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A framework for the construction of level set methods for shape optimization
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The aim of this paper is to develop a functional-analytic framework for the construction of level
set methods, when applied to shape optimization and shape reconstruction problems. As a main
tool we use a notion of gradient flows for geometric configurations such as used in the modelling
of geometric motions in materials science. The analogies to this field lead to a scale of level set
evolutions, characterized by the norm used for the choice of the velocity. This scale of methods also
includes the standard approach used in previous work on this subject as a special case.

Moreover, we apply this framework to some (inverse) model problems for elliptic boundary value
problems. In numerical experiments we demonstrate that an appropriate choice of norms (dependent
on the problem) yields stable and fast methods.
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1. Introduction

Level set methods, originally introduced by Osher and Sethian [58], have developed to be one
of the most successful tools for the computation of evolving geometries, which appear in many
practical applications (we refer to the monographs by Osher and Fedkiw [56], Sethian [69], and the
references therein for a presentation of various applications). Level set methods do not only lead to
efficient computational schemes, but are also able to handle topological changes such as merging
and splitting of connected components, which is impossible with classical methods based on curve
parameterizations.

Since evolving geometries arise in many physical processes such as growth or phase transitions,
materials science has been a major field of applications for level set methods from the beginning.
Recently, level set methods have been employed also for the solution of shape optimization problems
and shape reconstruction problems, i.e., inverse problems, where the unknown is some shape or
curve. Whereas the choice of the normal speed of an evolving curve or surface is determined
by a physical model in materials science, the situation is different for shape optimization and
reconstruction, where one of the basic questions for the setup of a level set method is an appropriate
choice of the velocity such that a decrease in some functional (and possibly convergence to a
solution of the optimization or reconstruction problem) can be achieved. In most of the existing
literature (cf. [7, 18, 22, 27, 28, 43, 50, 57, 63, 64, 66, 70]), the choice of the velocity is motivated by
ad-hoc approaches, and the presentation is rather problem-specific or restricted to a small class of
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problems. The aim of this paper is to make a first step on the way towards a unified theory of level
set methods for inverse problems, which also involves a clear functional-analytic background for
the construction of such methods. The main motivation for this step is to carry over techniques
used for variational models in materials science, where the speed is defined as a gradient flow for a
corresponding energy functional, to the field of shape optimization and shape reconstruction, thus
providing a framework for the construction of level set methods for these problem classes.

Since most attention in this paper is paid to a framework for constructing level set methods
for inverse problems, we shall not be concerned with other important issues in the context of level
set methods, which we only mention briefly in the following. A first important issue for ill-posed
problems is their regularization, which is usually realized by adding additional stabilizing terms
to the objective (such as perimeter) or by an appropriate termination of the iteration dependent on
the data noise. Another important problem is the coupling of level set methods and elliptic partial
differential equations arising in most of the problems presented here, from an analytical as well
as from a computational point of view. Both in materials science and in inverse problems, such a
coupling usually occurs in two directions: the level set evolution is influenced by the solution of an
underlying state equation via a functional dependence in the normal speed and vice versa influences
the state equation via the zero level set on which the equation has to be solved, respectively on
whose boundary some Dirichlet or Neumann conditions are posed.

For convenience, we will restrict our attention to the caseΩ ⊂ R2 in the following, since
for Ω ⊂ R1 the problems of shape optimization and reconstruction reduce to finite-dimensional
problems and forΩ ⊂ Rd , d > 3, the technicalities in the differential geometry of surfaces might
shadow some of the key features. Nonetheless, the main ideas presented here remain unchanged in
arbitrary spatial dimensions.

The remainder of the paper is organized as follows: we first give a short introduction to level
set methods and shape derivatives, which are the main tools used in the following. Motivated by the
applications we have in mind (and the ones considered in previous work), we present three model
problems related to underlying state equations of elliptic type in Section 2, each of them representing
a larger class of problems. We will outline the specific features of the different model problems as
well as some common properties for all problem classes such as a unified representation of the shape
derivative. In Section 3, a variational framework for the construction of local level set methods based
on shape derivatives is derived, which is motivated by variational models in materials science. The
application of this framework to our model problems and some properties of the arising level set
methods are discussed in Section 4. Finally, we present the results of some numerical experiments
for our model problems, before we conclude and give an outlook to important problems for future
work in Section 5.

1.1 Basic notations

In the following we introduce the basic notations and assumptions used throughout the paper.
We shall use the following standard notations from geometric measure theory:Ld denotes thed-
dimensional Lebesgue measure andHd denotes thed-dimensional Hausdorff measure (cf. [31, 53]
for detailed definitions and further properties of these measures). Byn we shall always denote the
normal vector of a curve inR2, and byκ = div n its curvature. The indicator function of a setA
will be denoted byχA, where

χA =

{
1 inA,
0 else.

(1.1)
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For open or closed setsK ⊂ Rd we will use the standard notions of continuity and
differentiability, denoting the total derivative of orderj of a functionf by D(j)f , and partial
derivatives with respect to a variablex by the standard symbol∂f/∂x, if x ∈ RN is the spatial
variable also by∇f . Moreover we shall use Sobolev spaces on domainsΩ and on curvesΓ ,
denoted as usual byH r(Ω) or H r(Γ ). For details on their definition and properties we refer to
the monograph by Adams [2].

1.2 Level set methods

The key feature of the level set approach is to represent domains and their boundaries not via
parameterizations, but as level sets of a continuous functionφ, the so-calledlevel set function.

For the computation of an evolving open setΩ(t), t ∈ R+, one can define the functionφ on
RN × R+ and determine the evolution ofΩ via

Ω(t) = {φ(·, t) < 0}. (1.2)

The boundaryΓ (t) of Ω(t) (if φ(·, t) vanishes only on a set of zero Lebesgue measure) is then
given by the zero level set, i.e.,

Γ (t) = {φ(·, t) = 0}. (1.3)

If the evolution of the shape is determined by a flowx(t) = ξ(t, x(0)) such that

dx

dt
(t) = V (x(t), t), (1.4)

then the corresponding level set functionφ is determined by the first-order Hamilton–Jacobi
equation

∂φ

∂t
+ V.∇φ = 0 in RN × R+. (1.5)

In the particular case of a velocity in normal direction, i.e.,

V = vn onΓ × R+, (1.6)

wherev is a scalar function andn represents the unit outer normal onΓ , we can use the relation
n = ∇φ/|∇φ| to compute evolution of the level set function from the nonlinear level set equation

∂φ

∂t
+ v|∇φ| = 0 in RN × R+, (1.7)

wherev has to be extended also toRN −Γ . In general, evolutions with the same normal component
of the velocity coincide (tangential components correspond to reparameterizations only), so that we
will restrict our attention to the case (1.6).

1.3 Level set methods for inverse problems and optimization

In the following we review some recent developments in the construction of level set methods for
inverse problems dealing with the reconstruction of shapes. The first and fundamental step towards
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level set methods for general classes of inverse problems was made by Santosa [66] in the case when
a least-squares functional of the form

J (Ω) =
1

2
‖G(χΩ)− z‖2

is to be minimized, whereG is a nonlinear operator acting betweenL2(Ω) and some Hilbert space
X. By formal calculus of shape derivatives, Santosa deduced that

J ′(Ω)v =

∫
Γ

v(G′(χΩ)
∗(G(χΩ)− z))ds, (1.8)

whereG′(χΩ)
∗ : X → L2(Θ) is the adjoint of the Fŕechet derivativeG′ in L2(Θ). We mention

that in typical applications to inverse problems,G′(χΩ)
∗ is a smoothing operator, and hence the

evaluation of theL2-adjoint on the curveΓ is well defined.
In order to obtain an evolution in descent direction Santosa now proposed to choose the velocity

via
v = −G′(χΩ)

∗(G(χΩ)− z)|Γ onΓ, (1.9)

whereϕ|Γ denotes the restriction of a function defined onΘ to the curveΓ ⊂ Θ. Santosa’s
approach seems to be related to a continuous version of the steepest descent algorithm, and to
the method of asymptotic regularization for inverse problems (cf. [74]), where the evolution of an
L2-function towards a solution ofG(f ) = z would be determined by

df

dt
= −G′(f )∗(G(f )− z). (1.10)

The restriction to shape derivatives and the choice of a normal velocity using only the
information contained in the right-hand side of (1.9) may be dangerous for general operatorsG,
since the corresponding evolution of the shapeΩ(t) might stop at a shape which is no solution of
G(χΩ) = z. In this paper, however, we will be concerned with the construction of level set methods
using shape derivatives, a choice motivated by several reasons: First of all, there seems to be no way
to generalize the approach in [18] to more general obstacle problems, which depend also on other
geometric quantities than the indicator function ofΩ. Secondly, for all model problems we have in
mind, the above problem will not appear, i.e., the evolution can stop at a solution only, which we
shall show below. A third reason is that the numerical implementation of the method in [18] is less
efficient than approaches like Santosa’s, since some elliptic partial differential equations have to be
solved to compute the velocity.

The approach by Santosa can be applied to more general shape reconstruction and optimization
problems, by using the so-calledspeedor velocity method(cf. e.g. [26, 72, 77]) based on the shape
derivative of the objective functionalJ (Ω). Shape derivatives are an important tool for shape
optimization and reconstruction problems. Their underlying idea is to compute the variation of a
functionalJ (Ω) when the shape is perturbed in normal direction with speedv. The corresponding
shape derivative is then denoted byJ ′(Ω)v; for a comprehensive introduction to this topic and
further details we refer to the monograph by Sokołowski and Zolésio [72] and to [55].

This derivative has (for a rather general class of problems, cf. [72]) a representation of the form

J ′(Ω)v =

∫
Γ

ρv ds, (1.11)



LEVEL SET METHODS 305

whereρ : Γ → R can depend on the solutions of the direct and some adjoint problems as well
as on the geometry of the interfaceΓ (e.g. via its curvature). In this case, one can choose the
normal velocity onΓ equal to−ρ and use an appropriate extension to the computational domain.
This obviously yields an evolution in descent direction, which only stops if the shape derivative
vanishes.

Another desirable property for a level set method used to reconstruct interior obstacles such as in
our introductory example is that the evolving zero level set remains a subset of the domainΘ. This
is not guaranteed automatically by an approach like Santosa’s, but also depends on the extension
of the velocity outside the interface. The standard methods for constructing extension velocities are
based on constant extension in normal direction of the level set (cf. [1]) and allow no control of the
velocity on the boundary. An alternative way to construct extension velocities is to choosev = 0
on the boundary of the exterior domain (which should equal a level set for some positive value) and
to extendv e.g. via solving a Dirichlet problem for the Laplace equation on the exterior domain.
For this extension, the boundary of the exterior domain remains equal to a positive level set during
the evolution, and hence the zero level set must stay inside. As we shall see below, this extension is
natural for one of the methods we propose.

2. Elliptic model problems

In the following we shall discuss some model inverse problems for elliptic equations, which
serve as a motivation for our analysis and will be used subsequently as test examples. The basic
guideline for choosing model problems is to give typical examples for shape optimization and
shape reconstruction, representing a larger class of (more complicated) practical applications. For
this sake we shall also give extensions of the problems and references to literature in the subsequent
presentation.

EXAMPLE 1 (Support reconstruction) By the termsupport reconstructionwe understand the type
of problem considered by Santosa [66] and by the author in [18], where the shape enters into the
inverse problem via its indicator function, i.e., the aim is to reconstruct the support of some function.
Such problems typically appear in the identification of piecewise constant parameters in partial
differential equations or in image processing. As an example for the reconstruction of an interior
shape we consider one of the simplest problems appearing in practice, namely the identification of
a domainΩ ⊂ Θ ⊂ RN from u|M ∈ L2(M), whereu is the solution to

−∆u = χΩ in Θ (2.1)

subject to homogeneous Dirichlet boundary conditions onΓd ⊂ ∂Θ and the Neumann condition

∂u

∂n
= g onΓn = ∂Θ − Γd . (2.2)

The setM where the data are measured is either a subset ofΓn or ofΘ.
A prominent example in this class of problems is theinverse conductivity problem with one

measurement, which means to identifyΩ from the over-determined boundary value problem

− div((1 + kχΩ)∇u) = f in Ω, (2.3)

u = g on ∂Ω, (2.4)
∂u

∂n
= h on ∂Ω, (2.5)



306 M . BURGER

for some positive real numberk. Many aspects of this problem have been studied in the last
decade, ranging from local identifiability properties (cf. [32, 42, 4]), over-size estimates (cf. [5, 6])
to the iterative solution and regularization (cf. [38, 45, 47]). In some cases also multiple Dirichlet-
to-Neumann data(gi, hi) are considered instead of the single measurement(g, h); in other
applications, (2.3) and (2.4) are used with a measurement of the stateu onΘ0 ⊂ Θ − Ω. Both
cases lead to global identifiability and stability results. A recent level-set based solution of the latter
problem, using Santosa’s strategy, has been discussed by Ito, Kunisch and Li [43].

The class of support reconstructions includes many examples where the jump set of parameters
arising in partial differential equations is to be determined from indirect measurements. Such
applications arise e.g. in inverse scattering (cf. [24] and the references therein), or in the
characterization of semiconductor devices (cf. [20, 19]).

The associated least-squares functional is given by (withf δ representing a noisy measurement)

J (Ω) =
1

2

∫
M

|u− f δ|2 ds, (2.6)

with shape derivative

J ′(Ω)v =

∫
Γ

u∗v ds, (2.7)

where the adjointu∗ satisfies

∆u∗
= 0 inΩ, (2.8)

∂u∗

∂n
= χM(u− f δ) onΓn, (2.9)

u∗
= 0 onΓd . (2.10)

in the case of boundary measurements (M ⊂ Γn), and

−∆u∗
= χM(u− f δ) in Ω, (2.11)

∂u∗

∂n
= 0 onΓn, (2.12)

u∗
= 0 onΓd . (2.13)

in the case of distributed measurements (M ⊂ Ω).
For a detailed analysis of first and second shape derivatives for this problem and some further

analysis we refer to Hettlich and Rundell [36].
Finally, we investigate the possible zeros of the shape derivative. IfJ ′(Ω) ≡ 0 for some regular

shape, i.e.,u∗
≡ 0 onΓ = ∂Ω, then by uniqueness for the Laplace equation we find thatu∗

≡ 0
in Ω. Hence, we also see thatu∗ and ∂u∗/∂n vanish onΓ , and the uniqueness for the Cauchy
problem implies thatu∗

≡ 0 inΘ −Ω. Consequently, from the definition ofu∗ we may conclude
thatu|M = f δ onM, i.e., the residual is zero, too.

EXAMPLE 2 (Boundary and obstacle reconstruction) Asboundary reconstruction problemsor
obstacle reconstruction, we summarize the class of inverse problems where the unknown is a part of
the boundary of the domain on which some state equation has to be solved. In typical applications,
this identification is based on overdetermination on a known part of the boundary, where Dirichlet
and Neumann values of the solution are known. On the unknown part, usually a homogeneous
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boundary condition is specified. Our model problem for this class is again related to the Laplace
equation: we consider the identification ofΓ = ∂Ω from a measurementu ∈ L2(M), whereu is
the solution of

∆u = 0 inΘ − Γ, (2.14)
∂u

∂n
= g onΓn, (2.15)

∂u

∂n
= 0 onΓ, (2.16)

u = 0 onΓd . (2.17)

The setM where measurements are taken is either a subset of the fixed Neumann boundary
Γn or a subset ofΘ. Moreover, we assume thatg is not a constant function onΓn, which
is needed for identifiability ofΓ (cf. [11] for further details on this problem). An analogous
boundary reconstruction problem would consist in identifying an unaccessible boundary curve
Γ = ∂Θ − (Γn ∩ Γd) from measurements on the accessible part of the boundary.

This problem and variants with Dirichlet-type or mixed boundary conditions on the interfaceΓ

have been investigated recently with respect to identifiability and stability (cf. [3, 11, 13, 17]), which
can be obtained using continuation techniques for elliptic Cauchy problems. The most important
application of such a problem is inclusion detection in elastic media under anti-planar conditions (for
the planar case one obtains the same problem with the Laplace equation replaced by the equations
of linear elasticity, cf. [11]). The problem with Dirichlet condition onΓ appears as an asymptotic
case in identifying a p-n junction of a semiconductor device (cf. [20, 19]) and in corrosion detection
from electrostatic or thermal data (cf. [46, 62, 73]). The parabolic variant of this problem is discussed
by Bryan and Caudill [15, 16] as a model for thermal imaging. Park and Shin [59] discuss a similar
identification problem with the Navier–Stokes system coupled to the heat equation as the underlying
state equations, which is motivated by several applications such as thermal tomography or Brigdman
crystal growth.

The shape derivative of the output least-squares functional (f δ representing the noisy data and
M ⊂ Γn)

J (Ω) = J̃ (u,Ω) =
1

2

∫
M

|u− f δ|2 ds (2.18)

is given by

J ′(Ω)v = −

∫
Γ

[∇u.∇u∗]v ds, (2.19)

where [·] denotes the jump acrossΓ . The functionu∗ solves the adjoint problem, which is given by

∆u∗
= 0 inΘ − Γ, (2.20)

∂u∗

∂n
= χM(u− f δ) onΓn, (2.21)

∂u∗

∂n
= 0 onΓ, (2.22)

u∗
= 0 onΓd . (2.23)

For further details on this problem and its shape derivative we refer to [11], where also penalization
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by perimeter, i.e., minimization of the functional

Jα(Ω) =
1

2

∫
M

|u− f δ|2 ds + αH1(Γ ) (2.24)

has been analyzed as a regularization method with respect to the Hausdorff metric. For the shape
derivative, this additional regularization term would yield again a second term involving the integral
over-curvature.

Note that the second model problem might also give some insight to typical problems in shape
optimization, where usually a functional of the state is minimized subject to the same type of state
equation and boundary conditions (with the Laplace equation being replaced by the elasticity system
in structural optimization, cf. [12, 60, 72]). Level set methods for the classical minimum compliance
problem (cf. [12]) have been used by Sethian and Wiegmann [70] as well as Allaire, Jouve and
Toader [7], and produced good numerical results (however, without theoretical justification).

3. A functional-analytic framework

In this section we shall provide a functional-analytic basis for the construction of level set methods
based on the idea of gradient flows for some energy functional. For convenience we start with a short
review of gradient flows for general systems and their relations to optimization and regularization,
and then carry these ideas over to gradient flows for geometric configurations. Finally, we give
examples of the most important norms in which gradient flows can be derived.

3.1 Gradient flows of the total energy

Using standard ideas of equilibrium thermodynamics, many physical evolution models can be
determined as gradient flows for the total energyE of a system. For example, the well-known heat
equation

∂w

∂t
= div(D∇w) in Ω ⊂ RN

is determined as a gradient flow of the form

∂w

∂t
= −∇wE(w) (3.1)

for the total energy

E(w) =
1

2

∫
Ω

D(x)|∇w(x)|2 dx.

If the aim is to derive evolution models for geometric configurations instead of functions, the
form (3.1) is not directly applicable, since one has to give a meaning to the term on the left-hand side
describing the evolution of the geometry as well as to the variation of the energy on the right-hand
side. The latter can be realized in the framework of shape derivatives, which gives the variation of the
energy for variations of the domain in normal direction. For the first, we need a different formulation
of gradient flows. For this sake we return to the simple example of the heat equation. Following the
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presentation by Almgren and Taylor [8], we consider the following variational problem for a small
time step∆t :

1

2

∫
Ω

D(x)|∇w(x, t +∆t)|2 dx +
1

2∆t

∫
Ω

|w(x, t +∆t)− w(x, t)|2 dx → min
w(·,t+∆t)∈W

, (3.2)

whereW represents an appropriate set of admissible solutions (e.g.H 1
0 (Ω)). From the first-order

optimality conditions one finds that the solution of this variational problem satisfies (at least in the
standard weak sense)

− div(D(x)∇w(x, t +∆t))+
w(x, t +∆t)− w(x, t)

∆t
= 0,

which leads to the heat equation as∆t → 0. The general approach corresponding to (3.2) is given
by the variational problem

E(w(·, t +∆t))+
1

2∆t
‖w(·, t +∆t)− w(·, t)‖2

→ min
w(·,t+∆t)∈W

(3.3)

and the corresponding first-order optimality condition leads to the gradient flow as∆t → 0.
It is worth noting that gradient flows have a long tradition in the regularization of inverse

problems. Of particular importance is the method ofasymptotic regularization([29]). For a linear
operator equation of the formAw = f , withA : W → Z being an operator acting between Hilbert
spaces, one can define the energy as the corresponding least-squares functional

E(w) =
1

2
‖Aw − f ‖

2 (3.4)

and asymptotic regularization as the corresponding gradient flow is given by

∂w

∂t
= −A∗(Aw − f ), (3.5)

whereA∗ : Z → W is the adjoint operator. In the case of a nonlinear operatorA analogous
reasoning leads to

∂w

∂t
= −A′(w)∗(A(w)− f ), (3.6)

whereA′(w) denotes the Fréchet derivative ofA at w ∈ W. For an analysis of the method of
asymptotic regularization in the linear case and a detailed discussion in a general framework for
ill-posed problems we refer to Chapter 4 of the monograph by Engl et al. [29], and for the analysis
in the nonlinear case to Tautenhahn [74]. Moreover, this method has been applied successfully to
ill-posed problems of different origin, such as parameter identification (cf. [39, 40]).

From the method of asymptotic regularization one can deduce a variety of well-known
regularization schemes by specific time discretizations. For example, an explicit time discretization
yields the so-calledLandweber iteration(cf. [29, 48] for the linear and [14, 35, 67] for the nonlinear
case)

wk+1 = wk −∆t A′(wk)
∗(A(wk)− f ), k = 0,1, . . . . (3.7)
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Another important scheme, the method ofiterated Tikhonov regularization(cf. [29, 33, 34]),
consisting of the sequence of minimization problems

1

2
‖A(wk+1)− f ‖

2
+
α

2
‖wk+1 − wk‖

2
→ min

wk+1∈W
, k = 0,1, . . . , (3.8)

is obtained by an implicit time discretization with∆t = α−1. One observes that this variational
problem coincides (apart from different notations) with the one used in the approach by Almgren
and Taylor presented above, which provides further arguments for our idea that many schemes
arising from variational models in physics can also serve as good regularization and optimization
schemes. Motivated by this analogy, in the following sections we shall therefore try to carry over
the models for evolution towards optimal geometries in materials science to evolution methods for
shape optimization and reconstruction. The level set method will provide a natural representation of
evolving shapes in this context.

Before proceeding in the announced direction, we mention some further regularization
approaches based on gradient flows. An analogous reasoning has been used by Scherzer and
Weickert [68] in the context of mathematical imaging to obtain relations betweendiffusion filtering
and generalizations of iterated Tikhonov regularization. More precisely they showed that diffusion
filters of the form

∂w

∂t
= div(g(|∇w|

2)∇w) in Ω × R+ (3.9)

with the degraded image as initial value correspond to the limit of the generalized iterated Tikhonov
regularization method∫

Ω

G(|∇w(x, t +∆t)|2)dx +
1

2∆t

∫
Ω

|w(x, t +∆t)− w(x, t)|2 dx → min
w(·,t+∆t)∈W

, (3.10)

withG being the antiderivative of the filter functiong. The work by Scherzer and Weickert [68] and
subsequent investigations in [61] demonstrate the suitability of gradient flows for the regularization
of inverse problems in a rather general framework.

3.2 Gradient flows for geometric configurations

If we consider instead of functions the evolution of a curveΓ with associated energyE(Γ ), then
we can define the variations ofΓ due to a fieldv in normal directions (as in the setup for shape
derivatives) given by

Γ v(t +∆t) := {x +∆t v(x)n(x) | x ∈ Γ (t)} (3.11)

and try to obtain a gradient flow from the minimization problem

E(Γ v(t +∆t))+
∆t

2
‖v‖2

V → min
v∈V

(3.12)

whereV is a Hilbert space of suitable domain variations and∆t ‖v‖ measures the variation between
Γ (t) andγ v(t +∆t). The solution of this minimization problem satisfies the first-order optimality
condition

∂E
∂v
(Γ v(t +∆t))∆t w +∆t 〈v,w〉V = 0, ∀w ∈ V. (3.13)
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Division by∆t and letting∆t → 0 finally yields

E ′(Γ v(t +∆t))w + 〈v,w〉V = 0, ∀w ∈ V, (3.14)

whereE ′(Γ v(t +∆t))w denotes the shape derivative ofE with respect to the normal variationw. If
the shape derivative exists and defines a continuous linear form onV, then the Riesz representation
theorem guarantees the existence and uniqueness of a variationv ∈ V satisfying (3.14).

We finally note that the above definition can be extended to a level set framework by defining
Γ v(t +∆t) not via (3.11), but as the zero level set ofφ(·, t +∆t), whereφ is a solution of the level
set equation (1.7) in the time interval(t, t + ∆t), with Γ (t) = {φ(·, t) = 0}. A canonical choice
φ(·, t) seems to be the signed distance function toΓ (t), which can also be used to compute shape
derivatives and to define metrics on shapes (cf. [10, 25]).

3.3 Examples of inner products for the shape variation

In the following we present the probably most important possibilities for Hilbert space norms (and
corresponding inner products) of shape variations and derive the corresponding form of (3.14).
We will divide the norms into five types (with different norms within one type being equivalent),
representing the valuesr = 1, 1

2,0,−
1
2,1 in the scale of Sobolev spacesH r(Γ ). The inner

products for integers have been discussed as models for microstructural evolution (cf. [21, 75]),
but for inverse problems also noninteger values ofr seem to be of interest. It turns out that each
of the discussed inner poducts (and corresponding norms) has special properties and might yield
advantages for certain problem classes.

In the following we will assume that there exists a functionρ : Γ → R such that the shape
derivative can be written as

E ′(Γ )w =

∫
Γ

ρ(x)w(x)ds(x), ∀w ∈ V. (3.15)

As we have seen above, this assumption is not restrictive for the types of problems we have in
mind, and holds in great generality (cf. [25, 72])—a result sometimes called the Hadamard–Zolésio
structure theorem.

H 1-norm: “Laplace–Beltrami flow”

As a first possibility for choosing a Hilbert space norm onΓ we investigate the spaceV = H 1(Γ )

with the inner product

〈v,w〉H1(Γ ) =

∫
Γ

(
∂v

∂s

∂w

∂s
+ vw

)
ds, ∀v,w ∈ H 1(Γ ), (3.16)

wheres is the arclength variable. This choice is suitable ifΓ consists of connected curves and leads
to the partial differential equation

−
∂2v

∂s2
+ v = −ρ onΓ (3.17)



312 M . BURGER

for the variationv defined by (3.14), involving the so-calledLaplace–Beltrami operator. If a
connected component ofΓ is nonclosed, then this equation has to be supplemented by the Neumann
type boundary condition

∂v

∂s
= 0 on∂Γ. (3.18)

An obvious generalization of the standard inner product inH 1 is a weighted one, i.e.,

〈v,w〉H1
M (Γ )

=

∫
Γ

(
M1

∂v

∂s

∂w

∂s
+M0vw

)
ds, ∀v,w ∈ H 1(Γ ), (3.19)

for some positive functionMi : Γ → R, i = 0,1. In this case we obtain the anisotropic elliptic
equation

−
∂

∂s

(
M1

∂v

∂s

)
+M0v = −ρ onΓ. (3.20)

In some applications, variants of theH 1 inner product (3.16) corresponding to subspaces are
of importance. A first important example arises from problems where the volume ofΩ shall be
conserved during the evolution. The appropriate subspace of variations inH 1(Γ ) is given by

H 1
� (Γ ) =

{
v ∈ H 1(Γ )

∣∣∣∣ ∫
Γ

v ds = 0

}
, (3.21)

which incorporates the volume conservation. A simple inner product on this space of variations is
given by

〈v,w〉H1
� (Γ )

=

∫
Γ

∂v

∂s

∂w

∂s
ds, ∀v,w ∈ H 1

� (Γ ), (3.22)

and it defines a norm equivalent to the originalH 1-norm because of the Poincaré inequality. The
partial differential equation for (3.14) is

∂2v

∂s2
= ρ onΓ, (3.23)

supplemented by the integral condition
∫
Γ
v ds = 0 and again homogeneous Neumann boundary

conditions on∂Γ .
Another important subspace is

H 1
0 (Γ ) = {v ∈ H 1(Γ ) | v|∂Γ = 0}, (3.24)

with the same inner product asH 1
� (Γ ). Since variations of this type keep the boundary points of

Γ fixed, they are of particular interest for shape reconstruction or optimization problems where the
unknownΓ is a nonclosed curve whose boundary points are known. In this case, (3.14) results again
in the equation (3.23), but now supplemented by the Dirichlet boundary conditionv = 0 on∂Γ .

H 1/2-norm: “Stefan-like flow”

Sobolev spaces of fractional order (cf. [49, 65]) such asH 1/2(Γ ) are much more difficult to define
and to handle than integer-order spaces such asH 1(Γ ) or H 0(Γ ) = L2(Γ ). Although not used
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much in this context, the spaceH 1/2(Γ ) seems to be of interest for our purpose, since its elements
are just the Dirichlet values onΓ of anH 1-function inΩ,Θ−Ω orΘ−Γ . The spaceH 1/2(Γ ) has
been used successfully by Hettlich and Rundell [37] to construct iterative regularization methods for
the identification of the support of a source term in an elliptic partial differential equation. However,
their iterative solution methods were based again on parameterizations of the boundary curveΓ and
limited to simply connected domainsΩ.

In general, the spaceH 1/2(Γ ) and its inner product are defined by the Hilbert space interpolation
of H 1(Γ ) andL2(Γ ) (cf. Lions and Magenes [49] for a comprehensive treatment of this topic),
which is unfortunately not very useful for practical computations. An alternative definition of
inner products onH 1/2(Γ ) (leading to equivalent norms) is possible via the characterization of
its elements as traces of elements inH 1(Ω). E.g., ifΓ = ∂Ω consists of closed components only,
then we can define an inner product via

〈v,w〉H1/2(Γ ) =

∫
Ω

(∇ṽ.∇w̃)dx, ∀v,w ∈ H 1/2(Γ ), (3.25)

where ṽ ∈ H 1(Ω) and w̃ ∈ H 1(Ω) are the unique extensions ofv andw, respectively, toΩ,
satisfying

∆ṽ = ∆w̃ = 0 inΩ. (3.26)

An application of Gauss’ Theorem for sufficiently regular functionsv andw shows that

〈v,w〉H1/2(Γ ) =

∫
Ω

(∇ṽ.∇w̃)dx =

∫
Γ

∂v

∂n
w ds,

and hence (3.14) is just the weak form of the Neumann-type condition

∂v

∂n
= −ρ onΓ. (3.27)

If Ω is in the interior of an outer domainΘ, then we can also define an equivalent norm by (3.25)
with ṽ ∈ H 1(Θ −Ω) andw̃ ∈ H 1(Θ −Ω) being the extensions solving the Laplace equation in
Θ −Ω and satisfying an additional boundary condition on∂Θ. This additional boundary condition
allows one to incorporate further a priori information such asΩ ⊂ Θ into a level set evolution. If
we chooseΘ as a level set of the initial level set functionφ0, and use the boundary conditionṽ = 0
on ∂Θ, then the level setΘ will be unchanged during the evolution, and hence the zero level setΩ

remains a subset.
In the last case as well as ifΓ is an interface inΘ, we have another possibility to define an

equivalentH 1/2-norm, namely as theH 1-norm of an extensioñv toΘ − Γ , i.e.,

〈v,w〉H1/2(Γ ) =

∫
Θ−Γ

(∇ṽ.∇w̃)dx, ∀v,w ∈ H 1/2(Γ ), (3.28)

whereṽ, w̃ ∈ H 1(Θ − Γ ) are extensions ofv andw satisfying the homogeneous Laplace equation
onΘ − Γ and an additional boundary condition on∂Θ (e.g. a homogeneous Dirichlet condition).
With this choice of the inner product, (3.14) becomes the weak formulation of the homogeneous
Laplace equation inΘ − Γ (for the extensioñv) with jump condition [∂v/∂n] = −ρ onΓ .

We finally want to mention that in all choices of inner products for theH 1/2-norm the
computation of an extension velocitỹv is automatically included in the choice of the velocity via
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(3.14). This is a particular advantage in connection with level set methods, since they need an
extension velocity in a larger domain likeΘ. Moreover, we have seen that by choosing appropriate
boundary conditions onΘ and a suitable initial value for the level set function, we can obtain an
evolution of the zero level set that stays insideΓ , which is important in many applications.

L2-norm: “Hadamard flow”

Possibly the simplest inner product is the one of variations inL2(Γ ), given by

〈v,w〉L2(Γ ) =

∫
Γ

vw ds, ∀v,w ∈ L2(Γ ). (3.29)

In this case, (3.14) results in the explicit formula

v = −ρ onΓ, (3.30)

which coincides with Santosa’s method of choosing the normal velocity and the classical version of
the speed method in shape optimization.

An anisotropic version of theL2 inner product is given by

〈v,w〉L2(Γ ) =

∫
Γ

vw

M
ds, ∀v,w ∈ L2(Γ ), (3.31)

with a bounded functionM : Γ → R+. The formula forv obtained from (3.14) is then given by

v = −Mρ onΓ. (3.32)

Anisotropic functionals are of particular interest if theM is a function of the outer normal on
Γ , i.e.,M = M̃(n), whereM̃ : S1

→ R+ and S1 being the unit sphere inR2. In materials
science, anisotropies of this kind are introduced in order to model the structure of crystal lattices,
and consequently they are often nonsmooth functions. For shape optimization such an anisotropic
penalty term might be used to achieve minimizers that prefer certain geometric structures.

H−1/2-norm: “Mullins–Sekerka flow”

In a similar way toH 1/2(Γ ) we can characterizeH−1/2(Γ ) as the space of Neumann values on
Γ of functions inH 1(Ω). For constructing an extension of the Neumann values, one has to be
more careful, since the Laplace equation with general Neumann boundary conditions might have
no solution. A solution to∆ψ = 0 in Ω supplemented by∂ψ/∂n = v on Γ = ∂Ω exists if and
only if

∫
Γ
v ds = 0. In the level set context, such a choice for the velocity implies that the volume

is conserved during the evolution, which is desirable for certain applications. If there is no volume
constraint, then we have to use a more general equation like−∆ψ + ψ = 0 combined with the
Neumann boundary condition. For simplicity, we will not consider the latter case, but the results in
this case are analogous.

For
∫
Γ
v ds = 0, the Neumann problem

−∆ψv = 0 inΩ, (3.33)
∂ψv

∂n
= v on ∂Ω, (3.34)
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has a unique solution in the space

H 1
� (Ω) =

{
ψ ∈ H 1(Ω)

∣∣∣∣ ∫
Γ

ψ dx = 0

}
. (3.35)

The above equation forψv leads in a natural way to the inner product

〈v,w〉H1/2(Γ ) =

∫
Ω

(∇ψv.∇ψw)dx, ∀v,w ∈ H 1/2(Γ ), (3.36)

whereψv andψw are the solutions inH 1
� (Ω) of (3.33), (3.34) with Neumann valuesv andw,

respectively.
Using (3.14),

∫
Γ
w ds = 0, and Gauss’ Theorem we obtain

−

∫
Γ

(ρ − ρ)w ds = −

∫
Γ

ρw ds =

∫
Ω

ψvψw dx =

∫
Γ

ψvw ds,

withH1(Γ )ρ =
∫
Γ
ρ ds. Hence, we obtainψv = −ρ + ρ onΓ and∆ψv = 0 inΩ. Due to∫

Γ

v ds =

∫
Γ

(−ρ + ρ)ds = 0,

the resulting functionψv is an element ofH 1
� (Ω) andv = ∂ψv/∂n equals its Neumann value onΓ .

Not surprisingly, the computation ofv in this case is somehow dual to the computation for the
H 1/2-norm, wherev was chosen as the Dirichlet value of a solution of the Laplace equation with
Neumann values equal to−ρ.

The evolution obtained in the case ofH−1/2(Γ ) has the physical interpretation of motion by
bulk diffusion; it is calledMullins–Sekerka flow(cf. [54, 51]) in the materials science community or
alsoHele–Shaw flow(cf. e.g. [41] and the references therein).

We finally mention that instead of
∫
Γ
ψ dx = 0 in the definition ofH 1

� (Ω) one could use
`(ψ) = 0, with ` being a continuous linear functional onH 1(Ω) not vanishing on the subspace of
continuous functions, for the definition of a spaceH 1

� (Ω) still providing a unique solution. However,
a different choice of the functional̀ would not guarantee that the solution of the homogeneous
Laplace equation with Dirichlet values depending onρ satisfies the integral condition, and hence
one cannot show that a corresponding Neumann valuev exists.

H−1-norm: “surface diffusion flow”

A rather weak norm, but nonetheless a very important one in materials science is theH−1-norm,
which is defined on the space

H−1(Γ ) =

{
v ∈ D′(Γ )

∣∣∣∣ ∃ωv ∈ H 1
0 (Γ ) :

∂2ωv

∂s2
= v

}
, (3.37)

and generated by the inner product

〈v,w〉H−1(Γ ) =

∫
Γ

∂ωv

∂s

∂ωw

∂s
ds, ∀v,w ∈ H−1(Γ ), (3.38)



316 M . BURGER

with ωv and ωw being theH 1
0 -functions associated tov and w, respectively, via the Laplace

equation. An application of Gauss’ Theorem shows that (3.14) leads toωw = ρ on Γ , and hence
the velocity is given by

v =
∂2ρ

∂s2
onΓ. (3.39)

An evolution of this type is often calledsurface diffusion(cf. e.g. [30]); if the energy coincides with
the perimeter ofΓ , then also the termmotion by Laplacian of curvatureis used (note thatρ equals
the curvature in this case, and thusv is the surface Laplacian of the curvature, cf. e.g. [9, 23]). When
interpreted as a partial differential equation for the curve, the motion by Laplacian of curvature
is fourth-order parabolic, and hence its numerical approximation is a difficult task. In particular,
explicit time discretizations lead to extremely small time steps (proportional to the fourth order of
the fineness of the spatial discretization) in order to achieve stability, while fully implicit schemes
yield very stiff problems, at least in the case of the original surface diffusion flow (cf. [23, 71]).

4. Application to the model problems

In this section we apply the methods deduced above to our model problems. We discuss the possible
choices of norms for each example and discuss its particular properties. In addition, we give the
results of some numerical experiments to test the behavior of the resulting level set methods. For all
numerical examples we use an explicit weighted essentially nonoscillatory scheme for the level set
equation (cf. [44] for details), while we solve the direct and adjoint problem with the finite element
method using a fictitious domain approach, which depends on the problem and will therefore be
outlined below.

4.1 Support reconstruction

For the problem of support reconstruction in Example 1 we have several possibilities for the choice
of the norm, the weakest beingH−1/2(Γ ), since the shape derivative (2.7) is a continuous functional
on this space (when interpreted as a linear functional of the normal velocityv, cf. [36]). A particular
case yielding further insight into the problem is that the volume ofΩ is known in advance and
equals the volume of the initial valueΩ(0), and thatM ∩ Ω(t) = ∅. In this case we may choose
a volume-conserving flow, and revisiting the construction of such a flow via a solutionψ of the
Laplace equation inΩ, we observe that the adjoint solutionu∗ satisfies

∆(ψ − u∗) = 0 inΩ,

ψ − u∗
= 0 onΓ.

This impliesψ ≡ u∗ by a uniqueness result for the Laplace equation inΩ, sinceψ = u∗ on ∂Ω.
Hence, the choice of the velocity corresponding to a gradient flow inH−1/2(Γ ) is just

v = −
∂u∗

∂n
onΓ, (4.1)

so that we need not solve an additional boundary value problem inΩ. For the norm ofL2(Γ ), the
velocity is simply determined asv = −u∗, while for the case of a velocity inH 1/2(Γ ) we solve
an additional partial differential equation as in the previous example, now with [∂ṽ/∂n] = u∗
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on Γ . Hence, in this case the three choices are related to different levels of derivatives of the
adjoint solutionu∗: the Mullins–Sekerka flow to the first derivative, Santosa’s flow to the derivative
of order zero (u∗ itself) and the Stefan-type flow to the solution of a Laplace equation, which
can be interpreted as a generalized antiderivative (in spatial dimension one it equals exactly the
antiderivative).

For numerical purposes, we approximate the indicator functionχΩ = H(φ) by a continuous
function Hε(φ), with Hε being continuously differentiable and approximating the Heaviside
functionH asε → 0. For our purpose, there are several advantages of this relaxation: First of all,
the solution with smoothed source is more regular, and thus the convergence rate of a finite element
method (as the discretization fineness tends to zero) is higher. Of course, there is an additional
error in terms ofε introduced by the relaxation, but with an appropriate relation betweenε and
the discretization fineness, good results can be achieved (cf. [76] for further details). A second
advantage is that the shape derivative of the problem with relaxation is not an interface problem as
for discontinuous source, but again an elliptic problem with a source dependent onφ. The weak
formulation of this derivative is given by∫

Θ

∇u′.∇w dx = −

∫
Θ

H ′
ε(φ)|∇φ|w dx. (4.2)

If we use again the adjoint solutionu∗ (defined as above) and apply the coarea formula, we obtain

dJ

dt
= −

∫
Θ

H ′
ε(φ)|∇φ|vu∗ dx = −

∫
R
H ′
ε(p)

∫
{φ=p}∩Θ

vu∗ dH1 dp, (4.3)

from which we obtain the velocities for the different norms.
For a first numerical test, we investigate the problem inΘ = (−1,1)2 with homogeneous

Dirichlet boundary conditions on∂Θ and a distributed measurement of the stateu on M =

(−1,1) × (0.1,1). The exact solution of the inverse problem is the union of two small circles
(shown in the pictures below) and the initial shape for the level set evolution is a single large circle.
Data are generated in a synthetic way by solving the direct problem on a finer grid and interpolation
to a fixed measurement grid in the setM. In addition, high-frequency noise of around 5% is added
to the exact solution before interpolation in order to avoid so-calledinverse crimes(i.e., data and
noise generation and solution of the inverse problem on the same grid).

We discretize the level set method on a regular grid of 128× 128 points, with time step for an
interval(t, t +∆t) chosen to respect the CFL-condition for stability, i.e.,

∆t sup
x

|v(x, t)| = 0.9∆x, (4.4)

where∆x is the fineness of the spatial discretization. Since the time is artificial in our case and
depends on the scaling of the velocities, we compare the methods with respect to the number of
time steps (which can be interpreted as number of iterations) and not with respect to the value of the
time variable. We plot the evolving shape at each 25-th time step from 25 to 150 in Figures 1–3.

Figure 1 shows the evolution according to Santosa’s method (velocity norm inL2(Γ )), Figure
2 according to the Mullins–Sekerka flow (velocity norm inH−1/2(Γ )), and Figure 3 according to
the Stefan-type flow (velocity norm inH 1/2(Γ )).

From a comparison of the plots one observes that the weakest possible norm for this problem,
namely the Mullins–Sekerka flow, yields the fastest convergence towards the exact solution. For
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FIG. 1. Reconstructions with the Hadamard flow at iterations 25, 50, 75, 100, 125 and 150.

the standard approach in Figure 1 one observes convergence to a solution of the same quality
as for the Mullins–Sekerka flow, while the Stefan-type flow shown in Figure 3 does not split
the domain within the first 150 time steps. Our numerical experiments showed that this splitting
occurs for the Stefan-type flow after more than 250 time steps and a similar convergence behavior
is obtained afterwards. A quantitative comparison between the three different flows is given
in Figure 4, where the evolution of the residuals (top) and of theL1-error (bottom, starting
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FIG. 2. Reconstructions with the Mullins–Sekerka flow at iterations 25, 50, 75, 100, 125 and 150.

from iterate 20) between the exact solution and the evolving shape (i.e., the error between the
corresponding indicator functions in the norm ofL1(Θ)) are plotted. One observes that for
stronger norms, the evolution is faster in the initial stage, before all three methods stagnate
for some time. This stagnation arises before the shape splits into two connected components
and is possibly due to singularities in the velocity needed for this splitting. The period over
which the methods stagnate is shorter for weaker norms, so that the Mullins–Sekerka flow
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FIG. 3. Reconstructions with the Stefan-type flow at iterations 25, 50, 75, 100, 125 and 150.

finally yields the fastest evolution. As usual for iterative (or evolutive) regularization methods
for ill-posed problems in presence of noise, the error decreases only to some finite value, before
increasing again or starting to oscillate. This behavior is shown by all of the methods in this
case, but a reasonable reconstruction can be obtained by stopping the evolution according to the
generalized discrepancy principle, i.e., the first time the residual is (roughly) of the same size as the
noise.
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FIG. 4. Evolution of the residual (top) and error in theL1-norm (bottom) during exact solution and reconstructed shape for
δ = 5% noise.

4.2 Boundary and obstacle reconstruction

For the obstacle reconstruction problem in Example 2, we have a densityρ in the shape derivative
consisting of a product of gradient jumps. Since we cannot expect the solution of the direct problem
to be smoother than in the classH 1 (in particular for Neumann valuesg in H−1/2(Γn)), the jump
of its gradient must be expected to be an element ofH−1/2(Ω). For the adjoint solution we can
expect more regularity, since its Neumann values are related to the residual, which lies inL2(M).
Nonetheless, the weakest norm in which we can expect the shape derivative to be a continuous linear
form isH 1/2(Γ ) due to possible lack of regularity in the direct solutionu.

For the numerical approximation, we use again a fictitious domain approach, which is based on
the observation that the values ofu insideΩ have no influence on the objective in our case, and we
may thus use an arbitrary continuation ofu insideΩ. This allows us to approximate the interface
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FIG. 5. Reconstructions with the Hadamard flow at iterations 50, 100, 150, 200, 250 and 300.

problem by solving

− div(aε(φ)∇u) = 0 inΘ (4.5)

subject to the original boundary conditions onΓn andΓd , whereaε is a function satisfying

aε(p) =

{
1 if p > ε,

ε if p < −ε,
(4.6)
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FIG. 6. Reconstructions with the Stefan-type flow at iterations 50, 100, 150, 200, 250 and 300.

and interpolates in a montone and continuous way between the values atp = −ε and
p = ε. This approach is frequently used in shape optimization, when Neumann boundaries are
given on a shape to be optimized, and is also calledweak material method. The computation
of shape derivatives for the relaxed problem can be carried out as in the previous example.
Moreover, we use the same discretization and solvers for the level set equation (1.7) as
above.
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FIG. 7. Evolution of the residual (top) and error in theL1-norm (bottom) during exact solution and reconstructed shape for
δ = 2% noise.

Our numerical test is carried out in the case ofΘ = (−1,1)2, with homogeneous Dirichlet
conditions onΓd = {1} × (−1,1) and measurements on the Neumann boundaryM = Γn =

∂Θ − Γd . Since data are measured only on the boundary, we have to expect a severely ill-posed
problem without too accurate reconstructions of the exact solution. We use Santosa’s flow as well as
a Stefan-type flow starting from a circle with radius 0.5 centered at(0,0.2). The exact solution is an
elliptic shape, plotted in Figures 5, 6; synthetic data and noise (with noise level 2%) are generated
in the same way as for the example of support reconstruction. From Figure 5 one observes that the
flow constructed according to Santosa’s approach shows an unstable behavior and fails to converge
to the solution, while the Stefan-type flow shown in Figure 6 yields a reasonable reconstruction
for this size of the noise level. This statement is confirmed by the plots of the evolving residual
(top) andL1-error (bottom) in Figure 7, from which one observes that Santosa’s flow stagnates far
away from the solution, while the Stefan-type flow shows the expected convergence behavior. This
result demonstrates again the importance of choosing appropriate level set evolutions, in particular
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in connection with ill-posed problems, where one needs a stable method being able to handle data
noise.

5. Conclusions and outlook

In this paper we have provided a rather general framework for the construction of level set methods
based on shape derivatives of an associated objective functional. So far, we have only considered
methods in a gradient flow setup, but several extensions are possible and subject to future work,
such as e.g.:

• For problems where a vanishing derivative of the objective does not imply that the level set
evolution has reached an optimum, one can consider other choices of the velocity, which
incorporate more information on the residual than the shape derivative. For a certain class of
problems, such a choice was investigated by the author in [18].

• Instead of gradient flows one can consider continuous Newton-type methods in a level
set framework. In a setup similar to the gradient flow proposed by Santosa, Newton-type
approaches have been considered by several authors [22, 27, 28, 66]. An extension to other
norms as proposed in this paper seems rather obvious.

• As mentioned in the introduction, further investigations on the efficient coupling of the
level set evolution with the partial differential equations for the state seem to be necessary.
Particularly promising seems to be a cascadic approach, since this can yield a very fast
reduction of the objective during the initial stage of the evolution, when a coarse grid is used.

• A rigorous analysis of the methods proposed here, with respect to their well-posedness, their
convergence and regularizing properties, is still completely open.
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