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On the geometry of Hele—Shaw flows with small surface tension
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We study the time evolution of the free boundary of a viscous fluid in the non-zero-surface-tension
models for planar flows in Hele—Shaw cells under injection. Applying methods of conformal map we
prove that certain geometric properties, such as starlikeness and directional convexity, are preserved
in time.
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1. Introduction

We discuss the Hele—Shaw problem in the plane in two basic cases. The first one deals with
the classical situation of injection through a unique source in a finite region. The second one is
concerned with the free boundary extending to the point at infinity. Starting with the earlier works of

L. A. Galin [9] and P. Ya. Polubarinova-Kochirla [19] 20], various aspects of the planar Hele—Shaw
viscous flows with vanishing surface tension were investigated by a number of scientists. It is known
[31] that in the zero-surface-tension Hele—Shaw problem with an initial region with an analytic
boundary the classical solution exists locally in time. Recehtly [25], it became clear that the model
could be interpreted as a particular case of the abstract Cauchy problem, and thus, the classical
solvability (locally in time) may be proved using the nonlinear abstract Cauchy—Kovalevskaya
Theorem.

One asks whether a non-zero-surface-tension model approximates the zero-surface-tension one.
The answer is negative in the case of a receding fluid (see numerical evidend¢e In [1, 24]). In the case
of injection the answer is supposed to be affirmative but is still unknown. In our paper we consider
geometric properties that are preserved under injection during the time evolution of zero- as well as
of non-zero-surface-tension models.

For the non-zero-surface-tension case J. Duchon and R. Robert [3] proved the local existence
in time of the weak solution for bounded domains. Recently, G. Prdkert [23] obtained even global
existence in time and exponential decay of the solution near equilibrium (when surface tension is a
unique driving mechanism). The results are obtained in Sobolev sgEoceith sufficiently larges.

J. Escher and G. Simonett [5, 6] proved the local existence, uniqueness and regularity of classical
solutions to one- and two-phase Hele—Shaw problems with surface tension when the initial domain
has a smooth boundary. The global existence in the case of the phase domain close to a disk was
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proved in [7]. For unbounded domains with unbounded boundary the corresponding result about
short-time existence and uniqueness for positive surface tension has been obtained by M. Kimura
[15]. More about the local existence of classical solutions can be foundlin [30].

In the present paper we derive equations for the free boundaries either for unbounded domains
(similarly to [8]) whose free boundary extends to infinity, or for the classical situation of suction
and injection, in non-zero-surface-tension models. Using methods of geometric function theory we
prove that some geometric properties of the free boundary that depend on those of the initial one are
preserved as long as the classical solution exists.

2. Bounded case

A simple dimensionless model of a moving viscous incompressible fluid in a plane Hele—Shaw cell
is described by a potential flow with velocity field = (V1, V2). We assume that a unique force
acting in this field is the dimensionless presspghich is the potential for the fluid velocity
]’l2
V=-—-Vp,
120 F
where# is the cell gap andk is the viscosity of the fluid (see e.d. [18]27]). Denote Byr) a
bounded simply connected domain @ occupied by the moving fluid and b¥ (¢) its moving
boundary. Suction or injection is carried out through a point sink or source placed at the origin
0 € £2(). The initial boundaryly = I'(0) is supposed to be analytic and smooth. We have
a homogeneous sink/source with the normalizatidp, r) ~ % log|z| about the origin. The
incompressibility of the fluid implies the harmonicity of the presspte, t) except for a singular
point at the origin,
Ap=—000(), z=x+iyeR(), 1)

wheredo(z) stands for the standard Dirac distribution with singularity at the origin. The \@lise
the strength of the sink (sourcg), > 0 in the case of a sink (an@ < 0O in the case of a source).
The non-zero-surface-tensiatynamicboundary condition is given by the product of the surface
tensiony and the mean curvatukein the z-plane (J. W. McLean and P. G. Saffmani[16]),

p(z) =yk forze (). (2

In a real Hele-Shaw cell[2) is an approximation to the effect of complicated three-dimensional
free surface flow near the moving interface. The normal velocity on the boundary is given by the
kinematiccondition for the normal velocity

op
on’

Up = (3
wherer is the outward unit normal vector tB(r). The problem|[([1)£(3) has a unique classical
solution locally in time for both positive and negatige[6/30].

The zero-surface-tension problepm £ 0) with suction is ill-posed in the Hadamard sense. This
means that an arbitrarily small perturbation of the initial dom@in= $2(0) can produce ai® (1)
effect in arbitrarily short time. The injection problem is well-posed (C. M. Elliott and V. Jarjovsk
[4]). The condition[() is one of the proposals for the regularization of the ill-posed problem (which
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is also known as the Laplace—Young condition). It accounts for the influence of surface tension on
the pressure across the interface.

We consider the complex potentitd = W(x, y,t) = W(z,t), ReW = p. For each fixed
it is an analytic function defined i (r) whose real part solves the problefj ([}-(2). In the
neighbourhood of the origin we have the expansion

W(z,t) = % logz + w(z, 1), 4)

wherew(z, t) is an analytic regular function if2 (¢). We have

=il ©)
z ax ay
by the Cauchy—Riemann conditions.

In order to derive the equation for the free boundA&ty) we consider an auxiliary parametric
complex¢-plane,; = & + in. The Riemann Mapping Theorem shows that there exists a unique
conformal univalent magf (¢, t) of the unit diskU = {¢ : |z] < 1} onto the phase domain,

f U — (@), with £(0,1) = 0, f/(0,r) > 0. The functionf (¢, ) gives the parameterization
I'(t)={f("? 1) :6 0, 2r)} of the moving boundary.
The outward unit normal vector ifi|(3) is given as

. f¢.n
—c L > aU.
e f€
From now on, we use the notatiofis= df/dt, f’ = 3f/d¢. Thus, ) and]S) lead to the formula
- oW fl&. 1) >
= < Sreonl

The superpositio o f (¢, t) is an analytic function in the unit disk. Since the Laplacian is invariant
under conformal map, the solution {q (1)}-(2) is given in terms ot tpane as

2 9 _'_;-
Wo f(¢, t)_—log§+—/ §d9+zC (6)
where » » »
o . Re(L+€ ("%, 1)/f'(€° 1))
k(€? 1) = D) ., 6¢€]0,27).
We calculate , _ '
(@, 1)  —Ime?lsp(e. 1)
R T

whereS; is the Schwarzian derivative. Differentiatirjg (6) we deduce that

AW 0 |y [T kEE!
ga_zf(gvt)—g‘l‘;‘/(; md@, tel.

Integrating by parts we obtain

Q_L 2 imefsp(e?, 1) €% + ¢ "
27i lf/(€f 0] €f—¢

f(s“)
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Then we apply the SokhotskiPlemelj formulae [17] and, finally, deduce that
. R aw
Ref(, n¢f'(¢,1) =~ Re(a—z o f(s, t)) ¢f'@. 0

2

9 yH[i Im £°8r (¢, 1)
2

where the Hilbert transform ifi{7) is of the form

= _ 9), =", 7
If/(;“,t)l}() ¢ )

. 1 2 w(eIG’) ,
H[v]) = ~ P.V.Q/0 1 g do’.
This type of equation is known as ttRelubarinova—Galin equatioifsee e.g.[[13]). In terms of
the equation[(7) the existence of a classical solution means that the parametric fyfigtionis
analytic in a neighbourhood of the digkand univalent irJ locally in time (see e.gl[24, 25]).

3. Geometric properties of the free boundary

Several authors studied starlike dynamics under injection. For example, some authors imposed
“strict starlikeness” as an additional condition to prove short-time existence and uniqueness of a
weak or classical solution (see, e.0..1[23, 26]). Let us refer also to the paper by E. Di Benedetto
and A. Friedmann_|2] where the authors discussed the weak solution and proved that starting with
a domaing2g that is starlike with respect to a small ball centred at the point of the source the
evolutionary domains2 (r) remain starlike with respect to a ball (maybe of different radius) in the
zero-surface-tension case. If the classical solution exists, then it is the same as the weak one (see,
e.g., [11]). Therefore, the same is true for the classical solution. In [12] the same result is proved
but for domains which are starlike with respect to a point source, using complex variable methods.
Here we generalize this result to non-zero surface tension using a slightly different method.

We recall that a domaie C C with 0 € £2 is said to bestarlike (with respect to the origin) if
each ray starting at the origin interse€sin a set that is either a line segment or a ray. A function
f mappingU onto a starlike domain is said to be starlikeé € S*), and it satisfies the necessary
and sufficient condition of starlikeness (see [10[21, 22])

Rell®)
F©

If the function f can be extended analytically onto the clostref U, then the inequality sign in
(8) can be replaced by where the equality can be attained at the unit ciécle

We need a technical formula. For the functign: U — C which parameterizes the phase
domaing2(¢) we have the equality

>0, ¢eU. (8)

N R CON .
3_9H|:|J”(T)|i|(9) = —H[iA](®) 9)
with
re 2:25 K.f”(c))”_f”(;)(.f”(:)ﬂ im &0©) |2
e(§ 1O o) o o) )M e mes©
A@Q) = , :
£/

We denote by" the blow-up time (the classical solution exists during the period’ ).
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THEOREM1 LetQ < 0 and let the surface tensignbe sufficiently small. If the initial domain
20 is starlike, then there exists= ¢(y) < T such that for each € [0, 7(y)] the domain2(¢) is
also starlike.

Proof. Suppose that there exists a critical mage S*. Saying this we mean that the imagelof
under the mag f'(¢,1)/f(, 1), |¢] < 1, touches the imaginary axis and there exis 0 and
Zo = €% such that

sof' (o, 1) m < 71)
ag——— = — or=——|, 10
ey 2 2 (10)
and for anys > 0 there are > ¢’ and@ € (6g — ¢, 6y + ¢) such that
élfrely m b
—_— 2= = <—5 ) 11
MW ey 72 (Or 2) ()

For definiteness we put the sigr-) in (1d). without loss of generality, assume= 0. Since
f'(€?, 1) # 0, our assumption about the sign @(10) yields

%0/, 0) _ 0
f(o,0)
(the negative case is considered similarly).

Sincegy is a critical point and the image of the unit diskunder the mappingf’(¢, 0)/f (¢, 0)
touches the imaginary axis at the pojt= €%, we deduce that

Im (12)

9 _ é?f'(e? 0 9 _ re%f'(ré®, 0)
R I A T N
We calculate
0f" (0,0 of' (%o, 0)}
Re|1+ - =0, 13
[ [0, 0) f (0. 0) (13)

Im [1 50f"(50.0)  Zof' (%o, 0)] >0 (14)
1'%, 0) /(0,0

One can derive

’ ’ Qg7 a2
D gt 0 FE _|m<3tf(§,t) B a,f(z,t)).

ar T fy At fE,n @0 £t

Now we differentiate the equatiop|(7) with respecbtosing [9):

(15)

— 0 - . [
Im (f/(ﬁ, I)Ef’(i, D —=Cf'CDfE ) —E2f(, l)f(é“J)) = —yH[iA](®)  (16)
for ¢ = €7, This equality is equivalent to the following:

25 2 , . S 1) /
If’(g“,t)lzlm("’f €0 _uld ”) — M@ /.1 (gf €D _ D +1>

@&, n f&.n @&, n f (&0
—y H[i A](6).
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Substituting[(¥) and (13) in the latter expression, we finally have
) rf(C. 1) 1 (Q [ ez“’sf<e"9,r)] )
— =— | — +yH|liIMmM—— | (6
9 YT oo o 7@ 02\ 2 TV e o [ ®
| (e"%f%ef@o,m e""of”(e‘@O,O)) HI[i A(€%)](60)
(%, 0) Fe®,0 ) Ve o

an

The right-hand side of this equality is strictly negative for smablecause of (12)[ (14). Since we
consider the set of critical points in the compactdeét we can choosgp > 0 to be minimal such
that the right-hand side is negative for all critical points and [0, yo]. Therefore,

ehri@ehn x

arg f(eieo,t) <2

for t > 0 (close to 0). By continuity, the same inequality holds in some neighbourhood of any
critical pointép. For all6 outside the above mentioned neighbourhoods the same inequality is valid
because o i
w _ z < -8 <0.
fE? 1) 2

This contradicts the assumption of the existence of critical points and ends the proof. [

Discussion

1) An interesting question appears when— 0. It turns out that the solution in the limiting
y-surface-tension case need not always be the corresponding zero-surface-tension solution at
least in the problem of receding fluid (see the discussion ifi [28, 29, 30]). This means that if
£2(¢t, y) stands for the moving fluid domain at timevith surface tensior, then assuming
lim,_082(t,y) = £(t,0), the domains2(0, 0) is not necessarily the limit af2(0, ) as
y — 0. Theorenj [l shows that some geometry remains the same-as0. In particular,
in the zero-surface-tension mod€0) = T and starlikeness is preserved for the whole time
t [0, 7).

2) The result of Theorer] 1 is local in the sense that the starlikeness in question remains the
same in some neighbourhood of the initial instant when the dorfairis starlike. This
neighbourhood depends either pror else on the properties of the bounddiyinvolving
the value ofH[iz?Im Sr/1f'11(0) and H[i A](9). We also point out that in the case of the
zero-surface-tension modal) < O corresponds to the situation when the travelling wave
solution is linearly stable [13] far € [0, T).

3) There are expectations that Theorlgm 1 is still true for larg&nfortunately, we are not
able to prove this at the moment. The influence of the curvature makes it less probable that
t(y) = tgfory # 0 butz(y) could exist even for large. The restriction on the smallness of
y comes from the method of proof.

4. Isoperimetric inequalities

Let S(t) be the area of the domaif?(¢) in the Hele—Shaw dynamics under the conditions of
Section 2. A simple application of the Green theorem implies that the rate of the area change is
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§=—0.Lety =0, 0 < 0.From|7) we deduce that

1 2 Q 1 27 Q —Q S
4T T2 /0 | 7/(69, 1|2 “4n2 /o (€0, 1)2 2na _ 2ma

wherea = f7(0, ). In other words the area variation is controlled by the conformal radius of the
domains2(r) with respect to the origin§ < 2waa. We point out here that generalfy> wa? (this
is a simple consequence of the area principle, see e.g. [10]). The equality in the above inequalities
is attained for2(¢r) = {z : |z| < a(¢)}. In a similar manner S. D. Howison and Yu. E. Hohlov![14]
estimated from below the distance fraiir) to the origin.

The lower bound fof§ is unclear or at least much more difficult. One must estimate the integral

mean
/Zn L (18)
o If'(€? 0

from above. The cusp formation does not allow us to obtain a uniform (with respecbtund.
But one can estimat¢ ([L8) under some geometric conditions on the deairat time . For
example, this is possible if we assume that at tintiee domain(2 () is convex. Then the function
f is also convex, and thu}starlike, say Ref'(¢)/f(¢) > 1/2. Moreover the 1/4-Koebe theorem
for convex functions yieldsf (¢)| > a/2. This implies the estimates

2 1 32r . Tma.
- — _d <= and §>—a.
o |f/(€9 12 a? 8

5. Free boundary extends to infinity

This model corresponds to the moving fluid front which for definiteness we suppose to be located
to the right. More precisely, we denote I83/(¢) a simply connected domain in the phasplane
occupied by the moving fluid and we suppose its moving bounddry = 92 (¢) contains the

point at infinity. Withz = x + iy one can construct a parameterizatiBfr). Assuming a natural
normalization forl"(¢) close tooco, we require thaf"(¢) is a vertical straight line near infinity. The
initial situation is represented at time= 0 as$2(0) = £2q, 0§29 = I'(0) = I'p. We construct the
complex potentiaW (z, t), ReW = p, wherep is, as usual, the pressure fieldih(r). For each
fixedr the potentialW is an analytic function defined if2 (+) which solves the problem

V2p=0 inz e 20), (19)
p=vk(z) onzell(), (20)
m=-" onzerm. (21)

on

We assume that the velocity tends to a constant v@lasx — oo, which is positive when the fluid
is removed to the right and negative otherwise. In terms of the potgntied havep(x, y, t)/x —
—Q asx — oo for anyr fixed. The existence problem has been discussed in the introduction. Note
that for this case the local solvability and uniqueness were proved by M. Kindra [15].

We consider the auxiliary parametric compleyplane,; = & + in. The Riemann Mapping
Theorem shows that there exists a conformal univalent gitgp?) of the right half-planeli + =
{¢ : Re¢ > 0} into the phase planef : Ht — (). The half-planeH ™ is a natural param-



190 A.VASIL'EV & | . MARKINA

etric domain for$2. The function f(¢,0) = fo(¢) produces a parameterization 6. The

smoothness of the boundaify(r) and its behaviour in the neighbourhood &f allow us to

assume the normalizatiofi(¢,) = ¢ + ap + a-1/¢ + ..., ¢ ~ oo, i.e. the functionf has

an analytic continuation on the imaginary axigl* near co. Thus, the moving boundary is

parameterized by (1) = f(dH™,t). The normal exterior vector il) is given by the formula

n=—f'&D/f ¢ 0], ¢ edHT. We represent the curvatueeof I'(¢) in terms of f as
Ref"(in,)/f'(in, 1)

k(in,t) = , 1N € (—00,00).

Lf'Gn, )]

Repeating the calculation for the normal velocity as in Section 2 we come to the equation of
Polubarinova—Galin type

R - i Im S
Re(f(¢, 0. 1) =Q+VyH [’ | f/|f ](m, Re; =0, (22)
with the Hilbert transform defined as
1 oo L
H) = =PV, [ LD gy
i —oo ' =1

Note that a simple case = 0 of the zero-surface-tension model has been considerédlin [13]. An
equation similar tof (32) for non-zero-surface-tension model has been obtainéd in [8].

Now we define a geometric property &f(¢) which is natural for the problem in question. A
simply connected domaif? on the extended complex plafigis said to beconvex in the positive
direction of the real axisf its complement can be covered by a family of non-intersecting parallel
rays with the direction oR™. This definition can be found, e.g., in [10]. In the case of a smooth
boundary this means that any point of the boundary is reachable from the right by a ray parallel
to R*. A holomorphic univalent mapping (¢), ¢ € HT, is said to be convex in the positive
direction if f(H™) is as above. A criterion for this property is provided by the following inequality:

Ref'(¢)>0, ¢=&+ineH'. (23)

If we considerf in the closure off +, then the equality ir@B) can be attained on the &xis 0.
The level lines, i.e., thg-images of the line§ = const,¢ > 0, also bound domains convex in the
positive direction as soon as the functigns convex in the positive direction.

Denote byr the blow-up time. The following theorem is proved by analogy with Thegrem 1.

THEOREM2 Consider the fluid region expanding to the lI&ft < 0). Let the surface tension

be sufficiently small. If the initial domaitg is convex in the positive direction, then there exists
t = t(y) < T such that for each € [0, 7(y)] the domains2(¢) is also convex in the positive
direction.

Remark.In particular, in the zero-surface-tension mod&) = T and the above property is
preserved for the whole timee [0, T).

REFERENCES

1. CENICEROS H. G., Hou, T. Y., & SI, H. Numerical study of Hele—Shaw flow with suctidthys. Fluids
11(1999), 2471-2486. MR 2000d:76051


http://www.ams.org/mathscinet-getitem?mr=2000d%3A76051

10.
11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.
23.

24.

25.

ON THE GEOMETRY OF HELE-SHAW FLOWS WITH SMALL SURFACE TENSION 191

. DI BENEDETTO, E. & FRIEDMANN, A. The ill-posed Hele-Shaw model and the Stefan problem for

supercooled wateflrans. Amer. Math. So282(1984), 183-204., Zbl 0621.35102 MR 859:35121

. DucHoON, J. & ROBERT, R. Evolution d'une interface par capillaiet diffusion de volume, 1: existence

locale en tempsAnn. Inst. H. Poincag 1 (1984), 361-378.] Zbl 0572.35051 MR 86i:35133

. ELLIOTT, C. M. & JANOVSKY, V., A variational inequality approach to Hele—Shaw flow with a moving

boundaryProc. Roy. Soc. Edinburgh Sect88(1981), 93-107., Zbl 0455.76043 MR 82d:76031

. ESCHER J. & SMONETT, G. On Hele—Shaw models with surface tensibtath. Res. Lett3 (1996),

467-474.| Zbl 0860.35149 MR 971:35145

. ESCHER J. & SMONETT, G. Classical solutions for Hele—-Shaw models with surface ten#idm.

Differential Equations2 (1997), 619-642.] Zbl 0888.35142 MR 98b:35204

. ESCHER J. & SIMONETT, G. A center manifold analysis for the Mullins—Sekerka modeDifferential

Equations143(1998), 267—292. Zbl 0896.35142 MR 98m:35228

. FokAs, A. S. & TANVEER, S. A Hele—Shaw problem and the second PamteanscendeniMath. Proc.

Cambridge Philos. S0d.24(1998), 169-191., Zbl 0918.76020 MR 99b:7502

. GALIN, L. A. Unsteady filtration with a free surfac®okl. Akad. Nauk SSS& (1945), 246-249 (in

Russian).| Zbl 0061.46202

GOODMAN, A. W. Univalent Functions\Vols. |, Il. Mariner, 1983.

GUSTAFSSON B. Applications of variational inequalities to a moving boundary problem for Hele—Shaw
flows. SIAM J. Math. Anal16 (1985), 279-300. Zbl 0605.76043 MR 86m:35155

HoHLovV, Yu. E., ROKHOROV, D. V. & VASIL'EV, A. Yu. On geometrical properties of free boundaries
in the Hele—Shaw flows moving boundary probldmbachevskii J. Mathl (1998), 3—12 (electronic).
Zbl 0939.76025/ MR 99m: 76054

HowisoNn, S. D. Complex variable methods in Hele—Shaw moving boundary problEmspean J.
Appl. Math.3(1992), 209-224. Zbl 0759.76022

Howison, S. D. & HoHLOv, Yu. E. On the classification of solutions to the zero-surface-tension model
for Hele—Shaw free boundary flonQuart. Appl. Math54 (1994), 777-789.] Zbl 0793.76093

KIMURA, M. Time local existence of a moving boundary of the Hele—Shaw flow with sudEiorapean

J. Appl. Math.10(1999), 581-605.  Zbl 0955.76020 MR 2001e:76038

MCLEAN, J. W. & SAFFMAN, P. G. The effect of surface tension on the shape of fingers in a Hele Shaw
cell. J. Fluid Mech.102(1981), 455-469., Zbl 0472.76111

MUSKHELISHVILI, N. I. Singular Integral EquationdNoordhoff, Groningen, 1953/ Zbl 0051.33203
OCKENDON, H. & OCKENDON, J. R. Viscous Flow Cambridge Univ. Press, 1995, Zbl 0837.76001
MR 95k:76025

POLUBARINOVA-KOCHINA, P. Ya. On a problem of the motion of the contour of a petroleum dbek.
Akad. Nauk SSS& (1945), 254-257 (in Russian).

POLUBARINOVA-KOCHINA, P. Ya. Concerning unsteady motions in the theory of filtratPrikl. Mat.
Mekh.9 (1945), 79-90 (in Russian).

POMMERENKE, C. Univalent Functions(with a chapter on quadratic differentials by G. Jensen).
Vandenhoeck & Ruprecht,d@ingen, 1975.| Zbl 0298.30014

POMMERENKE, C. Boundary Behaviour of Conformal MapSpringer, Berlin, 1992, Zbl 0762.30001
PROKERT, G. Existence results for Hele—Shaw flow driven by surface tenEiorapean J. Appl. Matt
(1998), 195-221.] Zbl 0919.35005 MR 2000d:76052

QNG, N. & TiIaN, F. R. Singularities in Hele—Shaw flowSIAM J. Appl. Math.58 (1998), 34-54.
Zbl 0917.76020| MR 2000c: 76023

ReEISSIG M. & VON WOLFERSDORF L. A simplified proof for a moving boundary problem for Hele—
Shaw flows in the planédrk. Mat.31(1993), 101-116., Zbl 0802.35168


http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0621.35102&format=complete
http://www.ams.org/mathscinet-getitem?mr=85g%3A35121
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0572.35051&format=complete
http://www.ams.org/mathscinet-getitem?mr=86i%3A35133
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0455.76043&format=complete
http://www.ams.org/mathscinet-getitem?mr=82d%3A76031
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0860.35149&format=complete
http://www.ams.org/mathscinet-getitem?mr=97i%3A35145
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0888.35142&format=complete
http://www.ams.org/mathscinet-getitem?mr=98b%3A35204
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0896.35142&format=complete
http://www.ams.org/mathscinet-getitem?mr=98m%3A35228
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0918.76020&format=complete
http://www.ams.org/mathscinet-getitem?mr=99b%3A7602
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0061.46202&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0605.76043&format=complete
http://www.ams.org/mathscinet-getitem?mr=86m%3A35155
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0939.76025&format=complete
http://www.ams.org/mathscinet-getitem?mr=99m%3A76054
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0759.76022&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0793.76093&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0955.76020&format=complete
http://www.ams.org/mathscinet-getitem?mr=2001e%3A76038
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0472.76111&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0051.33203&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0837.76001&format=complete
http://www.ams.org/mathscinet-getitem?mr=95k%3A76025
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0298.30014&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0762.30001&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0919.35005&format=complete
http://www.ams.org/mathscinet-getitem?mr=2000d%3A76052
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0917.76020&format=complete
http://www.ams.org/mathscinet-getitem?mr=2000c%3A76023
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0802.35168&format=complete

192 A.VASIL'EV & | . MARKINA

26. RRIMICERIO, M. & RODRIGUES J.-F. The Hele—Shaw problem with nonlocal injection condition.
Nonlinear Mathematical Problems in Industry,(lwaki, 1992), GAKUTO Internat. Ser. Math. Sci. Appl.
2, Gaklotosho, Tokyo, 1993, 375-390. Zbl 0875.35157 MR 96j:3527

27. SAFFMAN, P. G. & TAYLOR, G. |. The penetration of a fluid into a porous medium or Hele—Shaw cell
containing a more viscous liqui@roc. Roy. Soc. London Ser245(1958), 312-329., Zbl 0086.41603

28. SEGEL, M., TANVEER, S., & DaI, W. S. Singular effects of surface tension in evolving Hele—Shaw flows
J. Fluid Mech.323(1996), 201-236., Zbl0885.76022 MR 97h:76041

29. TANVEER, S. Evolution of Hele—Shaw interface for small surface tensPimlos. Trans. Roy. Soc.
London Ser. /843(1993), 155-204., Zbl 0778.76029

30. TiaN, F.-R. Hele—Shaw problems in multidimensional spadedNonlinear Sci.10 (2000), 275-290.
Zbl 0955.76024 MR 2000m:76041

31. VINOGRADOV, Yu. P. & KUFAREV, P. P. On a problem of filtratiofrikl. Mat. Mekh.12(1948), 181-198
(in Russian).| Zbl 0032.27901 MR 9,540j


http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0875.35157&format=complete
http://www.ams.org/mathscinet-getitem?mr=96j%3A3527
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0086.41603&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0885.76022&format=complete
http://www.ams.org/mathscinet-getitem?mr=97h%3A76041
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0778.76029&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0955.76024&format=complete
http://www.ams.org/mathscinet-getitem?mr=2000m%3A76041
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an0032.27901&format=complete
http://www.ams.org/mathscinet-getitem?mr=9%2C540j

	Introduction
	Bounded case
	Geometric properties of the free boundary
	Isoperimetric inequalities
	Free boundary extends to infinity

