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A hyperbolic free boundary problem modeling tumor growth
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In this paper we study a free boundary problem modeling the growth of tumors with three cell
populations: proliferating cells, quiescent cells and dead cells. The densities of these cells satisfy
a system of nonlinear first order hyperbolic equations in the tumor, with tumor surface as a free
boundary. The nutrient concentration satisfies a diffusion equation, and the free bourdatyr)
satisfies an integro-differential equation. We consider the radially symmetric case of this free
boundary problem, and prove that it has a unique global solution for all the three casEg0O< oo,

Kr = 0andKy = oo, wherekK y is the removal rate of dead cells. We also prove that in the cases

0 < K < oo andKp = oo there exist positive numbesdg andM such thaty < R(r) < M for all

t > 0, while lim;_, oo R(t) = oo inthe caseKp = 0.

Keywords Tumor growth; proliferating cells; quiescent cells; dead cells; free boundary problem;
global solution.

1. The model

A variety of PDE models for tumor growth have been developed in the last three decades. These
models are based on mass conservation laws and on reaction-diffusion processes for cell densities
and nutrient concentrations within the tumor. The surface of the tumor is a free boundary, and one
seeks to determine both the tumor’s region and the solution of the differential equations within
the tumor. Some models assume that all cells in the tumor are in proliferating state, while other
models include cells in quiescent and/or in necrotic state. In some of the latter models, the cells in
different states are assumed to be mixed together, while in other models it is assumed that cells in
different states occupy separate regions in the tumor: The proliferating cells occupy a region near
the tumor’s surface, the necrotic cells lie in the tumor’s central core, and the quiescent cells reside
in an intermediate region; the interfaces between these regions are then also free boundaries.

We refer to [, 59, 17, 18, 23] and references therein for models which are based on reaction-
diffusion equations, and tad [[4,119,120,/22] 24] for models which include hyperbolic equations;
the hyperbolic equations arise from mass conservation laws of concentrations of cells. Some
of these articles include numerical results. Rigorous mathematical analysis including existence,
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uniqueness, and stability theorems, as well as properties of the free boundaries, have been obtained
in [2,[3,[10+16].

In this paper we deal with a mathematical model which was introduced by Pettet, Please, Tindall
and McElwain [20]. This model includes densiti®s Q and D of proliferating, quiescent and
dead (necrotic) cells respectively, and concentraficof nutrients. The cells in different states are
assumed to be mixed within the tumor, and to have the same size. We also assume that the tumor is
uniformly packed with cells, so that

P+ Q + D =const= N. (1.2)

Due to proliferation of cells and to removal of necrotic cells, there is a continuous movement of
cells within the tumor. We shall represent this movement by a velocity fieltle treat the tumor
tissue as a porous medium so that, by Darcy’s law,

v =Vo, o pressure (1.2)
_ Next we assume that living cells can change from proliferating state to quiescent state at a rate
K (C), and from quiescent state to proliferating state at akgteéC). Clearly,

° IEQ(C) is increasing inC, since the tumor grows (i.e., proliferation increases) if the supply
of nutrients increases, and similarly,
e Kp(C)is decreasingirt.

We also assume that quiescent cells become necrotic at & sdt€), where
e Kp(C)is decreasing i,

i.e., the death rate increases as the supply of nutrients decreases.
The proliferating cells also undergo proliferation as well as apoptosis (natural death). We denote
the death rate b 4 (C) and the proliferation rate bz (C). Then,

° I§A(C) is decreasing i, whereas
e Kp(C)isincreasing irC.

Also, since the rate of proliferation is larger than the rate of apoptosis,
e Kp(C) > K4(C).

We finally denote byK » the rate of removal of dead cells from the tumor; this rate is a nonnegative
constant independent 6f.
We assume that satisfies a diffusion equation which, for simplicity, we take to be

V2C-AC=0 inR2@) (>0, (1.3)

and
C=Co 0noas2(), (1.49)

where £2(¢) is the tumor region at time. The mass conservation laws for the densities of
proliferating cells, quiescent cells and dead cell®i¢r) take the following form:

P . N - _ _ _

ar +div(Pv) = [Kp(C) — Kg(C) — KAa(O)]P + Kp(C)Q, (1.5)
a . - _ _ _

3—? +div(QD) = Ko(C)P — [Kp(C) + Kp(O)]Q, (1.6)

% +div(D?) = KA(C)P + Kp(C)Q — KgD. @7
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If we add [1.5)-{(1.]7) and usk (1.1, ([1.2), we obtain an equation for the pressure
NV? = Kg(C)P — KgD. (1.8)
Clearly, [1.7) may be replaced Qy (]L.8). If we repldedy N — P — Q and set
c=C/Co, p=P/N, q=0/N,

we arrive at the following system of equations:

VZE—a=0 inQ(), (1.9)

c=1 o0onaR@), (1.10)

aa—f +div(pVo) = [Kp(@) — Ko@) — Ka(@]p + Kp(©§  in 2(0), (1.12)
W 4 dv@Vo) = Ko@p— [Kp@ + Kp@q  in 20), (1.12)
V20 = —Kg +[Kp(@ + Krlp+ Krg in (1) (1.13)

where _
K;(@) = K;(Coé) fori=A,B,D,P,Q.
We assume that the pressureon the surface of the tumor is equal to the surface tension (see
Greenspari[18]), that is,
o=yk 0Nna2() (y >0, (1.14)
wherex is the mean curvature.
The motion of the free boundary is given by the continuity equation

do _
o
wherer is the outward normal an#f, is the velocity of the free boundary in the outward normal

direction.
Given initial conditions

v-n=1V,, or V., 0nas2(), (1.15)

20), px,0, qkx0, (1.16)

we would like to determine the family of domaitiz(¢) and functionsp(x, 1), q(x, t), c(x, t) and
o (x, 1) satisfying the systenfi (1.9)—(1]15).

In this paper we assume that the ddta (1.16) are radially symmetric and consider radially
symmetric solutions. We note that tumors groimrvitro are typically of spherical shape, which
makes the study of radially symmetric solutions quite relevant.

In §3 we reformulate the radially symmetric problem as a system of equations in a fixed domain.
In 8§3+4 we prove global existence and uniqueness of the solution. The rest of the paper is devoted
to establishing uniform bounds from above and below for the free boundary.

2. Reformulation of the problem

We consider the radially symmetric case and set

7= |i|ﬁ’ 20)={r < R@®} (= |x]).
X
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Then the systenf (1].9]—(1]15) becomes:

%%(ﬂ%) =i (O<r<R@),t>0), (2.1
?(o, H=0 &RW.0O=1 (t>0), 2.2)
.
) _ ) L . ) ) _ )
m + uo- = [KB(©) — Kg(¢) — Ka(©)]p + Kp(©)g — [(KB(©) + Kr)p + Krq — KR]p
O<r<R®,t>0, (23
3G _9g - _ L ) ) ) _
3 + e = Ko(@p —[Kp(c) + Kp(©)]g — [(Kp(©) + Kr)p + Krg — Krlq
O<r<R@®,t>0, (24
1
) = [Kp@ + Kelp+ Knd — Kn O <r < R(), 1>0), 25)
70,1)=0 (t>0), (2.6)
dl;f” —@(R(1),1) (> 0) 2.7)

with initial data
R(0), p(r, 0, g 0).

In writing up this paper we found it convenient (but it is perhaps a matter of taste) to transform
the above system in the unknown dom&in ¢) : 0 < r < R(t), t > 0} into a system in the fixed
domain{(r,?) : 0 < r < 1, t > 0}. To do that we first note that, for giveR(z), the solution of

(2.1) and[(2.R) is given by

&) = fgr)]:('n\/r;ﬁ;; - c<REt), R(t)), (2.8)
where
c(r, R) = % 0O<r<1, R>0), ¢0OR) = % (R>0). (2.9)
We introduce the functions
p(r,t) = p(rR@), 1), q(r,1) =q@R@),0), ulr1)= % O<r<1:20.

Then we obtain the following system of equations:

op op
m + Vo = [Kp(c) — Kg(c) — Ka(o)lp + Kp(c)g — [(Kp(c) + Kr)p + Krq — KRlp
0<r<1:>0), (2.10)
dq dq
5 TV = Ko(eo)p —[Kp(c)+ Kp(o)lg — [(Kp(c) + Kr)p + Krg — KRrlq

O0<r<1t>0), (211
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wherec = ¢(r, R(t)), ¢(r, R) as in[2.9), and

v, ) =u(,t)—ru(l,t) O<r<1l t>0), (2.12)
i2(%(?214) =[Kp(c) + Kr]lp+Krg—Kr (O <r<1 t>0), (2.13

,
u@,)=0 (@ > 0), (2.19
? =R®u,t) (> 0), (2.15

with initial data
R(O) = Ro, p(r,0) =po(r), qr,0=q0(r) O<r<l, (2.16)

where

Ro>0, po(r) >0, qo(r) >0, po(r)+gor)<l (O<r<). (2.17)

In what follows it will be useful to rewritg (2.13) in the integrated form

1 (7
ur,t) = r_Z/o [(Ks(c(o, R®))) + Kr)p(p. 1) + Krq(p, t) — Krlp? dp, (2.18)

and, correspondingly, rewritg (2]15) in the form

dR(7)
dr

1
= R(®) /O [(Kg(c(r, R(t)) + Kr)p(r, 1) + Krq(r, 1) — Kg]r?dr. (2.19)

It will also be useful to note that the normalized concentration of deadd€eld — p — g satisfies
the equation

E;—Ctl + vg—f =Ka(e)p+ Kp(c)g —[Kp(c)p— Krd + Kgld O<r<1, t>0. (2.20)

In §3 we establish local existence and uniqueness for the system (2.10)—(2.16), phd in §4 we
prove global existence. The rest of the paper is devoted to the derivation of bounds on the free
boundaryr = R(¢). In 885-6 we prove that in the case0Kr < oo there exist positive numbers
3o andM (depending on the initial data) such thigt< R(¢) < M forall+ > 0. In 87 we extend the
results of 88BH6 to the extreme case where the dead cells are instantly removed from the tumor, that
is, D = 0 or, formally, Kz = oo. Finally, in §8 we consider the other extreme case where the dead
cells are not removed at all from the tumor, thatds = 0, and prove thaR(¢) oo ast — oo.

The asymptotic behavior of the solutionzas> oo remains to be explored.

To end this section we note that, Py (2.8, R) is strictly increasing im and strictly decreasing

in R, and
1|eimoc(r’ R)=1 uniformlyforO0<r < 1,

fo<r <1, (2.21)
if r = 1.

These properties will be frequently used later on.

: _J0
Rlinoo C(r’ R) o { 1
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3. Local existence and uniqueness
Throughout this paper we make the following assumptions:

(@) K;(c) i = A, B, D, P, Q) are nonnegative and continuously differentiable fa£ @ < 1,

and
Kgp(c) > Ka(c), Ki()>0, Kp(c)>0 (0<c<1]),
Kp(0) = Kp(0) =0,
K/ (c) <0, Kp(c) <0, K’Q(c) <0, Ki@)+Kpe)>0 (0<c<),
Ka(D) =Kp(1) =Ko() =0;
(b) po(r) andgo(r) are continuously differentiable forQ r < 1, and [2.1]7) holds.

The conditionK ; (c) + K,(c) > 0 is based on experimental datal[20]. In this section and the next
one we assume thatQ Ky < .

We shall denote by the vector(p, q), by fi(r, R, S) and f2(r, R, 5) the right-hand sides of
(2.10) and[(2.1]1), respectively, and bihe vector( f1, f2). We shall also set

g(r, R, ) = (Kp(c(r, R)) + KRr)p + Krq — KR.

Then the system of equatiofis (2.10), (2.11) and {2.18) takes the following simpler form:

B oD b, RO, S0 ©<r <1150, @1
r
uirt) = = / g(p. R).s(p.0)p?dp (0 <r <1, 1>0). (3.2)
r=Jo

Sincev(0,t) = v(1,¢) = Oforallt > 0, the linesr = 0 andr = 1 in the(r, ¢)-plane are
characteristic curves of the hyperbolic equation§ in(3.1); hence all the characteristic curves starting
from points in the region & » < 1,7 > 0 remain in this region for > 0, and they do not intersect
each other (see the proof of Theorem| 3.1).

To prove local existence we introduce, for a givEBn> 0, the space&(r of pairs of functions
(R(t), s(r, 1)) defined for 0< r < 1, 0< ¢ < T and satisfying the following conditions:

(i) R(t) € C[0, T], R(0) = Rg, and
IR(t) — Rol <8 (0<t<T) (3.3)

where O< § < Rp is an arbitrary but fixed number (one may take, for instadice,Ro/2);
(i) s(r, 1) € C([0, 1] x [0, T]), S(r, 0) = so(r) = (po(r), go(r)), and

Is(r, )| < OTa<X1(|SO(r)| +lMD+1=Mo+1 (0<r<1 0<r<T). (3.4)
S U

We take the metrid in X1 to be the uniform metric, i.e.,

R R = R1(t) — R - .
d((R1,81), (R2, &) = MaX |Ry(t) = Ra()[+ _ max _[si(r. 1) = (r 1)l

X I VRl

It is obvious thatXy is a complete metric space.
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We shall prove the existence of a local solution by using the contraction mapping theorem for a
mappingF: Xt — X7, which is defined as follows:

Given apairR, s) € Xr, defineu(r, r) andu(r, 1) by (3.3) and[(2.12), respectively, and consider
the initial value problems:

ag(art 2 +v(r, t)aggrr’ D _ f(r, R(t),8(r,1)) forO<r <1, 0<r<T, (3.5)
8,00 =5(r,0) for0O<r <1, (3.6)

d];:t) = R(Hu(l,1) for0O<t<T, 3.7)

R(0) = Ro. (3.8)

Clearly, the proble7.8) has a unique solutigr) € C1[0, T]; in fact,
t
R(t) = Roexp(/ u(l, r)dr), 0<t<T. (3.9)
0

Since
lg(r, R(t),s(r, )| < (Kp(D) + Kp)(Mo+ 1) + Kr(Mo+ 1) + Kr = My,

we havelu(l, ¢)| < M1/3, which implies that
IR(t) — Rol < LRoM1TeSMT  for0<t<T.

HenceR (¢) satisfies) iff" is sufficiently small, namelyR(r) satisfies the condition (i) if" is
small.

To see that the problerp (3.5)—(B.6) has a unique solution we introduce the characteristic curves
r=r(, 1) (0<&<1,0<r<T)of the equation(3]5) by

{r =v(r,t) for0O<r<T, (3.10)

rli=o=£§ (0<§ <1,

wherer denotes the derivative of in the time variable. Since(r, t) is continuous in(r, r) and
continuously differentiable im, these curves are uniquely defined, satisfying @(&¢,r) < 1 for
0<&<1,0<t<Tandr©0,t)=0,r(1,t) =1for0< ¢t < T. Furthermore,

Mai’ D _ exp(/ot z—:(r@,r), r)dr),

so that

ar(&,t
e 4T < % <e'T (0<E<1 0<t<T), Aaconstant (3.11)

It follows that thf: mappingg, t) — (r(&,1), 1) is a 1-1 correspondence of the regionIDx [0, T]
to itself. Settings(&, 1) = &(r (€. 1), 1), the problem[(3]5)1(3l6) reduces to the initial value problem

A(E, 1)
3t

85,00 =) (0<E<D). (3.13)

=f(r&, 1), R(t),5&,1) for0<&<1 0<t<T, (3.12)
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Using the standard ODE theory, we can find a unique solti‘(g)n) of the problem-Z)-.S)
forall0 < & <1,0< ¢ < Tif Tis sufficiently small, and(, 1) is continuously differentiable in
(&, 1). Further, from the formula

-~ t ~
&E 1) = (&) + /O Hr(z. 7). R(z), &, 1)) dr

we can easily show that there exists a constdptdepending omp, but independent of', such
that
I3, 1) < Mo+ MoT  (0<&E<1 0<r<T). (3.14)

Now let¢é = &(r, t) be the inverse function of = r(&,¢) for fixed 0 < ¢ < T, and letS(r, 1) =
s(g(r 1), t). Then3(r, r) is the unique solution of the proble. 3 )fo{& <1,0<t LT
which, by [3.14), satisfies

I8(r, )| < Mo+ MoT < Mp+1 O<r<10<r<7) (3.15)
if T is sufficiently small. Hencé(r, ¢) satisfies the condition (ii). We now set
F(R,9) = (R, ).

Then, for sufficiently smalf", F is a mapping oX 7 into itself.
Differentiating [3.1P) with respect o we find that

d (98,0 03(5, 1)
E( o8 )— 35760, RO), 5(¢, 1) 08

]
+8—(r(§,t),R(t),é(é,t))eXIO(/ —v(r(é, f),f)df>,
r o or

03,00
wheredf/dsis the Jacobian df(r, R, s) with respect tes. By standard ODE theory it follows that
'%;) < Mo+ MsT (0<E<1 0<1<T),
whereM3 is a constant independent Bf(as long ag" is small). Recalling[(3.]1) we conclude that
a8(r, 1) T
S| < Mo+ MsT)e' < Mo+1 (0<r<10<:<T) (3.16)
,

providedT is sufficiently small.
We now prove thatF is a contraction mapping for sufficiently smdll Let (R;, ;) € X7 for
i =1,2and set

u(r,t) = r_Z/O g(p, Ri(1),si(p,1)p"dp,

vi(r,t) =ui(r,t) —ru; (1, 1),
(Ri,%) = F(Ri,s), d=d((Ri,%1), (Rz, ).
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By direct calculation we get

lu1(r,t) —u2(r,t)| < Mad O<r<1 0<t<T), (3.17)

so that, by[(3.]9),
maxT |R1(1) — Rz(t)| MsTd, (3.18)

(UNES

here and in what follows)/; denote constants independentof
Next, settings, = 51 — $ we can write

at " or ’ (3.19)

BE 05
—Sk—i—vl(r l)—S*—A(r,t)kah(r,t) for0<r<1, 0<t<T
5@ 0=0 forO<r <1,

where

1
A(r,t) = /0 g—;(r, R1(1), 051(r, 1) + (1 — 0)3(r, 1)) dO,

0
hr. 1) = — (i, 1) — va(r, r))—s2
+ (Ra() — Ra() / P 0R1(0) + (1 — O)Ra (1), B0, 1)) 6.

Using the boundg (3.15], (3]16) fér, % and the estimat¢ (3.17), we deduce the norm estimates

IA(r, 1)
Ih(r, 1)

10\ \T)

<Ms (0<r<
< 0<r<1,0<1<T).

| 1
| M7d ( 1
Hence, integratind (3.19) along the characteristics determined by the equatthn=d vi(r, r) as
before, we find that

Jnax [S1(r, 1) — Sp(r, 1)| < MgTd. (3.20)

O\r\ , 0T
Combining [3.IB) and (3.20), we get
d((R1,%1), (R1, %)) < 3d((R1, 51). (R2, %))

provided(Ms + Mg)T < 1/2. This proves the desired assertion.
We summarize:

THEOREM3.1 Letép < Rp < 1/80 (8o > 0) and

Orgr8l<><1(lso(r)| + 1M < Mo

Then there is a unique solution of the systém (2.10)—[2.16) far/0< 1, 0 < ¢ < T providedT
is sufficiently small, depending alp and Mg. O



168 S. CUI & A. FRIEDMAN

4. Global existence
In this section we prove the following theorem:

THEOREM4.1 The systenj (2.]10J—(2]16) has a unique solution farf< 1,0< 7 < oo, and it
has the following properties:

pr,t) =20, q@r,t) =20, p@rt)+q@,1) <1, 4.1
Roe™ 3Kr1 < R(1) < Roe3kKe 1, (4.2
R(1)
1 1
zKr < < 3Kp0). 4.3
3R R(I) 3 B( ) ( )

Proof. In view of Theorenj 3]1, the solution established for small times can be extended step-by-
step to allr > 0 provided we can prove that if the solution exists foQ < 7, T > 0 arbitrary,
then thea priori estimates[(4]1)[ (4.2) and

ap(r, 1)
or

aq(r, 1)
or

<M (4.4)

cn |

hold for0< r < 1,0< ¢ < T, whereM is a positive constant which may depend®n
To prove [4.1), we note thdt (3]12) can be written in the form

pgt)=mﬂaoman+ﬂu@JM@Jx
"ft D _ o, DB 1) + azaE, DG E, D),

whereaq;; (£, t)'s are continuous functions and
a12(6,t) = Kp(c(r(§,1), R(®))) 20, az(§,1) = Kg(c(r(,1), R(t))) = 0.

Sinceﬁ(s,O) = po¢) > 0 andé(é,O) = go(&) > 0, by a standard comparison theorem for
systems of ordinary differential equations (see, for instance, [21]) we infer that

pEN=0, & =0
for0< & <1,0<r <T.Hence
pr,t) 20, q@r,1) >0
for0<r <1,0<t < T. Substituting the second inequality info (4.20) we get

ad ad
E+Ua—+[KB(C)P_KRd+KR]d>O O0O<r<1, 0<t<T).
r

Sinced(r,0) = 1 — po(r) — qo(r) > 0 for 0 < r < 1, by rewriting the above inequality in
characteristic form and then using a comparison theorem, we conclude that also

d@r,t) 20, or prt)+q@ 1) <1

for0<r<1,0<r<T.
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Next, by [2.19) and (4]1) we have
. 1
R(r) > —KRR(I)/ r2dr = —%KRR(t) forO<t<T
0

and
1
R(t) = R(I)/O [Kp(c(r, Rt)p(r,t) — Kr(A — p(r,t) — q(r, t))]r2 dr
1
< KB(l)R(t)/ r2dr = 1Kkg(HR@) forO<t <T,
0

so that[(4.B) holds[ (4.2) is an immediate consequende gf (4.3).
Finally, (4.4) follows from an argument similar to the proof|[of (3.16). O

5. Lower bound onR(z); 0 < Kg < 00
In this section and the next one we assume thatBz < oo.
THEOREMb5.1 There exists & > 0 such that
R@) >89 forallr > 0. (5.1)

Proof. Lets > 0 be a sufficiently small number to be determined later on. We shall prove that in
any interval [y, 2] such thatR (1) = § andR(¢) < § for 1 <t < 2 we have

R(t) > 86 3KkT  form <t <, (5.2)

whereT = T(8) is a positive constant depending &tut not on f1, #2]. Clearly, if this is proved
then the desired assertion follows.
Let

V() =3R%1), Ve(t) =R /Olp(r, Drédr, Vo) = R3(1) /Olq(r, Hr?dr,
V(1) = R3(1) /o 1d(r, nr¥dr, W) = V() + Ve@).
By direct calculations,
V() =R /O e (e)pr?dr — KgVp (1),
Ve(t) = R3(t) /O 1{[1<B(c> — Ko(e) = Ka(©]p + Kp(c)g}r?dr, .

1
Vo(r) = R3(1) /0 {Ko(©)p —[Kp(c) + Kp(c)]g)r?dr,

1
Vp(t) = R3(t)/o [Ka(c)p + Kp(c)glr?dr — KrVp(0),
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wherec = ¢(r, R(t)), p = p(r, t), etc. Since:(r, R) is decreasing itk and increasing in, we have

c(r,R(t)) =2 c(r,8) > ¢c(0,8) =c(d) forO<r <1, n<r<n.

(5.4)

Note that lim_,.o c(8) = 1, so that by the assumptioa) fve can find & > 0 sufficiently small such

that
= %min{ZKB (c(8) — Kg(c(d) — Ka(c(8)), Kp(c(8))} > O.

Then, by[(5.#) and the assumptia) (ve have, for; < ¢ < 1,
W) = V() + Vp(r)

1
= R3(t)/o {(2Kp(c) — Ko(c) — Ka(©)]p + Kp(c)g}r?dr — KrVp (1)
1
> 2uR%(1) / (0 + )2 dr — KpVp ()
0
1
> wR3(0) f @p + )r2dr — KgVi (1)
0

1
> uR3(r) / @p+q+dyr?dr — (Kg + )Vp(t)
0
=uW((@)—vVp(t), v=Krp+u.

Hence )
W) =2 uW@) —vVp() forr <t <.

(5.5)

Lete = max{Kp(c(8)), Ka(c(8))}. Then by [(5.4) and the assumptia) (ve have, for; <1 < 1,

1
Vp(t) = R3(t)/0 [Ka(c)p + Kp(c)glr?dr — KrVp(t)

1
< eR%(1) / (p + )r2dr — KxVp(0)
0
<eW (D) — KrVp ()

so that .
Vp(t) <eW(t) — KrVp(t) forrp <t <.

From [5.5) and[(5]6) we get

d £ ve
—[VD(I) - —W(I)] < —|:KR - —} Vp(t) (1<t <1).
dt 2 w

Since limy_,g & = 0, we can také so small that also
a=Kg—ve/u=>0.

It follows that

E[VD(t) - £W(t)} < —Ol|:VD(t) - EW(I)} (<t <)
dt % %

(5.6)
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Hence
V(1) — W) < [VD(rl) - fwao}e—“(’—’ﬂ < Vp(rpe@t=m),
w %

and sinceVp (1) < V(r1) = 8%/3,
€ 53 —a(t—t1)
Vp(@®) < —W(@) + Ee Vo fory <t <. (5.7)
w
Substituting[(5.]7) intd (5]5) we obtain

: 83
W) > BW(@) — %e‘“("”) form <t < 1o, (5.8)
where
B=u—ve/u>0

if § is sufficiently small.
Let z(¢) be the solution of the initial value problem

2(t) = Bz(t) — (v83/3)e " fort > 0,

2(0) = §3/3. (5:9)
SinceW (11) > V(11) = §3/3, we have, by comparison betwepn [5.8) 4nd (5.9),
Wit) >zt —1) forrp <t <. (5.10)
Clearly, lim_  z(t) = 00, so that there existsB = T'(§) > 0 such that
2(t) > 383 fore >T. (5.11)
By (4.3) we have
R(t) > R(t)e 3KR—1) > 567 3KRT  forp <1< +T. (5.12)

Using the inequalitieq (5.10]—(5]12) we can now prove thai (5.2) holds. Indeed<ifry + T
then [5.2) is an immediate consequence[of (5.12). On the other hand>ifr1 + T then for
n <t <11+ T we have the estimate (5]12), and for- T < t < 1, we have, by[(5.70) anf (5.]11),

SR =2V(1) = W) > 2t — 1) > 56°,

sothatR(¢) > § > se KrT/3, O

6. Upper bound onR(¢); 0 < Kp < o0

THEOREM6.1 There exists a positive constatsuch that

R(t) <M forallt > 0. (6.1)
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Before giving the proof of this theorem we need some preparations:(LeR) be as before
(see[(2.9)). Since(0, R) is strictly decreasing iR, limg_,~ c(0, R) = 0 andc(0, 0) = 1, for any
0 < ¢ < 1 there exists a uniquB, > 0 such that(0, R;) = ¢ andc(0, R) < ¢ forall R > R,.
Sincec(r, R) is strictly increasing in- andc(1, R) = 1, it follows that for anyR > R, there exists
a unique O< r(e, R) < 1 such that

<e fO<r<r(s, R),
cr,R){=¢ ifr=r( R), (6.2)
e if r(e, R) <r <1
By differentiating the implicit equation
c(r(e,R),R) =¢
in R, we find that?{&R) — _d¢ /¢ 0 50 that (e, R) is strictly increasing irR.
LEMMA 6.2 limg_or(s,R) =1forall0< s < 1.

Proof. Sincer (e, R) is increasing inR andr (e, R) < 1, we see that} = limg_, o (e, R) exists,
and 0 < r} < 1. Assume that} < 1 for somee. Thenr > r(e, R) for all r} < r < 1 and
R > R, implying thatc(r, R) > ¢ forall r} < r < 1andR > R, which contradicts the fact that
limg_ o c(r, R) = 0forall 0 < r < 1. Hence the desired assertion follows.

LEMMA 6.3 LetU(r) = 3Vp(t) + 2V (t) + Vp(2). There exist positive numbersand Mg such
that, forany 0< 11 < 12 < 00, if R(t) > Mg forty <t < to then

U@t) < —%U(r) forn <t < 1. (6.3)
Proof. By (5.3) we have the following identity:

1
U@ = R3(I)/O {~[(Kg(c) +2K () p+ Kp(c)g+Krd] +[3Kp(c)p+Kp(c)qlir®dr. (6.4)

Let0 < ¢ < 1 and assume tha&(s) > R,. Then by[(6.#) we have

_ r(e.R(1))
U@ < R?’(t){—/ [(Ko(c) +2Ka(0)p + Kp(c)g + Krd]r? dr
0

1

r(e,R(1))
+ / [3Kp(c)p + Kp(c)glr?dr + / [3Kp(c)p + Kp(c)g]r? dr}
0 r

(&,R(1))
r(e,R(1))

< — R3()ymin{Ko(e) + 2K a(e), Kp(e), Kr) f r2dr

0

1 1
+ R¥OBKp(e) + Kp(e)] / r2dr + R30[BK (1) + Kp(D)] / r2dr.
0 r(e.R(1))

Hence
U(t) < —3R3(1) min{K o (e) + 2K a(e), Kp(e), Kr}ri(e, R(t)) + 3R3O[3K 5 (e) + Kp(2)]
+3R3O[BK D) + Kp(D]I[L — r3(e, R(1))]
< —FR3OMIN{K g(e) + 2K A(e), Kp(e), Kg} + 3R31)[3K p(e) + K p(&)]
+R31)[3Kp(1) + Kp(1) + Kg][1 — r(e, R())]:
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in deriving the last inequality we have used the estimate
r3(e, R(t) = 1 3[1—r(e, RM))].

Clearly,
R0 <U® < R%).

Hence

U@t < —3min{Ko(e) + 2K 4 (), Kp(e), Kr)U (1) + [BKp(e) + Kp(@)]U (1)
+ 3b[1 — (e, R(2))]U(2), (6.5)

whereb = 3Kp(1) + Kp(1) + Kg. Since

IimO% min{K o (&) + 2K 4 (e), Kp(e), Kr} = 3 min{K o(0) + 2K 4(0), Kp(0), Kg} =1 > 0

and lim._o[3Kg(e) + Kp(e)] = 0, we can find a sufficiently smadl> 0 such that
—imin{Ko(e) + 2K a(e), Kp(e), Kr} + [3Kp(e) + Kp(e)] < —n/2.
By (6.5), we then have
Ut) < —%U(t) 4 3b[1 — r(e, RO)]U ().
Since limg_ 0o 7 (g, R) = 1, we can find ap > R, sufficiently large such thatil — r (e, R)] <
n/4for R > My, sothatU (¢t) < —(n/dHU () if R(t) > Mo. O

Proof of Theorerfi 6]1Letn and Mg be as in Lemmp 6]3. Take a sufficiently large positive number
M such that® > 3M3, whereM; = max{Ro, Mo}. We claim that

R(t) <M forallz > 0. (6.6)
Indeed, if [6.6) does not hold then we can find two numbgesidz, with 0 < #1 < #> such that
R(t) =My, R@) =M and R@) > M1 > My forrp <t <.

By (6.3), we then have
U(r) < U(r)e 4027 < U(ny).

Since howevel (1) > $R3(t2) = $M3 andU (1) < R3(11) = M3, we getM® < 3M3, which
contradicts the choice aff . O

7. The caseKr = oo

We interpret the cas&z = oo to mean that dead cells are instantly removed from the tumor, that
is, D = 0sothatP + Q = N. In this case, instead df (2]10)—(2115) we have the following system:

ap

0
SRR r)a—’r’ = Kp(©) +[Km(c) — Kn@lp — Knu(@p®. 0<r<1t>0, (7.)
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whereKy(c) = Kp(c) + Kp(c) — Ka(c), Kn(c) = Kg(c) + Kp(c), c = c(r, R(¢)) is as before
(see[(Z.p)), and

v(ir, ) =u@,t)—ru@d,t), 0<r<1,t>0, (7.2)
1 r
u(r,t) = ﬁ](; {—=Kp(c(p, R®)) + Ku(c(p, RO p(p,O}p?dp, 0<r <1 1t>0, (7.3
u@,t) =0, >0, (7.4)
drR L )
e R/o {=Kp(c(r, R(1)) + Ky (c(r, R®))) p(r,t)}rdr, t >0, (7.5

with the initial conditions:
RO)=Rg, p@r 0 =po(r), 0<r<L (7.6)

We assume that the conditiors ((b) (in §2) hold with po(r) + go(r) = 1; it follows, in particular,
thatKy(c) > 0 andK,(c) > 0.
The proofs of Theorenjs 3.1 ahd 4.1 can be easily modified to establish the following result:

THEOREM7.1 The problem[(7]1)F(7.6) has a unique soluti@ir), p(r, ¢)) defined for all 0<
r < 1andr > 0. Moreover, the solution has the following properties:

0<p(r,t) <l forO<r<1, t>0, (7.7)

Roe  3K0O < Ry < Roe3K8D"  fors >0, (7.8)
R(t

k0 < RO gy forrs o0 (7.9)
R()

O

Theorem§ 5]1 ar{d §.1 can also be extended to the syjstgm[(7.1L)—(7.6):
THEOREM 7.2 For the solution of (7]1)=(7.6), there exist positive numBgra/ such that

So < R(t) <M forallr > 0. (7.10)

To prove the lower bound ifi (7..0) we need a preliminary lemmacg.be a positive constant,
0 < ¢og < 1. Consider the initial value problem

&
% = Kp(co) + [Ku(co) — Kn(c0)l2(t) — Ku(co)2?() for1 >0,

2(0) = 0.

(7.11)

It is easily seen that this problem has a unique soluieh for all > 0. We assert thai(r) is
strictly increasing, and & z(¢) < 1 for allz > 0. Indeed, the quadratic equation

Kp(co) + [Ku(co) — Kn(co)lo — Ku(co)o? =0

has exactly two real roots, one positive and less than 1 which we denate,bgnd the other
negative which we denote lay_. The equation fo£(z) can then be rewritten as

az(r)

o Ky (co)(oy — Z() (@) + o).
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From this formulation and the fact that0) = 0 < o it follows immediately (by comparison) that
0 < z() <oy forallt > 0,sothatd(r)/dt > 0and O< z(r) < 1 forallz > 0. One can further
deduce that linL, o 2(7) = o

LEMMA 7.3 Let Mp be a positive constant and 1eR(z), p(r, t)) be the solution of the system

(72)-{7-6). Assume that

R(t) <My forrg<r<n (7.12)

for some 0< 7 < 1. Then, denoting by(7) the solution of the problem (7.]11) witly = ¢(0, Mo),
we have

min p(r,t) > z(t —tg) forrm <t <n. (7.13)

X'

Proof. Sincec(r, R) is increasing in- and decreasing iR, the condition|[(7.1]2) implies that
c(r, R@®)) > c(O,R(t)) 2 c(0,Mg) =co forO<r <1, ro<r<n.
By writing
Kp(c)+[Kpu(c)— Kn(©]p — Knu(©)p® = Kp(©)1— p) + Ky (c)A— p)p — Ko(c)p, (7.14)

one can easily verify that this function is increasing:ifor every fixed 0< p < 1. It follows (by

(71)) that
ap
ot
forO<r <landip <t <n. letr =r, &) (t >0,0< & < 1) denote the characteristic curves
of (7.1), and letp (&, 1) = p(r(z, §), t). Then the above inequality can be rewritten as follows:

Ip. 1)
ot

0
o, r)§ > Kp(co) + [Ku(co) — Ky (co)lp — K (co) p? (7.15)

> Kp(co) + [Ku(co) — Kn(co)lp — Ku(co) p?
(0< & < 1,10 <t < 11). Therefore, by comparison,
pE, 1) =>z2(t—10) forall0<E <L rp<r<h.

Since ming, <1 p(r, 1) = Minoge <1 p(§, 1), the estimate (7.13) immediately follows. |
Proof of Theorern 7]2 Let V(1) andVp(¢) be as before. Then

1
Ve () = R3(1) fo {[K5(0) — Ko(e) — Ka(@]p + Kp(c)gyr? dr. (7.16)

Since the functiorK g (c) — Ko (c) — Ka(c) is strictly increasing i for 0 < ¢ < 1, andK 3 (0) —
Ko(0)— K4(0) = —[Ko(0)+ KA(0)] <0,Kp(l)— Ko(1) — Ka(1) = Kp(1) > 0, we infer that
there exists a constant ¢* < 1 such that

<0 if0<c<c,
Kp(c) —Kg(c) —Ka(c) y =0 ifc=c", (7.17)
>0 ifc*<e<l



176 S. CUI & A. FRIEDMAN

Sincec(0, R) is strictly decreasing iR andc(0,0) = 1, limg_ c(0, R) = 0, there exists a
constantR* > 0 such that
>c* if0 < R < R*,
c(0,R){ =c* if R=R*
<c* if R > R*.

LetR; = % min{Ro, R*}. We assert that for some9 § < Rj, to be specified later,
R(t)>6 forallr > 0. (7.18)

Indeed, if [7.IB) does not hold then we can find two numbgendr, 0 < 11 < f2, such that
R(f1) = R1, R(rp) =8 and
R(t) <Ry fortnn <t <. (7.19)

Letc1 = ¢(0, R1). From [7.18) we see that
c(r,R(1)) 2¢O, R®) 2 c(0,R) =c1 forO<r<L n<t<n,
so that
Kp(c(r, R(1)) — Ko(c(r, R(1))) — Ka(c(r, R(1))) 2 Kp(c1) — Ko(c1) — Ka(c1) =a

forO<r <1, <t < . Note that sinceR1 < R*, we havec; > ¢*, so thatu > 0. Therefore,

from (7.16) we get
1 1
Vp(t) = R3(1) / [Kp(c) — Kg(c) — Ka()lprPdr > aR3(t) / prédr =aVp(t)
0 0

for 11 <t < 12, and, by integration,
Vp(t2) > Vp ()&, (7.20)

We have

1 1
Vp(t2) = R3(12) f p(r. 1% dr < 53 / P2dr = 153,

0 0
3 ! 2 3 ! 2 1p3
Vp(t) = R°(¢ Lt dr > R7 min Lt dr = 2Ry min L 11),
p) = K [ pttr?ar > 2 min pGn) [ r2ar = 3RS min pr o

<<

and, by [(7.P) and the fact th&l(r1) = R1 andR(t2) = 4,
R 3K0 O <5 or gy > 3 log <i>
D

Substituting these estimates info (1.20) we find that

3 3 —3a/Kp(0)
§° > R> min p(r,t1)| — ,
1,0, P( l)(R1>

SUS

or

5\ 3+34/Kp(0)
— > min L 11). 7.21
( Rl) min_ (1) (7.21)

We next derive a lower bound for myg, <1 p(r, t1).
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Let Mg = min{Rg, R*} = 2R1. SinceR(t1) = R1 < Mg andR(0) = Ry > My, there exists a
19, 0 < 19 < 11, such that

R(tp) = Mgy and R(t) < My forrmg<t<n.
By Lemmg 7.3, it follows that migx, <1 p(r, 1) > Z(r — t0) for 1o < r < 11; in particular,

nglp(r 1) = Z(t1 — to). (7.22)

S

SinceR(tg) = Mo andR(t1) = Ry, using again(7]9) we get
Moe 3K0O@ (-0 < o

or

R 3log2
nh—1tz— 1)2 92 _

3
—log| — =
Kp© 0 <Mo Kp(0)
Substituting this into the right-hand side pf (7.22) we obtain a lower bouryt on

m|n t
o, P(r 1) = Z(ao),

which, combined with[(7.31), yields
5 \3+34/Kp(0)
(—) > 2a). (7.23)
R1
This is a contradiction if we take

§ < R (ao))KD(O)/(3(a+KD(O))) )

Hence the lower bound ifi (7.]10) holds.
The upper bound if (7.10) can be established similarly to the proof of Thgorém 6.1, by using
the identity:

d
g [2VP (1) + Vo ()]

1
= R3(t)/0 (—[Kp()g + (Ko(c) + 2K 4(0))p] + [2K 5 (c)p + K p(c)q}r? dr

(recall that in the present ca¥&r) = Vp (1) + Vo (1)). |

REMARK 7.1 The assumptiok ;(c) + K,,(c) > 0 made in(a) is used in this paper only in

the proof of Lemmef_T]S namely, in assertmg that the functiof in [7.14) is increasingTinis
assumption (which is based on experimental data; see [20]), can actually be dropped if|in (7.11) we
replacek s (co) by Kr(co) whereKy = Ky — Kp. ThenKy < Ky and we replacs !. 4) by

Kp(c) + [Ku(c) = Kn(©]p — Ku(e)p? = Kp(e)(L = p) + Ku(e)(L = p)p — Ko(c)p,

and observe that the right-hand side is increasingfor fixed p, so that[(7.1p) holds witl& »;(co)
replaced byK y (co).
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8. ThecasekKgr =0

In the caseK x = 0, dead cells are not removed from the tumor, and fjom[2.19) we have

1
R(1) = R(t)/ Kp(c(r, R0)) p(r,r? dr > 0, (8.1)
0

so thatR(r) increases in. As R(t) increases, the nutrient concentratiain, R(¢)) decreases and
therefore so does the proliferation rate. Thus, it is aqiriori clear whetherR(¢) tends tooco

or whether it remains bounded. We shall prove that the first alternative occurs, at least under the
assumptions that

p(r70)7_é05 Pr(rvo)>0 and dr(rvo)go (0<r<1)5 (82)
Kp(c) 2 Ka(c) O<c<D). 8.3

The assumption (8,.3) is natural: the rate of death of quiescent cells is larger than that of proliferating

cells. The assumption (§.2) is related to the experimental fact that dead cells tend to concentrate in
the inner region of the tumor whereas proliferating cells tend to concentrate in the outer region of

the tumor.

THEOREM8.1 Assume thakz = 0 and that[(8]2)[(8]3) hold. Then
lim R(t) = oo. (8.4)

—>0o0

To prove this result, we need some preliminary lemmas.
LEMMA 8.2 LetKg = 0 and assume thdt (8.2) afd (8.3) hold. Then

prr,t) 20, d(r,t) <0 forallO<r <1, ¢t>0. (8.5)

Proof. Setw = 1—d = p +q. Thenw, = —d,, so that by differentiating (2.20) inand replacing
qr With w, — p, we get
owy owy

—=b b b10,
Y v or 11Wy + b12pr + 010

where
bi1=—v, — Kp(c)p — Kp(c), biz=Kp(c)d+ Kp(c) — Ka(o),

bio = [Kp(c)dp — K (c)p — Kp(©)gler.
Similarly, by differentiating[(2.1J0) im we obtain
apr opr

or TV %r

= boiw, + ba2p, + b2o,

where

b1 = Kp(c), ban=—v+Kp()(1—2p)—Kp(c) — Kg(c) — Kal(o),
bao = {[Kp(c)(1— p) — Kpp(c) — K (©O)]p + Kp(©)glec.
Clearly, b1o, b1, b21 andbyo are nonnegative, by (8.3) and the assumpten(iq §2). Hence by

comparison (cf. the proof of Theorgm }4.1) we conclude that, 1) > O, p.(r,t) > 0 for all
0<r <1,r >0, and the desired assertion follows. O
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LEMMA 8.3 LetKr = 0 and assume thdt (8.2), (B.3) hold. Then, 1) < Oforall 0 < r < 1,
t > 0.

Proof. Sincev(r,t) = u(r,t) —ru(l, 1) andg—’; + %u = Kp(c)p, we have
D1 20) = (2 20) < Ky + Ko
or \ or rv T ar\or ru = RBLPr BEIPCrs
so that, by Lemma 82,
2y 2 2
8_1) —a—v——v>0 forO<r <1, t>0.
ar2  ror 2
Sincev(0, 1) = v(1,t) = Oforallt > 0, the assertion that < O follows by the maximum principle.

O
Let p = p(r, t) be the solution of the initial value problem
Ip(r, 1) o
Y - - - <r<
at [Kp(c) — Ko(c) — Kalc) — Kp(o)p]p forO<r<1,:>0 ©.6)
p(r,0=p@r 0 forO<r <1,

wherec = c¢(r, R(t)) as before. It is easily seen that this problem has a unique solution for all
0<r <1,t >0, and that the following holds:

LEMMA 8.4 Assume that lim, o R(f) = Ry < 00, and thatp(r, 0) is continuousp(r,0) > 0

andp(r,0) 00 <r <1). Then

(Ko + K4)(c(r, Rxo))
Kp(c(r, Rx))

Proof of Theorerp 8]1By (8.1)), R(z) is increasing. If[(8.4) does not hold then

;“m p(r, 1) = poo(r) = maX{O, 1- } forO<r <1 O
—00
R() /' Ro ast — oo, where Ry, < oo. (8.7)

We shall prove thaf (8] 7) leads to a contradiction.
Let p(r, r) be as in Lemmpa 8]4. By Lemmjas H.2,]8.3 gnd (2.10) we have

a
8—’; > [Kp(c) — Ko(c) — Ka(c) — Kg(c)plp for0<r <1, >0,
so that, by comparison with (8.6),

pr,t) = p(r,t) forO<r<1 t>0.

It follows that
1 1
V() = R3(1) / Ka(c(r, RO)p(r. 0r2dr > Kp(c(0, Roo)) - R3(0) / B, D2 dr,
0 0

where, as beforey/ (1) = R3(r)/3. Using Lemm 84 and noticing that, () > 0, je(r) # O for
0 < r < 1, we conclude that

1
lim inf V() > Kg(c(O, Roo)mgof Poo(r)r?dr > 0,
— 00 0

which implies that lim_, ., V() = oo, thus contradictind (8] 7). |
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9. Conclusion

In this paper we have considered a mathematical model of tumor growth in which living cells may
change from proliferating phase to quiescent phase and vice versa. The model involves also dead
cells which are removed from the tumor at ratg. We established the existence and uniqueness of
a global solution, for any given initial data. We also derived global bounds for the r&diusf the
tumor:

So< R(t) <M forallr >0, if Kg > 0, (9.2)

and R(t) — oo ast — oo if Kg = 0; heredp and M are positive constants. The inequalities

in (9.1) suggest that a stationary solution with (finite) positive radiys should exist. This was
recently proved (in[13]) but only for a subsystem of the model, which formally corresponds to the
caseKr = oo. The existence of stationary solutions for the general system, and the determination
of their stability, remain open problems.
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