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The dependence of thermodynamic properties of planar interphase boundaries (IPBs) and antiphase
boundaries (APBs) in a binary alloy on an fcc lattice is studied as a function of their orientation. Using
a recently developed diffuse interface model based on three non-conserved order parameters and the
concentration, and a free energy density that gives a realistic phase diagram with one disordered
phase (A1) and two ordered phases (L12 and L10) such as occur in the Cu–Au system, we are
able to find IPBs and APBs between any pair of phases and domains, and for all orientations. The
model includes bulk and gradient terms in a free energy functional, and assumes that there is no
mismatch in the lattice parameters for the disordered and ordered phases. We catalog the appropriate
boundary conditions for all IPBs and APBs. We then focus on the IPB between the disordered A1
phase and the L10 ordered phase. For this IPB we compute the numerical solution of the boundary
value problem to find its interfacial energy,γ , as a function of orientation, temperature, and chemical
potential (or composition). We determine the equilibrium shape for a precipitate of one phase within
the other using the Cahn–Hoffman “ξ -vector” formalism. We find that the profile of the interface is
determined only by one conserved and one non-conserved order parameter, which leads to a surface
energy which, as a function of orientation, is “transversely isotropic” with respect to the tetragonal
axis of the L10 phase. We verify the model’s consistency with the Gibbs adsorption equation.

1. Introduction

In this paper we study the interphase boundaries (IPBs) between coexisting phases and antiphase
boundaries (APBs) between domains of variants of the same phase that occur during order-disorder
transitions in an fcc-based binary alloy. We employ a free energy density that provides a mean-field

†
Email: GamzeTanoglu@iyte.edu.tr

‡
Corresponding author. Email: braun@math.udel.edu

§
Email: John.Cahn@nist.gov

¶
Email: mcfadden@nist.gov

c© European Mathematical Society 2003
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description of the fcc disordered phase (A1, in Strukturbericht notation) and two ordered phases,
both of which have wide ranges of composition away from stoichiometry: the Cu3Au phase, typified
by the Strukturbericht L12 structure, and the CuAu(I) phase, typified by the Strukturbericht L10
structure, in the Cu–Au system. The fcc lattice can be viewed as four interpenetrating simple cubic
lattices (see Figure 1). In the disordered A1 structure, the four sublattices have equal probabilities
of being occupied by either type of atom. In the L12 phase, one of the sublattices has a different
occupation probability than the other three sublattices; for the L10 phase, two of the sublattices are
occupied differently than the other two.

In previous work by the authors [5, 7, 6], a free energy density was employed which provided
a useful description of A1–L12 IPBs and L12 APBs. In that model, however, the resulting phase
diagram featured a multicritical point for all three phases [41], rather than the separate congruent
disordering points with first order A1–L12 and A1–L10 transitions, as commonly observed in fcc
systems such as Cu–Au. There was no co-existence of the A1 and L10 phases; the A1–L10 transition
occurred only at the multicritical point and was second order. A more realistic phase diagram can
be obtained with the improved free energy that we employ here (see Figure 2); there is A1–L12
and A1–L10 coexistence and the transitions at the congruent points are both first order [8]. We are
then able to obtain A1–L10 IPBs, and verify the thermodynamic consistency of the resulting model
by examining, for example, the relationship due to Gibbs between changes inγ and the solute
adsorption and excess entropy. We also compute the surface energy anisotropy of this IPB.

Recently, a number of continuum theories of phase change have used combinations of conserved
and non-conserved order parameters with diffuse interfaces to predict or explain various phenomena
in, for example, the solidification of binary alloys [54, 9, 55, 1, 4] and Ostwald ripening [16]. One
method for treating diffuse interfaces is to use a free energy functional for the system based on
continuum parameters that are spatially varying. The functional is written as the integral of the
sum of two kinds of terms: bulk energies that are multiple-well functions of these parameters and
gradient energies that are (generally quadratic) functions of the gradients of the order parameters.
Both terms contribute to the energy in the transition regions that separate bulk phases; such gradient
energy models date back more than a century [46, 52].

When there is a single non-conserved scalar order parameter, the usual form of the resulting
equation is the Cahn–Allen equation [12, 2]. When there is a single conserved parameter, say
composition, the result is the Cahn–Hilliard equation [10, 21] used to describe the spinodal
decomposition of a binary alloy. Phase-field descriptions of the solidification of binary alloys
combine elements of both Cahn–Allen and Cahn–Hilliard models (e.g., [54, 9, 55, 1, 4]).

Modeling that is based on a single composition variable and one order parameter cannot fully
describe the ordering in binary fcc alloys, such as Cu–Au, which have three or more different
crystal structures, and many possible interfaces, such as IPBs between different structures and APBs
between domains or variants of the same ordered structures. The possible crystal structures include
the disordered fcc phase and two ordered phases with the prototype Cu3Au and CuAu structures with
Strukturbericht notations A1, L12 and L10, respectively. The first mean-field calculation of a phase
diagram for such a system [41] gave a multiphase critical point not seen in real phase diagrams and
no coexistence between A1 and L10. A more sophisticated calculation using the cluster variation
method (CVM) succeeded in obtaining a realistic phase diagram [32]. This method was used for
calculating APBs in L12 and the A1–L12 IPB, but it is mathematically cumbersome and was used
only for some low-index orientations [30]. By using three non-conserved order parameters and by
adding appropriate higher-order terms to a mean-field free energy, it became possible to obtain
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realistic phase diagrams [8] with a free energy functional simple enough for interface property and
profile calculations at all orientations [5, 7, 6]; models in a similar vein have been developed by
others [28, 18, 19, 34] and a more complete introduction is given in [7].

Single-order-parameter continuum formulations with a second order gradient energy term in
cubic systems lead to isotropy of interfacial free energyγ , unless the anisotropy is introduced
artificially with an orientation-dependent gradient coefficient [4, 33, 38, 50]. By anisotropy we mean
how the properties of a planar interface depend on the orientation of its normal relative to the
crystal axes. The multiple-order-parameter formulation leads to a natural anisotropy, i.e. without
introducing ad hoc parameters in the model, in fcc [7] and even transverse to a six-fold axis in hcp
[13]. Furthermore, the orientation dependence of interfacial properties (such as the interfacial energy
and mobility [6]) is continuous and easily allows computation of the properties for all orientations.

In the modeling and computations by Braunet al. [7], the overall concentration was assumed
to be uniform across the interface; the focus was on the role played by three non-conserved order
parameters in determining the anisotropy of IPBs and APBs. The model was successful in giving
the anisotropy of IPBs between the disordered A1 phase and the ordered L12 phase. The wetting
transition of the APB was also described. But for an IPB, a uniform composition is inconsistent
with the differences in the bulk concentrations in each phase at equilibrium as given by the phase
diagram. Moreover, for both APBs and IPBs, the assumption of a uniform composition leads to no
adsorption, so that finding a temperature and composition-dependent interfacial free energy leads to
a violation of the Gibbs adsorption equation.

We report the methods and results detailed in a recent study which examined all these interfaces
in a way that was consistent with the phase equilibria obtained with the improved free energy [48].
The results are calculations of equilibrium properties, including the interfacial free energyγ , and
the determination of the interface profiles which describes how the order parameter and composition
vary along the normal to the interface, for all of the various types of IPBs and APBs as a function
of orientation, temperature and chemical potential (or composition). In this paper, we report the
general methods for studying these interfaces, which includes a catalog of APBs and IPBs, and then
focus on one specific example, the IPB between the disordered fcc phase (A1) and the ordered L10
phase. We allow the concentration to vary through the interface in a manner that is consistent with
the phase diagram.

In this paper we do not consider elastic energy contributions. Our model implicitly assumes
that there is no mismatch in the lattice parameters for the disordered and ordered phases, so that
elastic effects can be neglected. In reality, there is always a change in the lattice parameters in an
order-disorder transition, though the size of the mismatch can be small; in practice, commercial
alloys often have additional chemical components added to produce lattice matching. In any event,
the surface properties of IPBs naturally scale differently with length than the elastic effects, with
surface effects dominating at small volumes. Here we effectively restrict attention to small length
scales, for which the volumetric elastic contributions to the total energy are negligible compared to
the surface energy contributions. The competition between surface energy and elastic energy has
been studied by a number of authors (see, e.g., [24, 26, 27]). For example, Johnson and Cahn [24]
studied a bifurcation in the shape of equilibrium particles that occurs with increasing particle size.
For small particles the equilibrium shape is the Wulff shape entirely determined by minimization of
surface energy. Beyond a critical size, elastic energy becomes a factor in the energy minimization. To
minimize total energy these larger-sized particles resemble oblate ellipsoids, a compromise between
the infinite plates that would minimize the elastic energy alone, and Wulff shapes that minimize the
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surface energy. In the present work we compute equilibrium shapes that resemble prolate (cigar-
shaped) ellipsoids entirely from minimizing surface energy for an L10 particle embedded in A1, or
vice versa, in the absence of elastic effects. Muddle, Nie, and Hugo [39] have observed equilibrium
A1–L10 microstructures in Au–Cu systems with plate-like features that differ qualitatively from the
equilibrium shapes that we compute. These larger-scale, plate-like structures have their origin in the
theory of energy minimization in martensite transformations (see, e.g., [23]), which is beyond the
scope of the present paper.

The present paper is organized as follows. The formulation is introduced in Section 2. We briefly
explain the order parameters, the bulk free energy density, the bulk equilibrium states, the gradient
energy contribution, and the catalog of all the interface types that can be studied with our model. The
numerical method for the solution of the governing equations is presented in Section 3. In Section 4
some A1–L10 IPB results are discussed, including the verification of the Gibbs adsorption equation
for an A1-L10 IPB and the transverse isotropy of the surface energy relative to thec-axis of the
tetragonal L10 phase. The resulting anisotropic interface energies, their profiles, and the associated
equilibrium shape for particles of one phase inside another are also given, based on Cahn–Hoffman
ξ -vector formalism. Finally, a summary and discussion is given in Section 5.

2. Formulation

For a binary alloy, conventional continuum theories for equilibria and kinetic processes on lattices
are based on the assumption that the site occupation densities are varying slowly compared to the
atomic spacing. This assumption is not valid when there is ordering; the occupation densities of
adjacent sites will vary greatly if the sites belong to different ordering sublattices. Instead, by
defining an occupation densityρj on each of the sublattices we obtain a set of quantities that
are constant in each domain of an equilibrated ordered phase, and are slowly varying through the
interfaces compared to the atomic spacing [42].

To describe the various ordered phases that we wish to consider for anA–B binary system,
we choose four sublattices as shown in Fig. 1, and denote byρj the occupation density on each
sublattice. Each density represents the local average atomic fraction of speciesA on that sublattice;
their specification is assumed to characterize the local state of the crystal at a given temperature,T̄ .

1
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z

x

y

FIG. 1. A schematic diagram of an fcc lattice. There are four equivalent interpenetrating simple cubic sublattices. One
sublattice corresponds to the corner of the conventional unit cell, and each of the other three corresponds to the center of a
face intersecting at that corner.
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2.1 The order parameters

Since the differences in theρj describe the degree of order, it is convenient to introduce the
parametersW , X, Y , andZ defined by

W =
1
4 (ρ1 + ρ2 + ρ3 + ρ4) , (1a)

X =
1
4 (ρ1 + ρ2 − ρ3 − ρ4) , (1b)

Y =
1
4 (ρ1 − ρ2 + ρ3 − ρ4) , (1c)

Z =
1
4 (ρ1 − ρ2 − ρ3 + ρ4) . (1d)

This definition is consistent with a local representation

ρ = W + X cos(2πx/a) + Y cos(2πy/a) + Z cos(2πz/a), (2)

wherex, y, andz range over the sublattices, anda is the lattice parameter. The parameterW thus
represents the overall or mean atomic fraction of the system, and the coefficientsX, Y , andZ are
non-conserved order parameters that can vary between±1/2. In this model, the disordered A1 phase
[17] is represented byρ1 = ρ2 = ρ3 = ρ4 = W , which implies thatX = Y = Z = 0. The ordered
L10 phase is described by pairs of sublattices with equal occupation densities, which leads to a single
non-zero non-conserved order parameter,X, Y, or Z 6= 0. The ordered L12 phase is described by
three sublattices whose densities are equal, and differ from the remaining sublattice density, which
leads to non-conserved order parameters of equal (non-zero) magnitude,X = ±Y = ±Z 6= 0.

Scalar invariants of the order parameters are found from the symmetry of the fcc lattice [7, 34].
The first four areX2

+ Y 2
+ Z2, XYZ, X4

+ Y 4
+ Z4, andX2Y 2

+ Y 2Z2
+ Z2X2.

2.2 Bulk free energy density

A thermodynamic description of a partially ordered crystal for the case of an isothermal system can
be based on a Landau expansion of a generalized dimensionless scalar free energy density in terms
of the scalar invariants [35],

F̄ (X, Y,Z, W, T ) = −
ω

vm

[e0(W) + e2(W)(X2
+ Y 2

+ Z2) + e3(W)XYZ + e41(X
4
+ Y 4

+ Z4)

+ e42(X
2Y 2

+ X2Z2
+ Y 2Z2)] +

RT̄

4vm

4∑
i=1

I (ρi), (3)

where the entropy term is taken as due to ideal mixing on each sublattice,

I (ρi) = ρi ln(ρi) + (1 − ρi) ln(1 − ρi). (4)

Hereω is the bond energy per mole,R is the universal gas constant,vm is the molar volume; a bar
denotes a dimensional variable. It is sometimes convenient to expand the entropy change on ordering
in terms of these same invariants to eighth order. The ordering spinodal [20] for L10 occurs when
∂2F/∂X2

= 0 atX = Y = Z = 0. For L10 to form with a first order phase transition, it is necessary
that∂4F/∂X4 < 0; e41 has to be large and negative to overcome the positive entropy contribution.

If the internal energyE is approximated by considering only pairwise bond energies with
neighbors at any distance there will be only quadratic contributions to the energy ande41 = 0.
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TABLE 1
Coefficients used for the internal energy contribution to the free energy density (after [8]); here
U = W − 1/2.

e0 6U2

e2 −4 + U2

e3 200U(1 − 2U2)

e41 −12

e42 15

Multi-atom interactions among at least four neighbors must be considered to yield energy terms
that are products of four or moreρ, which upon conversion to theX, Y , andZ parameters give
contributions toe41. The coefficients used for the internal energy contribution to the free energy
density that give the phase diagram in Fig. 2 are given in Table 1. We will use these parameters for
all computations in this paper.

2.3 Bulk states

For the free energy densities given in this section (2.3), we have non-dimensionalized with−ω/vm

and the temperature has been non-dimensionalized with−ω/R.
If the entropy is expanded to eighth order in the order parameters it is easy to show by

minimizingF with respect to the order parameters that the only minima in the free energy occur at
X = Y = Z = 0, at|X| = |Y | = |Z| 6= 0 with the signs chosen to makee3XYZ < 0 , and atX, Y ,
or Z 6= 0 with the other two order parameters equal to zero.

The trivial solutionX = Y = Z = 0 represents the disordered or A1 phase. For this phase, from
(3) we have

FA1(W, T ) ≡ F(0, 0, 0, W, T ) = e0(W) + T I (W). (5)

For the L10 phase, corresponding to only one non-zero order parameter, the free energy is, again
from (3),

FL10(Z, W, T ) ≡ F(0, 0, Z,W, T ) = e0(W) + e2(W)Z2
+ e41Z

4

+
T

2
[I (W + Z) + I (W − Z)] . (6)

Possible variants areZ 6= X = Y = 0, X 6= Y = Z = 0 or Y 6= X = Z = 0. This phase
corresponds to alternating layers of uniform occupation densities, which is the CuAu(I) phase in the
Cu–Au system [44]. Finally, for the L12 phase where|X| = |Y | = |Z| 6= 0, the free energy (3)
becomes (withe3(W)Z3 < 0)

FL12(Z, W, T ) ≡ F(Z, Z,Z, W, T ) = e0(W) + 3e2(W)Z2

+ e3(W)Z3
+ 3(e41 + e42)Z

4

+
T

4
[I (W + 3Z) + 3I (W − Z)] . (7)
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If W 6 1/2 (see Table 1),e3 is negative and the appropriate sign for the order parameterZ is
positive. WhenW > 1/2, e3 is positive andZ is negative. These two cases correspond to the two
L12 phases, e.g. CuAu3 and Cu3Au.

Equilibrium phases can be found by convexification of the graphs of the three energies (5), (6),
and (7) for fixed temperature. When there is a common tangent between the curves of two or three
phases the points of tangency determine the compositions of the coexisting phases; the tangency
points are found by solving non-linear algebraic equations. For example, for the coexistence of
A1–L10 at temperatureT , we must solve

∂FL10

∂Z
(ZL10, WL10, T ) = 0, (8a)

∂FL10

∂W
(ZL10, WL10, T ) =

∂FA1

∂W
(WA1, T ) = µ, (8b)

FA1(WA1, T ) − FL10(ZL10, WL10, T ) − µ(WL10 − WA1) = 0, (8c)

for the unknownsZL10, WL10, WA1 andµ where the subscripts denote the values in that phase at
coexistence. Similarly, we may solve the analogous non-linear systems of equations for theA1–L12
and L12–L10 coexistences. These algebraic equations were all solved by using the software package
DNSQ [47, 45].

0.10 0.20 0.30 0.40 0.50

W

1.9

2.1

2.3

2.5

2.7

T

L12
L10

fcc
fcc

FIG. 2. A model phase diagram based on the Cu–Au system, from the parameters in Table 1; note that it is symmetric about
W = 1/2. Here fcc denotes the disordered A1 phase.

Using the coefficients in Table 1 and plotting the tangent compositions as a function of
temperature results in the equilibrium phase diagram of Fig. 2 (after Braunet al. [8]). We have
chosen the coefficients so that the congruent temperatureTc at W = Wc = 1/2 occurs at
T = Tc ≈ 2.635. The congruent point is found from (8) withWA1 = WL10; under these conditions,
both phases have identical free energy densities as well. The phase diagram is an idealized version
of the Cu–Au phase diagram [44]. For example, our phase diagram is symmetrical aboutW = 1/2
and does not have the orthorhombic CuAu(II) phase nearW = 1/2; CuAu(II) does not appear in
most other theoretical phase diagrams, such as those from CVM calculations [17, 20, 31, 29].

The temperature of the congruent point for the A1–L12 transition can be normalized to a
dimensional value of̄Tc = 658K, appropriate for the Au–Cu system, by choosing the temperature
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scale−ωR/vm = 248K. This choice approximately fits the Au–Cu phase diagram [44], but we
have made no attempt beyond this to optimize the fit of the phase diagram to other experimentally
measured data. Such a fit could certainly be done.

2.4 The gradient energy

The symmetries associated with the A1 crystal structure restrict the possible forms of gradient
energy which must be added to the free energy density. By invoking theFm3̄m symmetry of the A1
crystal we find that the gradient energy term can be written in the relatively simple form [7, 34]

A

2
(X2

x̄ + Y 2
ȳ + Z2

z̄ ) +
B

2
(X2

ȳ + X2
z̄ + Y 2

x̄ + Y 2
z̄ + Z2

x̄ + Z2
ȳ) +

C

2
|∇̄W |

2, (9)

whereA, B, andC are independent constants. Here subscripts denote partial derivatives, withXx̄ =

∂X/∂x̄, etc. The dimensional system free energy thus has the form∗

F̄ =

∫
V̄

{
F̄ (X, Y,Z, W, T ) +

A

2
(X2

x̄ + Y 2
ȳ + Z2

z̄ ) +
B

2
(X2

ȳ + X2
z̄ + Y 2

x̄ + Y 2
z̄ + Z2

x̄ + Z2
ȳ)

+
C

2
|∇̄W |

2
}

dV̄ . (10)

2.5 Governing equations for interfaces

We wish to find equilibria which connect two coexistence phases or two domains of an equilibrium
along a planar boundary. To do this we minimize the functional

Ī = F̄ − µ̄0

∫
V̄

W dV̄ , (11)

with respect to the non-conserved order parametersX, Y , Z and the conserved order parameterW ,
with far-field boundary conditions imposed on the equilibrium phases. The second term in (11)
represents a constraint on the amount of solute in the volume, and the Lagrange multiplierµ̄0 will
be seen to be the difference in the chemical potentials of the two species. When there is phase
coexistence,̄µ0 = µ̄. Thus the governing equations are obtained as follows:

δĪ
δX

=
δĪ
δY

=
δĪ
δZ

=
δĪ
δW

= 0. (12)

Evaluating the functional derivatives (see, e.g., [53]) gives

0 = AXx̄x̄ + BXȳȳ + BXz̄z̄ − F̄X, (13a)

0 = BYx̄x̄ + AYȳȳ + BYz̄z̄ − F̄Y , (13b)

0 = BZx̄x̄ + BZȳȳ + AZz̄z̄ − F̄Z, (13c)

0 = C(Wx̄x̄ + Wȳȳ + Wz̄z̄) − F̄W + µ̄0. (13d)

∗ Note the analogy with expressions for elastic energy in cubic crystals. If we let(X, Y,Z) be the analog of displacement,
A is identified with C11, B with C44. The C12 term is absent because of the fcc symmetry. We emphasize, however, that
the non-conserved order parameters do not constitute the components of a tensor, nor do the gradient energy coefficients
transform as a fourth-rank tensor, as discussed in Appendix B of [7, 13].
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In this paper, we only consider stationary planar interfaces, and assume that the order parameters
vary only in the direction parallel to the unit normal to the interface. We introduce a non-dimensional
spatial variable, distance along the normal, defined as

ζ :=
n̂ · x̄
L0

(14)

wheren̂ = (nx, ny, nz) denotes the unit normal,̄x = (x̄, ȳ, z̄) is the position vector andL0 =
√

Avm/(−ω) is the characteristic length scale. The temperature and the free energy density are made
dimensionless with−ω/R and−ω/vm, respectively. This leads to the non-dimensional system of
ordinary differential equations

λ2
xXζ ζ = FX(X, Y,Z, W, T ), (15a)

λ2
yYζ ζ = FY (X, Y,Z, W, T ), (15b)

λ2
zZζ ζ = FZ(X, Y,Z, W, T ), (15c)

δ2Wζ ζ = FW (X, Y,Z, W, T ) − µ0. (15d)

The coefficients in (15) are given by

λ2
x = n2

x + ε2n2
y + ε2n2

z, (16a)

λ2
y = ε2n2

x + n2
y + ε2n2

z, (16b)

λ2
z = ε2n2

x + ε2n2
y + n2

z . (16c)

Here we have introduced the dimensionless parametersε2
= B/A andδ2

= C/A.
The right-hand sides in (15) are non-linear expressions which include polynomials up to fourth

degree and logarithmic terms. Explicit expressions for the derivatives ofF are given in Appendix A.
The equations (15) govern the transitions between bulk states for any phase boundaries allowed

in the phase diagram; the bulk states provide the appropriate far-field boundary conditions for the
ordinary differential equations (15) and together they constitute our model for IPBs.

2.6 Catalog and symmetries of phase boundaries

Only bulk state solutions representing the A1, L12, and L10 phases occur in the phase diagram with
W < 1/2. In this section, we show that the symmetry of the fcc lattice and the free energy functional
allow us to reduce the number of cases to three APBs and four IPBs, each for all orientations ofn̂.
We note that the possibilities for APBs in this system have been enumerated by Mazauric [36], for
example, but we wish to give a comprehensive list for both IPBs and APBs in the context of our
model for convenience.

2.6.1 IPBs. For the A1–L12 interface the trivial solutionX = Y = Z = 0 represents the
disordered A1 phase, whileX = Y = Z 6= 0 represents the L12 phase. Although there are 4
different variants of this phase, they are equivalent by a translation bya

2 〈110〉, wherea is the lattice
parameter. Therefore only one possible set of boundary conditions needs to be considered for the
A1–L12 interface. The symmetry of the interfacial properties as a function ofn̂, such asγ (n̂) and
the Wulff shape, ism3̄m.
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For the A1–L10 interface, we consider the case whereX = Y = 0 in both the bulk regions
with Z = ZL10 6= 0 in the bulk L10; i.e. makingz the four-fold orc-axis of L10. SinceFL10 and
Z2

ζ are even inZ, the resulting interfacial properties are identical for either sign ofZL10. Similar
symmetry arises for the other order parameters being non-zero, but the resulting energies are related
by a rotation about〈111〉. Thus, we need only compute with a single set of boundary conditions
for this case to observe the resulting interfaces and their properties. The symmetry of the interfacial
properties is 4/mmm.

For the L12–L10 interface, there are two possible boundary conditions for our system of
equations. The order parameters may vary fromX = Y = Z = ZL12 > 0 (the L12 bulk state)
to X = Y = 0 and either toZ = ZL10 > 0 or to Z = −ZL10 (the L10 bulk state). All other
possibilities are equivalent to one or the other of these cases. Therefore, there are two cases to be
considered for L12–L10 interface. The symmetry of the interfacial properties is 4/mmm for both.

2.6.2 APBs. Antiphase boundaries separate two variants of the same ordered phase that
necessarily share the same bulk free energy. For the L12 APB there are three possible displacement
vectors that relate two variants:a

2 [011], a
2 [101], anda

2 [110]. The shifts along these vectors change
the sign of two of the non-conserved order parameters. Only one four-fold axis is common to both
domains because the shifts move the other two of the four-fold axes of one domain to coincide
with two-fold axes of the other. The Wulff symmetry is 4/mmm. Because of the symmetry of the
free energy functional, all cases may be reduced to one possible set of boundary conditions; i.e.,
X = Y = Z = ZL12 > 0 and−X = −Y = Z = ZL12 > 0. All other combinations result in
interfacial energies that are simply rotated and/or translated with respect to this case.

The L10 structure is formed by alternating planes of uniform occupation densities. Two possible
sets of boundary conditions may be found by making changes between the two equal pairs
of occupation densities. In the first set, three non-conserved order parameters may vary from
X = Y = 0, Z = ZL10 to X = Z = 0, Y = ZL10, a 90 degree rotation of the layers. In the
second set, they may vary fromX = Y = 0, Z = ZL10 to X = Y = 0, Z = −ZL10. All other sets
can be obtained from these two sets by using appropriate rotations, so only two sets of boundary
conditions need to be considered for L10 APBs.

To summarize, there are a total of seven cases to be considered for IPBs and APBs in this model
of the fcc binary alloy.

3. Numerical methods

To compute solutions of the non-linear system of ordinary differential equations (15) with the
boundary conditions obtained from the phase diagram, we used two numerical methods. First, we
used the boundary value problem solverCOLNEW [3]; this package uses a Runge–Kutta basis on
subintervals with variable spacing to provide the solution on an adaptive mesh. The solution is
given as a list of coefficients for polynomials on the subintervals, but the solution may be accurately
evaluated anywhere in the interval of the computation and so one is not limited to a given mesh.

In the second approach, we employed a second-order, centered finite difference approximation
to the spatial derivatives and solved the resulting non-linear algebraic equations by usingDNSQ

[47, 45]. For the A1–L10 IPB, we can reduce the number of differential equations in (15) to two;
this makes the second method reasonably efficient. Although the second method is slower than the
first, the two methods are in good agreement (up to five significant digits) when both are used.
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4. Results for the A1–L10 IPB

In the previous section we saw that the seven cases considered in [48] form a catalog. Although every
case can be treated with the methods developed here, we consider here just one case to illustrate the
methods: the IPBs connecting the disordered A1 phase and the ordered L10 phase near the upper
right-hand corner of the phase diagram in Fig. 2, which could not be treated with the free energy
used previously [7]. The remaining cases will be described separately [49].

For the L10 phase,X = Y = 0 and onlyZ and W are non-zero. The bulk free energy
density reduces toFL10(ZL10, WL10, T ) as given in (6). We must solve (15) subject to the boundary
conditions

W = WA1, X = Y = Z = 0, asζ → −∞,

W = WL10, X = Y = 0, Z = ZL10, asζ → ∞. (17)

Numerically these conditions are applied at the ends of the computational domain,z = ±L, and
L is made sufficiently large that the results are insensitive to it. The equations forX andY in (15)
have the solutionX(ζ) = Y (ζ ) = 0, so we must solve the remaining equations forZ andW .

When we have solutions forZ andW , the interfacial energyγ may be computed from either of
the followings integrals:

γ =

∫
∞

−∞

{ε2Z2
ζ + δ2W2

ζ } dζ, (18)

or

γ =

∫
∞

−∞

{
ε2

2
Z2

ζ +
δ2

2
W2

ζ + ∆F

}
dζ. (19)

The first integral of the Euler equations and boundary conditions yield

∆F = FL10(Z, W, T )−FL10(0, WA1, T )−(W −WA1)FL10,W (0, WA1, T ) =
ε2

2
Z2

ζ +
δ2

2
W2

ζ . (20)

Because of this equation the two expressions forγ , (18) and (19), are equivalent.
The solution to the system of ordinary differential equations for the planar IPB (i.e. withζ as

the only independent variable) with the given boundary conditions withX = Y = 0 is conjectured
to give the unique minimum energy; if we have a unique minimum the appearance of additional
phases in the interfacial region (“wetting behavior,” see, e.g., [7]) does not occur for any orientation
and temperature. Any proof that this solution to the ODE is a minimum applies only to the planar
boundary and does not preclude the possibility of solutions having a microstructure with more
complicated spatial dependence onx, y, andz (e.g. a zig-zag boundary) that satisfy the system of
partial differential equations (13) rather than the ordinary differential equations.

4.1 Transverse isotropy of the surface energy

The only dependence on the direction of the interface normal in the ordinary differential equations
for Z andW is contained inλ2

z . By expressing the components of the unit normal vector in spherical
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coordinates,
nx = sinφ cosθ, ny = sinφ sinθ, nz = cosφ, (21)

whereφ is the polar angle andθ is the azimuthal angle, from (16) we find

λ2
z = ε2 sin2 φ + cos2 φ = 1 + (ε2

− 1) sin2 φ, (22)

which depends only on the polar angle,φ. A function of the orientation that is independent ofθ , the
azimuthal angle, is calledtransversely isotropic. We predict thatγ for the A1–L10 IPB should be
transversely isotropic with respect to thec-axis of the tetragonal L10 phase.

Moreover, this equation relatesφ andε to a single computational variable,λz. Properties are not
determined byφ andε, but by the value ofλz according to (22). Computing interface properties for
a range ofλz can be accomplished in a variety of ways. We have chosen to present interface profiles
at φ = 0, i.e., for the [001] orientation withλ2

z = 1, and atφ = 90◦, i.e., for the [100] orientation
with λ2

z = ε2. Because of the transverse isotropy, we can use [100] to designate〈hk0〉 results, as
well as

〈
h′0l′

〉
to designate〈hkl〉 results, withh′/l′ =

√
h2 + k2/l. The orientation dependence of

interfacial energy is computed for given values ofε2.

4.2 The Gibbs adsorption equation

We next verify that the appropriate form of the Gibbs adsorption equation holds for our model.
This equation relates the variation, dγ /dT , of the surface energy of the IPB along the coexistence
region of the phase diagram to the adsorption of solute and entropy at the interface (see, e.g., [37]).
Following the development given by Cahn in [11], in Appendix B we show that this equation takes
the form

dγ

dT
= −

∫
∞

−∞

{
(S − SA1) − (W − WA1)

(SL10 − SA1)

(WL10 − WA1)

}
dζ, (23)

whereS = −∂F/∂T is the entropy density andSA1 is its value in the bulk A1 phase, etc. We
have computed the quantity dγ /dT along the coexistence region and found that it agrees with our

TABLE 2
Comparison ofdγ /dT for A1–L10 IPB for several temperatures forε2

= 0.05, δ2
= 1.0. For

columns labeled “Eqn (23),” the composite trapezoidal rule was used to evaluate the integrals
with numerically computed interface profiles. The columns labeled “dγ /dT ” used a centered finite
difference approximation to the curve in the(T , γ ) plane. The results agree to within the error of
the numerical methods used.

[001] [100]
T Eqn (23) dγ /dT Eqn (23) dγ /dT

2.50 0.03174 0.03191 −0.01660 −0.01605
2.55 0.03139 0.03139 −0.01756 −0.01755
2.60 0.03099 0.03082 −0.01870 −0.01919
2.62 0.03064 0.03059 −0.01972 −0.01989
2.63 0.03045 0.03047 −0.02015 −0.02024
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FIG. 3. dγ /dT as a function of the azimuthal angleφ atT = 2.63 for ε2
= 0.05 andδ2

= 1.0.

computed results forγ (T ) that were computed directly from the IPB profiles; results are given in
Table 2. The first column is the temperature; column 2 is the result of evaluating (23) using the
composite trapezoidal rule with computed data for the order parameters. Column 3 is a centered
finite difference approximation to the numerical data plotted in Figure 9 for [001]. Columns 4 and
5 give analogous results for [100]. Good agreement is seen between the slope of theγ (T ) plot from
both sources, verifying explicitly that our model and numerical solutions are consistent with the
Gibbs adsorption equation.

The sign of dγ /dT changes at orientations between [001] and [100]. Figure 3 shows dγ /dT as
a function of the azimuthal angleφ; the zero of dγ /dT occurs at about 65◦.

4.3 Interface profile

We next consider the interface profile and surface energy anisotropy at the congruent temperature,
Tc ≈ 2.635, and compositionW = 1/2, for representative orientations withε2

= 0.005. Figures
4 and 5 show the interface profile for the [100] and [001] orientations, respectively, at the critical
temperature. From (22) and the text after it, we can see that the [001] interface profile is independent
of ε2. Also, the [100] orientation has a sharper interface than the [001] orientation for decreasing

−2.0 −1.0 0.0 1.0 2.0 3.0
ζ
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0.50

Z
W

FIG. 4. A1–L10 IPB for an〈hk0〉 orientation. Hereδ2
= 1.0, ε2

= λ2
z = 0.005, andT = Tc.
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FIG. 5. A1–L10 IPB for the [001] orientation. HereT = Tc, δ2
= 1.0, andε2 is arbitrary.
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FIG. 6. A1–L10 IPB for the [100] orientation. Hereδ2
= 1.0, ε2

= λ2
z = 0.005, andT = 2.5.
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FIG. 7. A1–L10 IPB for the [001] orientation. HereT = 2.5, δ2
= 1.0, andε2 is arbitrary.
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ε2 < 1. The phase diagram shown in Fig. 2 is symmetric aboutW = 1/2; thereforeW has the same
value through the interfacial region and bulk states.

We next consider the caseT = 2.5 for [100] and [001] orientations. The interface profiles for
these orientations are in Figs. 6 and 7.Z is wider thanW for [001] in Fig. 7. It is again observed
that the thickness of the interface for [100] is smaller than that of the interface for [001].

4.4 Surface energy anisotropy

Sinceγ (φ, θ) = γ (φ) we can representγ as a two-dimensional polar plot as shown in Fig. 8. As
can be seen in this figure, the minimum energy occurs in the [100] direction and the maximum
energy occurs in the [001] direction.
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FIG. 8. γ -plot for A1–L10 IPB for 〈hk0〉. HereT = 2.5, δ2
= 1.0, ε2

= 0.05. Polar angle values are specified around the
perimeter.

In Fig. 9 we compare the surface energies for [001] and [100] orientations as a function of
temperature. The difference between the maximum and minimum energy becomes larger as the
critical temperatureTc is approached; i.e., the degree of anisotropy reaches a maximum value
at Tc. Strong tetragonal anisotropy is found for the range of temperatures given in Fig. 10 for
ε2

= 0.05. In CVM computation of interfacial properties for bcc [15] and fcc [30] materials, the
difference between the interfacial energies increases at lower temperatures and then decreases at
high temperatures. While it is common for materials to have the anisotropy decrease with increasing
(high) temperature, it does not happen to be so for our model as we discuss shortly.

This trend of increasing anisotropy with temperature is amplified asε decreases from unity.
Numerical approximations of the interfacial energies at various orientations, for temperatures
T = Tc andT = 2.5 and forε2

= 0.005, are compared in Table 3. By comparing Fig. 10 and
Table 3, we observe that the level of anisotropy is increasing for smaller gradient energy coefficients
(ε2

= 0.005).
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FIG. 9. Variation of interfacial energy with temperature for [001] and [100] orientations for A1–L10 IPB. Hereδ2
= 1.0,

ε2
= 0.05.
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FIG. 10. Level of anisotropy for A1–L10 IPB given byγ001/γ100 versus temperature. Hereδ2
= 1.0, ε2 = 0.05.

TABLE 3
Comparison of interfacial energy forA1–L10 IPB atT = Tc andT = 2.5 for ε2

= 0.005, δ2
= 1.0.

γ

orientation T = Tc T = 2.5
[001] 0.09559 0.09193
[101] 0.06776 0.06563
[111] 0.05546 0.05435
[100] 0.00676 0.01485

In fact, the level of anisotropy increases dramatically asε → 0 at the congruent point(W, T ) =

(1/2, Tc) becauseγ100 ∝ ε there. This can be seen as follows. At the congruent point, the IPB
profile satisfiesW = 1/2 and

λ2
zZζ ζ = Fz(0, 0, Z, 1/2, Tc), (24)
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whereλz is given in (16). The interfacial energyγ (nx, ny, nz) computed from (24) then satisfies

γ (nx, ny, nz)

γ001
=

√
ε2(n2

x + n2
y) + n2

z (25)

[cf. Equation (6.1) in [7] for the analogous APB result]. The ratioγ001/γ100 = ε−1 therefore
diverges in the limit asε → 0 at the congruent point. Whenε = 1, the IPBs are isotropic. In
the model we must therefore see an increase in anisotropy as the congruent point is approached for
small ε, since the level of anisotropy away from the congruent point remains bounded due to the
contribution from the variation of the concentrationW through the interface. We note that the limit
ε → 0 corresponds to neglecting the second-nearest-neighbor interactions in the derivation of the
gradient energy terms given in [7]; the remaining contributions from the nearest-neighbor terms are
highly orientation-dependent.

4.5 Equilibrium Shapes

We next use the Cahn–Hoffmanξ -vector formalism [22, 14] to determine the equilibrium shapes
given by the anisotropy of the interfacial energy. Theξ -vector is defined by

Eξ = γ Er + γφ
Eφ +

γθ

sinφ
Eθ = ∇[rγ (φ, θ)], (26)

where the radial unit vectorEr(θ, φ) = En is normal to the interface. The unit vectorsEθ and Eφ are
tangent to the interface. Theξ -vector reduces to the formEξ = γ En for the isotropic case (constantγ ).
In the anisotropic case, theξ -vector is in the direction of the normal to the 1/γ (θ, φ) plot defined
by r = 1/γ (θ, φ). Its component in the radial direction isγ . To obtain the equilibrium shape,
the “tail” of the ξ -vector is translated to the origin for each orientation; the collection of all the
Eξ -vectors is then theEξ -surface. TheEξ -surface minimizes the surface energy for a fixed volume if it
is a convex shape; in that case it is identical to the Wulff shape [25, 40]. In other cases, theEξ -surface
is not convex and intersects itself, exhibiting “ears” (see, e.g., [7]). If the ears are excluded from the
Eξ -surface, the remaining surface represents the equilibrium Wulff shape.

In order to compute theEξ -surface for A1–L10 IPBs,γ is first obtained in terms ofφ numerically
on a regularly spaced mesh with∆φ = 1.5◦; our solutions are independent ofθ . By using the
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FIG. 11. A cross section of the equilibrium shape for A1–L10 IPBs. HereT = 2.5, δ2
= 1.0, andε2

= 0.05.
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formulas given in the appendix of [51], we computeEξ -surface data in Cartesian coordinates. For
those explicit formulas, we employ centered finite difference formulas using the discrete data in
order to approximateγφ .

A cross section of the equilibrium shape for the transversely isotropic A1–L10 IPBs (ε 6= 0)
is shown in Fig. 11. The equilibrium shape is a body of revolution about [001]; the cross section
perpendicular to that axis is thus a circle. The long side regions include the low-energy orientations
at and near〈hk0〉; [001] and nearby orientations have high energy and contribute little to the area of
the equilibrium shape. A consequence of the increase in the level of anisotropy asε → 0 is that the
equilibrium shapes are increasingly elongated; they do not appear to develop missing orientations
for any finite value ofε, however.

5. Summary and discussion

We present a model for the free energy of a binary alloy which incorporates a model phase diagram
and can be used to compute properties of diffuse-interfaces; the model uses one conserved order
parameter (the composition), and three non-conserved order parameters [8]. The model can describe
a variety of phase diagrams; a series of diagrams topologically similar to the Au–Cu system was
presented in [8]. It can be used for other ordered crystal structures that occur in fcc and other
systems [13], though more order parameters may be required. This method allows the computation
of interfaces for all orientations at a wide variety of conditions. Other methods, notably CVM, can
approximate quite complicated phase diagrams, but are difficult to implement except for interfaces
with low-index directions. The method is a powerful tool for computing interfaces and their motion
in microstructure evolution with a natural way of incorporating anisotropy [6], and using realistic
phase diagrams.

For a phase diagram containing the A1 phase and the ordered L10 and L12 phases, similar to
what is seen in the Au–Cu system, we present a catalog of the interfaces. There are IPBs that can
coexist between the disordered A1 phase and the ordered L10 and L12 phases, and between the two
ordered phases. The symmetry of the underlying lattice can be used to deduce that only one variant
of each ordered phase is necessary to compute the anisotropy of the interfacial energy for the order-
disorder IPBs; all other cases are related by simple rotation to these cases. The order-order IPBs
require that the two variants of the L10 phase be used with a single L12 variant in order to compute
the possible interfacial energy anisotropies; all other cases can be found by simple rotations of
these two results. There are also APBs in the single phase regions of the ordered phases. For the
L12 phase, only one case must be computed; for the L10 phase, two cases must be computed. Our
model can compute all seven of these cases using a single formulation spanning the whole phase
diagram.

The free energy density employed in this work and in [48] allows a generalization of previous
work on A1 and L12 in which the composition was held fixed at the stoichiometric value for the
L12 phase throughout the interface [5, 7, 6]. That free energy also prevented the consideration of the
A1–L10 IPB due to the absence of coexistence between the A1 and L10 phases [41]. The new free
energy allows us to focus on the interface profile and anisotropy for A1–L10 IPBs; equilibrium
shapes are also computed by considering only the interfacial energy (elastic effects and lattice
mismatch are neglected).

Mathematically, the problem for planar A1–L10 IPBs is a non-linear boundary value problem
which has a solution that connects two different states in the dependent variables (a heteroclinic
connection). From our numerically computed solutions, we observe the profile of the interfaces, as
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well as compute interfacial energies. Once the energies are known, we compute equilibrium shapes
using theξ -vector.

Although we find that the IPBs energies are transversely isotropic, we also found strong
anisotropy with variations in the polar angleφ. Theφ orientation dependence only served to widen
or narrow the interfaces, and no wetting behavior by other phases was observed. The computed
compositions always varied smoothly and monotonically between the value for the A1 phase, low
in this half of the phase diagram, to the higher value in the L10 phase. At the A1–L10 congruent point
the composition was constant throughout the IPB; this necessarily occurred due to the symmetry of
our chosen free energy and resulting phase diagram; it is not expected in a real system. Anisotropy
of interfaces has also been studied using the CVM (for example [30, 36]); to our knowledge, the
CVM has not been used to study the A1–L10 interface.

The transversely isotropic surface energy that we have found highlights an unexpected difficulty
in using symmetry arguments to predict the surface energy anisotropy of diffuse interfaces from
the high symmetry of the gradient energy. Orientation dependent surface energies in crystalline
systems, and the associated Wulff shapes, reflect the symmetries of the crystals, but they are not
tensor properties. Gradient energy coefficients can sometimes be shown to transform like tensors,
and then the orientation dependence ofγ can be deduced from the symmetry properties of such
tensors. Tensors of rank 2 are transversely isotropic to three-fold, four-fold, and six-fold axes, and
thus isotropic for cubic symmetry [43]. Tensors of rank 4 are transversely isotropic to three-fold
and six-fold axes. Tensors of rank 4 for a cubic system are described by three numbers and are
anisotropic, unless there is a special relationship among these numbers. With an energy that is
quadratic in the gradient of a single dependent variable, the gradient energy coefficient is a tensor
of rank 2. We showed that the coefficients of an energy quadratic in the gradients of the three
dependent variables,X, Y andZ, do not behave as tensors. Nonetheless for the fcc system we found
them to be described by two of the three non-zero elements that appear in a tensor of rank 4 with
cubic symmetry. This is consistent with what we found for the A1–L12 IPB; the Wulff shape has a
marked anisotropy consistent with the cubic symmetry. But we now have found two surprises: firstly,
transverse isotropy inγ and in the Wulff shape for the A1–L10 IPB with only tetragonal symmetry
is greater symmetry than expected. Secondly, we found less symmetry in the hcp investigation;
there was no isotropy transverse to the six-fold axis [13]. Here the gradient energy coefficient bore
no resemblance to elements in a tensor of rank 4, which not only confirms that these coefficients are
not tensors, but forms a strong counterexample to any conjecture that the orientation dependence
of γ of a diffuse interface might reflect that of a low rank tensor. Both the fcc and the hcp systems
each feature three non-conserved order parametersXj and a conserved order parameterW and the
free energy functional for each model has the general form

F =

∫
V

{cijklXi,jXk,l + c0|∇W |
2
+ f (X1, X2, X3, W, T )} dV. (27)

The three non-conserved order parametersXj and the gradient energy coefficientscijkl do not
transform as tensors under changes of coordinates. For the hcp crystal, the disordered state where
either type of atom is equally likely to occur on any of the four sublattices, the structure is designated
A3 in Strukturbericht notation. When one of the sublattices is occupied (on average) by a different
atom than the other three, the crystal structure is denoted DO19; this ordered state is exactly
analogous to the L12 structure on an fcc lattice [13].

If one were to reason by analogy with the elastic case, then both the transverse isotropy of
the A1–L10 IPB surface energy and the six-fold anisotropy of the A3–DO19 IPB surface energy



294 G. B. TANOĞLU, R. J. BRAUN, J. W. CAHN & G . B. MCFADDEN

is unexpected. We also note that the A1–L10 IPB involves a single non-zero non-conserved order
parameter, whereas the A1–L12 and A3–DO19 IPB involve three non-zero non-conserved order
parameters. In addition, wetting by a third phase also occurs for the latter two cases, which plays
a role in the observed transverse anisotropy for these IPBs. If the three non-conserved order
parameters areconstrainedto remain equal throughout the interfacial region (which precludes
wetting), the resulting system is effectively a single-order-parameter model, and an isotropic surface
energy results.

The A1–L10 equilibrium shapes resulting fromξ -vector calculations are bodies of revolution,
and no missing orientations occurred for the parameters we studied. The cross section of the
anisotropic equilibrium shape (in the absence of elastic effects) is roughly an ellipse for fixed
azimuthal angleθ and exactly a circle for fixed polar angleφ relative to thec-axis of the tetragonal
L10 ([001] for the case we considered). This is in contrast to the cuboidal, nearly spherical
equilibrium Wulff shapes found in our previous work for A1–L12 IPBs [5, 7] on an fcc lattice;
thatγ had six equal minima in the cube directions. Another contrast may be found with A3–DO19
IPBs in an hcp binary alloy [13]; in that situation, there is six-fold anisotropy in the plane orthogonal
to the hexagonal axis. Nearly spherical equilibrium shapes are found as well but with six minima in
γ distributed evenly around the equator. A concentration variable must be added to the hcp model of
[13] and a phase diagram generated, in order to consider the analogous cases studied in this paper.

The variable composition added the capability to satisfy the Gibbs adsorption equation. We have
verified that our model now satisfies the Gibbs adsorption equation and provides an instance of the
diffuse interface generalization of sharp interface results, as discussed in [11]. We have also verified
that the numerical results obtained from the computed IPBs are in agreement with this identity.

A variation in the width of the interface with orientation is noticeable, but it does not show a
dramatic widening as in cases when wetting of the phase boundary occurs (e.g., as in the A1–L12
case [7, 48]). However, in the case whenε is very small and one is at the congruent point, one must
be able to resolve very thin〈hk0〉 interfaces (compared to [001]). In such a computation with finite
difference or finite element discretizations, an adaptive mesh approach should be effective. For fixed
mesh approaches, the mesh (or for a spectral method, the number of modes) must be able to resolve
the thinnest interfaces.

Appendix A

The non-dimensional form of the Helmholtz free energy is given in the following

F(X, Y,Z, W, T ) = e0(W) + e2(W)(X2
+ Y 2

+ Z2) + e3(W)XYZ

+ e41(X
4
+ Y 4

+ Z4) + e42(X
2Y 2

+ X2Z2
+ Y 2Z2) +

T

4

4∑
j=1

I (ρj ), (28)

whereI (x) is given in (4).
The right sides of the equations (15) are given as follows:

FZ(X, Y,Z, W, T ) = 2e2Z + e3XY + 4e41Z
3
+ 2e42Z(X2

+ Y 2)

+
T

4
ln [Q(X, Y,Z, W)] , (29)

FW (X, Y,Z, W, T ) = e0,W + e2,W (X2
+ Y 2

+ Z2) + e3,WXYZ

+
T

4
ln [R(X, Y,Z, W)] . (30)
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Q andR are defined as follows:

Q(X, Y,Z, W) =
(W + X + Y + Z)(W − X − Y + Z)

(1 − W − X − Y − Z)(1 − W + X + Y − Z)

×
(1 − W − X + Y + Z)(1 − W + X − Y + Z)

(W + X − Y − Z)(W − X + Y − Z)
, (31)

and

R(X, Y,Z, W) =
(W + X + Y + Z)(W + X − Y − Z)

(1 − W − X − Y − Z)(1 − W − X + Y + Z)

×
(W − X + Y − Z)(W − X − Y + Z)

(1 − W + X − Y + Z)(1 − W + X + Y − Z)
. (32)

These expressions are used withX = Y = 0 in this paper and withZ = 0 where appropriate.

Appendix B

Here we provide a short derivation of the Gibbs adsorption equation for our model of the A1–L10
IPB with a non-zero order parameterZ = Z(ζ ), overall compositionW = W(ζ), and free energy
densityFL10(Z, W, T ); a fuller discussion in the context of general diffuse interface theories is
given in [37].

For the free energy functional

F =

∫
∞

∞

{
ε2

2
Z2

ζ +
δ2

2
W2

ζ + FL10(Z, W, T )

}
dζ, (33)

the Euler equations,δF/δW = µ andδF/δZ = 0, yield

FL10,W (Z, W, T ) = δWζ ζ + µ, (34)

FL10,Z(Z, W, T ) = ε2Zζ ζ , (35)

and admit a first integral given by

ε2

2
Z2

ζ +
δ2

2
W2

ζ = FL10(Z, W, T ) − FL10(0, WA1, T ) − (W − WA1)µ ≡ ∆F. (36)

Here
W → WA1, Z → 0, asζ → −∞, (37)

and
W → WL10, Z → ZL10, asζ → ∞, (38)

give the far-field values ofW andZ.
Evaluating the Euler equations and first integral in the far fields gives the common tangent

conditions (8) that relateWA1, WL10, ZL10, andT ,

µ = FL10,W (0, WA1, T ) = FL10,W (ZL10, WL10, T )

=
[FL10(ZL10, WL10, T ) − FL10(0, WA1, T )]

(WL10 − WA1)
. (39)
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The common tangent conditions, and the equationFL10,Z(ZL10, WL10, T ) = 0, provide three
relations between the four parametersWA1, WL10, ZL10, andT , consistent with the single degree
of freedom for coexistence of the bulk phases along the phase diagram. We choose to regard the
temperature as the degree of freedom, and writeWA1 = WA1(T ) andWL10 = WL10(T ).

The surface energy is given by

γ =

∫
∞

−∞

{
ε2

2
Z2

ζ +
δ2

2
W2

ζ + ∆F

}
dζ. (40)

Since the solution can be considered to be a function of the prescribed temperatureT , with W =

W(ζ ; T ) andZ = Z(ζ ; T ), the surface energy of the IPB is a function ofT as well. We then have

dγ

dT
=

∫
∞

−∞

{
ε2Zζ ZζT + δ2Wζ WζT +

d∆F

dT

}
dζ, (41)

which can be integrated by parts to obtain

dγ

dT
=

∫
∞

−∞

{
− ε2Zζ ζ ZT − δ2Wζ ζ WT +

d∆F

dT

}
dζ. (42)

We have

d∆F

dT
= FL10,W (Z, W, T )WT + FL10,Z(Z, W, T )ZT + FL10,T (Z, W, T )

− FL10,W (0, WA1, T )
dWA1

dT

− FL10,T (0, WA1, T ) − FL10,W (0, WA1, T )WT + FL10,W (0, WA1, T )
dWA1

dT

− (W − WA1)FL10,WW (0, WA1, T )
dWA1

dT
− (W − WA1)FL10,WT (0, WA1, T ). (43)

The bulk chemical potential is given by

µ(T ) = FL10,W (0, WA1(T ), T ), (44)

and its temperature derivative is

dµ

dT
= FL10,WW (0, WA1, T )

dWA1

dT
+ FL10,WT (0, WA1, T ). (45)

The entropy isS = −FL10,T (Z, W, T ), with

SA1 = −FL10,T (0, WA1, T ), SL10 = −FL10,T (ZL10, WL10, T ). (46)

If we use these definitions, the expression for d∆F/dT simplifies to give

d∆F

dT
= [FL10,W (Z, W, T ) − FL10,W (0, WA1, T )]WT + FL10,Z(Z, W, T )ZT

− [S − SA1] − (W − WA1)
dµ

dT
. (47)
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Inserting this expression into (42) gives

dγ

dT
=

∫
∞

−∞

{
[FL10,Z(Z, W, T )−ε2Zζ ζ ]ZT +[FL10,W (Z, W, T )−FL10,W (0, WA1, T )−δWζ ζ ]WT

− [S − SA1] − (W − WA1)
dµ

dT

}
dζ. (48)

The first two terms vanish by virtue of the Euler equations, leading to

dγ

dT
= −

∫
∞

−∞

{
[S − SA1] + (W − WA1)

dµ

dT

}
dζ. (49)

Here we note that dµ/dT is independent ofζ . It is easily seen that

(WL10 − WA1)
dµ

dT
= −(SL10 − SA1), (50)

which can be used to provide the alternative form

dγ

dT
= −

∫
∞

−∞

{
(S − SA1) − (W − WA1)

SL10 − SA1

WL10 − WA1

}
dζ. (51)
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298 G. B. TANOĞLU, R. J. BRAUN, J. W. CAHN & G . B. MCFADDEN

9. CAGINALP, G. & X IE, W. Phase-field and and sharp-interface alloy models.Phys. Rev. E48 (1993),
1897–1909. MR 96m:82022

10. CAHN , J. W. On spinodal decomposition.Acta Metall.9 (1961), 795–801.
11. CAHN , J. W. Thermodynamics of solid and fluid interfaces.Interfacial Segregation, ASM, Metals Park,

OH, 1977, 3–23.
12. CAHN , J. W. & ALLEN , S. M. A microscopic theory for domain wall motion and its experimental

verification in Fe-Al alloy domain growth kinetics.J. Phys. (Paris) Colloque38 (1977) C7 51–54.
13. CAHN , J. W., HAN , S. C., & MCFADDEN, G. B. Anisotropy of interfaces in an ordered HCP binary

alloy. J. Statist. Phys.95 (1999), 1337–1360. Zbl pre01366092 MR 1 712 450
14. CAHN , J. W. & HOFFMAN, D. W. A vector thermodynamics for anisotropic surfaces. II. Curved and

faceted surfaces.Acta Metall.22 (1977), 1205–1214.
15. CAHN , J. W. & KIKUCHI , R. Theory of domain walls in ordered structures—III. Effect of substitutional

deviations from stoichiometry.J. Phys. Chem. Solids27 (1966), 1305–1317.
16. DANAN , F., CHEN, L.-Q., CHEN, S. P., & VOORHEES, P. W. Phase field formulations for modeling the

Ostwald ripening in two phase systems.Comp. Materials Sci.9 (1998), 329–336.
17. DUCASTELLE, F. Order and Phase Stability in Alloys, North-Holland, New York, 1991.
18. FAN , D. & CHEN, L. Q. Microstructural evolution and grain growth kinetics in a two-phase solid

with quadrijunctions.Mathematics of Microstructure Evolution, L.-Q. Chenet al. (eds.), TMS/SIAM,
Philadelphia, PA, 1996, 215–223.

19. FINEL , A. Thermodynamical properties of antiphases in FCC ordered alloys.Ordering and Disordering
in Alloys, A. Yavari (ed.), Elsevier Appl. Sci., New York, 1992, 182–193.

20. DE FONTAINE, D. Cluster approach to order-disorder transformations in alloys.Solid State Phys.47
(1994), 33–176.

21. HILLIARD , J. E. Spinodal decomposition.Phase Transformations, H. I. Aaronson (ed.), Amer. Soc.
Metals, Metals Park, OH, 1970, 497–560.

22. HOFFMAN, D. W. & CAHN , J. W. A vector thermodynamics for anisotropic surfaces. I. Fundamentals
and application to plane surface junctions.Surface Sci.31 (1972), 368–388.

23. JAMES, R. D. & HANE, K. F. Martensitic transformations and shape-memory materials.Acta Mater.48
(2000), 197–222.

24. JOHNSON, W. C. & CAHN , J. W. Elastically induced shape bifurcations of inclusions.Acta Mater.32
(1984), 1925–1933.

25. JOHNSON, C. A. & CHAKERIAN , G. D. On the proof and uniqueness of Wulff’s construction of
the shape of minimum surface free energy.J. Math. Phys.6 (1965), 1403–1404. Zbl 0149.19103
MR 31 #5628

26. JOHNSON, W. C. & VOORHEES, P. W. Elastic interaction and stability of misfitting cuboidal
inhomogeneities.J. Appl. Phys.61 (1987), 1610–1619.

27. JOHNSON, W. C. & VOORHEES, P. W. Elastically-induced precipitate shape transitions in coherent
solids.Solid State Phenom.23 (1992), 87–104.

28. KHACHATURYAN , A. G. Theory of Structural Transformations in Solids. Wiley, New York, 1983.
29. KIKUCHI , R. Solution of the controversy in the fcc-based phase diagram.Progr. Theoret. Phys. Suppl.87

(1986), 69–76.
30. KIKUCHI , R. & CAHN , J. W. Theory of interphase and antiphase boundaries in FCC alloys.Acta Metall.

27 (1979), 1337–1353.
31. KIKUCHI , R. & DE FONTAINE, D. Theoretical calculations of phase diagrams using the cluster variation

method.Application of Phase Diagrams in Metallurgy and Ceramics, C. G. Carter (ed.), National Bureau
of Standards Special Publication 496, 1978, 967–998.

32. KIKUCHI , R., SANCHEZ, J. M., DE FONTAINE, D., & YAMAUCHI , H. Theoretical calculation of the
Cu-Ag-Au coherent phase diagram.Acta Metall.28 (1980), 651–662.

http://www.ams.org/mathscinet-getitem?mr=96m%3A82022
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=01366092&format=complete
http://www.ams.org/mathscinet-getitem?mr=1+712+450
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0149.19103&format=complete
http://www.ams.org/mathscinet-getitem?mr=31%20%235628


A1–L10 PHASE BOUNDARIES AND ANISOTROPY 299

33. KOBAYASHI , R. Modeling and numerical simulations of dendritic crystal growth.Phys. D63 (1993),
410–423. Zbl 0797.35175

34. LAI , Z.-W. Theory of ordering dynamics for Cu3Au. Phys. Rev. B41 (1990), 9239–9256.
35. LIFSHITZ, E. M. & PITAEVSKII , L. P. Statistical Physics, Part 1.3rd ed., Pergamon, Oxford, 1980,

459–471.
36. MAZAURIC , V. G. Phase diagram of domain walls in the cubic superstructures of the fcc lattice.

J. Comput.-Aided Mater. Des.4 (1997), 113–132.
37. MCFADDEN, G. B. & WHEELER, A. A. On the Gibbs adsorption equation for diffuse interface models.

Proc. Roy. Soc. London Ser. A Math.458(2002), 1129–1149. Zbl 0996.82023 MR 2003b:82043
38. MCFADDEN, G. B., WHEELER, A. A., BRAUN, R. J., CORIELL, S. R., & SEKERKA, R. F. Phase-field

models for anisotropic interfaces.Phys. Rev. E48 (1993), 2016–2024. MR 1 377 920
39. MUDDLE, B. C., NIE, J. F., & HUGO, G. R. Application of the theory of martensite crystallography to

displacive phase transformations in substitutional nonferrous alloys.Metal. and Mat. Trans. A25 (1994),
1841–1856.

40. MULLINS , W. W. Proof that the two-dimensional shape of minimum surface free energy is convex.
J. Math. Phys.3 (1962), 754–759. Zbl 0112.23801

41. NIX , F. C. & SHOCKLEY, W. Order-disorder transformations in alloys.Rev. Modern Phys.10 (1938),
1–71.

42. NOVICK-COHEN, A., & CAHN , J. W. Evolution equations for phase separation and ordering in binary
alloys.J. Statist. Phys.76 (1994), 877–909. Zbl 0840.35110

43. NYE, J. F. Physical Properties of Crystals. Oxford Univ. Press, Oxford, 1957. Zbl 0079.22601
44. OKAMOTO , H., CHAKRABARTI , D. J., LAUGHLIN , D. E., & MASSALSKI, T. B. The Au–Cu (Gold-

Copper) system.Bull. Alloy Phase Diagrams8 (1987), 454–474.
45. POWELL, M. J. D. A hybrid method for nonlinear equations.Numerical Methods for Nonlinear

Algebraic Equations, P. Rabinowitz (ed.), Gordon and Breach, New York, 1988, 87–161. Zbl 0277.65028
MR 49 #8330a

46. RAYLEIGH , LORD On the theory of surface forces. II. Compressible fluids.Philos. Mag.33 (1892), 209–
220.

47. SLATEC COMMON MATH L IBRARY, National Energy Software Center, Argonne National Laboratory,
Argonne, IL. The program SNSQ was written by K. L. Hiebert and is based on an algorithm of M. J. D.
Powell.
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