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We view the free energy of a diblock copolymer system as a variational problem, in which the
integrand of the functional contains an interesting nonlocal term, and a small paramateprove

that asc approaches 0, the energy minimizers develop a growing number, ofordel, of periodic
oscillations, explaining the micro-phase separation phenomenon.

1. Introduction

A di-block copolymer molecule is a linear chain consisting of two subchairéd b grafted
covalently to each other. The subchaingndb are made of different monomer units and B,
respectively. In polymer systems even a weak repulsion between unlike mondraeds? induces
a strong repulsion betweenandb. As a result the different subchains tend to segregate below
some temperaturg., but as they are chemically bonded, even a complete segregation of subchains
a andb cannot lead to a macroscopic phase separation. Only a local micro-phase separation occurs:
micro-domains rich i and B are formed.

In [12] Ohta and Kawasaki introduced a free energy functional

2
Fu) = f [%sz + W) + %|(—A)*1/2(u - m)|2j| dx.
2

The original formula in[[12] is given for the whole space. The expression here on a bounded domain
first appeared in Nishiura and Ohnighi[10].

The two unlike monomer units are represented:by —1 andu = 1 respectively. The con-
nectivity of the monomers in a chain leads to the long range intera@tit®)|(—A) Y2 — m)|?
in the free energy. Here-A is viewed as a positive operator, afdA)~Y2 is the square root
of its inverse. The parameteris proportional to the inverse of the square root of the total chain
length of the copolymene?/2)|Vu|? represents the interfacial energy density at bonding points.
The parametexr is proportional to the thickness of interfaces between the two monomestainds
for the mass ratio of the two monomer units.
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When this free energy is minimized, the first term of the integrand prefers large blocks of
monomers, thereby reducing the combined size of interfaces between the two monomers. The
function W in the second term is a double-well potential with two global minima-atand 1,
reflecting its preference for segregated monomers over mixtures. The third term, most interesting
to us, depends on nonlocally, through a global operatorA)~Y/2. It favors rapid oscillation
between the two monomers. When all these factors compete, the phenomenon known as micro-
phase separation occurs.

The one-dimensional cas2 = (0,1) is particularly interesting because of the laminar
structures observed in diblock copolymers. In an earlier pepéer [13] we studied the parameter
rangec ~ e. Physically this means that the size of the sample is of oNfé?l where N, the
polymerization index, is the number of monomers in a chain moleculé @rtie average distance
between two adjacent monomers. We proved the existence of a family of local minimaevidien
small, which are nearly periodic with the sizes of periods comparable to the size of the domain
(0, 1).

In this paper we study a different parameter raage- 1. Physically we are taking a larger
sample of sizeVi/. The admissible set is

1
X = {u e wt20,1) : / u(x)dx = m} me (-1, 1). (1.2)
0
The constraim‘[olu = m reflects the total mass of one of the two micro-components. It must be in

(=1, 1) in order to have a mix of the two monomer units=£ —1 andu = 1 respectively).
We restate the functional as

1r .2 1
Ie() = f [%W + W) + SI(=DH 2 — mﬂ dx, 1.2
0
which we call theenergyof u. The second order derivative operator
1 1
—D2:{UEWZ’ZZU’(O)zv’(l)zo,/ v:O} — {weLZZ/ w:O}
0 0

is an isometry. Its inverse is positive frojw € L2 : fol w = 0} to itself. We denote the square root
of this inverse by—D?)~1/2. For everyu € X,, we can solve

1
—V'=u—m, V(0 =21 =0, / v=20
0

for v. This v is often denoted by—D?)~(u — m). Then [1.2) becomes

re2 1
I.(u) = / |:—|u/|2 + W) + —|v’|2] dx. 1.3)
o2 2
Letu, be a global minimum of, in X,,, i.e.
I.(ue) = min I (u). (1.4)
ueX,,

The existence of¢ is guaranteed by the usual variational argumensolves the Euler—-Lagrange
equation

—€2" + f(u) + (=D?)Hu —m) =1
where f = W’. The constant, the Lagrange multiplier, is unknown.
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Definingve = (—D?)~1(u. — m) andi. to be the Lagrange multiplier associated with we
rewrite the Euler—Lagrange equation fQr, v. andi, as
—€2u" + f(u) +v =2,
—v"' =u—m,
') =u'(1) =2 (0) =11 =0,
folu =m, folv =0.

Note that without the nonlocal interaction term[in {1.2) we have the more familiar functional

(1.5)

1 62
Ke(u)zf |:E|u/|2+W(u):|dx. (1.6)
0

Minimizers in X,, of K. are well known. When is small, K. has two global minima. One of them
has a transition layer, whose width is of ordefrom —1 to 1. The second is the reversal, i.e. the
reflection with respect to the vertical line gt of the first (see Carr, Gurtin and Slemrbd [1]).

The goal of this paper is to prove the following three theorems for the global minima of the
nonlocal problent,.

THEOREM 1.1 For smalk every global minimumu. is necessarily periodic, with exactly, /2
periods, whereV, is the number of transition layers of.

THEOREM 1.2 For smalk, I, has either two or four global minima. The case of two global minima
is generic.

THEOREM 1.3 The period of the global minima &f has the asymptotic expansion

96coe  \Y°
(—(1_m2)2> + 0(%/3),

wherecg is defined in[(2.6).

The proofs are rather straightforward, though some estimates in this paper look tedious. We
obtain sharp lower and upper bounds fofu.). The upper bound is deduced by a test function
argument. The lower bound, which is harder to come by, comes after a careful study of

With these bounds we study the length scale between adjacent transition layeré ddyer is
characterized by a pointwhereu, (x) is not close to-1 or 1. For technical reasons we set a value
a € (—1,1), defined in[(2.5), and say thatis ana-point if u. (x) = «. An a-point thus identifies a
transition layer. We show that the distance between any two adjaepaints ofu. is comparable
to e1/3,

The proof of this fact is in Sections 6 and 7. We denote intervals separated bypibiats by
pi andg;. On ap; interval,u. is greater thaw, and on aj; interval, it is less thaw. In Proposition
6.1 we show thap; = 0(¢¥/3) andg; = 0(¢¥/3). Then in Proposition 7.1 we improve the two
estimates tg; ~ ¢1/3 andg; ~ €%/3.

Proposition 7.1 has the implication that the distance between any two adjacent zgrasal$o
comparable te/3. This allows us to localizé to intervals separated by these zeros. After rescaling
such intervals td0, 1) we obtain a functional similar t@., but with a different parameter range.
This new functional was the same as the one studied by the autharg in [13]. The three theorems
follow from some convexity properties of the functiorial
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The most important step in proving Proposition 6.1 is the establishment of a good lower bound
for I.(u¢) in Section 5. This idea was used by Ni, Takagi and the second author in a series of
papers (e.glL]7]/8!9,21]), but in different settings. There the solutions are all spiky, instead of being
periodic.

The special case that = 0 andW(—r) = W(r) was studied by Nller in [5]. He actually had
a different looking functional

1
I (w) = [ [€?lw”]? + W) + w?]dx
0

in the admissible sdtw € W22(0, 1) : w(0) = w(1) = 0}. Under the assumptioW () = W (—r),
it was proved in[[5] that global minima df are periodic.

I. itself has an interpretation in the elasticity theory. Imagines the displacement of an
elastic bar under a loading device! is the strain field. The deformation af gives rise to
some elastic energy whose density%uw”|2 + W(w’). Also assume that the bar is placed on an
elastic foundation. The foundation interacts with the bar and contributes to some more energy with
densityw?. Adding these two terms we arrive &t the total energy of the system. See Truskinovsky
and Zanzotto [19, 20] for more details.

To see howl, is related tal., letu be an element i, andv = (—D?)~Y(u — m). Setw = v'.
Thenw' =v' =m —u, w’ = —u’, and

11 1.
Ie(u) = 5/ [€2|w” 12+ 2W (m — w') + w?]dx = Sle(w),
0

if W(r) = 2W(m — r). Since bothW andW have two global minima at1 and 1, must be 0.
What was proved iri [5] translates to the statement that whiér) = W (—r) andm = 0, the global
minimizers ofl, are periodic.

W) = W(—r) may look like a technical restriction, but actually, together with= 0, it
imposes mathematically a symmetry within each period of a minimizelf T is a period, then
ue(x) = —u (T —x) forx € (0, T). The use of this symmetry is a key ingredientih [5]. In terms of
applicationsn = 0 requires that each of the two monomer units make exactly half of the volume,
which is not a suitable condition for general copolymers.

We will prove the three theorems without assumilfigr) = W(—r) or m = 0. Within each
period,u. has no more symmetry. Insteadis close to 1 on a portion of the period and close-tb
on another portion, generally of a different size, leaving the average @fual tom.

Our approach to the general case departs significantly frdifiels, when we analyze the
important quantityE (¢, 1), defined at the beginning of Section 10. Heérie the distance between
two adjacent zeros af. . In the symmetric casé¥{(r) = W(—r), m = 0) E is convex with respect
to/ in a wide range ok and!l: ¢ < Cl/|logl|, as shown in[[b]. This fact depends on a lower
bound for eigenvalues of a linear problem (see Propositign 9.1 and the remark after its proof), when
the symmetry condition is imposed. Without symmetry that linear problem has small eigenvalues.
It turns out that the convexity of is valid if we can show tha¢ and! lie in a narrower range:
C1€Y3 <1 < €263, The remarks earlier after the statements of the three theorems explained how
we prove this difficult estimate.

Other references on this subject include Ohnedhél. [11]], Fife and Hilhorst[[3], Choksi [2],
Henry [4], Ren and We[[14]=[18], and Muratavi [6].
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When estimating quantities, we ado@({...), o(...), ~ convention. A term, say., satisfies
ve = O(eY3) if there exists a constar® independent ot such thatjve(x)| < CeY/3 for all
x € (0,1). A term, sayv., satisfiess. = o(eX/2loge) if there exists a functiod (¢), C(¢) \ 0 as
€ \. 0, such thatve (x)| < C(¢)|eX/3loge| for all x. O(...) ando(. . .) also appear in inequalities.
For instance, a term, say, satisfies:. < 1+ O(¢/3) if there existsC > 0 such that (x) — 1 <
Cel/3forall x. ~ indicates a comparability relation between two quantities. A termpgasatisfies
pi ~ €3 if there exist constant§; andC» such thatC1eY/3 < p; < Cael/3 for all i.

We require that all estimating quantities, like C1, C», or C(-), depend onn and the overall
shape ofW only. Therefore all estimates involving, o or ~ in this paper areniformwith respect
to any variable/parameter that may appear, like v, (x) andi in p;.

2. The local energy functionalK,
The functionW in the definition ofl, is a balanced double well. More precisely:

1. W : (—o00, 00) — [0, 00) is C®.

2. W(r)=0atr = —1andr =1, andW(r) > 0 at any other.

3. There existt andb,a > —1,a < b, b < 1 such thatV”(r) > 0 on(—o0, a) U (b, o0) and
W”(r) < 0on(a,b).

4, W” is bounded.

5. W’ grows linearly, i.e. there exigt; and C such thatCi|r| < |W'(r)| < Ca2|r| whenr is
large.

We have made these conditions consistent with the ones in the reference papersl_like [1,5]. The
derivative ofW is always denoted by, and the local maximum oV between-1 and 1 byw.
Next we list some well-known properties of the equation

-U"+ f(U)=0. (2.1)

It has the first integral
— U+ 2W(U) =2y, (2.2)

This first integral gives us a phase portrait of trajectories intthes. U’ plane. The two equilibria
(=1, 0), (1, 0) correspond to the two global minima Bf at—1 and 1. The third equilibriunw, 0),
w € (-1, 1), comes from the local maximum of W. There are two heteroclinic orbits connecting
(=1,0) to (1, 0). They bound a family of periodic trajectories that in turn enclase0). The
remaining trajectories are unbounded.

One heteroclinic solution is denoted Bwhich solves

—H'+ f(H)=0, H@O) =«, H(+oo) ==+l (2.3)

The constantr is a number betweer1 and 1 defined later i (3.7) to identify transition layers.
H has the first integral
—|H'|?> +2W(H) = 0. (2.4)

LEMMA 2.1 1. There exist§ > 0 such that as — +oo, H(t) = £1+ 0(e €', H' (1) =
O(e~C"), andH" (1) = O(e~ ).
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2. LetGy, s > 0, be the increasing solution fG} + f(Gs) = 0 with G4(0) = « andG’(s)
= 0.Then||Gs— H|| L~y = O(e™"*) for a constant > 0. If G, is the decreasing solution
of the same equation and boundary conditions, {f@n— H(—-)|L=(,s) = O(€™").

Proof. 1. From [2.4) we obtain

t—ft dt—/t dH() _ (7O _dH (1— H())
LT hEme T, v '

The convergence ratesat then follow. The case of - —oo is similar.
2. The constany in (2.7) is W(G,(s)) whenU = G,. The estimate in this part follows by
comparing the time variable

: Gy 4G
t:/(h:f >
0 0 V2W(Gy) — 2W (G, (s))

of G with that of H in part 1. O

LEMMA 2.2 1. LetG be a bounded solution ef¥” + f/(H)¥ = 0 on (a, 00), (—0o0, a), or
(—00, 00), whereH is the heteroclinic solution defined {n (.3). Then there exists a constant
¢ suchthaw = cH’ andH’ € W12(—o0, 00).
2. There exists a constant- 0 such that for vergp € W12(—o0, 0o) with

o0 oo o0
/ @H' dr =0, /[|¢/|2+f/(H)<1§2]dt>L/ ®°dr.

—0o0 —0Q —0o0

Proof. 1. H' is obviously a solution of the linear equation. It is bounded and positive. Another
linearly independent solution iB(r) = H'(r) fé ds/(H’(s))2. Then there exist andc* such that
¥ = cH' + ¢*R. HoweverR (£o00) = £o0, while ¥ is bounded. So* = 0.

To see that!’ € W2(—oo0, 00) we return to the first integrdl (2.4), the equatibn [2.3), and the
phase portrait, to compute

[araza= | et [ araza= | EE
—o0 -1 S 1 V2W(H)

Both integrals on the right sides are convergent.

2. H is a global minimum oyfooo[%|G/|2+W(G)] dtin{G e Wlé’cz(—oo, 00) : G(Foo) = £1}.
0 is the principal eigenvalue of the second variatiorHatcorresponding to an eigenfunctidf’.
The next eigenvalue gives riseito |

Leta € (—1, 1) be the number so that

JEVWEYds [ VW) ds

1+m 1-m

(2.5)

Also define

o 1
c_1= \/E/ VW(s)ds, 1= \/5/ VW(s)ds, co=c_1+c1. (2.6)
-1 o
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(2.8) implies that

c1 c-1
1+m 1—-m’
The number will be used to identify transition layers. i, is a global minimum of¢ in X,,,
we sayx € (0, 1) is ana-point of u. if u.(x) = «. Of course any number i1, 1) can be used
to identify transition layers af.. The reason why we choose this particular value will come out in
Section 6.
Finally we consider the function& in (I1.6) on various admissible sets. Let

@2.7)

k(e) = min{Kc(u) : u € X},
k_1(€) = min{Kc(u) 1u € WH%(0,1), u(0) = u() = o, u < a},
k1(e) = min{Kc(u) : u € W20, 1), u(0) = u(l) = o, u > o}, (2.8)
k" (e) = min{K () : u € W20, 1), u(0) = &, u < o},
ki) = min{K () : u € WH2(0,1), u(0) = o, u > a}.
LEMMA 2.3 There existg > 0 for the following statements.

. k(€) = coe + O (e H/e),

. k_1(€) = 2c_1€ + O (e M/).
. k1(e) = 2c1€ + 0(67”‘/6).

K y(€) = co1e + O(e o).
. Kl(e) = cre + O(e™H/).

g bhWOWNPE

Proof. Part 1 was proved in[1, Theorem 8.1]. The proofs of 2-5 are standard and we only show a
sketch for 5.
RecallH in (2.3). UseH (x/¢) > a on (0, 1) as a test function to comput& (H (-/¢)). Because

of (2.3), we find
1 H(1/e)
K. (H(-/€)) = ﬁ/ VW(H)H (x/e) dx = eﬁf VW(H (1)) dt.
0 o

Due to the exponential convergence ratéfif) — 1 ast — oo (Lemmg2.}),
kie) < ec1+ 0@ ). (2.9)

Now we show that the inequality (2.9) is indeed an equality...ebe a global minimum oK. in
the admissible sdit € W12(0, 1) : u(0) = o, u > «}, whose existence is guaranteed by the theory
of obstacle problems. Than. satisfies the variational inequality

1
/ [®wl(¢' — wl) + f(we)(¢ — we)]dx > 0 (2.10)
0

for every¢ in the same admissible set.

The theory of variational inequalities asserts that € W22(0,1). LetS = {x € (0,1) :
we(x) = a}, U = (0,1)\ S. ThenU is open ands relatively closed in0, 1). We show that§ = @.
Letx € S. Thenw(¥) = o andw (x) = 0. It follows from [2.10) that

— 2w 4 f(we) =0 (2.11)

onU. If we multiply the equation by, then sincav, = 0 on S, on the wholg0, 1) there is a first
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integral

—2|wl|? 4+ 2W (we) = —€2|w!. (X)]? 4 2W (we (X)) = 2W (a).
This implies thatV (we) > W (). ThenK(we) > W(a) > 0, which is inconsistent with (2.9) for
smalle. This proves that no suchexists andS = #. Sow. solves[(2.1]1) or0, 1).

At x = 1, (2.10) allows two possibilities:

Al we(1) > e andw, (1) =0, or

B: we() = a.

We first consider case A. Set= ¢r, U(t) = w(et). We suppress the dependencealobn ¢ to
keep notations simpld/ satisfies[(Z]2). The constaptthere can be evaluated mt= 1/¢ where
U'(1/¢) = 0. Soy by W(U (1/€)).

As e N\ 0, we havelU’(0)  H'(0), y \\ 0 and the trajectory o/, which is a periodic orbit
inside the two heteroclinic orbits, approaches thatfolt also follows that/ (1/¢) tends to 1 from
the left. Without ambiguity, for smal denote thid/ (1/¢) = W1(y).

Now we viewy, instead ok, as the controling parametdr. (2.2) implies that the duration is

1 1/e wWty) du
= _/ d = & gy,
e Jo « 2WU) —vy)

and the local energy satisfies the estimate

- Ve |y |2 VRO 2wy —y
1 — = — = _— —
€ "Kc(we) —c1 /0 |: 5 + W(U)] dr — 1 g AGES)) du — 1

~ ylogy
asy \( 0. This yields the estimate in 5. of this lemma.

Finally we rule out case B. If we again $ét= w,(¢t), then in the phase portrait this solution
corresponds to a part of a periodic trajectory as well. Howeveratl /¢, (U(1/¢€), U'(1/¢€)) is the
mirror image of(U (0), U’(0)) about the horizontal axis. After a similar argument of phase plane
analysis, we findK, (w,) = 2c1e + O(e~*/€), contradicting|(2.9). O

The constantg in Lemma 2.3 and in Lemma[ 2.1 are henceforth fixed. They dependion
andm only.

LEMMA 2.4 Letw, be a global minimum oK. in X,,. Define

—1, xe05m), 1L, xe0Hm,
1,  xem, -1, xe(Hm .

wi(x) = { w2(x) = {

Then eitherf01|we — wi|dy = O(eloge), orfo1 lwe — w2|dy = O(eloge). For smalle, we is
increasing in the first case and decreasing in the second case.

Proof. See Theorems 3.1 and 9.1 of [1]. O

3. An upper bound of I, (u¢)
Let us agree on the notation Aue) for the mean ofw, i.e. if w is defined on(a, b) then

fabw(x)dx

Ave(w) = 5
—a

(3.1)
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LEMMA 3.1 1. For every positive intege¥,
(1—m?)?

Ic(ue) < coeN + W

+0 (—% log(eN) + e"‘/(fN))

_2\2\ 1/3
2. If N is taken to be the integer closest(téTm)> , then
o

23 9 1/3
Le(ue) < c5*— m2)2/3(3—2> 2B 4+ 0(e*2loge).

Proof. Let N be a positive integer an@, 1) be equally divided by. Set/ = 1/N. Minimize over
u € WL2(0, 1), subject to Avéx) = m, the quantity

I E2
[ |:—|u/|2+ W(u)] dx
ol 2

to findug . By rescalinge = Iz, we see thalfp  (z) = ug,(Iz) minimizesK,,,; in X, and

e 1 2 ,
/0 [Emag +W(uo,e>}dx=z /0 [ﬁ%g +W<uo,e)} d:
= 1K1 (Uo.e) = k(e /1),

Extendinguo. to (0, 1) by anti-symmetric reflection and using it as a test function for an upper
bound ofI, (u.), we find

1 2
fo [%maf + W(uo,é)} dr = leG) — k(eN) = coeN + O MV (3.2)

where the last equation comes from Lenjma 2.3.

To estimate the nonlocal part éf(uo.), let vo . be the solution of-v” = ug —m, v'(0) =
v'(I) = 0, Ave(v) = 0. Through anti-symmetric reflection . is extended tq0, 1) andvg, =
(—=D® X(uo.c —m).

Estimateuvg . by comparing it withvg which solves—v” = ug — m, v'(0) = v'(I) = 0, Ave(v)
= 0. Hereuy is a step function with one jump from1 to 1, satisfying Avéig) = m. Scale(0, /)
to (0, 1). LetUo(z) = uo(lz), i.e.

-1 <(A- 2,
Uo(z) = { > s =m) (3.3)

1, z>1-m)/2.

Let Vo(z) = [~%vo(lz). ThenVy = (—D?) LUy — m).
We record the expression fdy for later purposes:

1+m[ 5 1-m\? (1—mm 1—
T e (2T LT mom =
3 [z ( > ) ] 5 z €[0, 7],

1-m 5 1+m 2 (1—m2)m 1—m
Aol (TnY] Oy

Vo = (3.4)
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Recallidy . (z) =uo.¢ (Iz). DefineVy ¢« (z) =1%o (I2). Itis clear thab/p = (— D?) L (U, —m).
Thereforel|vo.c[loo = %[ Vo.clloo = 0(1?) and|[vollee = 12| Volloo = O ().
Apply Lemmg 2.4 td4o ., @ minimum ofK,, to obtain

1
/ |Upe — Ul dz = 0(S Iog<5>),
0 ] I
which yields

! 1 € € €
/ Iuog—uoldx=l/ Ier—Uole=10(—|09<—>> =0(elog<—>).
b o o eV I

Then by multiplying the equatior D?w = ug,e — uo thatvg — vg satisfies byvg e + vog and
integrating by parts, we find
I ! I
fo (g, 1? — lvp/H dx = /o (vo.c — v0) (Vg + vp) dx = /0 (u0,e — o) (vo,e + vo) dx
= O(elog(e/ D) |[vo.c + volleo = O(el?l0g(e/1)).

On the interval0, 1),
1
/ (Ivg.c1* = [vp?) dx = O(el log(e/ 1)) = 0(% Iog(eN)>.
0

fol %|v6|2dx can be evaluated (usi.4), or see formulae (3.7) and (3.8) lof [13]):

/1}|v’|2dx _A-my?
0 20 24N2

Thus the nonlocal part af (ug ) is bounded by

(1 —m?)? €
ToaNZ + O<N og(eN)>.
Combining this with[(3.R), we obtain the first part of the lemma.

This estimate hints that the numberepoints ofu. is of ordere~1/3. WhenN is taken to be
the integer closest ta(1 — m?)?/(12co))/3, the optimal integer that minimizes the right side of
Lemmd 3.1, we derive assertion 2. O

4. Some implications of the upper bound

PROPOSITION4.1 1. |lvelloe = O(eY/3).
2. A = O(eY/3).
3. =1+ 03 <uc <1+ 03,
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Proof. Lemm impliesfo1 v/|2 < Ce/3. And since[} v. = 0, we find||ve oo = O(2/3).
Also by the same Iemmﬁol W (ue) < Ce?/3. Integrating ,. we find

1 1 1 1 1/2
el = ’ / Fluo | < / o) dx < € / WY2(u) d <c( / W(uadx) <celh3,
0 0 0 0

The equation| (1l vields —€%u + f(ue) = O(e'/?). Let x. be a global maximum ofi..

Then u/(x¢) < 0, whether or notx. is on the boundary, since,(0) = u.(1) = 0. So
fue(xe)) < 0(€Y3), which impliesuc (xc) < 1+ 0(€3). The lower bound fou. follows
by a similar argument. O

It is often necessary to inspegt in a scale comparable & Let x. € (0, 1) be an arbitrary
point. Introduce andU, so thater + x. = x andU,(¢) = u(x). According to Propositing,
U, satisfies

—U!' + f(Ue) = 0("3) (4.1)

on the expanding interval-x. /¢, (1 — x.)/¢). Since Propositioh 4glimplies|U.| < 1+ 0(¢%/3),
the regularity theory of second order differential equations asserts that along any setjyeote
U, with €, — 0 there exists a subsequence that converges locally (at leagbtma functionG
which satisfies

-G"+ f(G)=0, -1<G<], (4.2)

on the whole interval—oo, c0), or a half-intervaka, oo) or (—oo, b).
Observing the phase portrait of this equation, we concludeGhaust be either

A: a heteroclinic solution, i.e. a translate or a reversed translate défined in[(2.B),

B: the constant solutior-1 or the constant solution 1,

C: the constant solutio@ (the local maximum o between-1 and 1), or

D: a periodic solution whose trajectory is bounded by the two heteroclinic orbits in the phase
portrait.

LEMMA 4.2 Cases C and D do not occur.

Proof. We prove this by contradiction. Suppose tlgats the unstable constaat or a periodic
solution. We will construct a function whose energy is lower than that p€ontradicting the fact
thatu. is a minimizer. To make notations manageable, any sequence or further subsequapces of
will still be denoted by, instead ofu., .

Take a large number > 3, to be determined later. Always letbe an integer multiple of the
period of G if G is periodic. Without loss of generality we assume limsup< 1/2. Leté be a
smooth function defined ofi-oco, 0o) so thats(r) = 0ifr < 0,6(r) =1ifr > 1,|15(¢)| < 1 for
all . For eachr € (1,0 — 2) define

Ue(t), t ¢(0,0),
Ue () = Ue() +D(A-80) -1, 0<tr<r, @23)
26(—r)—1, r<t<r ,

+1
Ue@®) —DEC—-0+D+1, r+1<r<6

We have replacet. in the interval(0, 8) by a function whichis-1 on(1, r) and 1 on(r +1, 6 —1).
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Similarly set
G(),

t
GoH+bHA-60)—-1, 0

<t<r,
Fr (1) = (4.4)
26t —r)—1, r<e<r+1,
Gt —DEC—0+1D+1, r+1<t<6.

SinceU, — G in CY[0, 6], U., — F, in C1[0, #]. We need to chooseproperly to havq(f Ues =

foe F,, so later the function that we will construct to have lower energy will be in the admissible
setX,,.
Sinced is a multiple of the period of; if G is periodic, we see that ! fg Gr)dre (-1, 1is

independent of. Taken > 0 so small thap 1 foe G@)dr £ n e (—1,1). First set

1071 I G+ n,
= > .
Clearlyry € (1,0 — 2) whend is large. As9 — oo, by the definition[(4.}4) of,

r=ri

1 [? 1 r?
—/ F, (t)dt — —f G(t)dr —n.
0 Jo 0 Jo

Then set

1-671 [ Gydr — 1,
= 5 ,
which is also in(1, 6 — 2) wheng is large. AsY) — oo,

r=ry

1 [? 1 [?
—/ F,(t)dr — —/ G(t)dt + .
8 Jo 0 Jo

Therefore if we choose large enough then

1 [ 1 [ 1 [
—/ Fo()d < —/ G(Hdr < —/ Fp,(t) dt.
8 Jo 8 Jo 8 Jo

After this larged is chosen, we take so small that

1 [ 1 [ 1 [
—/ Ue () dt < —/ Us(t)dr < —/ Ue (1) dr.
0Jo 0 Jo 0Jo

With bothg ande chosen we set € (r1, r2) SO thatfoe Ue,(t)dt = f09 Uc(t) dt.
Back to thex-coordinate, we define. ,(x) = U. ,(¢) which is in the admissible sé{,,. We
now proceed to compare the energwofandu. ,, starting with the local part. As \ 0,

6 % 1 r+1 %
f |U;,|2dt—>f |F,’|2dt=/ |F,’|2dt+/ |F;|2dt+/ |F! |2 dt,
0 ’ 0 0 r -1

which is bounded from above by a number independefitafdr. The same is true for

% %
/W(Ue,r)dt—>/ W (F,)dt.
0 0
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So there exist€ > 0 independent of andr such that

“TIFP
—— + W(F,) |dr < C.
0 2

Then for smalk,

Xe+eb 62 2] |U/ |2
/ |:—|u/€’,|2 4 W(ug,,)i| dr = e/ [ S+ W(UE’,)} dr < 2¢C. (4.5)
Xe 0

2

On the other hand sina&, periodic or unstable constant, lies strictly away frerhand 1, there
existsc > 0, independent of, such thatfoe W(G(t))dt > c6. Therefore

0 |G/|2 T
f [ FW(G) | dt > ch.
ol 2 i

Then for smalk,

Xe+€0 2 orirr’/ 2
/ [%wuz + W(ue)] dx = e/ By wwa} @ > 4.6)
Xe 0L

We see that the local energy is reduced i large.

To compare the nonlocal energy we work with theoordinate. Set, , = (—DZ)‘l(ue,, —m).
Thenv, , andv, agree outsidéx., x. + €6). Clearlyv, , = O(1) andv; = O(1) because. , and
uc are of order0 (1). Since—(v, , — v;) = ue,, — e ON (xe, Xe + €6), it follows thatv, , — v, =
O (€0) there. Then

Xe+eb 5 Xe+€6 ) Xe+€0
/ / / / / /
f lvg 1= dx —/ lvg|“dx = / (Ve — V) (v, +v.)dx
Xe Xe Xe

Xe+e€6
= / 0(€h) - 0(1) dx = 0(€26).
Combining this with[(4.5) and (4.6) we deduce
I(e,) — Te(ue) < 2¢C — 6’; + 0202,

Just as in the construction bt ,, we first choos@ large and them small, sol, (u¢ ) < I (uc). O

We first use this lemma to study-points ofu.. Recall from Section 2 that is an«-point if
Us(x) = a.

PROPOSITION4.3 Whene is small,u (xc) # O at everyx-point xe.

Proof. From Lemmug(et + xc) — G locally in C1, whereG is heteroclinic or+1. Since
ue(xe) = a, G(0) = a. ThenG(r) = H(@) or G(r) = H(—rt) (H is defined in[(2.8).) Then
€u.(x¢) > £H'(0) #0. O

The proof actually says more; (x.) — +oc. Propositio implies that the-points ofu.
arenondegenerataneaning that every time the graphuQftouches the horizontal level it crosses
it. The next application of Lemnja 4.2 shows thapoints do not appear in any neighborhood of the
boundary of(0, 1) whose size is of order.
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PrROPOSITION4.4 If x, is ana-point of ue, then

£ o(1) and

Xe — Xe

=0(1).

Proof. Of course one of/x. = 0(1) ande/(1 — x¢) = o(1) must hold. Suppose the former is true
and the latter is false. Then we can assufhe x.)/e — b > 0. LetU(¢t) = u.(et + x¢). Again
by Lemmd 4.RU. (r) converges tdH (r) or H(—1) locally in C1. However 0= U’((1 — x¢)/€) —
+H'(b) # 0. A contradiction. O

These two propositions imply that the numberoepoints is finite for each smad. Denote
them byxi, ..., xy_, in increasing order. We suppress the dependence aof #en ¢ to simplify
notation. Throughout the rest of the paper we assume without loss of generality. tbatO on
(0, x1) and N, is even. We seM, = N./2. Let

p1 = x1, P2 =XxX3—Xx2, ..., pPM.+1=1—2xn,,
q1L=Xx2 — X1, {2=X4—X3, ..., {4M. = XN, — XN.-1-

4.7)

When no confusion exists we call the interval whose length; ithe p; interval, and the interval
whose length ig; the g; interval. Because of the nondegeneracy of #hs, u. > o on everyp;
interval andu. < o on everyg; interval. The lastintervalxy,, 1) is pa,+1. Again thep;’s andg;’s
depend orz. With this setting thex-pointxy;_ is followed by thep; interval, which is followed by
x2;—1, Which is followed by they; interval.

PROPOSITION4.5 ¢/p; = o(1) ande/q; = o(1).

Proof. The cases op1 andpy, ;1 are already covered by Proposit[on]4.4. Suppose this proposition
is false. There exist adjacentpointsx. andx; such that(x} — x.)/e — d > 0. Again the
convergence is really along a sequergef ¢, but we stay withe. We can assumeg, > « on
(xe, x¥). LetUec(t) = uc(et + x¢).

If d = 0, then there exists € (0, (x} — x¢)/¢) such thatU/(t.) = 0. Ase \, 0, we have
(x} —x¢)/e — 0andt. — 0. Also by Lemm2 and the facts tHat(0) = « andU, > « on
(0, (x* — x¢)/€), Uc(t) — H(t) locally in C1. Then 0= U/(t.) — H'(0) # 0. A contradiction.

If d > 0, then agairU(t) — H(t). Soa = Uc((x} —xc)/e) - H(d). ButH(d) = o is
impossible, sincé? (0) = o andH is strictly increasing. |

LEMMA 4.6 1. Fori=2,..., M. +1,

luc (et + x2i-2) — H(®ll 2y, p, j2e] = O€3) + 0(e77i/?9),
lue (et + x2i-2) — HOlle2_g,_, 2001 = O€3) + 0741/,

2. Fori=1,..., M,

(et + x2-1) — H(=D)lc2(0,4, j26y) = O€™3) + O(e"4i/?9),
lue (et + x2i-1) — H(=D)llc2(_p, j20.0p = O(Y/3) + O (77129,

In this lemma, if an estimate is on the end interpalor pys, 41, then the(2¢)’s on both sides of
the estimate should read
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Proof. We only prove the first estimate of Leminald.8ince the other three are similar. There are
two different cases. When= 1, ..., M., u. is estimated on @; interval with twoa-pointsxy;_»
andxp;_1 as the boundary. When= M, + 1, u. is estimated or(xzy,, 1), an end interval. In
order to study the two cases in a unified way, in this proof we extend the domainaofd v to

(0, 1+ pum,.+1) by settingue (x) = uc(2 — x) andve (x) = ve(2 — x) forx € (1, 1+ pp.+1). then

uc ando, still solve @) on(0, 1 + par.+1), anduc (1 + pp.4+1) = . Letx = et + xp—2, and
Uc(t) = ue(et + x2;—2). The proof consists of four steps.

Step 1 |Uec — HllL>(0.pi/2e)) = 0(1). Ase 0, by Propositiof 4]5p; /(2¢) — oo, and by
Lemma[4.p,U. — H locally in CL. If this convergence is not i ® (0, p;/(2¢)), there exists
he € (0, p;/(2¢)) such thatUc (he) — H(he)| A 0 andhe — oo. ThusUe (k) stays away from 1.
Shift U.(r) to U (1 + he). Let G be such that/c (r + he) — G locally in Ctand—G” + f(G) = 0.
ThenG is either 1 or heteroclinic by Lemnja 4.2.d¢f = 1, thenU. (he) — 1. A contradiction. If
G is heteroclinicG(¢) < o at some;. ThenU, (¢ + he) < o whene is small. This is impossible
since forr = ¢ + he, x = €(¢ + he) + x2i—2 € (x2i—2, X2i—1) Whereu, > a.

Step 2 (|Ue — H|| 1=, p; /2¢)) = O(eY3) + 0(e7"Pi/29). LetG,, /(2 be the increasing solution
of —G” + f(G) = 0 with the boundary conditionS , /2¢)(0) = & a”dG};,-/(ze)(Pi/e) = 0. Note
that G, /(2¢) is part of a periodic trajectory in the phase plane @hg ) (pi/e) = o. We first
show that|Ue — G, /2¢)ll L0, pi je) = O (™).

On the contrary suppose thelle — G, /el 1200, pi /e € "3 — oco. Let

Ue = Gpij2e)

€

" U = Gpjoll=@.pije)

By Propositio 4[L2, —U! + f(Ue) = O(e¥3). So—W/ + f'(.. )W = 0(1), ¥e (0) = e (p;/€)

= 0, wheref” is evaluated at a number betwdgnandG ,, /2¢), whose exact value is not important
for us. We can assume that the maximunjf| is achieved at. € [0, p;/e], and it is a global
maximum, i.e¥,(h¢) = 1. There are three possibilities for the locatiorpf

A: There exists; > 0 such that, < n for all e.
B: There existg) > 0 such that, > p;/e — nforalle.
C: Neither of the above.

If case A occurs, by the fact that,, o) — H in L®(0, p;/(2¢)) ase — 0, Lemm, and
Step 1, we find?, — ¥ locally in C* wherew satisfies—¥"” + f/(H)¥ = 0 on (0, o). Since
@] < 1, Lemmd 2.R asserts¥ = cH’ for somec. Also ¥ (0) = lim ¥, (0) = 0. SinceH'(0) # 0,
¢ = 0and¥ = 0. This is clearly inconsistent witl, (k) = 1 andh. < n for all smalle.

Case B can be ruled out in the same manner. When case C occurs we assani@, p; /¢),
he — ooandp; /e—h. — oo. By Step 1, or a similar assertifit/c — H (p; /€ —) || Lo (p; /(2¢), pi Je) =
o(1), we find that in the equation fow,, —¥/(h.) > 0 (sinceh. is a maximum) and
. )W(he) — f'(1) > 0. Thus the equation cannot be satisfieccatwhene is small. So
we have proved thatUe — G, /ze)ll (0, p;7e) = O(€*/3). Lemmg 2.} then completes Step 2.

Step 3(|U/ — H" || (0, p;2e) = O(€¥3) + 0(e7"7i/€).  From Steps 1, 2 and the equatidns|(4.1)
and [2.3) satisfied by, andH respectively,

U/ = H") = f'(..)(Ue — H) + 0(e*3) = 0(¥3) + 0(e77%).
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Step 4 U, — H'|| 10, pi /2 = O(eY3) + 0(e7"Pi/€).  LetS. = U — H. ThenS = 0(e'/3) +
O(e "Pi/€y andS” = 0(eY3) + 0(e "7i/€) by Steps 2 and 3. Assume without loss of generality
h,h+ 1€ (0, p;/(2¢).) (Otherwise consider, h — 1). Then

1
O + 0@/ = Sc(h +1) = Selh) + SL) + 5S/(...)
= SL(h) + O(Y3) + 0(e7"Pi/*),
HenceS. (h) = 0 (eY/3) + O(e™"Pi/<). .
5. Alower bound of I (u.)

A scaling in Lemma 2133 s yields a lower bound for the local part éf(u.).

LEMMA 5.1 On ap; org; interval the local part of (u) has the lower bound

2 c1e + p; O M€y, =1 M +1,
/[6—|u;|2+W(ue>]dx> 1€+ p O, - ‘
il 2 2c1€ + piO(eFPil€), i £ 1, M+ 1,

2
/ [%w;ﬁ - W(ue)} dr > 2c_1€ + q; O (e7H4/).
qi

More difficult to find are the lower bounds for the nonlocal parfi:.).

LEMMA 5.2 On ap; org; interval the nonlocal part of, («¢) has the lower bound

1 (1 —m)? .
5 | WP > =——pi+ PO+ pi0), i=1M +1,
Pi
1 (1—m)? ; (1 —m)p 2
5 | P> o p 4 ) - 4 pi 0 + 06

+ 203 4+ p20o(e), i#1 M +1,
1 o A+m? 5 g L+ m)g; 3 2
> /q WP > =0+ 5’ vl (x2i—1) + T’ +qi 0”3 + 0(e)
+q20(V3 +q?0(), i=1,..., M.

Proof. On (0, x1), with the help of Lemmp 4]6, we have

v (x)

v.(0) — /x(ue —m)dy
0

o [ {n() o [[[aon (22 e

= —(L—m)x + p10(€¥3) + p10(E€PY) + O(e)
=—A—m)x + p10Y® + 0(e),
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where the reduction to the last line follows from the estimat® (e "P1/€) = € O ((p1/€)e"P1/€)
= o0(¢). This leads to

1 (1-m)?p3
5/ W2 dx = Tl + p30(eY3) + pfoce).
pP1

On (x1, x2),
vl (x) = vl (x1) — / (e —m)dy = vL(x1) + L+ m)(x —x1) + 103 + 0(e), (5.1)
X1
which implies

1 1
| lPde = -/ [V (x1) + (14 m)(x — x1) + q10(¢Y3) + 0(e)]? dx
2 q1 2 q1

= Ef [0l (x1) + (1 + m)(x — x1)]? dx
2 q1

+ 0L (xD[g20 (Y3 + q10()] + 30 (Y3 + ¢20(e)
[v, (xp) + (L + m)(x — xp]3 [

6(1+ m) x=x1
+ 0L (x)[g20(€Y3) + q10()] + 303 + ¢?0(e)

6(1 -+ m) [2( 2 > +3(1+m)q1<v6(x1)+T>}

+ 0. (xD)[g20(Y3) + q10(O)] + G303 + ¢20(e)

Q+mq;  af 1+ m)qs
=" 7[”4’”) T

+ 4303 +q20¢().

2
+q10EY?) + O(e)}

We continue this argument until we reach thg interval (xy__1, xy_). Finally, on(xy,_, 1) we use
an estimate similar to the one ¢@, x1), i.e. write

vl (x) = vl(1) — / (e —m)dy = (L —m)(L—x) + pu. 1103 + 0(e),
1
to derive

1 1- m)zpi/[ 1
E/ .| dx = Tf* + 13103+ p2 100, O
PMc+1

Two remarks are in order. First, the two square terms in the lemma inval¥ing; _1,2) will be
only used once, though critically, in the proof of Proposifiory 7.2. In the other applications they will
simply be dropped.

Second, we have presented this lemma arguing first@jtky ) and then proceeding to the right.
As a consequenag (xy, ) does not appear in the estimates. Naturally, there is another version of the
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lemma where we start wittxy,, 1) and proceed backwards. Then the second and third inequalities
become

1 A-m? 5 pi (1—m)pi 2
2] el? > =P+ T o) + S+ pi0E) + 0(e)

+ p20(Y3) 4+ p?0(e), i#1L M 41, 5.2
1 L+m)? 4 1+ m)g; 2 '
5/% vel?> = —a’ + [v (2) = = +4i 0% + 0(€)

+47 0 + g7 0(e).
In this versionv/ (x1) does not appear.
Lemmd 5.2 yields a very rough upper bound fprandg; .
PROPOSITION5.3 p; = 0(¢%/9) andg; = 0(€%/9).
Proof. Let us consider the case pf,i # 1, M. + 1. The other two cases can be handled similarly.
According to Lemm@ 5]2,
(1—m)?
24

Because of Propositi.S, the last two terms on the right side can be writpé@as, which is
small compared to the first term on the right side. Also because of the upper bound, Lerpma 3.1

Le(ue) > P2+ p20EM3) + p?o(e).

for I (uc), something of ordeo© (¢%3), we find thatp? = 0(¢%3) and ¢ = 0(¢%3). 0
Sum overi in Lemmag 5./l and 5.2 to obtain our first lower boundfi. ).

LEMMA 5.4

Mc+1

Ic(ue) > coeNe + Z piO(e” 'up’/e)-l-zq oe” Mq,/e)
i=1 i=1
A=m?r 3 5 3 3 (1+m)2 L
+ 24 |:4pl+zpi +4pM€+l:| Z

Mc+1 Mc+1

[Z p; +Zq ]0(61/3)+[Z P} +qu]0(6)

An important consequence of Lem@5.4 is thANVd ~ €1/3. We need a simple technical
lemma first.

LEMMA 5.5 1. Intheset(p1,...,pm+1) i pi >0, i=1,... M+1 p1+---+ pys+1=d,
d >0}, 4p3 + "M, p2 +4p3, , is minimized when 21, pa, ..., py, and 1 are all
equal top = d/M. Moreover

M 3 M 3 2
p p p
4p3+> PP+ 4pyia 24(5) +) p3+4<5> +4p<p1— E)
i=2

i=2

M 2
+)2p(pi — p)2+4p<pM+1— g) :
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2. Inthesef(g1,...,qm) :¢i >0, i=1,.... M, g1+ ---+qu =d, d > O},Ziﬂilqig’is
minimized wherys, ..., gy are all equal tgg = d/M. Moreover

M M M
a3 P+ 29(q — )%
i=1 i=1 i=1

Proof. We only treat case 1. Note that
pE=p>+3p%(pi — p) +2p(pi — P)* + pi(pi — P)* = p° + 3p*(pi — p) + 2p(pi — p)?
wheni # 1, M + 1. And when = 1 orM + 1,

3 2 2
4p?=4<§> +3P2(Pi_§>+4p<l’i—§) +4Pi(l7i_§>
3 2
p 2 p p
>4 = - = == .
>a(5) w30 (- 5) +an(n - 5)

The lemma then follows after we sum over O
We also need the facts that

Mc+1 14+m V3 M, 1—m 13
Z pi = T+O(6 +€N6)a qu = T+0(6 +6Ne). (53)
i=1 i=1

To see[(5.8) we note that
M1

1
m:/o uedx = Z

=

M,

/uedx+Z/ ue dx.
i — J4;

i i=1 i

~

Every p; or g; interval is further divided in the middle, except the end intervals. Then, for example,
with Uc (7)) = ue (et + x2i_2),

x2—2+pi/2 pi/(2€)
/ Ue dx = ¢ / Ue dr
x 0

2i—2
pi/(20) pi/(20) i
=e/ (UG—H)dt—i-e/ (H =D+ 7.
0 0

The first term of the last line is of order
piO(€Y3) + p0@E"P/) = p;0(Y?) + EO<%G_Vpi/€) = pi 03 +o(e)
by Lemmg 4.B. The second term is of ordefe ), becaus¢H — 1| is integrable or{0, co). Summing

over all thep; andg; intervals, we deduce

Me+1 Me

Y pi— > gi =m+ 03 + 0(eNo).
i=1 i=1
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On the other hand,
Me+1

Z pl+2ql_l-

(5.3) follows after we solve these two equatlons.
PROPOSITION5.6 1/N, ~ €1/3,
Proof. We only need a weaker version of Lemmal5.4. Note that

Me Me
Y pioE il =Y PoE i/ = Neo(e),
€
i=1

i=1
since(p; /€) O (e~*71/€) = o(1). By Propositior 4.5,
€
P03 + p2oce) = p?(0<el/3> + ;0(1>> = pPo(D).

Then by Lemm@ 514,

(1 )2 M
Tee) > coeNe + Neo(€) + == [4p3 + Y~ pf + 4piy o
i=2

Mc+1
S STEAD SRS o7

i=1

(1—m) 3, WS 3 3
= coeN¢ + Neo(e) + (T + 0(1)> [4191 + ; pi + 4PM€+1]

L+ m)?
+( +0(1) }:%. (5.4)
Accordmg to Lemm 5[5 an. 3)p%+ p5+--+ 4p,3mJrl achieves its minimum if all 21, po,
. 2py,+1 happen 1o b
p—iMilp»— 4+ 0B +eN) B +oD) 55)
M. = M. Me '
Therefore
1+m 3

4pl + Zpl + 4pM = Mo T +0(1) (5.6)

i=2
After applying the same argumentdgn we deduce fronf (5]4) that

(1—m)2 14+m 3 2
Ic(ue) > coeNe + Neo(e) + T T M;

A+m)?2/1—m
+— —
24 2

3
) M2+ M20(1)
(1—m??

24N? + N20(1). (5.7)

= cg€ N¢ + Neo(e) +
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Recall the upper bound, Lemta}, for I, (uc). We find
(1—m??

2 _ 2/3
202 + N 2%0(1) = 0(e%°).

co€N¢e + Neo(e) +

Therefore
Ne= 0@ Y3, N72=0(P),

which completes the proof. O

6. The first estimation of p; and ¢;

The crude lower and upper bounds fgrandg; in Proposition§ 4]5 ar[d 5.3 are improved in this and
the next sections. The upper bound is loweredte/3) first. To prove this we have to trekng

pi andg; intervals and possiblshort p; andg; intervals differently. Letc; be a positive number
large enough so that when > —coe loge,

pie HPile = 0 (139, eVl = o(eY3). (6.1)

When p; (or g¢;) is not an end interval, we say; (or g;) islongif p; > —coeloge (or g; >
—coe loge). Whenp; (or ¢;) is an end interval, we sgy; (or ¢;) islongif p; > —(c2/2)¢ loge (or
qi = —(c2/2)eloge). Otherwise we say; (or ¢;) is short Let P, and Ps be the numbers of long
and shortp; intervals respectively, an@; and Qs be the numbers of long and shagjtintervals
respectively. Here we count an end interval 48, 50P;, Ps, O, Qs are integers or half-integers.

In the next section we will show that short intervals do not exist (7.6)).

PROPOSITIONG.1 p; = O(¢Y/3) andg; = 0(¢Y/3).

Proof. On a shortp; or ¢; interval we ignore the nonlocal part of the energy and use Lejnma 5.1 to
obtain

62 12 1 72 62 112 1 12

E|u€| + W(ue) + §|v€| dx > cie, E'Mél + W(ue) + §|v€| dx > c_1e. (6.2)
Pi 4i
Here we have again used the fact that

2c1€ + p; O(€7'Pi/) = 2c1e + 60(&8_’”’"/6) = 2c1€ + 0(€) > c1€
€

whene is small. If an end intervalp1 or py. 41, happens to be short, replacg by (c1/2)e in
6.2

On a long interval we note by Propositipn 5.3 thate) p? which appears in Lemnfa 3.2 is
0(€3/9). Then by Lemmals 5|[L, §.2 and the definitipn [6.1) of long intervals,

62 712 1 72
/ WL+ W) + S vi1? |
Pi

A-m)

2
> 2c1e + O(eMPil€) 4 [ T 0(61/3)]P,3 + O(e)p?

1—m)

2
= 2c1¢ + [ e 0(el/3)} P2+ 0(¥9), (6.3
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2 2
1 1+
/ [%|u;|2 + W) + §|v2|2:| dr > 2c_1€ + [% + 0(61/3)}%3 + 0¥, (6.9

If p; happens to be the end interyal or py, 11, then [6.B) is replaced by

(1—m)?

s+ 0(61/3)}17, + 0(1¥9). (6.5)

c1€+[

Sum [6.2) througt (6]4) oveér
le(ue) > c1ePs +co16 Qs + 0(17°)

+ ) {2c1€+|: 24) + O(e 1/3)};;[}

i:long

2
+ Z {2016 + |:(1—£—4m) + 0(61/3):|61,-3}7 (6.6)
i:long

where 0 (1%°) follows from (P, + Q1) 0(e'¥%) = N.0(¢'¥°) = 0(¢1%9) by Propositior 56.
Again if i in the first sum of the last inequality happens to be Mpr+ 1, the quantity in the sum
should read the first two terms ¢f (§.5).

Note that with Proposition 5.6, (3.3) is simplified to

Mc+1
Z pi =—+0( 13), qu =—+0< 13), 6.7)
Therefore
Yori="r 0, Y a=""" 10, (6.8)
i:long i:long
since )
M+
. 1+m
dopi=) pi= ) pi=—p— +0E"%) + NO(=eloge).
i:long i=1 i :short

We again use Lemnja 5.5 to deduce, using the same convention when an end interval is involved,

Ie(ue) > c1€Ps 4 c_1€ Qs + 0(€299)

+Z{2C16+|: 24) +0(1/3)] }

i:long

(1+m)? 13]3}
+ 2c1€ + | ——— + O(eY
lzg{ 1 [ 54 € |q

> c1€Ps +c_1€ Q05 + 0(610/9) + 2c1€ Py + 2¢— 1eQL
L[ —m)? 1 1+m
P 20 \ -7 /3 1/3
+ L[ o7 + O0(™) — + 0(e™)

1
+QL2[—( J;;") +0(e 1/3>]( 5 +0(el/3>) (6.9)
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where the last step follows frorp (6.8) and

p=P > p. qa=01" ) a

i:long i:long

The upper bound of; (u¢), Lemmg 3., then implies
1— 2 1— 3
2c1e Py = 0(e23), PL_Z[—( 22”) + 0(61/3)i| (—2'" + 0(61/3)) = 0(e23).
Therefore, after applying a similar argumengtowe find
PL~e Y3 QL ~e V5 (6.10)

(6.10) in turn simplifies| (619) to

Ic(ue) > c1€ Ps +c_1€ Qs + O (€)

1-m)2 /1 3
+ 2c1€ Py + PL_Z&<ﬂ>

24 2
20 qeqq + @2 M (1om i (6.11)
c_1€L L 24 2 . .

Now the mysterious definitiof (4.5) efcomes into play. Relatiofi (3.7) implies that the last two
lines in [6.11) areroportional They are simultaneously minimized#, andQ;, happen to be the
integer or half-integer that minimizes them. Denote this integer or half-integR¢ b&s in Lemma

3.1, Rc ~ ¢~1/3. Then we deduce fror (6.1L1), replacing béthand 0, by R.,

(1—m?)?
Ie(lxte) = C]_EPS+C_1€QS+0(6)+2C0€R5+W (612)
€
Now useN = 2R, in Lemmg 3.1 to obtain an upper bound
(1—m?7?

I (ue) < 2c0e R + TREZ + 0(e*3loge),

which, combined with[(6.12), givaese Ps + c_1€ Q5 = O(¢). Therefore
Ps=0(), QOs=o0(Q). (6.13)
We now revisit[(6.p) with the full power of Lemnjia 5.5. Because we know ffom [6.10) that
p~eR g~ e3 (6.14)

and also because ¢f (6]10) apd (6.13), using them to handle the error terms we fipd that (6.6) yields

N2
I(ue) > 0(e) + Y {2c1€ + [(12—4'") + 0(61/3)]])?}
i:long

2
+ IX: {ché + |:(1—;—4m) + 0(61/3)i|qi3}
i:long
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(1—m)? 13 |r .3 2
> 0@+ ) 126+ | — + 0 |[p* + 2p(pi = p)’]
i:long

1 2
+ |Z {2c16 + [(;—4"1) + 0(61/3)}[613 +2q(q; — q)Z]}
i:long

1-m? /1 3
= 0(e) + 2c1e P, + PL_Z%(¥>

LA+m21—m\?
+2c_1€Qr + 0} 7 \ T2

1 2
+2 ) [% + 0(61/3)}10(191- - p)?
i:long

N2
+2 3 [(12—4’”) + 0(61/3)}1(%- —q)%
i:long

If p; is an end intervaps or py, 11, then in the second last ling p; — p) should read 2(p; — p/2).

We again replac®; andQ; by R, introduced beford (6.]12), to have a quantity less than or equal
to Ic(uc). Also takeN = 2R, in Lemmag 3.} to bound/, (u¢) from above. Combining these two
bounds, as in the argument befdre (6.13), we obtain

1 2 1— 2
o+ Y, QA i — 2+ > QoM — 92 < 0Rloge),

A 24 4 24
i:long i:long
i.e. 5 5
A+m) 1—-m)
S S ppi = PP+ Y T—qlai — q)* = 0(e), (6.15)
4 24 4 24
i:long i:long
which impliesp(p; — p)2 = 0(e€), q(gi — q)*> = O(€). The proposition follows sincg ~ /3
andg ~ €/3, by (6.14). O
With the help of Proposition 61, Lemra 4.6 is sharpened to
LEMMA 6.2 1. Fori = 2,..., M + 1, if theg;_1 interval beforexy; _» and thep; interval after

x2; _p are both long then
lue(et + x2i-2) — H(®)llc2p0,p 26y = 0(€73).
lue(et + x2-2) = HO 21—y, 1/20).0) = 0(€).

2. Fori =1,..., M, ifthe p; interval beforexy; _; and they; interval afterxy; _1 are both long
then

llue (et + x2i-1) — H(=)llc210 4. /26 = 0(€¥/3),
[ q:/( )]

lue(et + x2i-1) — H(_t)”CZ[fpi/(ZE),O] = 0(61/3).
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Proof. It follows from fol [vl]? = 0(€?/3) andv” = O(1) thatv. = o(1) on (0, 1). Letxy 2 be an
a-point between two long intervalg_1 and p;. For everyx € (a, b) := (x2i—2 — gi—1/2, X2i—2 +
pi/2), by Propositionf 6]1,

X

Ve (x) = ve (x2i—2) + f vl dx = ve(x2i-2) + 0(1) - 0(€Y?) = ve(x2_2) + 0(e3).  (6.16)

X2i-2

Letuc = we + ¢ Wherew, = H((x — x2;—2)/€). Lemma[4.p and the definitiop (§.1) of long
intervals imply that

e (et + x212)ll 20 1y = O€Y/3) + 0(771/€) + O(€7"4-1/€) = O('/3). (6.17)
Rewrite [1.h) as

1
—2W! + @) + f(we) + [ (we)de + 511 VP2 + ve(x2i—2) — he + 0(e1/3) =0,
which is simplified to
—2¢) + [ (We)e + ve(x2i-2) — he + 0(eV3) =0

if we use ((6.1]) fop. in the f” term. Multiply this equation by, and integrate ovegu, b):

/ b[—e%@’wg + f (wodLw.] + / h[vale-_z) — ke +o(e¥)]w, = 0.
Then integrate by parts to get
(—€%pLw, + pew) Y0 + [ve(xai-2) — Ae + 0(€/3)](2+ 0(1) = 0. (6.18)
Use [6.1}) again to deduce
[ve(x1) = Ae + 0(e3)](2+ 0(1))

= —[—0(6261/36161)H/<w) + 0(6261/362)H//<x - x2i—2):|
€ €

x=b

X=a

= 03 . 01) + 0(€Y3) - 0(1) = 0(e¥3).

Thereforev, (x;) — i = o(¢3). Combining this with[(6.16), we deduce that ) 1), v, — i, =
o(e/3) andu, satisfies—e%u” + f(uc) = o(e/3).

Now we follow the proof of Lemmp 46, with all the (¢1/3), O (e~*7/¢) and O (e "% ¢) terms
replaced by (¢1/3), to complete the proof of this lemma. O

This upgrade to Lemmp 4.6 gives us a much needed improvement of the lower bound in
Lemmd5.2.

LEMMA 6.3 On alongp; (¢; respectively) interval which is not adjacent (to the left or right) to a
short interval, the nonlocal part éf(u¢) has the lower bound

(1—m)?
6

1
> PAR pEtoe®, i=1M +1,
Pi
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1— 2 , 1— . 2
oL |? > ﬂp? + %[Ué (x2i-2) — A-mp: + 0(62/3)] + 0(e*/3),

NI
S

24 2
i AL M +1
1 <1+m)2 : L+ m)gi 2
5/ 61, + q—zl[vé(xzi—l) + qu + 03| +o(e?3).
qi

Proof. We follow the proof of Lemm4 5|2 with all the)(1/3)'s replaced byo(e'/3), using
Propositior 6.]L along the way to simplify error terms. O

As pointed out in the second remark following the proof of Lenimé 5.2, there is another version
of Lemmg 6.8 analogous tp (5.2):

25 (1—m)? 3, Pi

24 Pt

. 2
[vé (x2i11) + G_T’")” + 0(62/3)] + 0(e*3),

Pi
i#1LM.+1, (619

2 . ,
2>(1+M) 3 @[vé(mi)_(l—i-m)q,

2| Wel" > =+ 5 2

2
+ 0(62/3)] + o(e"3).
qi

7. The second estimation op; and ¢;

The goal of this section is to improve Propositjon|6.1pto~ ¢%/3 andg; ~ €3, In particular
we need to show that there are no short intervals. When dealing with the end intervals, this section
adopts the same convention as in the last section.

We now redo the proof of Propositipn $.1 with this new lower bound, Lefnma 6.3, to improve
the proposition to

PROPOSITION7.1 p; ~ €1/3 andg; ~ /3.

Proof. We follow the argument in the proof of Proposition]6.1 leadind t0](6.6), using Lemra 6.3
instead of LemmBR®5]2.

More specifically on a short interval we use the same estinfatégs (6.2). For a long interval, there
are two possibilities: either it is adjacent to a short interval, or it is not. In the first case, we retain
the estimateg (6.3) and (6.4), which are simplified by Propoditign 6.1 to

2 1 2
/ [%|u;|2+ W(ue) + E|v;|2] dx > 2c1e + - o ™) = p 03, (7.1)

2 1 +m
/ [%|u;|2 + W(ue) + E|vg|2] dx > 2c_1€ + % + 0(¥3).

In the second case we apply Lemima 6.3 to obtain
(1—m)?
24

(14 m)?
24

2
€ 1
/ |:E|u’€|2 + W(ue) + §|vé|2:| dx > 2c1e + p? + o0(e¥3), (7.2)

2
€ 1
/ |:E|u’€|2 + W(ue) + E|vg|2} dx > 2c 1€ + a2+ o(e¥3).
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As we sum over[(6]2)[ (7] 1) and (T.2) we note that there are at édstterms from|(7.]l) because

of (6.13), andP, ~ ¢~ ¥3 (and @ ~ ¢ /3 by (6.19)) terms fron (7]2). Therefore

Ic(ue) > c1€ Ps +c_1€Q ~|—0(e)+2 ZCG+M-3
ellle) 2 C1€LS —-1€s e 1 24 Pi
1+ m)?
+ Z |:2C16+(Tq?i|. (73)

i:long

Formula [(6.8) needs to be improved as well. Because 0f|(6.13) and the definition of short intervals,

1
m:/ ue dx = Z/uedx—}— Z/ugdx+0(eloge).
0 Di i

i:long i:long
Again every longp; or g; interval is further divided in the middle, except the end intervals. For
example, withU¢ () = ue (et + x2;_2),

X2i—2+pi/2 pi/(2€)
/ ue dx = e/ U dt
X2i-2 0
pi/(2€) pi/(2¢€) i
=e/ (UG—H)dt+e/ (H—l)dt+3.
0 0

Now if one of the intervals before or aftep; _» is short, we use the same estimate as in the proof
of Propositiof 6.1, i.e.

X2i—2+pi/2 . .
/ uedx=%+p,»0<el/3)+0<e>= %+0<62/3>.
X

2i—2
There are at mosP (1) suchxy;_»’s. If neither of the intervals before or aftes; _» is short, we use
Lemmd6.2 to find

X2i—2+pi/2 . .
/ ue dx = pio(e®) + 0(e) + % - % +o(e?/3).
X2i—2

There areP; ~ ¢ 1/3 suchxy;_s's.
Now we sum over all long intervals to find

Z pi — Z gi =m+o(e'/3).

i:long i:long
On the other hand, by (6.]13),
Sopit Y a=1- ) pi— ) ai=1-01)-0loge) = 1+ o(").

i:long i:long i :short i :short

The last two equations imply

1+m 1-m
Y pi= —— o), > ai= 5 o). (7.4)

i:long i:long

p:PL_l Z Di» q=QZl Z%,

i:long i :long

Again we set
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and continue fron{ (7]3) with the help of Leminal5.5 gnd](7.4):

le(ue) > c1€Ps +c1€ Qs + o(€)

1 2
+ Z [2616 + — ) ] + Z |:2€16 + %qs}

i:long i:long
> c1€Ps +c_1€Qg +o0(e) + 2c1€ PL +2c_1€Qy

+P—2(1 m)z(l-;m+ (1/3)>3

24
LA+ m2(1-—m 13
+0; —a %2 +o(e™)
= c1ePs + c_1€Qg +o(e) + ZC16PL +2c_1€Qp
L A=m?2(1+m 2(1~|—m)2 1-m
p2 (T = 7.
T 24 2 O 24 2 ) (7.5)

where the simplification of error terms to the last two lines uses the estimaté (6.2Q)eoid O .

The last quantity is further reduced after we repl&eand Q; both by R, introduced before
(6.12). Also takeV = 2R, in Lemmd 3.} to have an upper bound. Combine these two bounds to
deduce

1— 2\2
+0(€4/3|Og€) > c1€Ps +c_1€ Qs + 0(€) + 2cpeRe + ( m)

(1—m?)?
2co€e R, _
co€ Re + 96R2 ,

96R?2

which leads ta1€ Ps + c_1€ Qs = o(¢). Hence
Ps = Qs =0. (7.6)

There are no short intervals aiy = Q; = M, = N./2 ~ e~ 1/3.
Revisit [7.3) to deduce, using (7.4), (7.6) and Lenim& 5.5,

Mc+1 _ 2 M
Ic(ue) > Z |:2€16 + (12—4’")1713] + Z[Zc_le + % ] + o(e)
i=1 i=1
M.+1
> Z |:2€16 + — (1 ] + Z[Zc_ €+ ¢ +:1n) ] + 0(€)
i=1
a—mﬁMﬁl 1+ m)? L
—a ; p(pi — P+ T ;Q(Qi —q)?
(1—m)?

1+m 3 _2
= 0(6) + 2C1€M€ + T(T) ME

A+m?(1-—m 3 )
2c_1eM, —— | M
oMt T 2 ¢
Me

2 Mc+1 2
+
+% > ppi— L atme Z (g —q)°
i=1
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(1—m??

T24NZ

1_ 2 Mc+1 1+ 2 M
% > p(pi—pP+ % > alai — 9> (7.7)
i=1 i=1

= o0(€) + coe Ne +

UseN, for N in Lemmd 3.}, and deduce, as ifi (6]15),

1— 2 Mc+1 14+ 2 M,
( 2:1) Z p(pi = p)* + % ZCI(qz‘ —q)? = o(e). (7.8)
i=1 i=1

This implies, sincep ~ €'/3 andg ~ €'/3 by (6.14), thatp; — p = 0(€¥/3), gi — q = o(™3).
Thereforep; ~ /3 andg; ~ /3. O

We turn our attention to the zeros off from thea-points ofue.

PROPOSITION7.2 Letxy, ..., xy, bethex-points ofu.. Thenv, has exactly, —1 zeros, denoted
by y1, ..., yn.—1,in (0, 1), distributed between the-points ofu., i.e.

O<xi<yi<x<y2<...<XN-1<YN.-1<2xN, <1

with the propertyy; = (x; + xi+1)/2 + o(e¥/3). In particulary; 1 — y; ~ /3.
Proof. We firstclaim that foi =1, ..., M,

(1 —m)p;

A+ m)gi
2 2

vl (xi_1) = +o€Y3),  vl(xz-2) = + o(e3). (7.9)

The careful reader may have noticed thatxy, ) is not covered here. We will fix this problem
later. We assemble a lower bound fir(u.) one last time, using Lemmas b1, 6.8, [7.6) and

Propositior 7.]1,

(1—m)? e (1+m)? &
Ie(ue) 2 coeNe + ——— o %‘3

3 3 3
24 4p1+zpi +4pMe+l + 24

i=2 i=1

. P . 2
+ - [vé (x2i—2) — a=mpi + 0(62/3)]

2

= M=
N3

<

1

A+ m)g;

2
5 + 0(62/3)i| + o(€)

[vé (x2i—1) +

1
LN
N |

(1—m?)?
24N2

M, 2
S pi 1-—-m)p;
+ 2; > [vé (x2i-2) — a-mp + 0(62/3)]
M

WV
o
o
m
Z
+

+ o(€)

=

2

; 1 ; 2
+ %[vé (xai_1) + % +o(e? 3)} : (7.10)
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where the last inequality follows from Lemrpa b5, (7.4) ag in|(7.7). Note that this is the only place

where the full power of Lemma .3 is realized. We match this lower bound with the upper bound,

Lemmg 3.1, settingN = N.. Then

M, 2 M, 2
S Pi A —m)pi S gi (A +m)gi

; > [vé (x2i-2) = ———— +o(e2/3)] + ; > [v; (21 + = + o) | =o(e).

Sincep;, g; ~ €'/3 (Proposition 7.11), we obtaif (7.9).

We now fix the problem about, (xy,) in this claim. Simply repeat the same argument with
(6.19), the other version of Lemnja p.3 mentioned after its proof. Then we find that for
1,..., M,

1- i , 1 .
Qo004 o 3), e = S

We take up the example afi andx, between which we will findy;. Other cases can be handled
similarly. Estimatev, (x1) by (7.9) andv, (x2) by (7.11):

vl (xgi—1) = — + 0(e¥/3). (7.11)

A+ m)q1
2

A+m)q1

5+ 0(e3). (7.12)

vl (x1) = — +o(e'?),  w(x) =

We make a note here that estimatisjgx2) by (7.9) will give (1 + m)q1 = (1 — m)pz2 + o(€*3).

By (7.12) there exists; € (x1, x2) such thaw(y1) = 0, sincegy ~ €'/3 by Propositiof 7]1.
Next we estimate1 — x1. For this purpose we usg (5.1) to find

0=v/(y) = v, (xp) + L+ m) (31— x1) + O (),
which implies, with the help of (7.12),

/
yi—x1= ——lfj_xllz + 0?3 = q_21 + o(e'/3).

Finally, we see that;, which must be in an(¢%/2) neighborhood ofx1 + x2)/2, is unique. For by
Lemmg 6.2 in this neighborhoad ~ 1+ m, sov, is strictly increasing there. O

8. The one layer local minima ofJ,

Letl; = yi — yi—1,i = 1,..., Ne, whereyg = 0, yy, = 1. Between two zero points af we
integrate the equatiorv! = u. — m to find llfl y’lf’;lue dx = m. This allows us to localize the
energy Ofuc on (yi_1, yi). Ifwe setliz + yi—1 = x, Uec i (z) = ue(x), andVe ;(z) = ll._zve(x), then

folue,,- dz =m, =V, =Ue; —m,V,;(0) =V, ;(1) = 0. More importantly,
Ne  py; €2 1
_ 72 112
o =3 [ it wo i a

Ne 1r ¢2 ) 2 ) Ne
= Zli / [?V/{é’j' + Wle,i) + LZIVQ[I ] dz = Zli‘]e,li Ue,i), (8.1)
i—1 Y0 i i=1
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if we define a new variational functional:

1 2 12
JaU) = /0 [%mz + WU + E|(—DZ)—1/2(u - m)|2] dz, UeX,. (8.2)

This functional has two parametetsand!/. Because of Propositign 7.2, we only need to consider
the range ot and! that satisfies ~ ¢1/3, i.e. we assume that there exist andC» such that

e = 0, C161/3 <IL Cgel/s. (8.3)
It is sometimes more convenient to use a different pair of parametarsld, where
e=¢€/l~e?* >0, d=101%e~1 (8.4)

With respect to these new parametérs in (8.2) takes the form
re? 2 ed 2\-1/2 2
Je.aUh) :f [EIUI +WU) + 7|(—D )VEU —m))| }dz. (8.5)
0

The Euler-Lagrange equation of this functional is

—ey” U d(—=D®»~ YU —m) = 2,
{s + fU) +ed(—=D? LU —m) ©6)

U©O=uU@Q)=0, [fUdz=m.
It was proved in Theorem 1.1 of [13] thdf ; has a number of local minima. We focus on the ones
with one transition layer. The theorem asserts that there éxist§, independent of andd, such

that in the ball
Bs = {U € L%(0,1) : |U —Upll2 < 8}

there isl{,; with
Js,d(us) = inf{-]s,d(u) U e B(S}v

for all ¢ andd in the range[(8]4). Herlty € X, is the same function as ip (3.3).
Note that in its notation the local minimubd.’s dependence od is suppressed. Also it was
proved in Theorem 1.1 of [13] that
lim ||te — Uoll 20,1y = O, (8.7)
e—0

1

. d
Ilmoe’ng,d(Lls) =co+/ E|(—D2)*1/2(uo—m)|2dz. (8.8)
£~ 0

The reversald® of U, i.e.UR (z) = U.(1 - z), is a local minimum of/ 4 in
BR = (U e L?0,1) : U -UE| <),

wherel/} is the reversal offo. UX has properties similar t¢ (§.7) ar[d (8.8). Héris sufficiently
small so thaBs N BX = @.
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Givenl/; letV, = (—D?)~1(U.—m), andx. the Lagrange multiplier of (8]6) associated with
Following the argument of Propositipn #.1, with the help[of|(8.8), we find

VellLoe0,1y = O(D),
Ae = O(eY?), (8.9)
—14+ 0@EY?) <U, <1+ 0(Y?).

As in the earlier sections, we often study on a smaller scale. Let € (0, 1). IntroduceU, (r) =
Us (et + z¢). Then [8.8) and [8.9.2.3) imply that—U! + f(Us) = 0(s¥/?) andU, — G locally
in C1 (at least), wher is a solution of-G” + f(G) = 0. Similarly to Lemm2 we find that
is heteroclinic oet1. For if this is not true, thelw = w, the local maximum o, or is periodic. In
either case, foé > 0,
Ze+e6 0
liminf e =1, 4U:) > liminf s—lf WU,) dz = / W(G) dr.

e—0 e—0 2e—e0 —0

The last quantity can be made arbitrarily large if we chabege. This contradict$ (§.8).
In this section we do not need to ugeto characterize transition layers. But for the sake of

consistency we continue to do so. Following the same arguments in Propositipns 4.3, 4.4 and 4.5,
we obtain

PROPOSITION8.1 1. Atevery-pointz., U, (z.) # 0.
2. If z. is ana-point, thens /z. = 0(1) ande/(1 — z¢) = o().
3. If z, andz} are twoa-points, there/|z, — z¥| = o(1).

PROPOSITION8.2 Whene is small,i/, has a unique-point, denoted by.. Ase \ 0,
wn(<2)
&

Proof. To prove the existence of arpoint, note thagfo1 U, = m implies that there exists. where
U.(z,) = m. Similarly to the location of:-points (Propositiof 8/, &/z, = o(1) ande/(1 — z})
= 0(1). Moreoverl, (¢t + z,.) converges irc! to a heteroclinic solution of G” + f(G) = 0 with
G(0) = m by the remarks followind (8]9). Theit. (z;) = « ata pointz; such thatz, —z,| = O (e).

To show the uniqueness of, suppose on the contrary there are twpoints,z, andz}, of U/,.
Without loss of generality assuni¢/ (z.) > 0 andi//(z}) < O by Propositiorf 81 Then by
Propositior 8.3 3 and the remarks after (8.9), for evety> 0, ass \, 0,

1 82
8*1/ [—|u;|2+W(ug)] dz
0|2
>/9 1 du(r+ )
~ —0 2| dt elé ‘e
T1|d .
+/;0|:§‘Eus(8t+zg)

0 0
— / [}IH/(I)IZ-% W(H(t))} dr +/ [}IH/(—t)I2+ W(H(—t))] dr > ey
L2 2 2

— 0.

1-—
z5—>Tm and ‘

L°0(0,1)

2

+ WU (et + zg))} dr

2

+ WU, (st + z}f))} dr
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if we choose large enough. On the other hand,
td 2,-1/2 2 td 2,-1/2 2
EK_D ) U —m)|7dz — §|(_D )" (U — m)|“ dz,
0 0
because 07) and the continuity of the nonlocal patt.qf in the L2 norm. Therefore
o 3 Ld
limint et a @) > 57 + fo SI(=DH 2y —m) P dz,

contradicting[(8.B).

U, (et + z,) converges locally irCt to H(r) or H(—r). We show that the first case implies the
conclusions of this proposition, and the second case does not occur. Assurfiethist the local
limit. If || — H(=%)llo = o(1) is false, there exists, € (0, 1) such thatlz; — h.|/e — oo
and|U. (hy) — H((he — z¢) /)| Stays away from 0. Thug/, (k)| stays away from 1. Now consider
U, (et + h,), which converges locally ig'! to a heteroclinic solution ofG” + f(G) = 0. Because
the derivative of the heteroclinic solution is never zero &) = U//(1) = 0, h,/¢ — oo and
(1 —hg)/e — oo. There exists, = O(1) such thatt, + h, € (0, 1) andif, (et + he) = . But
lete+he—ze|/e — o0. SO we have found twe-pointsz, andez. +h., contradicting the uniqueness
of z.. Finally |Us — H((- — z¢)/€)]loo = 0(1) andfolue dz = m show thatz, — (1 —m)/2.

If U, (et + z,) converges locally inC! to H(—t), then the same argument leads||{@, —
H((ze — )/8)loo = 0(1) andz, — (1 + m)/2. Therefored, € Bf for small ¢, contradicting

BsNBR =9. .
We define 1
e
o — - 8.10
Po(z _d[Vo(Z) - Vo(l_Tm)] Lm .1 ( )
£/ b ’

whereVy = (—=D?) YUy — m) (see )). This function’s derivative has a jump discontinuity at
(1—m)/2, unlessf’(-1) = f'(1).

PROPOSITION8.3

Z—Ze

U (z) = H( ) + ¢o(z)e + O(£2),

1-m 2
z5=T+638+0(£ ),

wherecs = 3(f° (H + D dr + [3°(H — 1) dr + [ po ).

Proof. The first several steps are similar to those in the proof of Lefnma 4.6. Anticipating an
asymptotic expansion, we write

— Ze

Ue(2) = H(Z ) + e (2)e.
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By (8.9.2), ¢:¢ satisfies—e2(¢.£)” + f'(...)(¢:8) = O(e¥?). Arguing as in Step 2 of the proof
of Lemmg 4.6 on the interval®, z,) and(z,, 1) separately, with the help of Proposition|8.2 which
assertg.¢ = o(1), we deduce

pee = O(e?). (8.11)
Then argue as in Steps 3 and 4 of the same lemma to obtain
(pe8) = e 10(Y?). (8.12)

Because of (8.11), rewrite the equation §ge as
—&2($e8) + [/ (H)(ee) + O(e) = de.
Multiply this by e "*H’((z — z¢)/¢) and integrate by parts (as in the proof of Lenjma 6.2):

7 — Ze 7 — Z¢ 1 (A—ze)/e
[—8(¢58)/H/( > + (¢88)H//<—>i| =[A — O(e)] H'(t) dr.
€ € 0 —ze /e
The exponential decay rates Bf and H”, (8.11), and[(8.12) imprové (&pto
re = O(e). (8.13)

This estimate implies that, satisfies—ezcbg’ + f'(.. )¢ = O(1). The argument beforl) and
(8.12) gives

improving [8.11) and (8.12).
At this point we make a preliminary estimate of. From [8.14) we see thdt,(z) =
H((z — z¢)/e) + O(e). Integrating this ove(0, 1) yields

1 7—2¢ (1-z¢)/e
m:/ H( . )dz+0(s)=s/ H()dt + O(e)
0 —

Zs/g

b =01, ¢,=¢c"t0), (8.14)

0 (A-z0)/e 1-2,
=s[/ (H(t)—l—l)dl—i—/ (H() = 1)dr + =— }+0(e)
0

—2z¢/€
=1- 215 + O(e).
Therefore
1-m

Ze= "5 + O(e). (8.15)

By (8.14) we write the equation fa¥, as
A
—e%9 + f(H)$: + O(e) +dVs = ==,

Again multiply it by e “1H'((z — z.)/¢) and integrate by parts:

— _ 1 1 B
[—wéH’(ﬂ) +¢5H”<ﬂ)} = / s—l[k—g —dV; + 0(»3)]171’(—Z Zf) dz
€ € 0 0 & &

(1-z¢)/e
_ f [% — dV,(ze) + Ot + 0(8)}H/(t) dr

Ze/e

Ae
= 2[? — dvg(zg)} + O(e).
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We have used the fatt. = O (1), which follows from ) and the regularity theory far-D?)~1,
to reach the second line. The exponential decay ratég aihd H” in line one imply that

Ae = edVe(ze) + O(e?), (8.16)

upgrading|(8.13).
With (8.16) we obtain-£2¢” + f'(H)¢e +d(Ve — Ve(ze)) = O(e). On (0, z.) set

_ d(Ve(2) — Ve(2e))

¢e(2) = oD e
Theny, satisfies
—ey! + fI(H)Ye + %dm ~Ve(z)] = O(e),

with the boundary conditiong/(0) = —e 2H'(—z./¢) = ¢ 20(e"¢/*) and ¥ (z¢) = 0. Note
that because df, = O (1) by (8.%), and the exponential convergence ratéfofo —1 at—oo,

[f’(—l) -~ f/(H<Z _815))]04@ —Ve(ze))

So the equation foy, is further simplified to—szx/fs” + f/(H)y. = O(¢g). Then argue as i1)
to conclude thaty, = O (¢).
In summary we have shown, after a similar argumentzonl),

H(z - zs) ed(Ve(@) = Ve(ze))
€ (=1

Us(z) =1 a, I = Zg,s

2=z €d(Ve(z) — Ve(ze)) 2
H( : ) @ o) Beked

To complete the proof of the first estimate of this proposition, we compate V. Let Z =
Ve — Vo = (=D~ X(U. — Up). According to[(8.14) and (8.15),

1
72—z

e ~ ol = | H( ) U

0 &
(1+m)/(2¢) 1—m
:e/ H(t+0(1))—uo(et+—>
~(1-m)/(2e) 2

Integrating the linear differential equation f8rwe see that

Ve =Vo+ 0(c), V. =Vy+ O(e). (8.17)

The first estimate of the proposition then follows.
To establish the second estimate, integrate the first estimateG@Jer

N 1
m+0(82)=/ H<' '>dz+8/ ¢odz
0 € 0

0 (1-z¢)/e 1— 2Zg 1
8|:/ (H(t)—i—l)dt—i—/ (H@) —1)dr + . -l-/ ¢odz:|
—zg/€ 0 0

0 00 1
=1—218+8|:/ (H—l—l)dt—i—/ (H—l)dt—i—/ ¢odz+0(ec/8)]. O
00 0 0

< CI(H(t) + Det] < Ce.

+0(?), z€(0z),

dz + O(e)

dr + O(e) = O(e).
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The next result will be very handy later.

LEMMA 8.4 LetF € C?%(—o0, 00) be such thaF (+1) = 0. Then

1 oo 1
/ F(Z/{g)dz:e:/ F(H)dt+8/ F'(£1)¢odz + O(e?),
0 0

—00

wherex+1is—10on(0, (1 —m)/2) and 1 on((1 —m)/2, 1).

Proof. According to Propositiop 8|3,

1 1 -z ,
/F(Us)dz=/ F(H(Z=2) +eg0+ 06D ) e
0 0

(A-z)/e 1 71—z )
:e/ F(H(t))dt—i—s/ F’(H( - ’>>¢odz+0(e )
- 0

ze/€

00 1
=s/ F(H)dt—i—a/ F'(£1)¢odz + O(£2). g
—00 0

9. The second variation of/, 4

We now study the second variation &f ati/, and give a bound on the principal eigenvalue of the
linearized operator of (86).

PROPOSITIONS.1 There is:4 > 0 such that for all € W12(0, 1) with Ave(p) = 0,

1 1
f [£21¢/ % + f'Us)p? + ed|(— D) 20|?] dz > cae fo 9% dz.
0

Proof. All we need to prove is that iff is an eigenvalue of the eigenvalue problem

_n20. 0! ’ _ -1, _
{ 20" + f'(Us)Y + ed(—DD 1y = n + Ay, 0.1

Y'(0)=y'(1) =0, Ave(y)=0, v #0,

thenA > cqe for some constanty > 0. Sinceld, minimizesJ, locally, A must be> 0. Suppose
the assertion of the proposition is false. Thér= o(¢).

We normalize the eigenfunctioft so that||v |2 = 1. Let H, be a modification off so that
He(t) = —1ift < —z./(2¢) andHy(t) = 1if t > (1 — z¢)/(2¢). MoreoverH, = H + 0 (e~ ¢/%),
H! = H' + 0 °#),andH/ = H" + 0(e”/%). Then leth,(z) = e 1H/((z — z¢)/¢). Thish,
has compact support. It follows from Lem@tﬁat for allp € W12(0, 1) with [Ol phe =0,

1 1
/ [621¢' 2 + f/(H)¢?]dz > cs / 2 dz. 9.2)
0 0

We decompose/ = ch, + ¢+ with [ h.ytd: = 0. LetA = (—D?)~L(h, — Ave(h,)) and
B = (=D?)~L(y+ — Ave(y1)). Note that

A=0@1), B=|y 2001, (9.3)
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and(—D? 1y = cA + B. By integrating the decomposition ¢f we find
1
/ yt =2 9.4)
0
By integrating[(9.]L) we observe
1 1
n= /O Uy dz = /0 [f'(H) + 0()](che + ) dz.
After estimating the right side, we deduce
Inl = lelO(e) + Iy 1120(D). (9.5)
The equation fors - is

—2(WH) + F UV +ed(cA+ B) + e[ f' Us) — £/ (HDhe + O(€C/¢) = n+ A(che +¥).

Multiply this by ¥ and integrate by parts to obtain
1
/ 21 WD) 12+ U)W + ed B/ — Aly P dz
0
1
= / [—c(f'Ue) = f/(HDheY — ced Ay + nyrt + yH0(e /)] dz.
0

By ) and the assumption of we find that the first line i$> cg fol |v+12dz. To estimate the
second line we note, with the help pf (P.3),

1
‘ fo —c(f' Us) — f/(H)hey ™ dz| = |c] - 1Y 1120(e%2),

1
/ _ced Ayt dz| = |c] - [ 1200,
0

1
/O nydz| = 2In] - |el,

1
/ o Syt dz| = |y tl.0e ).
0

The first one here is less obvious. Note that

1
I/ @) — f/ (el < C /0 (ebo + O(e2)2h2 d

>

(1-z¢)/e _ _ 2
=Cs3/ [¢0(8t+zg) $o((1—m)/2) +0(1)} H! (02 dr

Ze/€

(1-z0)/e
< C83/ (1] + O()?H. (1) dt = O(£) (9.6)

ze/e

by Propositior 8 3¢o((1 — m)/2) = 0 and the Lipschitz continuity afo.
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Therefore the last integral identity implies
collv 113 < lel - 1Y H1120(e) + 2l - lel + ¥ 1120 (€ /%),
which, combined with[(9]5), leads to

I+l
l

clo@) + 0 /%), 9.7)

|
lc|O(1) + 0(e™¢/%). (9.8)

N IN

It also leads, with the help ofi@ = | [1 -+ dz| < [y ]2, to
el < 90D + O “/%). (9.9)

Next we multiply the equation fop by &, and integrate by parts to obtain
1 1
f [v-0E€ /%) +ed(cA+ B)he + (f' Us) — f/(H)hey]dz = / (nhe + Ach?) dz.
0 0
We estimate each term, usirig (9.7):

1
/ Y0 ) dz| = |e]oEe ) + 0(e ),
0

1
/ edeAh, dz| = [c|0(e),
0

1
/ edBh, dz| = [c]0(e) + O(e~C/%),
0

1
‘/(; (f/(us) - f/(H))hgw dz| = lc|O(g) + O(efC'/g),
1
/ nhedz = =2,
0

1
/ Ach?dz = |clo(D).
0

All of the above are easy with the possible exception of the fourth estimate. One yritesh, +
¥, so

1
‘ fo (f'Us) — fIHDhYt dz| < N Us) — FHED RN 12 = 1cl0¥?) + 079,

by (9.6). And arguing as if (9.6) we find
1
Vo (f'Ue) — f'(H)hZdz| = O(e).

The last integral identity then implies= |c|o(1) + O (e €/%). Because of (9]7)] (9.8) arld (b.9) we
have|c| = O(e /%) and |yl = O C/%). So||¥ |2 = 0(e /%), contradicting|y |, = 1. O
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The related result in_[5] has noafter c4. The reason is that the extra condition thf/2)
= 0 was assumed. Here without this condition we have small eigenvalues. A consequence of this
proposition is that/, is unique.
PROPOSITION9.2 For smalle, if U, U € Bs satisfy Je q(Us) = Je.aUh)) = inf{JeqUf) :
U € Bs}, thenld, = U;. The same is also true iBlf.

Proof. Let U/, and/* be as in the statement. We first show thiat— U/* = O(e?), and then use
Propositiof 9.1 to conclude that they are identical.
The first estimate of Propositipn 8.3 asserts that

f— * —
uﬁ—ug=H<Z ZE) —H(Z EZE>+0(82),

&

wherez, (z} respectively) is the-point of i, (U respectively). The second estimate of Proposition
sayx? — z. = O(e?). Therefore

U — Uy = £ ;Ze H/(Z —st) +0(?) = K(E)H’<Z _SZE)S + 0(s2?), (9.10)

wherek (¢) = (ze — z5)/e2 = 0(1).

We next show thai(e) = O(sY?). Let W, = U* — U, Z. = V' — Ve, whereV, =
(=D U. — m) andVF = (—=D?) LU — m). Then)V, satisfies

—PW, + [ UIWe + ed Ze + [fUS) — [Ue) = [/ UIWE] = 25 = ke
Multiply by W, and integrate by parts to deduce, with the helgj of (9.10):
1
/ [2WLI2 + f/UIW? + ed|Z.1%] dz
0

1
= _/o [fUD) = fUe) — [ U)WeIWVe dz

1 _ _ 3
_ _E/ f<H<i> + 0(8)) Q@)H’(ﬁ)s + 0(82)) dz
2 0 & €

6‘4 (1*12)/5 /) , 3
=7 ) fUH@) + 0(e)(k(e)H'(t) + O(e)) dt
K(8)84 -, 3 5 5
R / fI(H)(H)?dt + 0(e”) = 0(e), (9.11)

since by[(Z2.4) and integration by parts

o) 1
/ FICHYH) di = / 2 )W) A = ~(f () =

Note that when the Taylor expansion is used in line thre¢ of(9.11), by Propdsition 8.3 arjd (9.10)
bothif, andi(f areH ((z — z¢)/¢) + O(¢e). So we putitinf”(...).
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Combining | ) with Propositi.l we obtajgl IW,|2dz = O(e*). But on the other hand
(8.10) implies

1 1
/ |Ws|2dz=f
0 0

= K2(8)83/ |H'|?dr + O(e%).

—0o0

Z_Zs

2 (1-z¢) /e
dz = 53/ lk(e)H' (1) + O(e)| dt

*Z‘E/‘€

K(S)H’< >s + 0(c?)

Thereforec(s) = 0 (¢¥2). And henceV; = 0(¢%?) by (9.10).
Finally, we revisit the first two lines of (9.11), which imply

1 1
/ [2IW. 12+ F UIW? + 8d| 2. 2] dz < c/ WelB dz
0 0
1 1
< CIWell~o1 / W2dz < C6%/2 / W2ds.
0 0

Propositio yieldsae [y W2dz < Ce¥2 [ W2dz. Thusw, = 0. O

We return to the parameteesand!/. Renamé/,, the unique minimum irBs, U, ;. The non-
degeneracy implied by PropositipnP.1 allows us to apply the implicit function theorem to conclude
thatl/, ; is differentiable i’ under thew®-2 norm. LetW, ; = ol ;/dl.

PROPOSITION9.3

We,l = H/(Z(Z;Z‘g))ﬁ —AV9<H/(Z(Z _Z£)>Z _Za) +¢’
€ € € 6_

with ]2 = O(1/1). And
+ ¢t

_ oMz —ze)\ 1
omn (2.

€
with [ H'(l(z — ze) /)¢ dz = 0,c = O(1) andll¢[l2 = O ).
Proof. Differentiate [8.6) with respect toto obtain the equation

2
€ " , _ 2 2\
- (;) W+ f Ue DWe s + P(=D?) Wy + TfUD + AV — == =2 (9.12)

for W, 1, wherey,; is the derivative of.. with respect td.
As in the proof of Proposition 9.1 we replageby H,. Defineg, = H/(I(z — z:)/€)(z — z¢) /€,
andg = W, ; — (g. — Ave(g,)). Theng, satisfies the equation

2
2
—<§) g+ [/(H)ge + 7 [ (H) = 0(e /%),

Subtract this from{(9.32) and use the fact Aye = O(!) to deduce the equation for

— (/D% + f'Ue))g +12(—=D>) ™ Wey + O() = Ay (9.13)
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After definingA = (—D?) (g, — Ave(g,)) and B = (—D?)~1(¢ — Ave(p)), we multiply the
above equation by and integrate by parts:

1
[ [(/D?1¢'1” + f'Ue)p? +1°0(A + B) + 9O (D] dz = 0,
0
Note thatfolgoB dz = fol |B'|2dz andA = O(1/1). By Propositio we find

1 1 1
crl? / 9% dz < / [(e/D2|¢' 12+ f'Ue)g? + 129B]dz < / lpldz O(1).
0 0 0
Hence
lgllz = O/ 1). (9.14)

Since|lg:ll2 = 0(1/1), we conclude thaiW |2 = O(1/]). HenceA + B = 0O(1/l). This
simplifies [9.1B) to
— (/%" + ' Ue)p + O) = . (9.15)

Multiply this by i, = (I/€)H/(I(z — z¢)/€) (as in the proof of Propositidn 9.1), and integrate by
parts:

1
/0 [—ph! + of Ue)he]dz = 20 — OD)).
Thus by [9.1%) and (916),
200 — O) < @l 0 C78) + (f Ues) — f/(H))hellz = 01/ D O3 = 0(1?),

which implies
= 0. (9.16)
The equation (9.15) becomes

— (€/D%" + f'Ue)p = OW). (9.17)
We decompose = ch, + ¢ with fol heptdz = 0. By ),

1
hed
o_Jo? b lelz _ g,
”he“z ”h8”2

¢ satisfies the equation

—(/D%@D)" + f U)o + c(f' Uey) — f/(H))hs = O().
However, similarly to the argument leading o (9.6),
\(f' Ues) — f(H)he| < Clego(z) + O(e%)|he(2)]

_c $o(et +z:) — po((1 —m)/2)
=Ce¢e -

= Cellt|+ O] - [H/(t)| = O(e).

+ 0| - [H.()]

So the equation fap is
—(e/D*@D)" + f' Ue o™ = 0).
Multiply this equation by, integrate by parts, and uge (9.2) to fifg 2 = 0 (). O
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10. The convexity ofE and E /1
As suggested ifj (8/1) we define

E(e,l) =inf{lJc;(U) : U € Bs} =1Jc1(Ue ).
Through reversal we observe

E(e, ) = inf{lJe, ) : U € B} =17, UR),
whereuelf, is the reversal off, ;.

PrROPOSITION10.1 In the rangd (8]3) both and E/ [ are strictly convex with respect foMore
precisely,

2E  (1—m?? )

= T 14 0%R

o2 7 + 0(€77),
3 (E € (1 —m?)? 1
L e ey LE=m /3
312(z>_260<l3>+ o T OoE).

Proof. Multiplying (8.6) byl ; — m and integrating by parts, we find the useful integral identity
1
fo [(e/ DU 1P+ | Ue)Ue s —m) + 12V, P]dz = O, (10.1)

whereV,; = (—D?) (U ; — m). This identity and Lemmfa 8.4 turf to

1 —
Een =1 [ [W(uﬁl)_f<ue,z>(z;fe,z m)]dz
0

26/w<wgn_iﬁﬂ%tzﬂ>w

—00

1 ! —
+6/ <f(i1)— S &EDEL-—m) + f(ED
0

5 >¢o dz + 0(%3)

(1—m?? 5
24
The integral in the second line i because of (2]3) anf (2.4). The computation of the integral in

the third line uses the definitiop (8]10) ¢ and the expressiof (3.4) vb.
Differentiating E with respect td yields

IE e 32, 5

W = A [_ﬁluﬁ” + W(ue,l) + 7|Vé,l| i|dZ (103)

We have used the fact tht ; is a critical point of/¢ ;. By (10.1) and Lemmja 84 this becomes

OFE 1 U DUy — 1
zf [W(Z/le,l)+f( D e m)]dz+/ 221V, 17 dz
0 0

= coe + + 0(%3). (10.2)

al 2
0 _ 1 g _
:S/ [W(H)—i-f(H)(H m)]dt—}—if f&EDEL m)¢odz
! 2 1/ 2

221V, 12 dz + O ().

—00
1
+
0
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The first integral in the second line is 0 again Py [2.3) gnd] (2.4). The second integral equals
—(1 — m?)2/24 multiplied byl?/e as in the estimate of. To estimate the integral in the last
line note [(8.1]), so using (3.4) we deduce

(1—m?)
6

1 1 2
/ 221V, 12 dz =/ 212)V12 dz + 0 (e¥3) = 2+ 0@*3).
0 0

Altogether
IE (1—m2)212
al 8

Differentiate [(10.B) with respect to Denote the derivative @f,; with respect td by W, ; and the
derivative ofV, ; with respect td by Z, ;. Then

+ 0(¥3). (10.4)

92E

1 62 1 62

Call the first term on the righTy and the second terrfb. The estimation off; is similar to the
earlier ones. Using (10.1) we find

11t ,
n=g /O [ f Ue) Ues —m) + 221V, 12]ds

B 00 (1 _ m2)2 (1 _ m2)2

=5 _oo—f(H)(H—m)dt—f— ot 0
00 _2\2

=5 —f(H)Hdt+aTm)l+ 0(e).

To estimate??, first use[(8.p) anc.; = (- D») =W, to simplify it to
1
T, :/o [2f Ue YWei + APVe W, 1] dz.
By Proposition$ 8]3 ar[d 9.3,

1 _
T, = f [27(H) + 0(62/3)](:—“11/ +ot+ 0(61/3)) dz
0

¢ [A-z)/e

=5 2Ff(H@)H ()t dr + 0(/3) = lizfoo —2W(H) dr + O(€%/3).

—2¢/€ —00

We have used the estimates

r

1 ¢ [A-zo/e s
/O ()| dz = 7/ FH@) b = 0(23),

Ze/€

Z— Z¢
€

(1-z¢)/e
Hd: = / \H' (1)t dt = O(eY/3),

B 12 —2¢/€

I12f (H) 4+ 0?32 = 0(eY/3).
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Adding 71 and 7>, sinceffooo(f(H)H + 2W(H)) dt = 0 as in the estimation farE /91, we arrive

at
2E (1 —m?? )
R B /3 10.5
P i + 0(e7), (10.5)

proving the estimate fa¥?E /3/%. From [10.2),/(10.4) and (10.5), we deduce

2
92 (E 8512 — 2881 4 2 € (1= m?)?
i - =2 R A I Ca) O
312<1> 3 C°< )+ 12 ToE

We now prove the three theorems stated in Section 1. Recall that a global minimisof
denoted by, with N a-points, denoted by, ..., xy,. Between them there aré. — 1 zeros of
the derivative ofv. = (—D?)~1(u. — m), denoted by, ..., yn,_1, satisfying 0< x3 < y1 <
X2 <y2<...<XN.—1<YN.—1<xn, <l.Wesel; =y, —yi_1fori=1,..., Ncwithyg=0
andyy, = 1. There are two possibilities fat. on (0, x1): u > @ Oru < a.

13

Proof of Theorerp 1]1. Without loss of generality we suppose that> « on (0, x1). We construct
a particular periodic solution? with N -points (i.e.N./2 periods), and show that = u?.

Let Ue 1/n. be the unique minimum ofl.; in Bs (Proposition 9.p), with = 1/N,, and
let ujl/Ne, its reversal, be the unique minimum df 1/, in BX. Setu?(x) = ue’fl/Ng(Néx)
for x € (0,1/N). Extendu} anti-periodically to(0, 1), i.e. u}(x) = U 1/n. (Nex — 1) for
x € (1/Ne, 2/Ne), ul(x) = ue’fl/NE (Nex — 2) for x € (2/Ne, 3/Ne), etc. Clearlyu} is periodic
with N /2 periods.

For smalle by Lemmd 4.p and Propositions 7.1 %d]; -+yi—1) € Bs wheni is even, and
e Bf wheni is odd. Using the strict convexity @ in Propositior] 101 andl (g.1) we find
Ne Ne
lider(elli - +yi-1)) = Y E(e, 1) = NeE(e, 1/Ne) = I (u).
i=1 i=1
All the inequalities above must be equalities. Therefpre 1/N, for all i, anduc(l; - +y;—1) =
Ue,1/n, Wheni is even, and= Ufl/zvs when; is odd, by Propositio@Z. Thug = uf.

Ifon (0, x1), ue < «, thenu, must be the reversal af'. O

IE(M:) 2 Ie(ue) >

Proof of Theorerfi 1]2. In the previous proof we have shown thaif is known, there are exactly
two global minima ofl, u} and its reversal, wittV. «-points. Here we determine wheth®y is
unique.

By the strict convexity of£ /I (Propositiorf TOJL)E /! attains its minimum at a unique. But
for I.(u¢) = NE (e, 1/N¢), its minimum with respect td/ is achieved at one or two integers.

If 1/1, happens to be an integer, then there is only®pe= 1/1,. If 1/1, is not an integer, there
exist two consecutive integers, sélyandN + 1, such thatV < 1/l, < N+ 1. If NE(¢,1/N) #
(N +1)E(e,1/(N + 1)), then again there is only oné. . It must be the one aV andN + 1 which
offers the smaller oNE (e, 1/N) and (N + 1)E(e, 1/(N + 1)). In these two cases we have two
global minima ofI.

In the less likely third case thaf 1, is notan integer, an E (¢, 1/N)=(N+1)E (¢, 1/(N+1)),
we have two valuesy andN + 1, for N.. Then there are four global minima &f. O

Proof of Theorer 1]3. Collecting the estimatef (10.2) afd (10.4), we have

. 2y2
0 (E\ _ YI-E  —coe+ S B+ 0B
alN\1) 1z 12 '



DIBLOCK COPOLYMER PROBLEM 237

If E/Iis minimized at = I, the above estimate implies

1— 2,2
—co€ + ﬂlf + 0(65/3) =0,
12
which in turn yields

N¢, the number ofx-points ofu., is either Y, if it happens to be an integer, or one of the two
consecutive integergy andN + 1, such that (N + 1) < I, < 1/N. In the first case the theorem
is proved sinceZ = 2/ N, is the period. In the second case, since

1 1 12 )
R S—o YO
N N+1-1-g " 2€™

the period 2N or 2/(N + 1) of u. is 2, + 0(e%/3), proving the theorem by (10.6). O
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