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Variational models for phase separation
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The paper deals with the asymptotic behaviour(as 0) of a family F. (u, v) of integral functionals

in the framework of phase separation. In order to obtain a selection criterion for the minima of the
usual double-well, non-convex free energy involving the phase-varighie add a gradient term

in a new variablev which is related ta: through theL?-distance between andv, weighted by a
coefficienta. We prove that the limit as — 0 is a minimal area model with a surface tension of
non-local form. The well-known Modica—Mortola constant can be recovered in this setting as a limit
case wherx — +o0.
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1. Introduction

In this paper we study the asymptotic behaviour of a family of integral functionals, showing their
close connection with classical models for phase separation.

A material, e.g. a fluid, which may be in either of two phases, fills a bounded regular 2gion
in space. A configuration of the system can be described by a functigh which takes value 0
on the subset af? occupied by one phase, and value 1 where the material is in the other phase. We
could also think of: as the density of the fluid, taking either of two different valuesndb.

A physically reasonable criterion requires that the interface between the two phases at the
equilibrium has minimal area. This corresponds to postulating a free energy of the form

F(u) = o H3(S()), (1.1)

whereo is thesurface tension$ () is the discontinuity set af and+? denotes the 2-dimensional
surface measure. The minimization®fis considered among all admissible configurations

A different approach assumes that the free energy, per unit volume, is a prescribed flinction
of the density distributiom. Thus the stable configurations of the fluid minimize the total energy

E) =f W (u(x)) dx,
2

under the constraint of prescribed total m@%;u(x) dx = m. AssumeW is of “double-well” type,
with minima located at = « andu = b. The addition of an affine function t& does not change
the minimum problem because of the conditif}pu(x) dx = m; thus we can assume the same
level for both the minima at andb.
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If a|2| < m < b|§2]|, the minimum problem foE (1) admits infinitely many piecewise constant
solutions with values andb (see, e.g./[[10]), without any condition on the interface between the
sets{u = a} and{u = b} corresponding to the phases. A modification of the model therefore
is needed to select some sort of “physically preferred” solutions. The Van der Waals and Cahn—
Hilliard approach consists in the addition of a penalty on the density gradient, thus considering the
total energy

Golw) =/ (W) + 2| Vul?) dr,
2

wheree > 0 is a small parameter. A link between the two models can be established via the
asymptotic analysis far — 0. More precisely, a suitable rescalingG. (which admits the same
minimizers) is needed to give rise to a non-trivial limit functional.[In|[17] (see alsb [18]) Modica
proved that, under the constraint of prescribed mass/ thimit of

F.(u) = —G () = /W(u)+8/ |Vu|? (1.2)

is finite only if # is a function of bounded variation amde {a, b} a.e., and in that case it is given

by (1.1), with
o= 2fabMds = inf{/R(W(u) + Wh?) : Nim u() =a. lim u() = b}. (%)
A variant proposed for the Cahn—Hilliard function®l reads as follows (see [15[,/[1]./[2]):
B =1 [ waendor g [ et um cupPrdy. @)

This corresponds to the replacement of the Dirichlet te%rfb |Vu|? in G, with a non-local term
where spatial inhomogeneity, weighted with an influence kernel, is penalized.

In such a case (s€€ [3] for interaction potentials more general than the exponential kernel above)
the limit ase — 0 is again the functional (1].1), but with a different surface tension:

o= inf{/ W (u(t)) dr + 1// e 5 u(t) — u(s))?de ds :
R 4 ) Jr2
im u(t) =a, lim u() =b}. (%x)
t——00 t—>—+00

In this paper we consider the following generalizatiorFpf

Fu(u,v) = %LW(M)JF%/Q(M—U)ZH/QWUF,

whereq is a positive parameter. Let us notice that in the one-dimensional setting these functionals
were proposed by Rogers and Truskinovsky_ in [21] (see also [9]) as a model for the longitudinal
deformation of an elastic bar which could take into account an elastic energy of Ericksen’s type
together with an internal scalar variable which measures the deviation from one-dimensional
deformation.
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We shall show that the limit functiond («, v) is finite if and only ifu is a function of bounded
variation andt = v € {a, b} a.e., and again it is given by (1.1), with a surface tension of type
(here we assume = 0 andb = 1):

2
o =o(a) = ﬁinf{/ W) + & // e (u(x) — u(y)?drdy :
R 4 JJRre
lim u(®) =0, lim u@®) = 1}.
t——00 t— 400

However, the surface tensigm) corresponding to the family, (u) in (I.2) will be recovered for
o — +00.

Actually, we shall consider, in place gf, |[Vv|2 in F.(u, v), a more general anisotropic term
Jo 22(Vv), with g positively 1-homogeneous. This will give rise, in the limit, to an anisotropic term
of the formfs(u) @(v,) dH2, wherev, is a normal unit vector field ofi(«).

Notation and preliminaries

The Lebesgue measure k' and the ¢ — 1)-dimensional Hausdorff measure will be denoted
respectively by£” and H"~1; we shall also use the notatig#| instead of£"(E). B, (x) will
be the open ball with centreand radius, ands"1the boundary of the baB1(0).

Functions of bounded variation and sets of finite perimet&or the general theory of this topic we
refer to [13| 14, 6]; here we recall some definitions and properties we shall use in what follows.
Given an open subse? of R”, a functionu: 2 — R is said to be obounded variation
(u € BV(£2))if u € LY(£2) and its distributional derivativeB;u are Radon measures with finite
total variation ing2.
If u e Lﬁ)C(Q) we say that € R is theapproximate limitof u in x € 2 (z = ap-lim,_,, u(y))
if
lim ,o_”/ lu(y) —z|dy =0.
p—0 B, (x)

The setS(u) of points where this property does not hold is calledapproximate discontinuity set
of u. The setS(u) is a Borel set, andiS(u)| = 0. If u € BV (£2), thenS(u) is countably(n — 1)-
rectifiable, and there exist Borel functions: S(u) — $" ! andut, u~: S(u) — R such that for
H" laex e Sw),

lim p*"/ lu(y) —ut(x)|dy =0, lim p*”/ lu(y) —u"(x)|dy =0,
p—0 B (x)n$2 p—0 B, (N2
WhereB:;(x) ={yeByx):(y—x,v,(x)) >0} andB;(x) ={yeBy(x):{y—x,v,(x)) <0}
If u € BV (£2) we denote byu the density of the absolutely continuous p@ft: of the vector
measureDu with respect to the Lebesgue measure. Dét be the singular part abu, and define
D’u = Dul_ S(u) andDu = Du L_ (£2 \ S(u)) (thejumpandCantor part of Du, respectively).
We say thau is aspecial function of bounded variatiqp € SBV (£2)) if D°u = 0, in that case
the following decomposition obu holds:

Du=Vul" + wt —u )w,H" 1L S).
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If Eis aBorel subset dR”, theessential boundarg*E of E is defined as

0*E = {x e R" : limsupp™"|B,(x) N E| > 0, limsupp™"|B,(x) \ E| > 0}.
p—0 p—0

It turns out that the discontinuity set of the characteristic funcggrcoincides withd*E, i.e.
S(xg) = 0*E. (1.4)
It can be proved (se& [114]) that for any open sulsgetf R”,

/ |IDxe| = H" (2 Nd*E). (1.5)
2

In particular, if E is a bounded Borel subset, thep € BV (£2) if and only if H"~1(£2 N 9*E) <
+o00 (in such a casek is said to havdinite perimeteiin £2).

Supremum of a family of measurestaking into account the regularity of positive Borel measures
and the standard properties of the least upper bound of a family of measures, we get the following
result (see, e.gl.[8, Proposition 1.16]):

PROPOSITIONL.1 Lets2 be an open subset &* and.F a finite, positive set function defined on
the family of open subsets @2. Let 1 be a positive Borel measure @b, and( f;);<; a family of
positive Borel functions o2. Assume thatF(A) > fA fi du for all A andi, and thatF (AU B) >
F(A)+F(B)wheneverd, B CC 2 andANB = ¢ (superadditivity). ThetF(A) > [,(sup fi) du
for everyA.

I"-convergence. We recall the notion of -convergence (we refer to [11] for a complete analysis
of the subject). LetX, d) be a metric spacef.: X — R (¢ > 0) a family of functionals, and
F: X — R. We say tha{F.} I'-converges t&F atx € X ase — Oif:
(i) for every infinitesimal sequende;} and for every sequende;} converging tax in X, we
haveF (x) < liminf;_ o Fe,; (x));
(i) for every infinitesimal sequende;} there exists a sequengs } converging tor in X such
thatF(x) = |Im]%oo ng (Xj).
If (i) and (ii) hold for everyx € X we say thatf{F.} I'-converges toF in X, and write F =
r-lim,_qF.
REMARK 1.2 (&) Condition (ii) in the previous definition can be replaced by
(i)" for everyn > 0 and for every infinitesimal sequen¢s;} there exists a sequen¢e;}
converging tor in X such thatF (x) > lim SUP; o0 Fe; (xj) — 1.
(b) If F. = G is constant with respect tg the I'-limit exists and coincides with the lower
semicontinuous envelope 6f with respect to the topology induced by
REMARK 1.3 Therl -lower limit and thel"-upper limitof { F.} are defined as follows:

F'(x) = inf{liminf F¢, (x;) 1 &j — 0, x; — x},
Jj—oo

F"(x) = inf{limsupF, (x;) : &j — 0, x; — x}.
j—o00

It is not difficult to see thaF’” and F” are both lower semicontinuous and tfat} I"-converges if
andonly if F' = F”.
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2. Setting of the problem and statement of the results
Letn > 1 be fixed. LetW andg be given functions satisfying the following conditions:

— W:R — [0, +00) belongs toC%(R) andW (¢) = 0 if and only if € {0, 1}; moreoverW
has at least linear growth atoo;

— g:R" — [0, +o00) is Lipschitz continuous and positively 1-homogeneous, &i§d > O if
& # 0. Moreover, we assume that—&) = g(&) for everyé.

For every open subsg? of R” and for everye > 0, we defineF, (-, -; £2): [L1(£2)]? — [0, +00]
as follows:

}/ W(u)—}-g/(u—v)z—f-e/ ¢2(Dv) if ve HY(Q),
& Jg & Jo Q

Fe(u,v; 2) =
+o00 otherwise,

whereq is a given positive constant. Moreover, for every measurgbl@ — R andy € Hléc(R)
let

F g P) =/ W<¢)+af<cp—w>2+/(w’>2,
R R R 1)

2
£(p) = / W)+ f / e () — p(y)2dx dy.
R R2

It will be useful to introduce the following function spaces. Giwerb € R and a bounded
interval/ < R, we shall denote byi; , () (respectivelyH; ,(R)) the subset off* (1) (respectively

H,éC(IR{)) whose elements have (limit) boundary value$. Moreover, we set

X = {p: R — [0, 1] measurable such that limp(x) =0, IirJr: p(x) =1}
X—>—00 X—>+00

In this paper we prove the following theorem about the asymptotic behaviqét phse — 0:
THEOREM 2.1 For every bounded open subsetof R” the functionalsF, (-, - ; £2) I"-converge,
in [L1(£2)]? ase — 0, to the functionalF (-, - ; £2): [L1(£2)]? — [0, +o0] defined by

cw (@) ¢ ) dH"™ ifu,v e BV(2)andu = v € {0,1} a.e.,
F(u,v; 2) = S(u)
400 otherwise,

whereg** denotes the convex hull @f and
cw(@) = Vo inf{E¥(p) 1 ¢ € X}.

Furthermore, we shall look into the behaviour of the surface tensiondg(w), recovering, in
the limit asa — +o00, the well-known Modica—Mortola constant ([17], [18]). More precisely we
prove (see §85):

PrROPOSITION2.2 (a) The following representation holds:
cw(@) = inf{F*(p, ¥) 1 ¢ € X, ¥ € Hy1(R), ¢, ¥ increasing.

Moreover, the infimum on the right-hand side is attained.
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(b) The mapy : o — cy (@) is strictly increasing, and

lim ¢y (o) =min{/ W(go)—l—/((p’)z:(p € Holl(R)}.
o—>+00 R R ’

REMARK 2.3 (a) One can easily see that it is enough to establish Thgorg¢m 2.1lowheh the
general case following withV andg replaced byW /« andg/./«, respectively.
(b) The proof of Theorefn 2|1 relies on the study of functionals obtained by suitable restrictions
of F, to parallel lines (“slicing method”). Thus, we consider the 1-dimensional case first,
taking the following familyF2 (., -; 1): [L1(1)]? — [0, +oc] into account:

1 1 N2 2/ n2 o 1
Ff(u,v;n:{sflw(””g/,(” v+ e | 007 if v e HYD,
+o0 otherwise,

wherel C R is an open set anfl > 0. Notice that for every > 0,

Ff/a =oFPlo,
in particular
Ff = pBF:
e/B — g

Therefore, the proof will come down to the cabe= 1.

3. Thel-dimensional case

As noticed in Rema3, the asymptotic behaviou/f }, stated in Corollar2 below, can be
immediately deduced from the cage= 1; hence, for every open subsebf R we shall consider
the functionalsF,. (-, - ; I): [L1(1)]? — [0, +oc] defined by

}/W(u)+}/(u—v)2+€/(v’)2 if ve HY(I)
Feu,v; 1) =1 ¢ J; e Jr I , (3.1)
+00 otherwise.

THEOREM3.1 For every open subsetC R, {F,(-, -; I)} I'-converges, inf1(1)]? ase — 0, to
the functionalF : [L1(1)]? — [0, +o0] defined by

c#S(w) ifu,ve BV(I),u =vandu € {0,1} a.e.,
Fu,v, I) = .
+00 otherwise,

where
c =inf{EXe) 1 ¢ € X}

. 1
= |nf{/ W(p) + = // e (p(x) — () dxdy 1 g € X}.
R 4 ) Jre
COROLLARY 3.2 Leth be asin Rema.3(b). Then for every open subsetR, {Ff(-, -3 D}
I'-converges, inlLl(I)]2 ase — 0,to BF (-, -; I), whereF is defined in Theore@.l.

In the proof of Theoreth 3]1 it will be enough to consider the dase(—1, 1). The extension to

an arbitrary intervala, b) is immediate sincé, (u, v, (a, b)) = F, (¢, ¥, (—1, 1)) with o = szea’
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u(x) = ¢(Z52) andv(x) = ¥ (Z7%2). Moreover, it is not difficult to see that the- lim inf
inequality for a single bounded interval implies the same inequality for a disjoint countable union
of open intervals (bounded or unbounded), hence for an arbitrary open set (recall propérty (1.5)
for characteristic functions). Finally, the recovery sequence exhibited in the proof 6f{ira sup
inequality is obtained by a local argument which naturally extends to the case of a general open set.
Ther-liminfandI"-lim sup inequalities will be proved in Propositipn 3.3 3.6, respectively,

when! = (-1, 1) (recall Remark 1]2). We shall refer f@ (u, v; (—1, 1)) simply asF; (u, v).

3.1 Ther -lower limit
This section is devoted to proving the following:
PrOPOSITION3.3 Let{e;} be a positive infinitesimal sequence. Then

liminf Fy, (uj, vj) = F(u, v) 3.2)
Jj—>00 ’

wheneveru;}, {v;} are sequences converginglifi(—1, 1) to u andv, respectively.

Letu, vand{u;}, {v;} be as in the statement. We can suppose that the left-hand s{@ in (3.2) isfi-
nite and is a limit; therefore we can also assume that Bujou;, vj) = k < +o0, and thafu;}, {v;}
also converge a.e. Singg; (u;, v;) < k for every j, an application of the Fatou Lemma gives

1 1
/ (W) + (u —v)?) dx < lim inf/ (W () + (u; — v)? dx < lim (g;k) = 0.
_1 J—>00 _1 J—>00

Henceu € {0, 1} a.e. andt = v a.e. We can assumg, v; € [0, 1]; indeed, ifi; = OV u;) A1
andd; = (0V vj) A 1 then{i;} and{?;} converge tar andv in L*, and Fy, (ii;, 0;) < F; (uj, v)).

If S(u) = @ there is nothing to prove. Le¥ < #S(u), and{t1,...,tx} C S(u). Then we can
find intervalsl; = (a;, b;),i =1,...,N,suchthat-1 <a1 <1 <b1 <---<ay <ty <by <
1, and, asj — oo,

uj(a;), vj(a;) — u(a;) € {0, 1}, uj(b;), vj(b;) — u(b;) € {0, 1},

with u(a;) # u(b;). We have
N
Fe;(uj, vj) > Z Fe;(uj, vj, I;). (3-3)
i=1
Now, consider thegth term of the sum; without loss of generality we can suppogg) = O,
u(b;) = 1; indeed, the following argument is easily adapted to the aése = 1, u(b;) = 0, and
gives exactly the same result. For evgrglefine

0 if x e (=1,a; —¢j),

uj(a;) + uj(?i)(x —a;) if x € [a; — &5, ai),
it (x) = { uj(x) J if x € [a;, b;),

uj () + 1_;‘—;“”')@ — by ifx e (i, by + )

1 if x € (bi +¢, 1),
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and analogouslyﬁ]i. (clearly, we can supposg < min{a; + 1,1 — b;} for every j). It is easy to
verify that o

Sincei! and?; take the boundary values 0 and 1 in a neighbourhooeloénd 1 respectively, we
have
Fey (i}, ) = inf{Fg, (a5, ) : ¥ € Hyy(=1, D). (35)

We want to show that
inf(F,, (@, ) 1 ¥ € Hyy(—1, 1)} = E¢, (@, (=1, 1)) + 0(1)j oo, (3.6)

where, for every opeh C R andg: I — R measurable, we define

1 1 !
Eep D)=~ /1 W)+ 7 / /1 eV ) — gy

This is the key point of the proof, since it leads to a family of functionals whose asymptotic
behaviour is known (a similar procedure has been used, e.g.,lin [21]). Indeed, the one-dimensional
version of a result due to G. Alberti and G. Bellettini reads as follows (see [1, Th. 1.4 and §1.9)):

THEOREM3.4 For every open intervdl C R, {E.(-; I)} I'-converges, in.1(7) ase — 0, to
F: LY(I) — [0, +00] defined by

c#S(u) ifue BV(I)andu € {0,1} a.e.,

Fu) = { i
400 otherwise.
wherec is as in Theorefi 311.

In order to obtain[(3]6), we start by proving the following lemma. Set
1t 2 b
Ke(p, ¥) = ;fl(fp—l/f) +8/1(W') ;

whenever € L2(—1, 1) andy € H1(-1, 1).

LEMMA 3.5 Leta,b e RandO< § < 1. Let A be a subset oL.°°(—1, 1) such thatp = a in
(=1, —-1+68)andp =bin (1-34,1), whenever € A. Assume thatd is bounded inL*°(—1, 1).
Then for every > 0 andy € A,

. 1t
INf(Ke (o, ) ) € HE(-1D) = 25 / 1 / O ) — ()2 drdy + 06 ), ()

where lim._.g o (g, ¢) = 0 uniformly with respect t@ < A.

Proof. In what follows we denote by (¢) any functiono (g, ¢) such that lim_go(e,¢) = 0
uniformly with respect t@ € A. Itis easy to see that the infimum [n (B.7) is attained witeis the
solution of the following Euler equation:

{ Y(x) — 2y (x) = p(x), x €[-1,1],

V(=1 =a, ¥(1) =b. (3.8)
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The solutiony of (3.9) is the sum ofy,, solution of the homogeneous problem with the
given boundary conditions, angl,, solution of the Euler equation with Dirichlet homogeneous
conditions; we obtain (see, e.d., [19, pp. 312—-315] for the calculation of the Green function):

1 -1
(b sinhx T a sinhx )
&

&

1
Yolx) = sinh(2/¢)

2 |x —
Ye(x) = (coshM ~cosh™ Y y)(p(y) dy.
& &

1 1
2esinh(2/¢) /;1
Integrating by parts and taking (.8) into account, we have

1 ! 2 1 ! 2 ! /" 11
K€<¢,¢)=gf1¢ —;f_lew—(vf) )—a/_lwf T elyy ],

11 1/t 11
= —f 9% — —/ Yo — —/ oY + vyt
1 1 €J-1

e J e J
1 Zi(p) + I5(p) + T3(p) + Z4 ().

A simple computation yields

1 —1+5 1 1 (l2+b2
—= oo — = VYo = +o(e),

eJ_1 e Jis _tanl‘(Z/s)
and s
1/ sinh[(2 — §)/¢]
- o| < _ b)————
8/—1+5 oY lellz1—1,1)(al +1b]) e Sinh2/e)
Hence

5(p) = —(a® 4+ b?) 4 o (e).

Now we considerZ;(¢). Since costs — 1) = e~ sinhs + ¢~* coshr and cosks + 1) =
coshs coshr + sinhs sinhz, it turns out that

. 1 1 X 2 1 X 2
3(§0) = m[(/l(p(x) COSh; dx) + </1¢(x) S|nhz dx) i|

1 1,1 ,
- @fj‘/lw(x)ﬂﬂef‘xﬂvg dx dy

- 1 /1}/1 (x)e( )e‘z/gcosh|x_y|dxd
2e2sinh(2/¢e) J_ _1¢ Ve e v

It is immediate to see that the last term is infinitesimal withiniformly with respect tap € A.
Consider now the first one; splitting the integral as above, we have:

1448 1 1—
/ o(x) c:oshf dx = ae (sinh— —sinh 8),
_1 & e €

L.

1-6
8 K

X
(p(x)COSh—dX‘ < llellz1(-1,1) cosh
1+ € '
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1 1 1-35
/ o(x) coshf dx = be (sinh— — sinh )
1-6 & & &

Therefore

1 1 hxdx 2_1 2, 42
m(/_lw(x)cos - > —Z(d +b%) +o(e).

In the same way we compute the analogous quadratic term. Thus we conclude that

1 1t , 1
S0 =57 [ 1 L & g () drdy + 5@+ 0 + ),

Finally, we want to show that
Th(p) = o (). 3.9

A straightforward computation gives

a® + b? 2ab
etanh(2/e)  sinh(2/g)’

1 1
[1//01#;]];1 = —m<a/ ga(y) smh

Splitting the integral as above we obtain

[Iﬂolﬁé]fl =

-

1
1
dy—i—b/ o(y) sinh=—-
-1

4 dy).

2432
1 a+b
[Voelzq = ctanh2/e) +o(e).

Therefore[(39) follows.
The results just proved allow us to say that

11 1 [t 1
Ke(p,¥) == / 0> — 5> f J e Vg ()p(y) drdy — Z(a® +b*) + o (). (3.10)
& J-1 2¢ ~1/-1 2

Notice now that, sincg™; e~"=>1/¢ dy = 2¢(1 — e~ cosh?),

olol/e Lt o, et
%Z/L/ 0() — () dxdy——/ o / #2(x) cosh” dx

/J e Vep(x)p(y) dx dy.

Recalling [[3.1D), it is now sufficient to show that

e 1/e

/ (p(x)COSh dx — = (a +b2)—a(8)

& —

This can be easily done splitting the integral in the same way as above. O



VARIATIONAL MODELS FOR PHASE SEPARATION 37

Let us go back to the proof .6); apply the lemma just proved to theAase{:Z;ﬂ :j €N}
In view of the properties ofﬁ;'.}, the assumptions o/l are satisfied for a suitable (depending
oni), witha = 0 andb = 1. SinceF; (i}, y) = e+ I W (@}) + K; (@}, ), we obtain ).
Collecting [3:3)4(36), it turns out that '

N
Fe(uj,vj) = Y Eg (iih, (=1, 1) + 0(1)j - co-
i=1

Notice now thaﬁ; — @' in LY(—1, 1), whereii’ is defined by:

0 if x € (-1, a),
i'(x) = ux) if x € (a;, by),
1 if x € (b;, 1).
Then Theorerp 3|4 (witlh = (—1, 1)) yields

N N
iminf F.. (u;, v;) = Y liminf E,, (@, (=1,1) > Y  F(@@i@') > ¢N.
iminf £, (4, ) ;Pw e (@, (=1, 1)) ; @) >ec

The left-hand side is finite by assumption, avid< #S(«) is arbitrary: it follows that (1) < +o0,
thereforeu € BV (-1, 1) (recall [1.})). Furthermore
lim iorlf Fe;(uj, vj) = c#Su).

J—

This implies the required inequality (3.2).

3.2 Ther-upper limit
In this subsection we prove the following:

ProPOSITION3.6 Letn > 0 and{e;} be a positive infinitesimal sequence. For every in
L1(—1, 1) there exist sequence{aj}, {v]’7} converging, inLY(—-1,1) asj — oo, to u andv
respectively, and such that

limsupF, (uj'.’, v;-]) < F(u,v) + 1. (3.11)

j—o00
Proof. Notice that if F (u, v) = +o0 or S(u) = ¢ the inequality[(3.1]1) is obvious. Thus, since the
approximation is invariant under translations and reflections with respecttd/2, and modifies
only in a small neighbourhood ¢f(x), we can deal only with the cas&é:) = 1, and it is enough
to prove [3.1]1) fou = v = x(0,1), the characteristic function @0, 1). ThenF (u, v) = ¢ = cw(1).
In view of the representation @f, () which will be given in Proposition 51, for every > 0 we
can findg, € X andy, € HL.(R) such thatp, = ¥, = x(0,+00) ONR \ (=T}, T;)) for some
T, > 0, and

FHn ) <+,

Define nowu!(x) = ¢,(x/e) andv!(x) = y,(x/¢) for everye > 0. Clearly, {u!} and {v/}
converge ta:r = x(o,1) in LY(—1, 1). Moreover

Fe(ul,v]) = Fo(u!, v1; R) = F(g,, ¥y).
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Then we have
F(u,v)+n > F.®l, v

e Ve

for everye < 1/T,. O

4. Then-dimensional case

In this section we prove Theorgm P.1 in the general case ah open subset &”. We assume
o =1 (recall Remark 2]3(a)).
For everyu, v € L1(£2) andA an open subset a let

F'(u,v; A) = i”f{”ﬂﬂf Fe;(uj, vj; A) & — 0, uj > u, v; > vin Ll(A)}

(I"-lower limit of {F. (-, - ; A)}).
PROPOSITION4.1 For every, v € L1(£2),
F'(u,v; 2) > F(u, v; ).

Proof. The proof follows the steps outlined in/[8], where tleeing methods applied to get the
lower semicontinuity inequality fof -limits.

Let E CR", andf: E — R; for everyé € $"1let E¢ be the orthogonal projection @ on
g1 (the (n — 1)-dimensional vector space orthogonakidg for everyy EcletEe, ={teR:
y+1t& € E}, and letf; ,: E: , — R be defined byf: , () = f(y +t£).

We recall the following basic facts (see, e.gl, [6, §3.11]).

() Letu € BV (£2) and letD* stand for any o“, D/ or D¢ (the absolutely continuous, jump
or Cantor part of the derivative). Then, for evérye "1 and forH" 1-a.e.y € ¢ we
haveus , € BV (82 ,); moreover, if we denote byD*u, &) the component oD*u along
&, then the following representation holds:

/(Dku,é;‘) =f DFug ,(Bg.,) dH"71(y).
B Bg

(i) Let u € L1(£2); assume thate , € BV (82 ) for everyé in a basis ofR” and for a.e.
y € £2¢, and that

[ 1D i@ @) < oc.
3

Thenu € BV (£2).
Let g, be the polar function of, i.e.

@) =supl S 1y s"—l}, £cR".
g(n)

It is not difficult to see thafg.,) is the convex hull of. For every open subsétof R andé € §"~1
denote bybf the functionaIFf of Remar(b), with8 = 1/g. (&), i.e.

1 1 2 € 2 1
—/W(<ﬂ)+—/(<ﬂ—¢)+2—f(lﬁ) if v € HY(I),
e Jr eJi 8:&) Jr

+00 otherwise in L1(1)]2.

o5 (o, ¥ 1) == {
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By Corollary[3.2 thel"-limitase — 0 is

C .
S 1) — { m#S((p) if o, € BV(I), ¢ = ¢ andy < {0, 1} a.e.,

+00 otherwise,

wherec is as in Theoreh 31. Let

FS(u,v; A) = /A 05 sy, ve.y; Asy) dH" L ()
&

for every open set of £2 and for everyu, v € L1(A). An application of Fubini’s Theorem shows
thatifu, v € L1(A) andv € H1(A) then

& 1 1 2 & 2
FE(M,U;A)=—fW(M)+—/(M—v) +— /I(DU,EH-
€Ja e Ja gs(6) Ja

Clearly, Ff < F; (recall thatg(—n) = g(n) for everyn). Therefore, by Fatou’'s Lemma
F'(u, v; A) > F&(u, v; A),

where
FEu,v; A) = | ¢5(uey, ve yi Agy) dH" 1),
Ag
In view of the explicit form ofgé and by property (i) above, i’ (u, v; A) is finite, thenu, v €
BV (A), u = v andu € {0, 1} a.e.; furthermore, by (i),

E vl
FEu. v A) — / 18 vl g m1.
v =c | o 8@

Then

F'(u,v; A) > c/ M dH 1
Sw)NA g*(é)

for every open subset, £ € " 1 andu, v € L1(A). Since the functionalg, are local, the set
functionu(A) = F'(u, v; A) is superadditive on disjoint open sets; thus, by Propoditign 1.1,

F(u,v; A) > c/ sup 16, vl dH" 1 = cf sup (€. vu) dH" L.
SwnA gesn-1 8x(§) SwnA gesn-1 8x(§)

The conclusion follows since, as noticed above, the last integrand is the convex swll of [

We now have to estimate the-upper limit of { F. (-, - ; £2)}, i.e.

F'(u,v; 2) = inf{limsupFy, (u;, vj; 2) 1 ¢ = 0, uj — u, v; — vin LY(2)).

Let us consider the functional

Gu) = / () dH' L,
S(u)
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defined foru € BV ($2; {0, 1}). By general results on functionals defined on partitions (see [4] and
[5l in particular §3]) the lower semicontinuous envelopg afan be written in the form

Gu) = / Jj () dH" L
S(u)

wherej is the greatesBV-elliptic function less tharg; hence ([5, Example 2.8]) is convex, so
that

Gw) < / ¢ () AL, (4.1)
S(u)

with g** denoting the convex hull ¢f.

PROPOSITION4.2 For every, v € L1(£2),
F'(u,v; 2) < Fu, v; 2).

Proof. Let D be the family of characteristic functions of the s&ts= 2 N A, with A of classC*
in a neighbourhood of2. If F(u, v; £2) is finite, it can be proved that there exist sequerog$
and{v} in D such thatF' (ug, v; 2) — F(u, v; $2) (seell8, Proposition 4.7 and Remark 4.8]). By
the lower semicontinuity of” it is enough to prove the proposition wher= v € D.

Letu = v = xg € D. ThenE = 2 N A, with A a set of clas€ in a neighbourhood aof2.
Let 2’ be fixed, with2 cc £2’. There existsjp > 0 such that for every & n < 5o, the projection

m: E,={x e 2 :dist(x,dA) < n} - AN 2’
1 n

is well defined. Let(x) = dist(x, 2 — A) — dist(x, A); it turns out that fomg small enought is
smooth inE, andv(x) = Vd(x) is a normal unit vector td A atx (x) if x € E,.

Let 0 < < ng be fixed and¥ = max{1/g(€) : &€ € $"~1}. As in the proof of Proposition
, for any fixedn > 0 we can findp, € X, ¢, € HI})C(IR{) such thatp, = ¥, = X040 ON
R\ (=MT, MT), forsomeT =T, > 0, and

FYeop, ) <+

For everye > 0 with Te < 7, defineu,: 2 — R as follows:

d(x) .
%(m) if |[d(x)| < Te,

0 otherwise in2 \ E,
1 otherwise ink.

ug(x) =

In the same way we defing on £2.
Now we want to estimaté, (u., ve; £2). Sinced, g, 1/g, v are Lipschitz or{|d| < Te}, we can
2, ( Vd(x)

find a positive constant such that
+d( )v( L ))
X
gv(x)) gv(x))

1 d
egZ(DUS(x))zg‘(%)/< (x) )
2
o vx) ) L:|<' ,( d(x) )
[g (g(v(x)) teL | S Sewo)

eg(v(x))

W )’( a(x) )
" \eg(x)

()

1
<=
£
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In the following computation we shall drop the subscriptTaking the coarea formula into
account (see, e.gl.l[6, §2.12]), we get

Fe(ue, ve; £2)

<o) [ G )) + (tes) ~ #(tees))
S \e ontai<ra Ll \* \egw@)) AIO) eg(1(x))
( d@)
* ‘w (eg(v(x)))
<CGer) [ Lo o) - () - Gaw)
S \e re Juwnl \P\egw(n) P\ e eg(V(x)
/ ! 2 n—1
+‘w (sg(v(x))) }dH (o dr
<Cer) [ ] D elaamn) * (laar) - “(aaan)
S \e reoznel \P\egw(y) P\ e es(V(»)
, t
"’(gg@(y)))

+oo
< (L+el) / [W(@) + (@) = ¥ (0)? + [y ()] dr / _ ECON AR + oo

dEN

To

2
] dH" " (y) df + o(D)e 0

< @A+el)(c+mn) / gw() dH" 1Y) + o(D)eo0.
IENQ’

Sincef2’ andy are arbitrary, we deduce that
F'(u,v; 2) <cGu).
The same inequality holds for the relaxed functionals; by the lower semicontinuffy aind by

(4-7), we conclude that

F'(u, v 2) < / ¢ () AL,
S(u)

and Propositioh 4]2 is completely proved. O

5. Some properties oty («)
PROPOSITION5.1 Letcy (o) be as in Theore 2.1. Then
cw(a) = Vo inf{E¥ (@) 1 9 € U}
=inf(F%(p, V) i@ €U, ¥ eU N HE(R)},
wherel/ is any of the following spaces:

X: the set of measurable R— [0, 1] such thatlim_, _ ¢(x)=0and lim,_ ;o ¢(x)=1;
Y: the set of measurable: R — [0, 1] with ¢ = x(0,4+00) ONR \ (—R, R) for someRr > 0;
Z: the subset of the increasing elementd of
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Proof. Itis enough to deal with the case= 1. Let
Ly =inf{FYp,¥) 9 €U, ¥ eUN HE(R)).
Clearly,Ix < Iy < Iz.

Steg 1.Ixy =1Iy.

Leto > 0Oandg, € X, ¥, € XN ngc(R) be such thatF (¢, , ¥») < Ix + o. There exists
R > 0 with the following property:

0o — X(0,400) s [V — X(0,400)| < O on R\ (=R, R).

Definey,: R — R to be the continuous function which is affine in both the intervals=
(=R—-1,—R), J' = (R, R+ 1) and such that

Yo =Vs ON(—R,R), VYo =x0400) ONR\(—R—1 R+1).

Moreover, letg, : R — R be defined byig, = ¢ oNR \ (=R, R), ¢, = {/70 onJ U J/, and
Yo = X(0,400) ONR\ (=R — 1, R+ 1). Theng, €Y, J(, eyn Hkljc(R) and, as one can easily
check, ~

Fr@o . Vo) < FH95. Vo) + 0(Do 0.

Step 2. Iy = I.
For everyp € Y andyr € Y N H (R) we construch € Z andy € Z N HL (R) such that
Fr@. ) < Flo. ¥). (5.1)

Let R > 0 be such thap = ¢ = x(0,4+00) ONR \ (—R, R). Following [2], we define the right
rearrangement of a subsétof [—R, R] as the sed* = [R — m(A), R]. Then, for a measurable
functionu: [—R, R] — [0, 1] we define the increasing rearrangemeni as

u*(x) =suplc e R:xel’}, xe[-R,R]

wherel, = {x € [-R, R] : u(x) > c}. Let

0 if x < —R,
o(x) =1 ¢*(x) if —R<x <R,
1 if x > R,

and lety be analogously defined. Thegne Z andy € ZN Hkl)c(]R); moreover, properties [16, (C),
p. 22; (M9), p. 23; (G1a), p. 35] allow us to deduce the inequdlity (5.1).

Step 3. inf{E1(¢) : ¢ € X} = Inf{EX(p) : ¢ € Y}.

We only have to prove that the right-hand side does not exceed the left-hand side-LEetnd
9o € X be suchthafl(e,) <inf(E(p) : ¢ € X}; letg, = 3 +0(ps — ) andg, = @, VO AL
Theng, € Y, and

EX@y) < EY@,) = 026N ws) < %inf(E@) 1 ¢ € X).
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Step 4. Letp € Y. We claim that
inf(FX(p, ¥) 1 ¥ € Y N HL(R)} = EXp). (5.2)
ForeveryR > 0letYgr = {p € X : ¢ = x(0+o0) ONR\ (=R, R)}; thenY = Jz_( Y.

By assumptionp € Yy for someR > 0. If T > 2R, let o7 (x) = ¢(Tx). Apply Lemma3.b
with A = {¢p7 : T > 2R}. Then for everyg > 0,

. 1
mf{— / (o1 — ¥)? +£/ W2y e H&l(R)}
& JR R
1 1 1 1 ,
T 22 / 1/187”7”/8(‘/)()6) — () dxdy +o(e),

with lim;_0o(¢) = 0 uniformly with respect taI' > 2R. Lete = 1/T and {/7(t) = Y/T)
whenevenr) e H&l(—l, 1); then, by a linear change of variable, we get

T - T -
inf{/ <¢—w)2+s/ (w’>2:weH&1<—1,1)}
-T -T

1 T T
_1 / / e (1) = ()2 dr ds + 0D 7 400,
4) 1)1

inf”}é(w—lﬁ)ue/%(lﬂ/)z ‘Y eYr HH%C(R)}

1 —[t—s]
= Z/ / (p(t) — @(s)?dt ds + 0o(D) 7 400-
R JR
It is now enough to notice that
inf(FX(p, ¥) 1 ¥ € Y N HL (R)}
=f W(p) 4+ lim inf /(w—1ﬁ)2+8/(1ﬂ/)2 Sy e Yr NHE(R) b
R T—+o0 R R
Step 5. Consider the infimum of both sides §f (5.2) whewaries inY; then
Iy =inf{€X ) 1 p € Y}.
If we restricty in (5.2) to vary inZ, then
inf(EXg) 1 g e Z) =inf{Flp,¥) 19 e Z, Yy e YNHL (R} < Iz = Iy.

We conclude that
inf{&X(p) 1 ¢ € Z} = inf{E(p) : ¢ € Y). O

Proof of Propositiof 22. (a) Let(g,, ¥,) be a minimizing sequence f&f* on

Z=1{@.¥): peX, ¥eXNHLR), ¢, increasing.
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Thanks to the translation invariance®¥, it is not restrictive to suppose that < 1/2in (—oo, 0)
andg, > 1/2in (0, +00). Since the total variation of the measubg, is 1 for everyn, it follows
that {¢,} is bounded inB Vioc(R); moreovery;, is bounded inL2(R); by compactness there exist
Uy € BVipc(R) andv, € ngc(R) such that, possibly passing to a subsequence,

On — g INLi(R)  and ¢, — vy in Hi (R).

We can also suppose that the convergences are pointwise a.e. By the Fatou Lemma and the weak
lower semicontinuity of the norm,

I|m |nf fa(gon, wn) > »/Ta(uas UC{)'
n—o00

If we prove that(u,, vy) € Z, this inequality implies that
F*(te, v) = MIN(F(p, ¥) : (0, ¥) € Z}.

It is clear thatu, andv, are increasing; sinoefR(ua — vg)2 < +00, We get lim_ oo Ug (x) =
lim,_ 100 vy (x), and the same for — —oo. Then, it is sufficient to prove that lim, o uy (x) =1
and lim,_, _o uq(x) = 0. This is an immediate consequence of the facty@a!ﬂ/(goa) < +o00.

(b) Let
Cy = min{/ W(p) + [ @) 2:ge H&l(R)}.
R R
We claim that for every,
0 < cy(a) < Cy.

By (a) we havery («) > O for everyw. To prove thatey () < Cy we argue by contradiction,
assuming thaty (o) > Cy. Letgp € H&l(IR{) be such thang W(p) + fR(w/)2 = Cy. Given
¢ € CP(R) andr € R, defined@(t) = F*(p, 9 +t£). Then®(t) > cy() = Cy = @(0) for
everyr. Since® € C1(R), it follows that

@'(0) = 2f W' =0 Vi € CPMR).
R

Thereforep” = 0, and this gives a contradiction.

It is immediate to check that the map+— cy () is increasing. We claim that it is strictly
increasing. For > 0 let (¢, ¥) be a solution of the minimum problem dealt with in part (a) for
cy(a+ o). Then

cw(a+o)=/ W(<p)+a/(<p—W)2+/(w/)2+af(<p—¢)2
R R R R
26w(a)+o/R(¢—l/f)2;

if cy (o) = ey (o + o), theney (¢ + o) = Cy, and this gives a contradiction.
Let (pq, ¥y) be a solution of the minimum problem dealt with in part (a) for(«w). The
translation invariance of the functional allows us to choggesuch thaty, < 1/2 in (—o0, 0)
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andg, > 1/2in (0, +00). Sincecy (@) < Cy, weak compactness arguments allow us to deduce
that, up to a subsequence:

Vg = @ in HéC(R) asa — +0o,

9o = @ INLZ (R) asa — +oo.

Moreover, ¢, can be assumed to converge pointwise a.e. The Fatou Lemma and the weak lower
semicontinuity of the norm yield

liminf ( / W(ga) +a / (6a — Va)? + / (%)2) > / Wig) + / )2
a—+00 R R R R R

As in (a) we prove thap € Hg,(R). This implies, sincey (@) < Cy,

QETOOCW(“) = Cy,
thus concluding the proof. O
REMARK 5.2 Itis easy to check directly that

aanS+ cw(a) =0.

REMARK 5.3 If W € C3(R), then the infimum in
cw(@) = Inf{E%(p) 1 ¢ € X}
is attained whew is a travelling wave solution for the one-dimensional parabolic problem
wy=J*xw—w— f(w),

where f is the derivative o (seel[2, p. 549]). The regularity result [n [7, Theorem 3.1(c)] allows

us to construct a minimizing sequencef , (R) converging inLi, (R) to the minimum point;
hence

mIN{E%(¢) - ¢ € X} = Inf{E%(p) : ¢ € Hy,(R)}.
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