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Variational models for phase separation
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The paper deals with the asymptotic behaviour (asε → 0) of a familyFε(u, v) of integral functionals
in the framework of phase separation. In order to obtain a selection criterion for the minima of the
usual double-well, non-convex free energy involving the phase-variableu, we add a gradient term
in a new variablev which is related tou through theL2-distance betweenu andv, weighted by a
coefficientα. We prove that the limit asε → 0 is a minimal area model with a surface tension of
non-local form. The well-known Modica–Mortola constant can be recovered in this setting as a limit
case whenα → +∞.
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1. Introduction

In this paper we study the asymptotic behaviour of a family of integral functionals, showing their
close connection with classical models for phase separation.

A material, e.g. a fluid, which may be in either of two phases, fills a bounded regular regionΩ

in space. A configuration of the system can be described by a function onΩ which takes value 0
on the subset ofΩ occupied by one phase, and value 1 where the material is in the other phase. We
could also think ofu as the density of the fluid, taking either of two different valuesa andb.

A physically reasonable criterion requires that the interface between the two phases at the
equilibrium has minimal area. This corresponds to postulating a free energy of the form

F(u) = σH2(S(u)), (1.1)

whereσ is thesurface tension,S(u) is the discontinuity set ofu andH2 denotes the 2-dimensional
surface measure. The minimization ofF is considered among all admissible configurationsu.

A different approach assumes that the free energy, per unit volume, is a prescribed functionW

of the density distributionu. Thus the stable configurations of the fluid minimize the total energy

E(u) =

∫
Ω

W(u(x))dx,

under the constraint of prescribed total mass:
∫
Ω
u(x)dx = m. AssumeW is of “double-well” type,

with minima located atu = a andu = b. The addition of an affine function toW does not change
the minimum problem because of the condition

∫
Ω
u(x)dx = m; thus we can assume the same

level for both the minima ata andb.
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If a|Ω| < m < b|Ω|, the minimum problem forE(u) admits infinitely many piecewise constant
solutions with valuesa andb (see, e.g., [10]), without any condition on the interface between the
sets{u = a} and {u = b} corresponding to the phases. A modification of the model therefore
is needed to select some sort of “physically preferred” solutions. The Van der Waals and Cahn–
Hilliard approach consists in the addition of a penalty on the density gradient, thus considering the
total energy

Gε(u) =

∫
Ω

(W(u)+ ε2
|∇u|2)dx,

whereε > 0 is a small parameter. A link between the two models can be established via the
asymptotic analysis forε → 0. More precisely, a suitable rescalingλεGε (which admits the same
minimizers) is needed to give rise to a non-trivial limit functional. In [17] (see also [18]) Modica
proved that, under the constraint of prescribed mass, theΓ -limit of

Fε(u) =
1

ε
Gε(u) =

1

ε

∫
Ω

W(u)+ ε

∫
Ω

|∇u|2 (1.2)

is finite only if u is a function of bounded variation andu ∈ {a, b} a.e., and in that case it is given
by (1.1), with

σ = 2
∫ b

a

√
W(s)ds = inf

{∫
R
(W(u)+ (u′)2) : lim

t→−∞
u(t) = a, lim

t→+∞
u(t) = b

}
. (∗)

A variant proposed for the Cahn–Hilliard functionalFε reads as follows (see [15], [1], [2]):

Eε(u) =
1

ε

∫
Ω

W(u(x))dx +
1

4ε2

∫∫
Ω×Ω

e−|x−y|/ε(u(x)− u(y))2 dx dy. (1.3)

This corresponds to the replacement of the Dirichlet termε2
∫
Ω

|∇u|2 in Gε with a non-local term
where spatial inhomogeneity, weighted with an influence kernel, is penalized.

In such a case (see [3] for interaction potentials more general than the exponential kernel above)
the limit asε → 0 is again the functional (1.1), but with a different surface tension:

σ = inf

{∫
R
W(u(t))dt +

1

4

∫∫
R2

e−|s−t |(u(t)− u(s))2 dt ds :

lim
t→−∞

u(t) = a, lim
t→+∞

u(t) = b

}
. (∗∗)

In this paper we consider the following generalization ofFε:

Fε(u, v) =
1

ε

∫
Ω

W(u)+
α

ε

∫
Ω

(u− v)2 + ε

∫
Ω

|∇v|2,

whereα is a positive parameter. Let us notice that in the one-dimensional setting these functionals
were proposed by Rogers and Truskinovsky in [21] (see also [9]) as a model for the longitudinal
deformation of an elastic bar which could take into account an elastic energy of Ericksen’s type
together with an internal scalar variable which measures the deviation from one-dimensional
deformation.
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We shall show that the limit functionalF(u, v) is finite if and only ifu is a function of bounded
variation andu = v ∈ {a, b} a.e., and again it is given by (1.1), with a surface tension of type(∗∗)

(here we assumea = 0 andb = 1):

σ = σ(α) =
√
α inf

{∫
R
W(u)+

α2

4

∫∫
R2

e−α|x−y|(u(x)− u(y))2 dx dy :

lim
t→−∞

u(t) = 0, lim
t→+∞

u(t) = 1

}
.

However, the surface tension(∗) corresponding to the familyFε(u) in (1.2) will be recovered for
α → +∞.

Actually, we shall consider, in place of
∫
Ω

|∇v|2 in Fε(u, v), a more general anisotropic term∫
Ω
g2(∇v), with g positively 1-homogeneous. This will give rise, in the limit, to an anisotropic term

of the form
∫
S(u)

ϕ(νu)dH2, whereνu is a normal unit vector field onS(u).

Notation and preliminaries

The Lebesgue measure inRn and the (n − 1)-dimensional Hausdorff measure will be denoted
respectively byLn andHn−1

; we shall also use the notation|E| instead ofLn(E). Br(x) will
be the open ball with centrex and radiusr, andSn−1 the boundary of the ballB1(0).

Functions of bounded variation and sets of finite perimeter.For the general theory of this topic we
refer to [13, 14, 6]; here we recall some definitions and properties we shall use in what follows.

Given an open subsetΩ of Rn, a functionu : Ω → R is said to be ofbounded variation
(u ∈ BV (Ω)) if u ∈ L1(Ω) and its distributional derivativesDiu are Radon measures with finite
total variation inΩ.

If u ∈ L1
loc(Ω) we say thatz ∈ R is theapproximate limitof u in x ∈ Ω (z = ap-limy→x u(y))

if

lim
ρ→0

ρ−n

∫
Bρ (x)

|u(y)− z| dy = 0.

The setS(u) of points where this property does not hold is called theapproximate discontinuity set
of u. The setS(u) is a Borel set, and|S(u)| = 0. If u ∈ BV (Ω), thenS(u) is countably(n − 1)-
rectifiable, and there exist Borel functionsνu : S(u) → Sn−1 andu+, u− : S(u) → R such that for
Hn−1-a.e.x ∈ S(u),

lim
ρ→0

ρ−n

∫
B+
ρ (x)∩Ω

|u(y)− u+(x)| dy = 0, lim
ρ→0

ρ−n

∫
B−
ρ (x)∩Ω

|u(y)− u−(x)| dy = 0,

whereB+
ρ (x) = {y ∈ Bρ(x) : 〈y− x, νu(x)〉 > 0} andB−

ρ (x) = {y ∈ Bρ(x) : 〈y− x, νu(x)〉 < 0}.

If u ∈ BV (Ω) we denote by∇u the density of the absolutely continuous partDau of the vector
measureDu with respect to the Lebesgue measure. LetDsu be the singular part ofDu, and define
Dju = Du S(u) andDcu = Du (Ω \ S(u)) (the jumpandCantorpart ofDu, respectively).
We say thatu is aspecial function of bounded variation(u ∈ SBV (Ω)) if Dcu = 0; in that case
the following decomposition ofDu holds:

Du = ∇uLn + (u+
− u−)νuHn−1 S(u).
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If E is a Borel subset ofRn, theessential boundary∂∗E of E is defined as

∂∗E = {x ∈ Rn : lim sup
ρ→0

ρ−n
|Bρ(x) ∩ E| > 0, lim sup

ρ→0
ρ−n

|Bρ(x) \ E| > 0}.

It turns out that the discontinuity set of the characteristic functionχE coincides with∂∗E, i.e.

S(χE) = ∂∗E. (1.4)

It can be proved (see [14]) that for any open subsetΩ of Rn,∫
Ω

|DχE | = Hn−1(Ω ∩ ∂∗E). (1.5)

In particular, ifE is a bounded Borel subset, thenχE ∈ BV (Ω) if and only ifHn−1(Ω ∩ ∂∗E) <

+∞ (in such a case,E is said to havefinite perimeterin Ω).

Supremum of a family of measures.Taking into account the regularity of positive Borel measures
and the standard properties of the least upper bound of a family of measures, we get the following
result (see, e.g., [8, Proposition 1.16]):

PROPOSITION1.1 LetΩ be an open subset ofRn andF a finite, positive set function defined on
the family of open subsets ofΩ. Let µ be a positive Borel measure onΩ, and(fi)i∈I a family of
positive Borel functions onΩ. Assume thatF(A) >

∫
A
fi dµ for all A andi, and thatF(A∪B) >

F(A)+F(B)wheneverA,B ⊂⊂ Ω andA∩B = ∅ (superadditivity). ThenF(A) >
∫
A
(supi fi)dµ

for everyA.

Γ -convergence. We recall the notion ofΓ -convergence (we refer to [11] for a complete analysis
of the subject). Let(X, d) be a metric space,Fε : X → R (ε > 0) a family of functionals, and
F : X → R. We say that{Fε} Γ -converges toF at x ∈ X asε → 0 if:

(i) for every infinitesimal sequence{εj } and for every sequence{xj } converging tox in X, we
haveF(x) 6 lim infj→∞ Fεj (xj );

(ii) for every infinitesimal sequence{εj } there exists a sequence{xj } converging tox in X such
thatF(x) = limj→∞ Fεj (xj ).

If (i) and (ii) hold for everyx ∈ X we say that{Fε} Γ -converges toF in X, and writeF =

Γ - limε→0Fε.

REMARK 1.2 (a) Condition (ii) in the previous definition can be replaced by

(ii) ′ for everyη > 0 and for every infinitesimal sequence{εj } there exists a sequence{xj }
converging tox in X such thatF(x) > lim supj→∞ Fεj (xj )− η.

(b) If Fε = G is constant with respect toε, theΓ -limit exists and coincides with the lower
semicontinuous envelope ofG with respect to the topology induced byd.

REMARK 1.3 TheΓ -lower limit and theΓ -upper limitof {Fε} are defined as follows:

F ′(x) = inf{lim inf
j→∞

Fεj (xj ) : εj → 0, xj → x},

F ′′(x) = inf{lim sup
j→∞

Fεj (xj ) : εj → 0, xj → x}.

It is not difficult to see thatF ′ andF ′′ are both lower semicontinuous and that{Fε} Γ -converges if
and only ifF ′

= F ′′.
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2. Setting of the problem and statement of the results

Let n > 1 be fixed. LetW andg be given functions satisfying the following conditions:

− W : R → [0,+∞) belongs toC0(R) andW(t) = 0 if and only if t ∈ {0,1}; moreoverW
has at least linear growth at±∞;

− g : Rn → [0,+∞) is Lipschitz continuous and positively 1-homogeneous, andg(ξ) > 0 if
ξ 6= 0. Moreover, we assume thatg(−ξ) = g(ξ) for everyξ.

For every open subsetΩ of Rn and for everyε > 0, we defineFε(·, · ;Ω) : [L1(Ω)]2 → [0,+∞]
as follows:

Fε(u, v;Ω) =


1

ε

∫
Ω

W(u)+
α

ε

∫
Ω

(u− v)2 + ε

∫
Ω

g2(Dv) if v ∈ H 1(Ω),

+∞ otherwise,

whereα is a given positive constant. Moreover, for every measurableϕ : R → R andψ ∈ H 1
loc(R)

let

Fα(ϕ, ψ) =

∫
R
W(ϕ)+ α

∫
R
(ϕ − ψ)2 +

∫
R
(ψ ′)2,

Eα(ϕ) =

∫
R
W(ϕ)+

α2

4

∫∫
R2

e−α|x−y|(ϕ(x)− ϕ(y))2 dx dy.

(2.1)

It will be useful to introduce the following function spaces. Givena, b ∈ R and a bounded
intervalI ⊆ R, we shall denote byH 1

a,b(I ) (respectivelyH 1
a,b(R)) the subset ofH 1(I ) (respectively

H 1
loc(R)) whose elements have (limit) boundary valuesa, b. Moreover, we set

X = {ϕ : R → [0,1] measurable such that lim
x→−∞

ϕ(x) = 0, lim
x→+∞

ϕ(x) = 1}.

In this paper we prove the following theorem about the asymptotic behaviour of{Fε} asε → 0:

THEOREM 2.1 For every bounded open subsetΩ of Rn the functionalsFε(·, · ;Ω) Γ -converge,
in [L1(Ω)]2 asε → 0, to the functionalF(·, · ;Ω) : [L1(Ω)]2 → [0,+∞] defined by

F(u, v;Ω) =

 cW (α)
∫
S(u)

g∗∗(νu)dHn−1 if u, v ∈ BV (Ω) andu = v ∈ {0,1} a.e.,

+∞ otherwise,

whereg∗∗ denotes the convex hull ofg, and

cW (α) =
√
α inf{Eα(ϕ) : ϕ ∈ X}.

Furthermore, we shall look into the behaviour of the surface tension termcW (α), recovering, in
the limit asα → +∞, the well-known Modica–Mortola constant ([17], [18]). More precisely we
prove (see §5):

PROPOSITION2.2 (a) The following representation holds:

cW (α) = inf{Fα(ϕ, ψ) : ϕ ∈ X, ψ ∈ H 1
0,1(R), ϕ, ψ increasing}.

Moreover, the infimum on the right-hand side is attained.
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(b) The mapcW : α 7→ cW (α) is strictly increasing, and

lim
α→+∞

cW (α) = min

{ ∫
R
W(ϕ)+

∫
R
(ϕ′)2 : ϕ ∈ H 1

0,1(R)
}
.

REMARK 2.3 (a) One can easily see that it is enough to establish Theorem 2.1 whenα = 1, the
general case following withW andg replaced byW/α andg/

√
α, respectively.

(b) The proof of Theorem 2.1 relies on the study of functionals obtained by suitable restrictions
of Fε to parallel lines (“slicing method”). Thus, we consider the 1-dimensional case first,
taking the following familyF βε (·, · ; I ) : [L1(I )]2 → [0,+∞] into account:

F βε (u, v; I ) =


1

ε

∫
I

W(u)+
1

ε

∫
I

(u− v)2 + εβ2
∫
I

(v′)2 if v ∈ H 1(I ),

+∞ otherwise,

whereI ⊆ R is an open set andβ > 0. Notice that for everyσ > 0,

F
β
ε/σ = σF β/σε ;

in particular
F
β
ε/β = βF 1

ε .

Therefore, the proof will come down to the caseβ = 1.

3. The1-dimensional case

As noticed in Remark 2.3, the asymptotic behaviour of{F
β
ε }, stated in Corollary 3.2 below, can be

immediately deduced from the caseβ = 1; hence, for every open subsetI of R we shall consider
the functionalsFε(·, · ; I ) : [L1(I )]2 → [0,+∞] defined by

Fε(u, v; I ) =


1

ε

∫
I

W(u)+
1

ε

∫
I

(u− v)2 + ε

∫
I

(v′)2 if v ∈ H 1(I ),

+∞ otherwise.
(3.1)

THEOREM 3.1 For every open subsetI ⊆ R, {Fε(·, · ; I )} Γ -converges, in [L1(I )]2 asε → 0, to
the functionalF : [L1(I )]2 → [0,+∞] defined by

F(u, v; I ) =

{
c#S(u) if u, v ∈ BV (I), u = v andu ∈ {0,1} a.e.,

+∞ otherwise,

where
c = inf{E1(ϕ) : ϕ ∈ X}

= inf

{∫
R
W(ϕ)+

1

4

∫∫
R2
e−|x−y|

(
ϕ(x)− ϕ(y)

)2 dx dy : ϕ ∈ X

}
.

COROLLARY 3.2 LetF βε be as in Remark 2.3(b). Then for every open subsetI ⊆ R, {F βε (·, · ; I )}
Γ -converges, in [L1(I )]2 asε → 0, to βF(·, · ; I ), whereF is defined in Theorem 3.1.

In the proof of Theorem 3.1 it will be enough to consider the caseI = (−1,1). The extension to
an arbitrary interval(a, b) is immediate sinceFε(u, v, (a, b)) = Fσ (ϕ, ψ, (−1,1)) with σ =

2ε
b−a

,
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u(x) = ϕ
(2x−a−b

b−a

)
andv(x) = ψ

(2x−a−b
b−a

)
. Moreover, it is not difficult to see that theΓ - lim inf

inequality for a single bounded interval implies the same inequality for a disjoint countable union
of open intervals (bounded or unbounded), hence for an arbitrary open set (recall property (1.5)
for characteristic functions). Finally, the recovery sequence exhibited in the proof of theΓ - lim sup
inequality is obtained by a local argument which naturally extends to the case of a general open set.

TheΓ - lim inf andΓ - lim sup inequalities will be proved in Proposition 3.3 and 3.6, respectively,
whenI = (−1,1) (recall Remark 1.2). We shall refer toFε(u, v; (−1,1)) simply asFε(u, v).

3.1 TheΓ -lower limit

This section is devoted to proving the following:

PROPOSITION3.3 Let{εj } be a positive infinitesimal sequence. Then

lim inf
j→∞

Fεj (uj , vj ) > F(u, v) (3.2)

whenever{uj }, {vj } are sequences converging inL1(−1,1) to u andv, respectively.

Letu, v and{uj }, {vj } be as in the statement. We can suppose that the left-hand side in (3.2) is fi-
nite and is a limit; therefore we can also assume that supj Fεj (uj , vj ) = k < +∞, and that{uj }, {vj }
also converge a.e. SinceFεj (uj , vj ) 6 k for everyj, an application of the Fatou Lemma gives∫ 1

−1
(W(u)+ (u− v)2)dx 6 lim inf

j→∞

∫ 1

−1
(W(uj )+ (uj − vj )

2)dx 6 lim
j→∞

(εjk) = 0.

Henceu ∈ {0,1} a.e. andu = v a.e. We can assumeuj , vj ∈ [0,1]; indeed, ifûj = (0 ∨ uj ) ∧ 1
andv̂j = (0 ∨ vj ) ∧ 1 then{ûj } and{v̂j } converge tou andv in L1, andFεj (ûj , v̂j ) 6 Fεj (uj , vj ).

If S(u) = ∅ there is nothing to prove. LetN 6 #S(u), and{t1, . . . , tN } ⊆ S(u). Then we can
find intervalsIi = (ai, bi), i = 1, . . . , N, such that−1< a1 < t1 < b1 6 · · · 6 aN < tN < bN <

1, and, asj → ∞,

uj (ai), vj (ai) → u(ai) ∈ {0,1}, uj (bi), vj (bi) → u(bi) ∈ {0,1},

with u(ai) 6= u(bi). We have

Fεj (uj , vj ) >
N∑
i=1

Fεj (uj , vj , Ii). (3.3)

Now, consider theith term of the sum; without loss of generality we can supposeu(ai) = 0,
u(bi) = 1; indeed, the following argument is easily adapted to the caseu(ai) = 1, u(bi) = 0, and
gives exactly the same result. For everyj define

ũij (x) =



0 if x ∈ (−1, ai − εj ),

uj (ai)+
uj (ai)

εj
(x − ai) if x ∈ [ai − εj , ai),

uj (x) if x ∈ [ai, bi ],

uj (bi)+
1 − uj (bi)

εj
(x − bi) if x ∈ (bi, bi + εj ],

1 if x ∈ (bi + εj ,1),
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and analogouslỹvij (clearly, we can supposeεj < min{ai + 1,1 − bi} for everyj ). It is easy to
verify that

Fεj (uj , vj , Ii) = Fεj (ũ
i
j , ṽ

i
j )+ o(1)j→∞. (3.4)

Sinceũij andṽij take the boundary values 0 and 1 in a neighbourhood of−1 and 1, respectively, we
have

Fεj (ũ
i
j , ṽ

i
j ) > inf{Fεj (ũ

i
j , ψ) : ψ ∈ H 1

0,1(−1,1)}. (3.5)

We want to show that

inf{Fεj (ũ
i
j , ψ) : ψ ∈ H 1

0,1(−1,1)} = Eεj (ũ
i
j , (−1,1))+ o(1)j→∞, (3.6)

where, for every openI ⊆ R andϕ : I → R measurable, we define

Eε(ϕ, I ) =
1

ε

∫
I

W(ϕ)+
1

4ε2

∫∫
I×I

e−|x−y|/ε(ϕ(x)− ϕ(y))2 dx dy.

This is the key point of the proof, since it leads to a family of functionals whose asymptotic
behaviour is known (a similar procedure has been used, e.g., in [21]). Indeed, the one-dimensional
version of a result due to G. Alberti and G. Bellettini reads as follows (see [1, Th. 1.4 and §1.9]):

THEOREM 3.4 For every open intervalI ⊆ R, {Eε( · ; I )} Γ -converges, inL1(I ) asε → 0, to
F̃ : L1(I ) → [0,+∞] defined by

F̃ (u) =

{
c#S(u) if u ∈ BV (I) andu ∈ {0,1} a.e.,

+∞ otherwise.

wherec is as in Theorem 3.1.

In order to obtain (3.6), we start by proving the following lemma. Set

Kε(ϕ, ψ) =
1

ε

∫ 1

−1
(ϕ − ψ)2 + ε

∫ 1

−1
(ψ ′)2,

wheneverϕ ∈ L2(−1,1) andψ ∈ H 1(−1,1).

LEMMA 3.5 Leta, b ∈ R and 0< δ < 1. Let A be a subset ofL∞(−1,1) such thatϕ = a in
(−1,−1 + δ) andϕ = b in (1 − δ,1), wheneverϕ ∈ A. Assume thatA is bounded inL∞(−1,1).
Then for everyε > 0 andϕ ∈ A,

inf{Kε(ϕ, ψ) : ψ ∈ H 1
a,b(−1,1)} =

1

4ε2

∫ 1

−1

∫ 1

−1
e−|x−y|/ε(ϕ(x)− ϕ(y))2 dx dy + σ(ε, ϕ), (3.7)

where limε→0 σ(ε, ϕ) = 0 uniformly with respect toϕ ∈ A.

Proof. In what follows we denote byσ(ε) any functionσ(ε, ϕ) such that limε→0 σ(ε, ϕ) = 0
uniformly with respect toϕ ∈ A. It is easy to see that the infimum in (3.7) is attained whenψ is the
solution of the following Euler equation:{

ψ(x)− ε2ψ ′′(x) = ϕ(x), x ∈ [−1,1],
ψ(−1) = a, ψ(1) = b.

(3.8)



VARIATIONAL MODELS FOR PHASE SEPARATION 35

The solutionψ of (3.8) is the sum ofψo, solution of the homogeneous problem with the
given boundary conditions, andψg, solution of the Euler equation with Dirichlet homogeneous
conditions; we obtain (see, e.g., [19, pp. 312–315] for the calculation of the Green function):

ψo(x) =
1

sinh(2/ε)

(
b sinh

x + 1

ε
− a sinh

x − 1

ε

)
,

ψg(x) =
1

2ε sinh(2/ε)

∫ 1

−1

(
cosh

2 − |x − y|

ε
− cosh

x + y

ε

)
ϕ(y)dy.

Integrating by parts and taking (3.8) into account, we have

Kε(ϕ, ψ) =
1

ε

∫ 1

−1
ϕ2

−
1

ε

∫ 1

−1
(2ϕψ − (ψ)2)− ε

∫ 1

−1
ψψ ′′

+ ε[ψψ ′]1
−1

=
1

ε

∫ 1

−1
ϕ2

−
1

ε

∫ 1

−1
ϕψo −

1

ε

∫ 1

−1
ϕψg + ε[ψψ ′]1

−1

=: Iε1(ϕ)+ Iε2(ϕ)+ Iε3(ϕ)+ Iε4(ϕ).

A simple computation yields

−
1

ε

∫
−1+δ

−1
ϕψo −

1

ε

∫ 1

1−δ

ϕψo = −
a2

+ b2

tanh(2/ε)
+ σ(ε),

and ∣∣∣∣1

ε

∫ 1−δ

−1+δ

ϕψo

∣∣∣∣ 6 ‖ϕ‖L1(−1,1)(|a| + |b|)
sinh[(2 − δ)/ε]

ε sinh(2/ε)
.

Hence
Iε2(ϕ) = −(a2

+ b2)+ σ(ε).

Now we considerIε3(ϕ). Since cosh(s − t) = e−t sinhs + e−s cosht and cosh(s + t) =

coshs cosht + sinhs sinht, it turns out that

Iε3(ϕ) =
1

2ε2 sinh(2/ε)

[( ∫ 1

−1
ϕ(x) cosh

x

ε
dx

)2

+

(∫ 1

−1
ϕ(x) sinh

x

ε
dx

)2]
−

1

2ε2

∫ 1

−1

∫ 1

−1
ϕ(x)ϕ(y)e−|x−y|/ε dx dy

−
1

2ε2 sinh(2/ε)

∫ 1

−1

∫ 1

−1
ϕ(x)ϕ(y)e−2/ε cosh

|x − y|

ε
dx dy.

It is immediate to see that the last term is infinitesimal withε uniformly with respect toϕ ∈ A.
Consider now the first one; splitting the integral as above, we have:∫

−1+δ

−1
ϕ(x) cosh

x

ε
dx = aε

(
sinh

1

ε
− sinh

1 − δ

ε

)
,∣∣∣∣ ∫ 1−δ

−1+δ

ϕ(x) cosh
x

ε
dx

∣∣∣∣ 6 ‖ϕ‖L1(−1,1) cosh
1 − δ

ε
,
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1−δ

ϕ(x) cosh
x

ε
dx = bε

(
sinh

1

ε
− sinh

1 − δ

ε

)
.

Therefore
1

2ε2 sinh(2/ε)

( ∫ 1

−1
ϕ(x) cosh

x

ε
dx

)2

=
1

4
(a2

+ b2)+ σ(ε).

In the same way we compute the analogous quadratic term. Thus we conclude that

Iε3(ϕ) = −
1

2ε2

∫ 1

−1

∫ 1

−1
e−|x−y|/εϕ(x)ϕ(y)dx dy +

1

2
(a2

+ b2)+ σ(ε).

Finally, we want to show that
Iε4(ϕ) = σ(ε). (3.9)

A straightforward computation gives

[ψoψ
′
o]

1
−1 =

a2
+ b2

ε tanh(2/ε)
−

2ab

sinh(2/ε)
,

[ψoψ
′
g]

1
−1 = −

1

ε2 sinh(2/ε)

(
a

∫ 1

−1
ϕ(y) sinh

1 − y

ε
dy + b

∫ 1

−1
ϕ(y) sinh

1 + y

ε
dy

)
.

Splitting the integral as above we obtain

[ψoψ
′
g]

1
−1 = −

a2
+ b2

ε tanh(2/ε)
+ σ(ε).

Therefore (3.9) follows.
The results just proved allow us to say that

Kε(ϕ, ψ) =
1

ε

∫ 1

−1
ϕ2

−
1

2ε2

∫ 1

−1

∫ 1

−1
e−|x−y|/εϕ(x)ϕ(y)dx dy −

1

2
(a2

+ b2)+ σ(ε). (3.10)

Notice now that, since
∫ 1
−1 e−|x−y|/ε dy = 2ε

(
1 − e−1/ε coshx

ε

)
,

1

4ε2

∫ 1

−1

∫ 1

−1
e−|x−y|/ε(ϕ(x)− ϕ(y))2 dx dy =

1

ε

∫ 1

−1
ϕ2

−
e−1/ε

ε

∫ 1

−1
ϕ2(x) cosh

x

ε
dx

−
1

2ε2

∫ 1

−1

∫ 1

−1
e−|x−y|/εϕ(x)ϕ(y)dx dy.

Recalling (3.10), it is now sufficient to show that

e−1/ε

ε

∫ 1

−1
ϕ2(x) cosh

x

ε
dx −

1

2
(a2

+ b2) = σ(ε).

This can be easily done splitting the integral in the same way as above. 2
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Let us go back to the proof of (3.6); apply the lemma just proved to the caseA = {ũij : j ∈ N}.

In view of the properties of{ũij }, the assumptions onA are satisfied for a suitableδ (depending

on i), with a = 0 andb = 1. SinceFεj (ũ
i
j , ψ) = ε−1

∫ 1
−1W(ũ

i
j )+Kεj (ũ

i
j , ψ), we obtain (3.6).

Collecting (3.3)–(3.6), it turns out that

Fεj (uj , vj ) >
N∑
i=1

Eεj (ũ
i
j , (−1,1))+ o(1)j→∞.

Notice now that̃uij → ũi in L1(−1,1), whereũi is defined by:

ũi(x) =


0 if x ∈ (−1, ai),

u(x) if x ∈ (ai, bi),

1 if x ∈ (bi,1).

Then Theorem 3.4 (withI = (−1,1)) yields

lim inf
j→∞

Fεj (uj , vj ) >
N∑
i=1

lim inf
j→∞

Eεj (ũ
i
j , (−1,1)) >

N∑
i=1

F̃ (ũi) > cN.

The left-hand side is finite by assumption, andN 6 #S(u) is arbitrary: it follows that #S(u) < +∞,

thereforeu ∈ BV (−1,1) (recall (1.5)). Furthermore

lim inf
j→∞

Fεj (uj , vj ) > c#S(u).

This implies the required inequality (3.2).

3.2 TheΓ -upper limit

In this subsection we prove the following:

PROPOSITION3.6 Let η > 0 and {εj } be a positive infinitesimal sequence. For everyu, v in
L1(−1,1) there exist sequences{uηj }, {v

η
j } converging, inL1(−1,1) as j → ∞, to u and v

respectively, and such that

lim sup
j→∞

Fεj (u
η
j , v

η
j ) 6 F(u, v)+ η. (3.11)

Proof. Notice that ifF(u, v) = +∞ or S(u) = ∅ the inequality (3.11) is obvious. Thus, since the
approximation is invariant under translations and reflections with respect tou = 1/2, and modifiesu
only in a small neighbourhood ofS(u), we can deal only with the case #S(u) = 1, and it is enough
to prove (3.11) foru = v = χ(0,1), the characteristic function of(0,1). ThenF(u, v) = c = cW (1).
In view of the representation ofcW (α) which will be given in Proposition 5.1, for everyη > 0 we
can findϕη ∈ X andψη ∈ H 1

loc(R) such thatϕη = ψη = χ(0,+∞) on R \ (−Tη, Tη) for some
Tη > 0, and

F1(ϕη, ψη) 6 c + η.

Define nowuηε (x) = ϕη(x/ε) and vηε (x) = ψη(x/ε) for every ε > 0. Clearly, {uηε } and {v
η
ε }

converge tou = χ(0,1) in L1(−1,1). Moreover

Fε(u
η
ε , v

η
ε ) = Fε(u

η
ε , v

η
ε ; R) = F1(ϕη, ψη).
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Then we have
F(u, v)+ η > Fε(u

η
ε , v

η
ε )

for everyε < 1/Tη. 2

4. Then-dimensional case

In this section we prove Theorem 2.1 in the general case ofΩ an open subset ofRn. We assume
α = 1 (recall Remark 2.3(a)).

For everyu, v ∈ L1(Ω) andA an open subset ofΩ let

F ′(u, v;A) = inf{lim inf
j→∞

Fεj (uj , vj ;A) : εj → 0, uj → u, vj → v in L1(A)}

(Γ -lower limit of {Fε(·, · ;A)}).

PROPOSITION4.1 For everyu, v ∈ L1(Ω),

F ′(u, v;Ω) > F(u, v;Ω).

Proof. The proof follows the steps outlined in [8], where theslicing methodis applied to get the
lower semicontinuity inequality forΓ -limits.

LetE ⊆ Rn, andf : E → R; for everyξ ∈ Sn−1 letEξ be the orthogonal projection ofE on
ξ⊥ (the (n − 1)-dimensional vector space orthogonal toξ ); for everyy ∈ Eξ let Eξ,y = {t ∈ R :
y + tξ ∈ E}, and letfξ,y : Eξ,y → R be defined byfξ,y(t) = f (y + tξ ).

We recall the following basic facts (see, e.g., [6, §3.11]).

(i) Let u ∈ BV (Ω) and letDk stand for any ofDa, Dj orDc (the absolutely continuous, jump
or Cantor part of the derivative). Then, for everyξ ∈ Sn−1 and forHn−1-a.e.y ∈ Ωξ we
haveuξ,y ∈ BV (Ωξ,y); moreover, if we denote by〈Dku, ξ〉 the component ofDku along
ξ, then the following representation holds:∫

B

〈Dku, ξ〉 =

∫
Bξ

Dkuξ,y(Bξ,y)dHn−1(y).

(ii) Let u ∈ L1(Ω); assume thatuξ,y ∈ BV (Ωξ,y) for everyξ in a basis ofRn and for a.e.
y ∈ Ωξ , and that ∫

Ωξ

|Duξ,y |(Ωξ,y)dHn−1(y) < ∞.

Thenu ∈ BV (Ω).

Let g∗ be the polar function ofg, i.e.

g∗(ξ) = sup

{
ξ · η

g(η)
: η ∈ Sn−1

}
, ξ ∈ Rn.

It is not difficult to see that(g∗)∗ is the convex hull ofg. For every open subsetI of R andξ ∈ Sn−1

denote byφξε the functionalF βε of Remark 2.3(b), withβ = 1/g∗(ξ), i.e.

φξε (ϕ, ψ; I ) :=


1

ε

∫
I

W(ϕ)+
1

ε

∫
I

(ϕ − ψ)2 +
ε

g2
∗(ξ)

∫
I

(ψ)′2 if ψ ∈ H 1(I ),

+∞ otherwise in [L1(I )]2.
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By Corollary 3.2 theΓ -limit as ε → 0 is

φξ (ϕ, ψ; I ) =

{ c

g∗(ξ)
#S(ϕ) if ϕ,ψ ∈ BV (I), ϕ = ψ andϕ ∈ {0,1} a.e.,

+∞ otherwise,

wherec is as in Theorem 3.1. Let

F ξε (u, v;A) =

∫
Aξ

φξε (uξ,y, vξ,y;Aξ,y)dHn−1(y)

for every open setA of Ω and for everyu, v ∈ L1(A). An application of Fubini’s Theorem shows
that if u, v ∈ L1(A) andv ∈ H 1(A) then

F ξε (u, v;A) =
1

ε

∫
A

W(u)+
1

ε

∫
A

(u− v)2 +
ε

g2
∗(ξ)

∫
A

|〈Dv, ξ〉|2.

Clearly,F ξε 6 Fε (recall thatg(−η) = g(η) for everyη). Therefore, by Fatou’s Lemma

F ′(u, v;A) > F ξ (u, v;A),

where

F ξ (u, v;A) =

∫
Aξ

φξ (uξ,y, vξ,y;Aξ,y)dHn−1(y).

In view of the explicit form ofφξ and by property (ii) above, ifF ′(u, v;A) is finite, thenu, v ∈

BV (A), u = v andu ∈ {0,1} a.e.; furthermore, by (i),

F ξ (u, v;A) = c

∫
S(u)∩A

|〈ξ, νu〉|

g∗(ξ)
dHn−1.

Then

F ′(u, v;A) > c

∫
S(u)∩A

|〈ξ, νu〉|

g∗(ξ)
dHn−1

for every open subsetA, ξ ∈ Sn−1 andu, v ∈ L1(A). Since the functionalsFε are local, the set
functionµ(A) = F ′(u, v;A) is superadditive on disjoint open sets; thus, by Proposition 1.1,

F ′(u, v;A) > c

∫
S(u)∩A

sup
ξ∈Sn−1

|〈ξ, νu〉|

g∗(ξ)
dHn−1

= c

∫
S(u)∩A

sup
ξ∈Sn−1

〈ξ, νu〉

g∗(ξ)
dHn−1.

The conclusion follows since, as noticed above, the last integrand is the convex hull ofg. 2

We now have to estimate theΓ -upper limit of{Fε(·, · ;Ω)}, i.e.

F ′′(u, v;Ω) = inf{lim sup
j→∞

Fεj (uj , vj ;Ω) : εj → 0, uj → u, vj → v in L1(Ω)}.

Let us consider the functional

G(u) =

∫
S(u)

g(νu)dHn−1,
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defined foru ∈ BV (Ω; {0,1}). By general results on functionals defined on partitions (see [4] and
[5, in particular §3]) the lower semicontinuous envelope ofG can be written in the form

G(u) =

∫
S(u)

j (νu)dHn−1,

wherej is the greatestBV -elliptic function less thang; hence ([5, Example 2.8])j is convex, so
that

G(u) 6
∫
S(u)

g∗∗(νu)dHn−1, (4.1)

with g∗∗ denoting the convex hull ofg.

PROPOSITION4.2 For everyu, v ∈ L1(Ω),

F ′′(u, v;Ω) 6 F(u, v;Ω).

Proof. LetD be the family of characteristic functions of the setsE = Ω ∩ A, with A of classC∞

in a neighbourhood ofΩ. If F(u, v;Ω) is finite, it can be proved that there exist sequences{uk}

and{vk} in D such thatF(uk, vk;Ω) → F(u, v;Ω) (see [8, Proposition 4.7 and Remark 4.8]). By
the lower semicontinuity ofF ′′ it is enough to prove the proposition whenu = v ∈ D.

Let u = v = χE ∈ D. ThenE = Ω ∩ A, with A a set of classC∞ in a neighbourhood ofΩ.
LetΩ ′ be fixed, withΩ ⊂⊂ Ω ′. There existsη0 > 0 such that for every 0< η < η0, the projection

π : Eη = {x ∈ Ω : dist(x, ∂A) < η} → ∂A ∩Ω ′

is well defined. Letd(x) = dist(x,Ω − A) − dist(x,A); it turns out that forη0 small enoughd is
smooth inEη andν(x) = ∇d(x) is a normal unit vector to∂A atπ(x) if x ∈ Eη.

Let 0 < η < η0 be fixed andM = max{1/g(ξ) : ξ ∈ Sn−1
}. As in the proof of Proposition

3.6, for any fixedη > 0 we can findϕη ∈ X, ψη ∈ H 1
loc(R) such thatϕη = ψη = χ(0,+∞) on

R \ (−MT,MT ), for someT = Tη > 0, and

F1(ϕη, ψη) 6 c + η.

For everyε > 0 with T ε < η, defineuε : Ω → R as follows:

uε(x) =


ϕη

(
d(x)

εg(ν(x))

)
if |d(x)| 6 T ε,

0 otherwise inΩ \ E,

1 otherwise inE.

In the same way we definevε onΩ.
Now we want to estimateFε(uε, vε;Ω). Sinced, g,1/g, ν are Lipschitz on{|d| 6 T ε}, we can

find a positive constantL such that

εg2(Dvε(x)) =
1

ε

∣∣∣∣(ψη)′( d(x)

εg(ν(x))

)∣∣∣∣2g2
(

∇d(x)

g(ν(x))
+ d(x)∇

(
1

g(ν(x))

))
6

1

ε

∣∣∣∣(ψη)′( d(x)

εg(ν(x))

)∣∣∣∣2 [
g2

(
ν(x)

g(ν(x))

)
+ εL

]
6

∣∣∣∣(ψη)′( d(x)

εg(ν(x))

)∣∣∣∣2(1

ε
+ L

)
.
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In the following computation we shall drop the subscriptη. Taking the coarea formula into
account (see, e.g., [6, §2.12]), we get

Fε(uε, vε;Ω)

6

(
1

ε
+ L

) ∫
Ω∩{|d|6T ε}

[
W

(
ϕ

(
d(x)

εg(ν(x))

))
+

(
ϕ

(
d(x)

εg(ν(x))

)
− ψ

(
d(x)

εg(ν(x))

))2

+

∣∣∣∣ψ ′

(
d(x)

εg(ν(x))

)∣∣∣∣2] dx

6

(
1

ε
+ L

) ∫ T ε

−T ε

∫
{d(x)=t}

[
W

(
ϕ

(
t

εg(ν(x))

))
+

(
ϕ

(
t

εg(ν(x))

)
− ψ

(
t

εg(ν(x))

))2

+

∣∣∣∣ψ ′

(
t

εg(ν(x))

)∣∣∣∣2] dHn−1(x)dt

6

(
1

ε
+ L

) ∫ T ε

−T ε

∫
∂E∩Ω ′

[
W

(
ϕ

(
t

εg(ν(y))

))
+

(
ϕ

(
t

εg(ν(y))

)
− ψ

(
t

εg(ν(y))

))2

+

∣∣∣∣ψ ′

(
t

εg(ν(y))

)∣∣∣∣2] dHn−1(y)dt + o(1)ε→0

6 (1 + εL)

∫
+∞

−∞

[W(ϕ(t))+ (ϕ(t)− ψ(t))2 + |ψ ′(t)|2] dt
∫
∂E∩Ω ′

g(ν(y))dHn−1(y)+ o(1)ε→0

6 (1 + εL)(c + η)

∫
∂E∩Ω ′

g(ν(y))dHn−1(y)+ o(1)ε→0.

SinceΩ ′ andη are arbitrary, we deduce that

F ′′(u, v;Ω) 6 c G(u).

The same inequality holds for the relaxed functionals; by the lower semicontinuity ofF ′′ and by
(4.1), we conclude that

F ′′(u, v;Ω) 6 c

∫
S(u)

g∗∗(νu)dHn−1,

and Proposition 4.2 is completely proved. 2

5. Some properties ofcW (α)

PROPOSITION5.1 LetcW (α) be as in Theorem 2.1. Then

cW (α) =
√
α inf{Eα(ϕ) : ϕ ∈ U}

= inf{Fα(ϕ, ψ) : ϕ ∈ U, ψ ∈ U ∩H 1
loc(R)},

whereU is any of the following spaces:

X: the set of measurableϕ : R→ [0,1] such that limx→−∞ ϕ(x)=0 and limx→+∞ ϕ(x)=1;

Y : the set of measurableϕ : R→ [0,1] with ϕ = χ(0,+∞) onR \ (−R,R) for someR > 0;

Z: the subset of the increasing elements ofY.
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Proof. It is enough to deal with the caseα = 1. Let

IU = inf{F1(ϕ, ψ) : ϕ ∈ U, ψ ∈ U ∩H 1
loc(R)}.

Clearly,IX 6 IY 6 IZ.

Step 1. IX = IY .

Let σ > 0 andϕσ ∈ X, ψσ ∈ X ∩ H 1
loc(R) be such thatF1(ϕσ , ψσ ) 6 IX + σ. There exists

R > 0 with the following property:

|ϕσ − χ(0,+∞)|, |ψσ − χ(0,+∞)| < σ on R \ (−R,R).

Define ψ̃σ : R → R to be the continuous function which is affine in both the intervalsJ =

(−R − 1,−R), J ′
= (R,R + 1) and such that

ψ̃σ = ψσ on (−R,R), ψ̃σ = χ(0,+∞) on R \ (−R − 1, R + 1).

Moreover, letϕ̃σ : R → R be defined by:̃ϕσ = ϕσ on R \ (−R,R), ϕ̃σ = ψ̃σ on J ∪ J ′, and
ϕσ = χ(0,+∞) on R \ (−R − 1, R + 1). Thenϕ̃σ ∈ Y, ψ̃σ ∈ Y ∩ H 1

loc(R) and, as one can easily
check,

F1(ϕ̃σ , ψ̃σ ) 6 F1(ϕσ , ψσ )+ o(1)σ→0.

Step 2. IY = IZ.

For everyϕ ∈ Y andψ ∈ Y ∩H 1
loc(R) we constructϕ ∈ Z andψ ∈ Z ∩H 1

loc(R) such that

F1(ϕ, ψ) 6 F1(ϕ, ψ). (5.1)

Let R > 0 be such thatϕ = ψ = χ(0,+∞) on R \ (−R,R). Following [2], we define the right
rearrangement of a subsetA of [−R,R] as the setA∗

= [R − m(A),R]. Then, for a measurable
functionu : [−R,R] → [0,1] we define the increasing rearrangement ofu as

u∗(x) = sup{c ∈ R : x ∈ I ∗
c }, x ∈ [−R,R],

whereIc = {x ∈ [−R,R] : u(x) > c}. Let

ϕ(x) =


0 if x < −R,

ϕ∗(x) if −R 6 x 6 R,

1 if x > R,

and letψ be analogously defined. Thenϕ ∈ Z andψ ∈ Z∩H 1
loc(R); moreover, properties [16, (C),

p. 22; (M9), p. 23; (G1a), p. 35] allow us to deduce the inequality (5.1).

Step 3. inf{E1(ϕ) : ϕ ∈ X} = inf{E1(ϕ) : ϕ ∈ Y }.

We only have to prove that the right-hand side does not exceed the left-hand side. Letσ > 1 and
ϕσ ∈ X be such thatE1(ϕσ ) 6 inf{E1(ϕ) : ϕ ∈ X}; letϕσ =

1
2 +σ

(
ϕσ −

1
2

)
andϕ̃σ = (ϕσ ∨0)∧1.

Thenϕ̃σ ∈ Y, and

E1(ϕ̃σ ) 6 E1(ϕσ ) = σ 2E1(ϕσ ) 6 σ 3 inf{E1(ϕ) : ϕ ∈ X}.
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Step 4. Let ϕ ∈ Y. We claim that

inf{F1(ϕ, ψ) : ψ ∈ Y ∩H 1
loc(R)} = E1(ϕ). (5.2)

For everyR > 0 letYR = {ϕ ∈ X : ϕ = χ(0,+∞) onR \ (−R,R)}; thenY =
⋃
R>0 YR.

By assumptionϕ ∈ YR for someR > 0. If T > 2R, let ϕT (x) = ϕ(T x). Apply Lemma 3.5
with A = {ϕT : T > 2R}. Then for everyε > 0,

inf

{
1

ε

∫
R
(ϕT − ψ)2 + ε

∫
R
(ψ ′)2 : ψ ∈ H 1

0,1(R)
}

=
1

4ε2

∫ 1

−1

∫ 1

−1
e−|x−y|/ε(ϕ(x)− ϕ(y))2 dx dy + σ(ε),

with limε→0 σ(ε) = 0 uniformly with respect toT > 2R. Let ε = 1/T and ψ̃(t) = ψ(t/T )

wheneverψ ∈ H 1
0,1(−1,1); then, by a linear change of variable, we get

inf

{∫ T

−T

(ϕ − ψ̃)2 + ε

∫ T

−T

(ψ̃ ′)2 : ψ ∈ H 1
0,1(−1,1)

}
=

1

4

∫ T

−T

∫ T

−T

e−|t−s|(ϕ(t)− ϕ(s))2 dt ds + o(1)T→+∞,

i.e.

inf

{∫
R
(ϕ − ψ)2 + ε

∫
R
(ψ ′)2 : ψ ∈ YT ∩H 1

loc(R)
}

=
1

4

∫
R

∫
−|t−s|

R
(ϕ(t)− ϕ(s))2 dt ds + o(1)T→+∞.

It is now enough to notice that

inf{F1(ϕ, ψ) : ψ ∈ Y ∩H 1
loc(R)}

=

∫
R
W(ϕ)+ lim

T→+∞
inf

{∫
R
(ϕ − ψ)2 + ε

∫
R
(ψ ′)2 : ψ ∈ YT ∩H 1

loc(R)
}
.

Step 5. Consider the infimum of both sides of (5.2) whenϕ varies inY ; then

IY = inf{E1(ϕ) : ϕ ∈ Y }.

If we restrictϕ in (5.2) to vary inZ, then

inf{E1(ϕ) : ϕ ∈ Z} = inf{F1(ϕ, ψ) : ϕ ∈ Z, ψ ∈ Y ∩H 1
loc(R)} 6 IZ = IY .

We conclude that
inf{E1(ϕ) : ϕ ∈ Z} = inf{E1(ϕ) : ϕ ∈ Y }. 2

Proof of Proposition 2.2. (a) Let(ϕn, ψn) be a minimizing sequence forFα on

Z̃ = {(ϕ, ψ) : ϕ ∈ X, ψ ∈ X ∩H 1
loc(R), ϕ, ψ increasing}.
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Thanks to the translation invariance ofFα, it is not restrictive to suppose thatϕn 6 1/2 in (−∞,0)
andϕn > 1/2 in (0,+∞). Since the total variation of the measureDϕn is 1 for everyn, it follows
that {ϕn} is bounded inBVloc(R); moreoverψ ′

n is bounded inL2(R); by compactness there exist
uα ∈ BVloc(R) andvα ∈ H 1

loc(R) such that, possibly passing to a subsequence,

ϕn → uα in L1
loc(R) and ψn ⇀ vα in H 1

loc(R).

We can also suppose that the convergences are pointwise a.e. By the Fatou Lemma and the weak
lower semicontinuity of the norm,

lim inf
n→∞

Fα(ϕn, ψn) > Fα(uα, vα).

If we prove that(uα, vα) ∈ Z̃, this inequality implies that

Fα(uα, vα) = min{Fα(ϕ, ψ) : (ϕ, ψ) ∈ Z̃}.

It is clear thatuα andvα are increasing; sinceα
∫
R(uα − vα)

2 < +∞, we get limx→+∞ uα(x) =

limx→+∞ vα(x), and the same forx→−∞. Then, it is sufficient to prove that limx→+∞ uα(x)=1
and limx→−∞ uα(x) = 0. This is an immediate consequence of the fact that

∫
RW(ϕα) < +∞.

(b) Let

CW = min

{∫
R
W(ϕ)+

∫
R
(ϕ′)2 : ϕ ∈ H 1

0,1(R)
}
.

We claim that for everyα,
0< cW (α) < CW .

By (a) we havecW (α) > 0 for everyα. To prove thatcW (α) < CW we argue by contradiction,
assuming thatcW (α) > CW . Let ϕ ∈ H 1

0,1(R) be such that
∫
RW(ϕ) +

∫
R(ϕ

′)2 = CW . Given
ζ ∈ C∞

c (R) and t ∈ R, defineΦ(t) = Fα(ϕ, ϕ + tζ ). ThenΦ(t) > cW (α) > CW = Φ(0) for
everyt. SinceΦ ∈ C1(R), it follows that

Φ ′(0) = 2
∫

R
u′ζ ′

= 0 ∀ζ ∈ C∞
c (R).

Thereforeϕ′′
= 0, and this gives a contradiction.

It is immediate to check that the mapα 7→ cW (α) is increasing. We claim that it is strictly
increasing. Forσ > 0 let (ϕ, ψ) be a solution of the minimum problem dealt with in part (a) for
cW (α + σ). Then

cW (α + σ) =

∫
R
W(ϕ)+ α

∫
R
(ϕ − ψ)2 +

∫
R
(ψ ′)2 + σ

∫
R
(ϕ − ψ)2

> cW (α)+ σ

∫
R
(ϕ − ψ)2;

if cW (α) = cW (α + σ), thencW (α + σ) = CW , and this gives a contradiction.
Let (ϕα, ψα) be a solution of the minimum problem dealt with in part (a) forcW (α). The

translation invariance of the functional allows us to chooseϕα such thatϕα 6 1/2 in (−∞,0)
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andϕα > 1/2 in (0,+∞). SincecW (α) 6 CW , weak compactness arguments allow us to deduce
that, up to a subsequence:

ψα ⇀ ϕ in H 1
loc(R) asα → +∞,

ϕα → ϕ in L2
loc(R) asα → +∞.

Moreover,ϕα can be assumed to converge pointwise a.e. The Fatou Lemma and the weak lower
semicontinuity of the norm yield

lim inf
α→+∞

( ∫
R
W(ϕα)+ α

∫
R
(ϕα − ψα)

2
+

∫
R
(ψ ′

α)
2

)
>

∫
R
W(ϕ)+

∫
R
(ϕ′)2.

As in (a) we prove thatϕ ∈ H 1
0,1(R). This implies, sincecW (α) 6 CW ,

lim
α→+∞

cW (α) = CW ,

thus concluding the proof. 2

REMARK 5.2 It is easy to check directly that

lim
α→0+

cW (α) = 0.

REMARK 5.3 IfW ∈ C3(R), then the infimum in

cW (α) = inf{Eα(ϕ) : ϕ ∈ X}

is attained whenϕ is a travelling wave solution for the one-dimensional parabolic problem

wt = J ∗ w − w − f (w),

wheref is the derivative ofW (see [2, p. 549]). The regularity result in [7, Theorem 3.1(c)] allows
us to construct a minimizing sequence inH 1

0,1(R) converging inL1
loc(R) to the minimum point;

hence
min{Eα(ϕ) : ϕ ∈ X} = inf{Eα(ϕ) : ϕ ∈ H 1

0,1(R)}.
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12. DE GIORGI, E. & FRANZONI, T. Su un tipo di convergenza variazionale.Atti Accad. Naz. Lincei Rend.

Cl. Sci. Mat.58 (1975), 842–850. MR 56 #6503 Zbl 0339.49005
13. EVANS, L. C. & GARIEPY, R. F. Measure Theory and Fine Properties of Functions. CRC Press, Boca

Raton (1992). MR 93f:28001 Zbl 0804.28001
14. FEDERER, H. Geometric Measure Theory. Springer (1969). MR 41 #1976 Zbl 0874.49001
15. FOSDICK, R. L. & M ASON, D. E. Single phase energy minimizers for materials with nonlocal spatial

dependence.Quart. Appl. Math.53 (1986), 161–195. MR 97a:73085 Zbl 0840.73079
16. KAWOHL, B. Rearrangements and Convexity of Level Sets in PDE. Lecture Notes in Math. 1150,

Springer, Berlin (1985). MR 87a:35001 Zbl 0593.35002
17. MODICA, L. The gradient theory of phase transitions and the minimal interface criterion.Arch. Rational

Mech. Anal.98 (1987), 123–142. MR 88f:76038 Zbl 0616.76004
18. MODICA, L. & M ORTOLA, S. Un esempio diΓ -convergenza.Boll. Un. Mat. Ital. Ser. B14 (1977),

285–299. MR 56 #3704 Zbl 0356.49008
19. PICCININI , L. C., STAMPACCHIA, G., & V IDOSSICH, G. Equazioni differenziali ordinarie inRn

(problemi e metodi). Liguori (1978). MR 83k:34002 Zbl 0535.34001
20. ROCKAFELLAR, R. T. Convex Analysis. Princeton University Press (1970). MR 97m:49001

Zbl 0193.18401
21. ROGERS, R. C. & TRUSKINOVSKY, L. Discretization and hysteresis.Phys. B233(1997), 370–375.

http://www.ams.org/mathscinet-getitem?mr=91j:49015 
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0676.49028&format=complete
http://www.ams.org/mathscinet-getitem?mr=91j:49016
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0676.49029&format=complete
http://www.ams.org/mathscinet-getitem?mr=2003a:49002
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0957.49001&format=complete
http://www.ams.org/mathscinet-getitem?mr=98f:45004
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0889.45012&format=complete
http://www.ams.org/mathscinet-getitem?mr=99j:49001
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0909.49001&format=complete
http://www.ams.org/mathscinet-getitem?mr=96h:73006
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0835.73005&format=complete
http://www.ams.org/mathscinet-getitem?mr=86i:80001
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0564.76075&format=complete
http://www.ams.org/mathscinet-getitem?mr=94a:49001
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0816.49001&format=complete
http://www.ams.org/mathscinet-getitem?mr=56:6503
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0339.49005&format=complete
http://www.ams.org/mathscinet-getitem?mr=93f:28001
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0804.28001&format=complete
http://www.ams.org/mathscinet-getitem?mr=41:1976
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0874.49001&format=complete
http://www.ams.org/mathscinet-getitem?mr=97a:73085
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0840.73079&format=complete
http://www.ams.org/mathscinet-getitem?mr=87a:35001
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0593.35002&format=complete
http://www.ams.org/mathscinet-getitem?mr=88f:76038
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0616.76004&format=complete
http://www.ams.org/mathscinet-getitem?mr=56:3704
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0356.49008&format=complete
http://www.ams.org/mathscinet-getitem?mr=83k:34002
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0535.34001&format=complete
http://www.ams.org/mathscinet-getitem?mr=97m:49001
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0193.18401&format=complete

	Introduction
	Setting of the problem and statement of the results
	The 1-dimensional case
	The -lower limit
	The -upper limit

	The n-dimensional case
	Some properties of c_W()

