 8: Mesh refinements

Consider the initial data

(v0(x), w0(x)) =

{
(1, 3), x < 0,

(0.2, −4), x > 0.
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FIG. 8A. System case: convergence (globalv component and zooms).

We plot the numerical solution in Figures 8A and 8B for several mesh lengths, at timet = 0.06 and
for β = 2/3. This test illustrates that the random choice method converges very sharply to the exact
nonclassical solution of the problem under consideration.

4. Conclusions

In this paper, we have studied from a numerical point of view two hyperbolic models giving rise
to nonclassical undercompressive shock waves, namely the scalar conservation laws and the model
of elastodynamics when the flux is a cubic function. We have investigated the stability and time-
asymptotic properties of classical and nonclassical entropy solutions.

(1) We have demonstrated that Glimm’s scheme converges to exact solutions, even when the
classical Riemann solver is replaced with a nonclassical Riemann solver.

(2) It is well known that for classical entropy solutions the total variation is a nonincreasing
functional for scalar conservation laws, and for systems, it may increase only by the quadratic
product of the incoming wave strengths at most [9]. This is no longer true for nonclassical
solutions [21]. We have numerically observed that, under small perturbations, classical shock
waves may besplit into a nonclassical shock and a classical one,which is the reason why
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FIG. 8B. System case: convergence (globalw-component and zooms).

thetotal variation of nonclassical solutions may increase drasticallyas the solution evolves in
time. From a theoretical standpoint, this was already known when considering the nonclassical
Riemann solvers (see [21] for more details). The present paper contributes to stress this feature
from the numerical perspective. Glimm’s scheme allows one to compute fine structures of
exact solutions with high accuracy. On the other hand, finite difference schemes smooth out
discontinuities, which may be disastrous when computing small-scale sensitive waves such as
nonclassical shocks (and phase boundaries).

(3) We have studied the time-asymptotic behavior of periodic solutions. We found that any
periodic solution asymptotically converges to a constant state and, more precisely, approaches
a well knownN -wave patternwhen the average of the initial data is nonzero but approaches
a “double N -wave pattern” if this average equals zero. In the latter, nonclassical double
N-waves contain two interfaces propagating with a speed fulfilling the Rankine–Hugoniot
relation and the kinetic relation. These conclusions hold for the conservative variable in the
scalar case (Section 2) and for the linearized Riemann invariants for the system (Section 3).
It would be very interesting to determine this pattern analytically. It is conceivable that the
existence of a double N-wave pattern is typical of classical and nonclassical solutions of
general hyperbolic systems which fail to have globally genuinely nonlinear characteristic
fields.
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(4) Special attention was devoted to the maximally dissipative kinetic function, which allows us to
exhibit still another interesting behavior of nonclassical entropy solutions. Generally speaking,
the numerical solution converges for large times to an oscillating pattern involving only two
constant values and a finite number of transitions propagating with the same speed. In addition,
this number may decrease as well as increase in time.

A follow-up paper will investigate to which extent our conclusions remain valid for the
hyperbolic-elliptic version of (3.1). Additional difficulties arise in this context, for instance the lack
of continuous dependence and uniqueness of the nonclassical solver (see [25]), which we will have
to address from the numerical standpoint.

To close this paper, we emphasize that Glimm’s scheme compares favorably with numerical
methods for computing nonclassical shock waves. In particular, by taking into account diffusive and
dispersive terms directly within a finite difference scheme, it is possible to compute nonclassical
shock waves with arbitrary accuracy and to approach a prescribed kinetic relation generated by a
zero diffusion-dispersion limit. See [13], [23], [3], [4], [22]. However the accuracy deteriorates with
shocks with large strength and with large-time computations.

In contrast, Glimm’s scheme

• converges to the correct solution satisfying the prescribed kinetic relation for all nonclassical
shock waves, even with arbitrary strength,

• is very flexible and encompasses arbitrary kinetic functions, which need not be generated by a
specific diffusive-dispersive mechanism, but may be determined by experiments (for instance),

• and allows one to determine reliable large-time asymptotics of nonclassical solutions.
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