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A hyperbolic free boundary problem modeling tumor growth
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In this paper we study a free boundary problem modeling the growth of tumors with three cell
populations: proliferating cells, quiescent cells and dead cells. The densities of these cells satisfy
a system of nonlinear first order hyperbolic equations in the tumor, with tumor surface as a free
boundary. The nutrient concentration satisfies a diffusion equation, and the free boundaryr = R(t)

satisfies an integro-differential equation. We consider the radially symmetric case of this free
boundary problem, and prove that it has a unique global solution for all the three cases 0< KR < ∞,
KR = 0 andKR = ∞, whereKR is the removal rate of dead cells. We also prove that in the cases
0 < KR < ∞ andKR = ∞ there exist positive numbersδ0 andM such thatδ0 6 R(t) 6 M for all
t > 0, while limt→∞ R(t) = ∞ in the caseKR = 0.

Keywords: Tumor growth; proliferating cells; quiescent cells; dead cells; free boundary problem;
global solution.

1. The model

A variety of PDE models for tumor growth have been developed in the last three decades. These
models are based on mass conservation laws and on reaction-diffusion processes for cell densities
and nutrient concentrations within the tumor. The surface of the tumor is a free boundary, and one
seeks to determine both the tumor’s region and the solution of the differential equations within
the tumor. Some models assume that all cells in the tumor are in proliferating state, while other
models include cells in quiescent and/or in necrotic state. In some of the latter models, the cells in
different states are assumed to be mixed together, while in other models it is assumed that cells in
different states occupy separate regions in the tumor: The proliferating cells occupy a region near
the tumor’s surface, the necrotic cells lie in the tumor’s central core, and the quiescent cells reside
in an intermediate region; the interfaces between these regions are then also free boundaries.

We refer to [1, 5–9, 17, 18, 23] and references therein for models which are based on reaction-
diffusion equations, and to [4, 19, 20, 22, 24] for models which include hyperbolic equations;
the hyperbolic equations arise from mass conservation laws of concentrations of cells. Some
of these articles include numerical results. Rigorous mathematical analysis including existence,
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uniqueness, and stability theorems, as well as properties of the free boundaries, have been obtained
in [2, 3, 10–16].

In this paper we deal with a mathematical model which was introduced by Pettet, Please, Tindall
and McElwain [20]. This model includes densitiesP , Q and D of proliferating, quiescent and
dead (necrotic) cells respectively, and concentrationC of nutrients. The cells in different states are
assumed to be mixed within the tumor, and to have the same size. We also assume that the tumor is
uniformly packed with cells, so that

P + Q + D = const≡ N. (1.1)

Due to proliferation of cells and to removal of necrotic cells, there is a continuous movement of
cells within the tumor. We shall represent this movement by a velocity fieldEv. We treat the tumor
tissue as a porous medium so that, by Darcy’s law,

Ev = ∇σ, σ pressure. (1.2)

Next we assume that living cells can change from proliferating state to quiescent state at a rate
K̄Q(C), and from quiescent state to proliferating state at a rateK̄P (C). Clearly,

• K̄Q(C) is increasing inC, since the tumor grows (i.e., proliferation increases) if the supply
of nutrients increases, and similarly,

• K̄P (C) is decreasing inC.

We also assume that quiescent cells become necrotic at a rateK̄D(C), where

• K̄D(C) is decreasing inC,

i.e., the death rate increases as the supply of nutrients decreases.
The proliferating cells also undergo proliferation as well as apoptosis (natural death). We denote

the death rate bȳKA(C) and the proliferation rate bȳKB(C). Then,

• K̄A(C) is decreasing inC, whereas
• K̄B(C) is increasing inC.

Also, since the rate of proliferation is larger than the rate of apoptosis,

• K̄B(C) > K̄A(C).

We finally denote byKR the rate of removal of dead cells from the tumor; this rate is a nonnegative
constant independent ofC.

We assume thatC satisfies a diffusion equation which, for simplicity, we take to be

∇
2C − λC = 0 in Ω(t) (λ > 0), (1.3)

and
C = C0 on ∂Ω(t), (1.4)

where Ω(t) is the tumor region at timet . The mass conservation laws for the densities of
proliferating cells, quiescent cells and dead cells inΩ(t) take the following form:

∂P

∂t
+ div(P Ev) = [K̄B(C) − K̄Q(C) − K̄A(C)]P + K̄P (C)Q, (1.5)

∂Q

∂t
+ div(QEv) = K̄Q(C)P − [K̄P (C) + K̄D(C)]Q, (1.6)

∂D

∂t
+ div(DEv) = K̄A(C)P + K̄D(C)Q − KRD. (1.7)
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If we add (1.5)–(1.7) and use (1.1), (1.2), we obtain an equation for the pressureσ :

N∇
2σ = K̄B(C)P − KRD. (1.8)

Clearly, (1.7) may be replaced by (1.8). If we replaceD by N − P − Q and set

c̄ = C/C0, p̄ = P/N, q̄ = Q/N,

we arrive at the following system of equations:

∇
2c̄ − λc̄ = 0 in Ω(t), (1.9)

c̄ = 1 on∂Ω(t), (1.10)
∂p̄

∂t
+ div(p̄∇σ) = [KB(c̄) − KQ(c̄) − KA(c̄)]p̄ + KP (c̄)q̄ in Ω(t), (1.11)

∂q̄

∂t
+ div(q̄∇σ) = KQ(c̄)p̄ − [KP (c̄) + KD(c̄)]q̄ in Ω(t), (1.12)

∇
2σ = −KR + [KB(c̄) + KR]p̄ + KR q̄ in Ω(t) (1.13)

where
Ki(c̄) = K̄i(C0c̄) for i = A, B,D, P,Q.

We assume that the pressureσ on the surface of the tumor is equal to the surface tension (see
Greenspan [18]), that is,

σ = γ κ on ∂Ω(t) (γ > 0), (1.14)

whereκ is the mean curvature.
The motion of the free boundary is given by the continuity equation

Ev · En = Vn, or
∂σ

∂ En
= Vn on ∂Ω(t), (1.15)

whereEn is the outward normal andVn is the velocity of the free boundary in the outward normal
direction.

Given initial conditions
Ω(0), p(x, 0), q(x, 0), (1.16)

we would like to determine the family of domainsΩ(t) and functionsp(x, t), q(x, t), c(x, t) and
σ(x, t) satisfying the system (1.9)–(1.15).

In this paper we assume that the data (1.16) are radially symmetric and consider radially
symmetric solutions. We note that tumors grownin vitro are typically of spherical shape, which
makes the study of radially symmetric solutions quite relevant.

In §2 we reformulate the radially symmetric problem as a system of equations in a fixed domain.
In §§3–4 we prove global existence and uniqueness of the solution. The rest of the paper is devoted
to establishing uniform bounds from above and below for the free boundary.

2. Reformulation of the problem

We consider the radially symmetric case and set

Ev =
x

|x|
ū, Ω(t) = {r < R(t)} (r = |x|).
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Then the system (1.9)–(1.15) becomes:

1

r2

∂

∂r

(
r2∂c̄

∂r

)
= λc̄ (0 < r < R(t), t > 0), (2.1)

∂c̄

∂r
(0, t) = 0, c̄(R(t), t) = 1 (t > 0), (2.2)

∂p̄

∂t
+ ū

∂p̄

∂r
= [KB(c̄) − KQ(c̄) − KA(c̄)]p̄ + KP (c̄)q̄ − [(KB(c̄) + KR)p̄ + KR q̄ − KR]p̄

(0 6 r 6 R(t), t > 0), (2.3)
∂q̄

∂t
+ ū

∂q̄

∂r
= KQ(c̄)p̄ − [KP (c̄) + KD(c̄)]q̄ − [(KB(c̄) + KR)p̄ + KR q̄ − KR]q̄

(0 6 r 6 R(t), t > 0), (2.4)
1

r2

∂

∂r
(r2ū) = [KB(c̄) + KR]p̄ + KR q̄ − KR (0 < r 6 R(t), t > 0), (2.5)

ū(0, t) = 0 (t > 0), (2.6)

dR(t)

dt
= ū(R(t), t) (t > 0) (2.7)

with initial data
R(0), p̄(r, 0), q̄(r, 0).

In writing up this paper we found it convenient (but it is perhaps a matter of taste) to transform
the above system in the unknown domain{(r, t) : 0 < r < R(t), t > 0} into a system in the fixed
domain{(r, t) : 0 < r < 1, t > 0}. To do that we first note that, for givenR(t), the solution of
(2.1) and (2.2) is given by

c̄(r, t) =
R(t) sinh(

√
λr)

r sinh(
√

λR(t))
= c

(
r

R(t)
, R(t)

)
, (2.8)

where

c(r, R) =
sinh(

√
λRr)

r sinh(
√

λR)
(0 < r 6 1, R > 0), c(0, R) =

√
λR

sinh(
√

λR)
(R > 0). (2.9)

We introduce the functions

p(r, t) = p̄(rR(t), t), q(r, t) = q̄(rR(t), t), u(r, t) =
ū(rR(t), t)

R(t)
(0 6 r 6 1, t > 0).

Then we obtain the following system of equations:

∂p

∂t
+ v

∂p

∂r
= [KB(c) − KQ(c) − KA(c)]p + KP (c)q − [(KB(c) + KR)p + KRq − KR]p

(0 6 r 6 1, t > 0), (2.10)
∂q

∂t
+ v

∂q

∂r
= KQ(c)p − [KP (c) + KD(c)]q − [(KB(c) + KR)p + KRq − KR]q

(0 6 r 6 1, t > 0), (2.11)
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wherec = c(r, R(t)), c(r, R) as in (2.9), and

v(r, t) = u(r, t) − ru(1, t) (0 6 r 6 1, t > 0), (2.12)
1

r2

∂

∂r
(r2u) = [KB(c) + KR]p + KRq − KR (0 < r 6 1, t > 0), (2.13)

u(0, t) = 0 (t > 0), (2.14)
dR(t)

dt
= R(t)u(1, t) (t > 0), (2.15)

with initial data

R(0) = R0, p(r, 0) = p0(r), q(r, 0) = q0(r) (0 6 r 6 1), (2.16)

where

R0 > 0, p0(r) > 0, q0(r) > 0, p0(r) + q0(r) 6 1 (0 6 r 6 1). (2.17)

In what follows it will be useful to rewrite (2.13) in the integrated form

u(r, t) =
1

r2

∫ r

0
[(KB(c(ρ, R(t))) + KR)p(ρ, t) + KRq(ρ, t) − KR]ρ2 dρ, (2.18)

and, correspondingly, rewrite (2.15) in the form

dR(t)

dt
= R(t)

∫ 1

0
[(KB(c(r, R(t))) + KR)p(r, t) + KRq(r, t) − KR]r2 dr. (2.19)

It will also be useful to note that the normalized concentration of dead cellsd ≡ 1− p − q satisfies
the equation

∂d

∂t
+ v

∂d

∂r
= KA(c)p + KD(c)q − [KB(c)p − KRd + KR]d (0 6 r 6 1, t > 0). (2.20)

In §3 we establish local existence and uniqueness for the system (2.10)–(2.16), and in §4 we
prove global existence. The rest of the paper is devoted to the derivation of bounds on the free
boundaryr = R(t). In §§5–6 we prove that in the case 0< KR < ∞ there exist positive numbers
δ0 andM (depending on the initial data) such thatδ0 6 R(t) 6 M for all t > 0. In §7 we extend the
results of §§3–6 to the extreme case where the dead cells are instantly removed from the tumor, that
is, D ≡ 0 or, formally,KR = ∞. Finally, in §8 we consider the other extreme case where the dead
cells are not removed at all from the tumor, that is,KR = 0, and prove thatR(t) ↗ ∞ ast → ∞.
The asymptotic behavior of the solution ast → ∞ remains to be explored.

To end this section we note that, by (2.9),c(r, R) is strictly increasing inr and strictly decreasing
in R, and

lim
R→0

c(r, R) = 1 uniformly for 06 r 6 1,

lim
R→∞

c(r, R) =

{
0 if 0 6 r < 1,
1 if r = 1.

(2.21)

These properties will be frequently used later on.
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3. Local existence and uniqueness

Throughout this paper we make the following assumptions:

(a) Ki(c) (i = A, B,D, P,Q) are nonnegative and continuously differentiable for 06 c 6 1,
and

KB(c) > KA(c), K ′

B(c) > 0, K ′

P (c) > 0 (0 6 c 6 1),

KB(0) = KP (0) = 0,

K ′

A(c) 6 0, K ′

D(c) < 0, K ′

Q(c) < 0, K ′

B(c) + K ′

D(c) > 0 (0 6 c 6 1),

KA(1) = KD(1) = KQ(1) = 0;

(b) p0(r) andq0(r) are continuously differentiable for 06 r 6 1, and (2.17) holds.

The conditionK ′

B(c) + K ′

D(c) > 0 is based on experimental data [20]. In this section and the next
one we assume that 06 KR < ∞.

We shall denote bys the vector(p, q), by f1(r, R, s) andf2(r, R, s) the right-hand sides of
(2.10) and (2.11), respectively, and byf the vector(f1, f2). We shall also set

g(r, R, s) = (KB(c(r, R)) + KR)p + KRq − KR.

Then the system of equations (2.10), (2.11) and (2.18) takes the following simpler form:

∂s(r, t)
∂t

+ v(r, t)
∂s(r, t)

∂r
= f(r, R(t), s(r, t)) (0 6 r 6 1, t > 0), (3.1)

u(r, t) =
1

r2

∫ r

0
g(ρ, R(t), s(ρ, t))ρ2 dρ (0 < r 6 1, t > 0). (3.2)

Sincev(0, t) = v(1, t) = 0 for all t > 0, the linesr = 0 andr = 1 in the(r, t)-plane are
characteristic curves of the hyperbolic equations in (3.1); hence all the characteristic curves starting
from points in the region 0< r < 1, t > 0 remain in this region fort > 0, and they do not intersect
each other (see the proof of Theorem 3.1).

To prove local existence we introduce, for a givenT > 0, the spaceXT of pairs of functions
(R(t), s(r, t)) defined for 06 r 6 1, 06 t 6 T and satisfying the following conditions:

(i) R(t) ∈ C[0, T ], R(0) = R0, and

|R(t) − R0| 6 δ (0 6 t 6 T ) (3.3)

where 0< δ < R0 is an arbitrary but fixed number (one may take, for instance,δ = R0/2);
(ii) s(r, t) ∈ C([0, 1] × [0, T ]), s(r, 0) = s0(r) ≡ (p0(r), q0(r)), and

|s(r, t)| 6 max
06r61

(|s0(r)| + |s′

0(r)|) + 1 ≡ M0 + 1 (0 6 r 6 1, 0 6 t 6 T ). (3.4)

We take the metricd in XT to be the uniform metric, i.e.,

d((R1, s1), (R2, s2)) = max
06t6T

|R1(t) − R2(t)| + max
06r61, 06t6T

|s1(r, t) − s2(r, t)|.

It is obvious thatXT is a complete metric space.
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We shall prove the existence of a local solution by using the contraction mapping theorem for a
mappingF : XT → XT , which is defined as follows:

Given a pair(R, s) ∈ XT , defineu(r, t) andv(r, t) by (3.2) and (2.12), respectively, and consider
the initial value problems:

∂ s̃(r, t)
∂t

+ v(r, t)
∂ s̃(r, t)

∂r
= f(r, R(t), s̃(r, t)) for 0 6 r 6 1, 0 < t 6 T , (3.5)

s̃(r, 0) = s0(r, 0) for 0 6 r 6 1, (3.6)

dR̃(t)

dt
= R̃(t)u(1, t) for 0 < t 6 T , (3.7)

R̃(0) = R0. (3.8)

Clearly, the problem (3.7)–(3.8) has a unique solutionR̃(t) ∈ C1[0, T ]; in fact,

R̃(t) = R0 exp

( ∫ t

0
u(1, τ ) dτ

)
, 0 6 t 6 T . (3.9)

Since
|g(r, R(t), s(r, t))| 6 (KB(1) + KR)(M0 + 1) + KR(M0 + 1) + KR ≡ M1,

we have|u(1, t)| 6 M1/3, which implies that

|R̃(t) − R0| 6 1
3R0M1T e

1
3M1T for 0 6 t 6 T .

HenceR̃(t) satisfies (3.3) ifT is sufficiently small, namely,̃R(t) satisfies the condition (i) ifT is
small.

To see that the problem (3.5)–(3.6) has a unique solution we introduce the characteristic curves
r = r(ξ, t) (0 6 ξ 6 1, 06 t 6 T ) of the equation (3.5) by{

ṙ = v(r, t) for 0 < t 6 T ,

r|t=0 = ξ (0 6 ξ 6 1),
(3.10)

where ṙ denotes the derivative ofr in the time variable. Sincev(r, t) is continuous in(r, t) and
continuously differentiable inr, these curves are uniquely defined, satisfying 0< r(ξ, t) < 1 for
0 < ξ < 1, 06 t 6 T andr(0, t) = 0, r(1, t) = 1 for 0 6 t 6 T . Furthermore,

∂r(ξ, t)

∂ξ
= exp

( ∫ t

0

∂v

∂r
(r(ξ, τ ), τ ) dτ

)
,

so that

e−AT 6
∂r(ξ, t)

∂ξ
6 eAT (0 6 ξ 6 1, 0 6 t 6 T ), A a constant. (3.11)

It follows that the mapping(ξ, t) 7→ (r(ξ, t), t) is a 1-1 correspondence of the region [0, 1]× [0, T ]
to itself. Setting̃̃s(ξ, t) = s̃(r(ξ, t), t), the problem (3.5)–(3.6) reduces to the initial value problem

∂ ˜̃s(ξ, t)

∂t
= f(r(ξ, t), R(t), ˜̃s(ξ, t)) for 0 6 ξ 6 1, 0 < t 6 T , (3.12)

˜̃s(ξ, 0) = s0(ξ) (0 6 ξ 6 1). (3.13)
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Using the standard ODE theory, we can find a unique solution˜̃s(ξ, t) of the problem (3.12)–(3.13)
for all 0 6 ξ 6 1, 0 6 t 6 T if T is sufficiently small, and̃̃s(ξ, t) is continuously differentiable in
(ξ, t). Further, from the formula

˜̃s(ξ, t) = s0(ξ) +

∫ t

0
f(r(ξ, τ ), R(τ), ˜̃s(ξ, τ )) dτ

we can easily show that there exists a constantM2 depending onM0, but independent ofT , such
that

|˜̃s(ξ, t)| 6 M0 + M2T (0 6 ξ 6 1, 0 6 t 6 T ). (3.14)

Now let ξ = ξ(r, t) be the inverse function ofr = r(ξ, t) for fixed 0 6 t 6 T , and lets̃(r, t) =

˜̃s(ξ(r, t), t). Thens̃(r, t) is the unique solution of the problem (3.5)–(3.6) for 06 r 6 1, 06 t 6 T

which, by (3.14), satisfies

|s̃(r, t)| 6 M0 + M2T 6 M0 + 1 (0 6 r 6 1, 0 6 t 6 T ) (3.15)

if T is sufficiently small. Hencẽs(r, t) satisfies the condition (ii). We now set

F(R, s) = (R̃, s̃).

Then, for sufficiently smallT , F is a mapping ofXT into itself.
Differentiating (3.12) with respect toξ we find that

d

dt

(
∂ ˜̃s(ξ, t)

∂ξ

)
=

∂f
∂s

(r(ξ, t), R(t), ˜̃s(ξ, t))
∂ ˜̃s(ξ, t)

∂ξ

+
∂f
∂r

(r(ξ, t), R(t), ˜̃s(ξ, t)) exp

( ∫ t

0

∂v

∂r
(r(ξ, τ ), τ ) dτ

)
,

∂ ˜̃s(ξ, 0)

∂ξ
= s′

0(ξ),

where∂f/∂s is the Jacobian off(r, R, s) with respect tos. By standard ODE theory it follows that∣∣∣∣∂ ˜̃s(ξ, t)

∂ξ

∣∣∣∣ 6 M0 + M3T (0 6 ξ 6 1, 0 6 t 6 T ),

whereM3 is a constant independent ofT (as long asT is small). Recalling (3.11) we conclude that∣∣∣∣∂ s̃(r, t)
∂r

∣∣∣∣ 6 (M0 + M3T )eAT 6 M0 + 1 (0 6 r 6 1, 0 6 t 6 T ) (3.16)

providedT is sufficiently small.
We now prove thatF is a contraction mapping for sufficiently smallT . Let (Ri, si) ∈ XT for

i = 1, 2 and set

ui(r, t) =
1

r2

∫ r

0
g(ρ, Ri(t), si(ρ, t))ρ2 dρ,

vi(r, t) = ui(r, t) − rui(1, t),

(R̃i, s̃i) = F(Ri, si), d = d((R1, s1), (R2, s2)).
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By direct calculation we get

|u1(r, t) − u2(r, t)| 6 M4d (0 6 r 6 1, 0 6 t 6 T ), (3.17)

so that, by (3.9),

max
06t6T

|R̃1(t) − R̃2(t)| 6 M5T d; (3.18)

here and in what follows,Mi denote constants independent ofT .
Next, setting̃s∗ = s̃1 − s̃2 we can write

∂ s̃∗

∂t
+ v1(r, t)

∂ s̃∗

∂r
− A(r, t)s̃∗ = h(r, t) for 0 6 r 6 1, 0 < t 6 T ,

s̃∗(r, 0) = 0 for 0 6 r 6 1,

(3.19)

where

A(r, t) =

∫ 1

0

∂f
∂s

(r, R1(t), θ s̃1(r, t) + (1 − θ)s̃2(r, t)) dθ,

h(r, t) = − (v1(r, t) − v2(r, t))
∂ s̃2

∂r

+ (R1(t) − R2(t))

∫ 1

0

∂f
∂R

(r, θR1(t) + (1 − θ)R2(t), s̃2(r, t)) dθ.

Using the bounds (3.15), (3.16) fors̃1, s̃2 and the estimate (3.17), we deduce the norm estimates

‖A(r, t)‖ 6 M6 (0 6 r 6 1, 0 6 t 6 T ),

|h(r, t)| 6 M7d (0 6 r 6 1, 0 6 t 6 T ).

Hence, integrating (3.19) along the characteristics determined by the equation dr/dt = v1(r, t) as
before, we find that

max
06r61, 06t6T

|s̃1(r, t) − s̃2(r, t)| 6 M8T d. (3.20)

Combining (3.18) and (3.20), we get

d((R̃1, s̃1), (R̃1, s̃1)) 6 1
2d((R1, s1), (R2, s2))

provided(M5 + M8)T 6 1/2. This proves the desired assertion.
We summarize:

THEOREM 3.1 Letδ0 6 R0 6 1/δ0 (δ0 > 0) and

max
06r61

(|s0(r)| + |s′

0(r)|) 6 M0.

Then there is a unique solution of the system (2.10)–(2.16) for 06 r 6 1, 0 6 t 6 T providedT

is sufficiently small, depending onδ0 andM0. 2
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4. Global existence

In this section we prove the following theorem:

THEOREM 4.1 The system (2.10)–(2.16) has a unique solution for 06 r 6 1, 0 6 t < ∞, and it
has the following properties:

p(r, t) > 0, q(r, t) > 0, p(r, t) + q(r, t) 6 1, (4.1)

R0e−
1
3KR t 6 R(t) 6 R0e

1
3KB (1)t , (4.2)

−
1
3KR 6

Ṙ(t)

R(t)
6 1

3KB(1). (4.3)

Proof. In view of Theorem 3.1, the solution established for small times can be extended step-by-
step to allt > 0 provided we can prove that if the solution exists for 06 t < T , T > 0 arbitrary,
then thea priori estimates (4.1), (4.2) and∣∣∣∣∂p(r, t)

∂r

∣∣∣∣ 6 M,

∣∣∣∣∂q(r, t)

∂r

∣∣∣∣ 6 M (4.4)

hold for 06 r 6 1, 06 t < T , whereM is a positive constant which may depend onT .
To prove (4.1), we note that (3.12) can be written in the form

∂ ˜̃p(ξ, t)

∂t
= a11(ξ, t) ˜̃p(ξ, t) + a12(ξ, t) ˜̃q(ξ, t),

∂ ˜̃q(ξ, t)

∂t
= a21(ξ, t) ˜̃p(ξ, t) + a22(ξ, t) ˜̃q(ξ, t),

whereaij (ξ, t)’s are continuous functions and

a12(ξ, t) = KP (c(r(ξ, t), R(t))) > 0, a21(ξ, t) = KQ(c(r(ξ, t), R(t))) > 0.

Since ˜̃p(ξ, 0) = p0(ξ) > 0 and ˜̃q(ξ, 0) = q0(ξ) > 0, by a standard comparison theorem for
systems of ordinary differential equations (see, for instance, [21]) we infer that

˜̃p(ξ, t) > 0, ˜̃q(ξ, t) > 0

for 0 6 ξ 6 1, 06 t < T . Hence

p(r, t) > 0, q(r, t) > 0

for 0 6 r 6 1, 06 t < T . Substituting the second inequality into (2.20) we get

∂d

∂t
+ v

∂d

∂r
+ [KB(c)p − KRd + KR]d > 0 (0 6 r 6 1, 0 < t < T ).

Sinced(r, 0) = 1 − p0(r) − q0(r) > 0 for 0 6 r 6 1, by rewriting the above inequality in
characteristic form and then using a comparison theorem, we conclude that also

d(r, t) > 0, or p(r, t) + q(r, t) 6 1

for 0 6 r 6 1, 06 t < T .
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Next, by (2.19) and (4.1) we have

Ṙ(t) > −KRR(t)

∫ 1

0
r2 dr = −

1
3KRR(t) for 0 < t < T

and

Ṙ(t) = R(t)

∫ 1

0
[KB(c(r, R(t)))p(r, t) − KR(1 − p(r, t) − q(r, t))]r2 dr

6 KB(1)R(t)

∫ 1

0
r2 dr =

1
3KB(1)R(t) for 0 < t < T,

so that (4.3) holds. (4.2) is an immediate consequence of (4.3).
Finally, (4.4) follows from an argument similar to the proof of (3.16). 2

5. Lower bound onR(t); 0 < KR < ∞

In this section and the next one we assume that 0< KR < ∞.

THEOREM 5.1 There exists aδ0 > 0 such that

R(t) > δ0 for all t > 0. (5.1)

Proof. Let δ > 0 be a sufficiently small number to be determined later on. We shall prove that in
any interval [t1, t2] such thatR(t1) = δ andR(t) 6 δ for t1 6 t 6 t2 we have

R(t) > δe−
1
3KRT for t1 6 t 6 t2, (5.2)

whereT = T (δ) is a positive constant depending onδ but not on [t1, t2]. Clearly, if this is proved
then the desired assertion follows.

Let

V (t) =
1
3R3(t), VP (t) = R3(t)

∫ 1

0
p(r, t)r2 dr, VQ(t) = R3(t)

∫ 1

0
q(r, t)r2 dr,

VD(t) = R3(t)

∫ 1

0
d(r, t)r2 dr, W(t) = V (t) + VP (t).

By direct calculations,

V̇ (t) = R3(t)

∫ 1

0
KB(c)pr2 dr − KRVD(t),

V̇P (t) = R3(t)

∫ 1

0
{[KB(c) − KQ(c) − KA(c)]p + KP (c)q}r2 dr,

V̇Q(t) = R3(t)

∫ 1

0
{KQ(c)p − [KP (c) + KD(c)]q}r2 dr,

V̇D(t) = R3(t)

∫ 1

0
[KA(c)p + KD(c)q]r2 dr − KRVD(t),

(5.3)
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wherec = c(r, R(t)), p = p(r, t), etc. Sincec(r, R) is decreasing inR and increasing inr, we have

c(r, R(t)) > c(r, δ) > c(0, δ) ≡ c(δ) for 0 6 r 6 1, t1 6 t 6 t2. (5.4)

Note that limδ→0 c(δ) = 1, so that by the assumption (a) we can find aδ > 0 sufficiently small such
that

µ =
1
2 min{2KB(c(δ)) − KQ(c(δ)) − KA(c(δ)), KP (c(δ))} > 0.

Then, by (5.4) and the assumption (a) we have, fort1 6 t 6 t2,

Ẇ (t) = V̇ (t) + V̇P (t)

= R3(t)

∫ 1

0
{[2KB(c) − KQ(c) − KA(c)]p + KP (c)q}r2 dr − KRVD(t)

> 2µR3(t)

∫ 1

0
(p + q)r2 dr − KRVD(t)

> µR3(t)

∫ 1

0
(2p + q)r2 dr − KRVD(t)

> µR3(t)

∫ 1

0
(2p + q + d)r2 dr − (KR + µ)VD(t)

= µW(t) − νVD(t), ν = KR + µ.

Hence
Ẇ (t) > µW(t) − νVD(t) for t1 6 t 6 t2. (5.5)

Let ε = max{KD(c(δ)), KA(c(δ))}. Then by (5.4) and the assumption (a) we have, fort1 6 t 6 t2,

V̇D(t) = R3(t)

∫ 1

0
[KA(c)p + KD(c)q]r2 dr − KRVD(t)

6 εR3(t)

∫ 1

0
(p + q)r2 dr − KRVD(t)

6 εW(t) − KRVD(t)

so that
V̇D(t) 6 εW(t) − KRVD(t) for t1 6 t 6 t2. (5.6)

From (5.5) and (5.6) we get

d

dt

[
VD(t) −

ε

µ
W(t)

]
6 −

[
KR −

νε

µ

]
VD(t) (t1 6 t 6 t2).

Since limδ→0 ε = 0, we can takeδ so small that also

α ≡ KR − νε/µ > 0.

It follows that

d

dt

[
VD(t) −

ε

µ
W(t)

]
6 −α

[
VD(t) −

ε

µ
W(t)

]
(t1 6 t 6 t2).
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Hence

VD(t) −
ε

µ
W(t) 6

[
VD(t1) −

ε

µ
W(t1)

]
e−α(t−t1) 6 VD(t1)e

−α(t−t1),

and sinceVD(t1) 6 V (t1) = δ3/3,

VD(t) 6
ε

µ
W(t) +

δ3

3
e−α(t−t1) for t1 6 t 6 t2. (5.7)

Substituting (5.7) into (5.5) we obtain

Ẇ (t) > βW(t) −
νδ3

3
e−α(t−t1) for t1 6 t 6 t2, (5.8)

where
β ≡ µ − νε/µ > 0

if δ is sufficiently small.
Let z(t) be the solution of the initial value problem{

ż(t) = βz(t) − (νδ3/3)e−αt for t > 0,

z(0) = δ3/3.
(5.9)

SinceW(t1) > V (t1) = δ3/3, we have, by comparison between (5.8) and (5.9),

W(t) > z(t − t1) for t1 6 t 6 t2. (5.10)

Clearly, limt→∞ z(t) = ∞, so that there exists aT = T (δ) > 0 such that

z(t) > 2
3δ3 for t > T . (5.11)

By (4.3) we have

R(t) > R(t1)e
−

1
3KR(t−t1) > δe−

1
3KRT for t1 6 t 6 t1 + T . (5.12)

Using the inequalities (5.10)–(5.12) we can now prove that (5.2) holds. Indeed, ift2 6 t1 + T

then (5.2) is an immediate consequence of (5.12). On the other hand, ift2 > t1 + T then for
t1 6 t 6 t1 + T we have the estimate (5.12), and fort1 + T < t 6 t2 we have, by (5.10) and (5.11),

2
3R3(t) = 2V (t) > W(t) > z(t − t1) > 2

3δ3,

so thatR(t) > δ > δe−KRT/3. 2

6. Upper bound onR(t); 0 < KR < ∞

THEOREM 6.1 There exists a positive constantM such that

R(t) 6 M for all t > 0. (6.1)
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Before giving the proof of this theorem we need some preparations. Letc(r, R) be as before
(see (2.9)). Sincec(0, R) is strictly decreasing inR, limR→∞ c(0, R) = 0 andc(0, 0) = 1, for any
0 < ε < 1 there exists a uniqueRε > 0 such thatc(0, Rε) = ε andc(0, R) < ε for all R > Rε.
Sincec(r, R) is strictly increasing inr andc(1, R) = 1, it follows that for anyR > Rε there exists
a unique 0< r(ε, R) < 1 such that

c(r, R)

< ε if 0 6 r < r(ε, R),

= ε if r = r(ε, R),

ε if r(ε, R) < r 6 1.

(6.2)

By differentiating the implicit equation

c(r(ε, R), R) = ε

in R, we find that∂r(ε,R)
∂R

= −
∂c
∂R

/
∂c
∂r

> 0, so thatr(ε, R) is strictly increasing inR.

LEMMA 6.2 limR→∞ r(ε, R) = 1 for all 0 < ε < 1.

Proof. Sincer(ε, R) is increasing inR andr(ε, R) < 1, we see thatr∗
ε ≡ limR→∞ r(ε, R) exists,

and 0 < r∗
ε 6 1. Assume thatr∗

ε < 1 for someε. Thenr > r(ε, R) for all r∗
ε 6 r 6 1 and

R > Rε, implying thatc(r, R) > ε for all r∗
ε 6 r 6 1 andR > Rε, which contradicts the fact that

limR→∞ c(r, R) = 0 for all 0 6 r < 1. Hence the desired assertion follows.2

LEMMA 6.3 LetU(t) = 3VP (t) + 2VQ(t) + VD(t). There exist positive numbersη andM0 such
that, for any 06 t1 < t2 < ∞, if R(t) > M0 for t1 < t < t2 then

U̇ (t) 6 −
η

4
U(t) for t1 < t < t2. (6.3)

Proof. By (5.3) we have the following identity:

U̇ (t) = R3(t)

∫ 1

0
{−[(KQ(c)+2KA(c))p+KD(c)q +KRd] + [3KB(c)p+KP (c)q]}r2 dr. (6.4)

Let 0 < ε < 1 and assume thatR(t) > Rε. Then by (6.4) we have

U̇ (t) 6 R3(t)

{
−

∫ r(ε,R(t))

0
[(KQ(c) + 2KA(c))p + KD(c)q + KRd]r2 dr

+

∫ r(ε,R(t))

0
[3KB(c)p + KP (c)q]r2 dr +

∫ 1

r(ε,R(t))

[3KB(c)p + KP (c)q]r2 dr

}
6 − R3(t) min{KQ(ε) + 2KA(ε), KD(ε), KR}

∫ r(ε,R(t))

0
r2 dr

+ R3(t)[3KB(ε) + KP (ε)]
∫ 1

0
r2 dr + R3(t)[3KB(1) + KP (1)]

∫ 1

r(ε,R(t))

r2 dr.

Hence

U̇ (t) 6 −
1
3R3(t) min{KQ(ε) + 2KA(ε), KD(ε), KR}r3(ε, R(t)) +

1
3R3(t)[3KB(ε) + KP (ε)]

+
1
3R3(t)[3KB(1) + KP (1)][1 − r3(ε, R(t))]

6 −
1
3R3(t) min{KQ(ε) + 2KA(ε), KD(ε), KR} +

1
3R3(t)[3KB(ε) + KP (ε)]

+R3(t)[3KB(1) + KP (1) + KR][1 − r(ε, R(t))];
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in deriving the last inequality we have used the estimate

r3(ε, R(t)) > 1 − 3[1 − r(ε, R(t))].

Clearly,
1
3R3(t) 6 U(t) 6 R3(t).

Hence

U̇ (t) 6 −
1
3 min{KQ(ε) + 2KA(ε), KD(ε), KR}U(t) + [3KB(ε) + KP (ε)]U(t)

+ 3b[1 − r(ε, R(t))]U(t), (6.5)

whereb = 3KB(1) + KP (1) + KR. Since

lim
ε→0

1
3 min{KQ(ε) + 2KA(ε), KD(ε), KR} =

1
3 min{KQ(0) + 2KA(0), KD(0), KR} ≡ η > 0

and limε→0[3KB(ε) + KP (ε)] = 0, we can find a sufficiently smallε > 0 such that

−
1
3 min{KQ(ε) + 2KA(ε), KD(ε), KR} + [3KB(ε) + KP (ε)] 6 −η/2.

By (6.5), we then have

U̇ (t) 6 −
η

2
U(t) + 3b[1 − r(ε, R(t))]U(t).

Since limR→∞ r(ε, R) = 1, we can find anM0 > Rε sufficiently large such that 3b[1 − r(ε, R)] 6
η/4 for R > M0, so thatU̇ (t) 6 −(η/4)U(t) if R(t) > M0. 2

Proof of Theorem 6.1. Let η andM0 be as in Lemma 6.3. Take a sufficiently large positive number
M such thatM3 > 3M3

1 , whereM1 = max{R0, M0}. We claim that

R(t) < M for all t > 0. (6.6)

Indeed, if (6.6) does not hold then we can find two numberst1 andt2 with 0 6 t1 < t2 such that

R(t1) = M1, R(t2) = M and R(t) > M1 > M0 for t1 < t < t2.

By (6.3), we then have
U(t2) 6 U(t1)e

−
η
4 (t2−t1) < U(t1).

Since howeverU(t2) > 1
3R3(t2) =

1
3M3 andU(t1) 6 R3(t1) = M3

1 , we getM3 < 3M3
1 , which

contradicts the choice ofM. 2

7. The caseKR = ∞

We interpret the caseKR = ∞ to mean that dead cells are instantly removed from the tumor, that
is, D ≡ 0 so thatP + Q = N . In this case, instead of (2.10)–(2.15) we have the following system:

∂p

∂t
+ v(r, t)

∂p

∂r
= KP (c) + [KM(c) − KN (c)]p − KM(c)p2, 0 6 r 6 1, t > 0, (7.1)
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whereKM(c) = KB(c) + KD(c) − KA(c), KN (c) = KQ(c) + KP (c), c = c(r, R(t)) is as before
(see (2.9)), and

v(r, t) = u(r, t) − ru(1, t), 0 6 r 6 1, t > 0, (7.2)

u(r, t) =
1

r2

∫ r

0
{−KD(c(ρ, R(t))) + KM(c(ρ, R(t)))p(ρ, t)}ρ2 dρ, 0 < r 6 1, t > 0, (7.3)

u(0, t) = 0, t > 0, (7.4)

dR

dt
= R

∫ 1

0
{−KD(c(r, R(t))) + KM(c(r, R(t)))p(r, t)}r2 dr, t > 0, (7.5)

with the initial conditions:

R(0) = R0, p(r, 0) = p0(r), 0 6 r 6 1. (7.6)

We assume that the conditions (a), (b) (in §2) hold withp0(r) + q0(r) ≡ 1; it follows, in particular,
thatKM(c) > 0 andK ′

M(c) > 0.
The proofs of Theorems 3.1 and 4.1 can be easily modified to establish the following result:

THEOREM 7.1 The problem (7.1)–(7.6) has a unique solution(R(t), p(r, t)) defined for all 06
r 6 1 andt > 0. Moreover, the solution has the following properties:

0 6 p(r, t) 6 1 for 0 6 r < 1, t > 0, (7.7)

R0e−
1
3KD(0)t 6 R(t) 6 R0e

1
3KB (1)t for t > 0, (7.8)

−
1
3KD(0) 6

Ṙ(t)

R(t)
6 1

3KB(1) for t > 0. (7.9)

2

Theorems 5.1 and 6.1 can also be extended to the system (7.1)–(7.6):

THEOREM 7.2 For the solution of (7.1)–(7.6), there exist positive numbersδ0, M such that

δ0 6 R(t) 6 M for all t > 0. (7.10)

To prove the lower bound in (7.10) we need a preliminary lemma. Letc0 be a positive constant,
0 < c0 < 1. Consider the initial value problem

dẑ(t)

dt
= KP (c0) + [KM(c0) − KN (c0)]ẑ(t) − KM(c0)ẑ

2(t) for t > 0,

ẑ(0) = 0.

(7.11)

It is easily seen that this problem has a unique solutionẑ(t) for all t > 0. We assert that̂z(t) is
strictly increasing, and 0< ẑ(t) < 1 for all t > 0. Indeed, the quadratic equation

KP (c0) + [KM(c0) − KN (c0)]σ − KM(c0)σ
2

= 0

has exactly two real roots, one positive and less than 1 which we denote byσ+, and the other
negative which we denote byσ−. The equation for̂z(t) can then be rewritten as

dẑ(t)

dt
= KM(c0)(σ+ − ẑ(t))(ẑ(t) + |σ−|).
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From this formulation and the fact thatẑ(0) = 0 < σ+ it follows immediately (by comparison) that
0 < ẑ(t) < σ+ for all t > 0, so that d̂z(t)/dt > 0 and 0< ẑ(t) < 1 for all t > 0. One can further
deduce that limt→∞ ẑ(t) = σ+.

LEMMA 7.3 Let M0 be a positive constant and let(R(t), p(r, t)) be the solution of the system
(7.1)–(7.6). Assume that

R(t) 6 M0 for t0 6 t 6 t1 (7.12)

for some 06 t0 < t1. Then, denoting bŷz(t) the solution of the problem (7.11) withc0 = c(0, M0),
we have

min
06r61

p(r, t) > ẑ(t − t0) for t0 6 t 6 t1. (7.13)

Proof. Sincec(r, R) is increasing inr and decreasing inR, the condition (7.12) implies that

c(r, R(t)) > c(0, R(t)) > c(0, M0) = c0 for 0 6 r 6 1, t0 6 t 6 t1.

By writing

KP (c) + [KM(c) − KN (c)]p − KM(c)p2
= KP (c)(1− p) + KM(c)(1− p)p − KQ(c)p, (7.14)

one can easily verify that this function is increasing inc for every fixed 06 p 6 1. It follows (by
(7.1)) that

∂p

∂t
+ v(r, t)

∂p

∂r
> KP (c0) + [KM(c0) − KN (c0)]p − KM(c0)p

2 (7.15)

for 0 6 r 6 1 andt0 6 t 6 t1. Let r = r(t, ξ) (t > 0, 0 6 ξ 6 1) denote the characteristic curves
of (7.1), and letp̃(ξ, t) = p(r(t, ξ), t). Then the above inequality can be rewritten as follows:

∂p̃(ξ, t)

∂t
> KP (c0) + [KM(c0) − KN (c0)]p̃ − KM(c0)p̃

2

(0 6 ξ 6 1, t0 6 t 6 t1). Therefore, by comparison,

p̃(ξ, t) > ẑ(t − t0) for all 0 6 ξ 6 1, t0 6 t 6 t1.

Since min06r61 p(r, t) = min06ξ61 p̃(ξ, t), the estimate (7.13) immediately follows. 2

Proof of Theorem 7.2. Let V (t) andVP (t) be as before. Then

V̇P (t) = R3(t)

∫ 1

0
{[KB(c) − KQ(c) − KA(c)]p + KP (c)q}r2 dr. (7.16)

Since the functionKB(c) − KQ(c) − KA(c) is strictly increasing inc for 0 6 c 6 1, andKB(0) −

KQ(0)−KA(0) = −[KQ(0)+KA(0)] < 0,KB(1)−KQ(1)−KA(1) = KB(1) > 0, we infer that
there exists a constant 0< c∗ < 1 such that

KB(c) − KQ(c) − KA(c)

< 0 if 0 6 c < c∗,

= 0 if c = c∗,

> 0 if c∗ < c 6 1.

(7.17)
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Sincec(0, R) is strictly decreasing inR and c(0, 0) = 1, limR→∞ c(0, R) = 0, there exists a
constantR∗ > 0 such that

c(0, R)

> c∗ if 0 6 R < R∗,

= c∗ if R = R∗,

< c∗ if R > R∗.

Let R1 =
1
2 min{R0, R

∗
}. We assert that for some 0< δ < R1, to be specified later,

R(t) > δ for all t > 0. (7.18)

Indeed, if (7.18) does not hold then we can find two numberst1 and t2, 0 < t1 < t2, such that
R(t1) = R1, R(t2) = δ and

R(t) < R1 for t1 < t < t2. (7.19)

Let c1 = c(0, R1). From (7.18) we see that

c(r, R(t)) > c(0, R(t)) > c(0, R1) = c1 for 0 6 r 6 1, t1 6 t 6 t2,

so that

KB(c(r, R(t))) − KQ(c(r, R(t))) − KA(c(r, R(t))) > KB(c1) − KQ(c1) − KA(c1) ≡ a

for 0 6 r 6 1, t1 6 t 6 t2. Note that sinceR1 < R∗, we havec1 > c∗, so thata > 0. Therefore,
from (7.16) we get

V̇P (t) > R3(t)

∫ 1

0
[KB(c) − KQ(c) − KA(c)]pr2 dr > aR3(t)

∫ 1

0
pr2 dr = aVP (t)

for t1 6 t 6 t2, and, by integration,

VP (t2) > VP (t1)e
a(t2−t1). (7.20)

We have

VP (t2) = R3(t2)

∫ 1

0
p(r, t2)r

2 dr 6 δ3
∫ 1

0
r2 dr =

1
3δ3,

VP (t1) = R3(t1)

∫ 1

0
p(r, t1)r

2 dr > R3
1 min

06r61
p(r, t1)

∫ 1

0
r2 dr =

1
3R3

1 min
06r61

p(r, t1),

and, by (7.9) and the fact thatR(t1) = R1 andR(t2) = δ,

R1e−
1
3KD(0)(t2−t1) 6 δ, or t2 − t1 > −

3

KD(0)
log

(
δ

R1

)
.

Substituting these estimates into (7.20) we find that

δ3 > R3
1 min

06r61
p(r, t1)

(
δ

R1

)−3a/KD(0)

,

or (
δ

R1

)3+3a/KD(0)

> min
06r61

p(r, t1). (7.21)

We next derive a lower bound for min06r61 p(r, t1).
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Let M0 = min{R0, R
∗
} = 2R1. SinceR(t1) = R1 < M0 andR(0) = R0 > M0, there exists a

t0, 0 6 t0 < t1, such that

R(t0) = M0 and R(t) 6 M0 for t0 6 t 6 t1.

By Lemma 7.3, it follows that min06r61 p(r, t) > ẑ(t − t0) for t0 6 t 6 t1; in particular,

min
06r61

p(r, t1) > ẑ(t1 − t0). (7.22)

SinceR(t0) = M0 andR(t1) = R1, using again (7.9) we get

M0e−
1
3KD(0)(t1−t0) 6 R1,

or

t1 − t0 > −
3

KD(0)
log

(
R1

M0

)
=

3 log 2

KD(0)
≡ a0.

Substituting this into the right-hand side of (7.22) we obtain a lower bound onp:

min
06r61

p(r, t1) > ẑ(a0),

which, combined with (7.21), yields(
δ

R1

)3+3a/KD(0)

> ẑ(a0). (7.23)

This is a contradiction if we take

δ < R1(ẑ(a0))
KD(0)/(3(a+KD(0))).

Hence the lower bound in (7.10) holds.
The upper bound in (7.10) can be established similarly to the proof of Theorem 6.1, by using

the identity:

d

dt
[2VP (t) + VQ(t)]

= R3(t)

∫ 1

0
{−[KD(c)q + (KQ(c) + 2KA(c))p] + [2KB(c)p + KP (c)q]}r2 dr

(recall that in the present caseV (t) = VP (t) + VQ(t)). 2

REMARK 7.1 The assumptionK ′

B(c) + K ′

D(c) > 0 made in(a) is used in this paper only in
the proof of Lemma 7.3, namely, in asserting that the function in (7.14) is increasing inc. This
assumption (which is based on experimental data; see [20]), can actually be dropped if in (7.11) we
replaceKM(c0) by K̃M(c0) whereK̃M = KM − KD. ThenK̃M 6 KM and we replace (7.14) by

KP (c) + [KM(c) − KN (c)]p − KM(c)p2 > KP (c)(1 − p) + K̃M(c)(1 − p)p − KQ(c)p,

and observe that the right-hand side is increasing inc for fixedp, so that (7.15) holds withKM(c0)

replaced byK̃M(c0).
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8. The caseKR = 0

In the caseKR = 0, dead cells are not removed from the tumor, and from (2.19) we have

Ṙ(t) = R(t)

∫ 1

0
KB(c(r, R(t)))p(r, t)r2 dr > 0, (8.1)

so thatR(t) increases int . As R(t) increases, the nutrient concentrationc(r, R(t)) decreases and
therefore so does the proliferation rate. Thus, it is nota priori clear whetherR(t) tends to∞

or whether it remains bounded. We shall prove that the first alternative occurs, at least under the
assumptions that

p(r, 0) 6≡ 0, pr(r, 0) > 0 and dr(r, 0) 6 0 (0 6 r 6 1), (8.2)

KD(c) > KA(c) (0 6 c 6 1). (8.3)

The assumption (8.3) is natural: the rate of death of quiescent cells is larger than that of proliferating
cells. The assumption (8.2) is related to the experimental fact that dead cells tend to concentrate in
the inner region of the tumor whereas proliferating cells tend to concentrate in the outer region of
the tumor.

THEOREM 8.1 Assume thatKR = 0 and that (8.2), (8.3) hold. Then

lim
t→∞

R(t) = ∞. (8.4)

To prove this result, we need some preliminary lemmas.

LEMMA 8.2 LetKR = 0 and assume that (8.2) and (8.3) hold. Then

pr(r, t) > 0, dr(r, t) 6 0 for all 0 6 r 6 1, t > 0. (8.5)

Proof. Setw = 1− d = p + q. Thenwr = −dr , so that by differentiating (2.20) inr and replacing
qr with wr − pr we get

∂wr

∂t
+ v

∂wr

∂r
= b11wr + b12pr + b10,

where
b11 = −vr − KB(c)p − KD(c), b12 = KB(c)d + KD(c) − KA(c),

b10 = [K ′

B(c)dp − K ′

A(c)p − K ′

D(c)q]cr .

Similarly, by differentiating (2.10) inr we obtain

∂pr

∂t
+ v

∂pr

∂r
= b21wr + b22pr + b20,

where

b21 = KP (c), b22 = −vr + KB(c)(1 − 2p) − KP (c) − KQ(c) − KA(c),

b20 = {[K ′

B(c)(1 − p) − K ′

Q(c) − K ′

A(c)]p + K ′

P (c)q}cr .

Clearly,b12, b10, b21 andb20 are nonnegative, by (8.3) and the assumption (a) (in §2). Hence by
comparison (cf. the proof of Theorem 4.1) we conclude thatwr(r, t) > 0, pr(r, t) > 0 for all
0 6 r 6 1, t > 0, and the desired assertion follows. 2
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LEMMA 8.3 LetKR = 0 and assume that (8.2), (8.3) hold. Thenv(r, t) 6 0 for all 0 6 r 6 1,
t > 0.

Proof. Sincev(r, t) = u(r, t) − ru(1, t) and ∂u
∂r

+
2
r
u = KB(c)p, we have

∂

∂r

(
∂v

∂r
+

2

r
v

)
=

∂

∂r

(
∂u

∂r
+

2

r
u

)
= KB(c)pr + K ′

B(c)pcr ,

so that, by Lemma 8.2,

∂2v

∂r2
+

2

r

∂v

∂r
−

2

r2
v > 0 for 0 < r < 1, t > 0.

Sincev(0, t) = v(1, t) = 0 for all t > 0, the assertion thatv 6 0 follows by the maximum principle.
2

Let p̄ = p̄(r, t) be the solution of the initial value problem
∂p̄(r, t)

∂t
= [KB(c) − KQ(c) − KA(c) − KB(c)p̄]p̄ for 0 6 r 6 1, t > 0

p̄(r, 0) = p(r, 0) for 0 6 r 6 1,

(8.6)

wherec = c(r, R(t)) as before. It is easily seen that this problem has a unique solution for all
0 6 r 6 1, t > 0, and that the following holds:

LEMMA 8.4 Assume that limt→∞ R(t) = R∞ < ∞, and thatp(r, 0) is continuous,p(r, 0) > 0
andp(r, 0) 6≡ 0 (0 6 r 6 1). Then

lim
t→∞

p̄(r, t) = p̄∞(r) ≡ max

{
0, 1 −

(KQ + KA)(c(r, R∞))

KB(c(r, R∞))

}
for 0 6 r 6 1. 2

Proof of Theorem 8.1. By (8.1),R(t) is increasing. If (8.4) does not hold then

R(t) ↗ R∞ ast → ∞, where R∞ < ∞. (8.7)

We shall prove that (8.7) leads to a contradiction.
Let p̄(r, t) be as in Lemma 8.4. By Lemmas 8.2, 8.3 and (2.10) we have

∂p

∂t
> [KB(c) − KQ(c) − KA(c) − KB(c)p]p for 0 6 r 6 1, t > 0,

so that, by comparison with (8.6),

p(r, t) > p̄(r, t) for 0 6 r 6 1, t > 0.

It follows that

V̇ (t) = R3(t)

∫ 1

0
KB(c(r, R(t))p(r, t)r2 dr > KB(c(0, R∞)) · R3(t)

∫ 1

0
p̄(r, t)r2 dr,

where, as before,V (t) = R3(t)/3. Using Lemma 8.4 and noticing thatp̄∞(r) > 0, p̄∞(r) 6≡ 0 for
0 6 r 6 1, we conclude that

lim inf
t→∞

V̇ (t) > KB(c(0, R∞))R3
∞

∫ 1

0
p̄∞(r)r2 dr > 0,

which implies that limt→∞ V (t) = ∞, thus contradicting (8.7). 2
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9. Conclusion

In this paper we have considered a mathematical model of tumor growth in which living cells may
change from proliferating phase to quiescent phase and vice versa. The model involves also dead
cells which are removed from the tumor at rateKR. We established the existence and uniqueness of
a global solution, for any given initial data. We also derived global bounds for the radiusR(t) of the
tumor:

δ0 6 R(t) 6 M for all t > 0, if KR > 0, (9.1)

andR(t) → ∞ as t → ∞ if KR = 0; hereδ0 andM are positive constants. The inequalities
in (9.1) suggest that a stationary solution with (finite) positive radiusR∞ should exist. This was
recently proved (in [13]) but only for a subsystem of the model, which formally corresponds to the
caseKR = ∞. The existence of stationary solutions for the general system, and the determination
of their stability, remain open problems.
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