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First variation of anisotropic energies and crystalline mean curvature for
partitions
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We rigorously derive the notion of crystalline mean curvature of an anisotropic partition with
no restriction on the space dimension. Our results cover the case of crystalline networks in two
dimensions, polyhedral partitions in three dimensions, and generic anisotropic partitions for smooth
anisotropies. The natural equilibrium conditions on the singular set of the partition are derived. We
discuss several examples in two dimensions (also for two adjacent triple junctions) and one example
in three dimensions when the Wulff shape is the unit cube. In the examples we also analyze the
stability of the partitions.

1. Introduction

The study of the properties of polycrystalline materials is an important field of research in material
science and in chemistry; in particular, understanding the geometry and stability of triple (and more
generally multiple) junctions of interfaces is of interest in microstructures and in the evolution of
grain boundaries [8], [11], [17], [23], [21], [10].

In this paper we are interested in deriving rigorously the notion of crystalline mean curvature of
an anisotropic partition with no restriction on the space dimension. Our study includes crystalline
networks in two dimensions and polyhedral partitions in three-dimensional space; we can also treat
an arbitrary smooth anisotropy. As a by-product of our results, we derive the necessary conditions
that multiple junctions must satisfy in order to be an equilibrium configuration. We also uniquely
find the velocity field which is expected to drive the subsequent evolution process.

From the mathematical point of view, the first definitions and results on crystalline geometry
were given by J. E. Taylor in several papers (see for instance [24], [27], [9], [26], [28]). In these
papers the author defines crystalline mean curvature for a polygonal curve and for a network of
curves, looking at the rate of change of the total free energy surface with volume swept under
deformations. In this way the crystalline curvature flow for a polygonal curve is derived, as well
as the motion of networks and triple junctions. A rather interesting discussion on whether (and
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how) additional line segments have to be added at triple junctions to decrease the total energy is
outlined in [28]; the utility of this issue relies once more on the associated evolution process. As we
shall see, in three dimensions the situation is much more difficult; we refer to [25], [27], [22], [3],
[4] for some results in this direction. Concerning other results on anisotropic partitions and related
evolution problems, we refer to [14], [13], [15], [20].

Our approach is based on ideas different from those in the above cited papers, and relies in
particular on the theory outlined in [3] where, through the first variation of the total energy, the
crystalline (or, in general, anisotropic) mean curvatureκϕ is computed for boundaries of sets (i.e.
when only two phases are present). Some by-products of those computations, which are performed
in any dimension, are: (i) a (pointwise) definition ofκϕ as the unique solution of a variational
problem; (ii) L∞ andBV -regularity of κϕ ; (iii) the facet breaking/bending phenomena (for the
related flow) in connection with the regularity ofκϕ .

Following those ideas, in order to derive the anisotropic mean curvature of a partition (i.e., when
at least three different phases are present) it is natural to compute the first variation of the energy,
now defined as the Minkowski contentMϕ of the whole interface in the relative geometry induced
by the anisotropyϕ itself.

Beside the usual difficulties (i.e., the nonsmoothness both of the interface and of the density
of energy, see [3]), we must face further difficulties due to the fact that now we cannot restrict the
variation toϕ-normal vector fields; indeed tangential components cannot be neglected, especially in
a neighbourhood of the singular set.

Let us briefly explain the content of the paper and the main results. After introducing the
notation (Section 2), we begin by computing the first variation of the energy in the smooth case,
i.e. when the anisotropy is strictly convex and smooth (Section 3). We perform the first variation
first in two dimensions using a parametric approach (Theorem 3.4) and then in any dimension
(Theorem 3.6). These computations could be of some interest from the point of view of Finsler
geometry, since they are based on an integration by parts formula on manifolds with boundary
(formula (14)). Furthermore, these results are enlightening in order to approach the crystalline case.
One observation of this section is of particular interest: given a manifoldΣ ⊂ Rn with boundary, we
can define the analog of the unit conormal vector fieldn∂Σϕ on the boundary ofΣ , in the geometry
induced by the anisotropy (see the last part of the proof of Theorem 3.6 and Definition 3.1). This
vector field is constructed starting from the intrinsic unit vector fieldnϕ toΣ (sometimes called the
Cahn–Hoffman field [19]). More precisely,n∂Σϕ turns out to be, on∂Σ , the component ofn∂Σϕ in
the normal space to∂Σ rotated throughπ/2 in such a way thatn∂Σϕ points outwards fromΣ . It is
throughn∂Σϕ that the equilibrium condition at the junction can be expressed in any dimension (see
(24)). Such an equilibrium condition is (locally near the singular set) equivalent to the usual force
balance (also called Young’s law or Herring condition [18], [19], [22]).

In Section 4 we focus our attention on the nonsmooth, in particular crystalline, case. To make
the computations rigorous, we need to introduce several definitions, which resemble those given
in [3] for the two-phases case.

The main result of the paper is contained in Theorem 4.8; roughly speaking, it turns out that the
(uniquely determined) mean curvatureκϕ of a crystalline partitionT is the tangential divergence of
a vector fieldNmin which minimizes the functional

∫
T

(divτ N)
2 dPϕ (1)



CRYSTALLINE MEAN CURVATURE 333

among all Cahn–Hoffman vector fieldsN ∈ H div
ν,ϕ(T ; Rn) satisfying the condition

∑
i,j N̂

∂Σij = 0
on the singular set common to all the “sheets”Σij of T . Here dPϕ is the density of the Minkowski
content, which is expressed in a natural way through the dual normϕo (surface tension) ofϕ (see
(5)). The symbolH div

ν,ϕ(T ; Rn) denotes the space where the functional (1) is naturally defined, i.e. the
space of allϕ-normal vector fields whose restriction to eachΣij has square integrable divergence.

Finally, N̂∂Σij is a suitableπ/2 rotation of a well defined tracêN ofN on∂Σij (see Definition 4.4).
As shown in Section 5, in a number of situations the minimum problem (1) can be made explicit

and its solution explicitly computed. For instance, in the two-dimensional crystalline case and for
certain three-dimensional partitions, the functional (1) reduces to a quadratic polynomial in a finite
number of variables, to be minimized on a compact domain. This observation allows us to compute
the pointwise crystalline mean curvature for many (possibly adjacent) triple or multiple junctions
in two dimensions as well as for a partition in three dimensions. Of course, the function to be
minimized can be quite involved, as for instance for two or more than two adjacent triple junctions
in a network. We show here explicit computations in two dimensions when the Wulff shape is
an octagon (see Examples 1, 2, 3, and Examples 4 and 5 for two adjacent triple junctions) and
in three dimensions when the Wulff shape is a cube (see subsection 5.2). In two dimensions, we
discuss the stability of triple junctions, in connection with the related evolution process. We show
that some triple junctions arealwaysunstable (Example 3), as are suitable adjacent triple junctions
(Example 5).

Finally, our results give a unique velocity field in the associated evolution process (the
anisotropic mean curvature flow of the partition) and indicate, in two dimensions, the nature of the
process leading to the creation of new edges at a triple junction (in agreement with the observations
in [28]); see the discussion in Example 1. In three dimensions far more complicated behaviours are
expected, beside the facet breaking/bending phenomena observed in the two-phases case [3].

Using our approach, in a subsequent paper [5] we shall investigate the local existence and
uniqueness of the crystalline flow for a partition in two dimensions.

2. Notation

In the following we denote by· the standard euclidean scalar product inRn and by| · | the euclidean
norm inRn, n > 2. Given two vectorsa, b ∈ Rn, we denote bya ⊗ b the matrix whose entries are
(a ⊗ b)ij := aibj . The symbolHk denotes thek-dimensional Hausdorff measure inRn, k ∈ [0, n].
Given a linear subspaceV ⊆ Rn we denote byV ⊥ the orthogonal complement ofV . Given a vector
v ∈ R2, we denote byv⊥ the rotation ofv throughπ/2 around the origin in counterclockwise
direction.

2.1 Finsler norms

We denote byϕ : Rn → [0,+∞[ a Finsler normonRn, i.e. a convex function satisfying

ϕ(λξ) = |λ|ϕ(ξ), ϕ(ξ) > c|ξ |, λ ∈ R, ξ ∈ Rn, (2)

for somec > 0. We define

• the dualϕo : Rn → [0,+∞[ of ϕ, ϕo(ξo) := sup{ξ · ξo : ϕ(ξ) 6 1} for anyξo ∈ Rn;
• the unit ballWϕ := {ξ ∈ Rn : ϕ(ξ) 6 1}, sometimes called theWulff shape;
• the unit ballFϕ := {ξo ∈ Rn : ϕo(ξo) 6 1}, sometimes called theFrank diagram;
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• the duality mappings

T (ξ) := {ξo ∈ Rn : ξo · ξ = ϕ(ξ)2 = ϕo(ξo)2} =
1

2
∂(ϕ(ξ)2), ξ ∈ Rn,

(3)
T o(ξo) := {ξ ∈ Rn : ξ · ξo = ϕo(ξo)2 = ϕ(ξ)2} =

1

2
∂(ϕo(ξo)2), ξo ∈ Rn,

∂ denoting the usual subdifferential for convex functions.

We say thatϕ is smoothif Wϕ andFϕ are two strictly convex bodies with smooth boundary. We
say thatϕ is crystallineif Wϕ is a convex polytope.

Concerning the relations between the above definitions and anisotropic and crystalline motion
by mean curvature we refer for instance to [6], [3], and references therein.

2.2 Lipschitz hypersurfaces with boundary. The Minkowski content

By a Lipschitz hypersurface with (Lipschitz) boundarywe mean an(n − 1)-dimensional bounded
setΣ ⊂ Rn which can be written locally as a Lipschitz graph on an open set, and such that each
point of its boundary can be written locally as a Lipschitz graph on an open Lipschitz subset of
Rn−1. If x ∈ Σ (resp.x ∈ ∂Σ) we denote byTx(Σ) (resp.Tx(∂Σ)) the tangent space toΣ (resp.
to ∂Σ) at x. We also denote byΠTx (Σ) (resp.ΠTx (∂Σ)) the orthogonal projection onTx(Σ) (resp.
onTx(∂Σ)). If g : Σ → Rn is a Lipschitz vector field, we denote by divτ g the euclidean tangential
divergence ofg onΣ ; if f : Σ → R is a Lipschitz function, we denote by∇τf the tangential
gradient off onΣ .

Given a Lipschitz hypersurfaceΣ ⊂ Rn with boundary, we define theMinkowski content
Mϕ(Σ) of Σ with respect to the normϕ as

Mϕ(Σ) := lim inf
ρ→0+

1

2ρ
Hn({x ∈ Rn : dϕ(x,Σ) < ρ}), (4)

wheredϕ(x,Σ) := inf{ϕ(y − x) : y ∈ Σ}. The quantityMϕ(Σ) is a surface measure naturally
associated withϕ andΣ . We refer for instance to [7] for its use in geometric anisotropic evolution
problems. It turns out that

Mϕ(Σ) =

∫
Σ

ϕo(ν)dHn−1, (5)

whereν(x) is a euclidean unit normal vector toΣ at (Hn−1-almost every)x ∈ Σ . From the integral
representation ofMϕ(Σ) in (5), it is natural to regardϕo(ν) as the surface tension of a flat interface
whose normal isν. We indicate by dPϕ the measure onΣ given by

dPϕ(B) :=
∫
B∩Σ

ϕo(ν)dHn−1, B a Borel set. (6)

At each pointx ∈ Rn wheredϕ(x,Σ) is differentiable, we have∇dϕ(x,Σ) ∈ ∂Fϕ , that is,

ϕo(∇dϕ(x,Σ)) = 1. (7)
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2.3 Partitions

Given a locally finite family{Ei} of open subsets ofRn with Lipschitz boundary such that⋃
∞

i=1Ei = Rn andEi ∩ Ej = ∅ for i 6= j , we say that{Ei} is aLipschitz(resp.smooth) partition
of Rn if Σij := ∂Ei ∩ ∂Ej is a Lipschitz (resp. smooth) hypersurface with Lipschitz (resp. smooth)
boundary.

For notational simplicity, whenn = 2 the sets∂Ei ∩ ∂Ej are often denoted byΣk, using one
index only.

Whenevern = 2, by anm-multiple junctionof {Ei} (m > 3 a natural number) we mean a point
q belonging tom distinct arcs, where anarc is one of theΣij . If m = 3 we say thatq is a triple
junctionof {Ei}.

3. First variation of Mϕ in the smooth case

Throughout all this section, we assume thatϕ is smooth. Accordingly, we assume thatΣ is an
(n − 1)-dimensional smooth bounded embedded orientable manifold with (smooth) boundary. We
recall thatν is a smooth euclidean unit normal vector field toΣ ; we assumeν to be smoothly defined
up to∂Σ . At each point ofΣ we define

• νϕ := ν/ϕo(ν);
• theϕ-normal vector fieldnϕ := T o(νϕ) = ϕoξ (νϕ) = ϕoξ (ν), sometimes called theCahn–

Hoffman field,

and at each point ofΣ ,

• theϕ-mean curvatureκϕ := divτ nϕ of Σ .

Concerning the previous definitions and their connections with geometric anisotropic evolution
problems when∂Σ = ∅ we refer for instance to [3].

DEFINITION 3.1 We denote byn∂Σϕ : ∂Σ → Rn the vector field defined as follows: ifx ∈ ∂Σ

then

(i) n∂Σϕ (x) ∈ {span(Tx(∂Σ), nϕ(x))}⊥;
(ii) |n∂Σϕ (x)| = |nϕ(x)−ΠTx (∂Σ)

nϕ(x)|;

(iii) n∂Σϕ (x) points outwards fromΣ .

Observe that
dim{span(Tx(∂Σ), nϕ(x))

⊥
} = 1. (8)

This follows from the fact thatnϕ(x) andTx(∂Σ) are linearly independent, which is a consequence
of the propertynϕ(x) · νϕ(x) = 1.

Note also that inn = 2 dimensions condition (i) reduces ton∂Σϕ (x) · nϕ(x) = 0, and condition
(ii) reduces to|n∂Σϕ (x)| = |nϕ(x)|.

REMARK 3.2 If ϕ(ξ) = |ξ |, then n∂Σϕ is the usual conormal unit euclidean vector pointing
outwards fromΣ .

REMARK 3.3 The vector fieldn∂Σϕ (x) is obtained by subtracting fromnϕ(x) its component in
Tx(∂Σ), and then by performing a suitable rotation throughπ/2 of the resulting vector (in the
two-dimensional spaceTx(∂Σ)⊥).
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3.1 The smooth2-dimensional case

In this subsection we assumen = 2 and we compute the first variation ofMϕ using a parametric
approach.

THEOREM 3.4 Let Σ ⊂ R2 be a smooth simple curve with boundary∂Σ = {p, q}. Let
γ : [0,1] → R2 be a regular parametrization ofΣ with γ (0) = p and γ (1) = q. Let
β ∈ C2([0,1]; R2), λ ∈ R, and letΣλ be the curve parametrized byγ + λβ. Then

d

dλ
Mϕ(Σλ)|λ=0 =

∫
Σ

κϕνϕ · β dPϕ + n∂Σϕ (q) · β(1)+ n∂Σϕ (p) · β(0). (9)

Proof. Setτ := γ ′/|γ ′
| andν := τ⊥. Recalling (5) we have

d

dλ
Mϕ(Σλ)|λ=0 =

d

dλ

∫ 1

0
ϕo((γ ′

+ λβ ′)⊥)dt|λ=0

=

∫ 1

0
ϕoξ (ν) · (β⊥)′ dt

= −

∫ 1

0

d

dt
(ϕoξ (ν)) · β⊥ dt − ϕoξ (ν(q))

⊥
· β(1)+ ϕoξ (ν(p))

⊥
· β(0). (10)

We now observe thatβ⊥
= −β · ντ + β · τν. Moreover,ϕoξ (ν) = nϕ by definition, and from

[6, Proposition 3.1, Example 4.2] we haveϕoξξ (ν)τ · ν = 0 andκϕ = κϕoξξ (ν)τ · τ , whereκ is the
euclidean curvature. Therefore∫ 1

0

d

dt
(ϕoξ (ν)) · β⊥ dt = −

∫ 1

0
κϕoξξ (ν)τ · τ β · ν|γ ′

| dt = −

∫
Σ

κϕνϕ · β dPϕ . (11)

Then (9) follows from (10) and (11). 2

COROLLARY 3.5 Let{Ei} be a smooth partition ofR2 and letq be anm-multiple junction of{Ei},
m > 3. LetΣ1, . . . , Σm be them arcs of the partition meeting atq, and setT :=

⋃m
i=1Σi . Let

γi : [0,1] → R2 be a regular parametrization ofΣi such thatγi(1) = q for i = 1, . . . , m. Let
βi ∈ C2([0,1]; R2) be such thatβi(0) = 0 andβi(1) = βj (1) =: β(1) for everyi, j ∈ {1, . . . , m},
let λ ∈ R andΣ i

λ be the curve parametrized byγi + λβi , and setTλ :=
⋃m
i=1Σ

i
λ. Then

d

dλ
Mϕ(Tλ)|λ=0 =

∫
T

κϕνϕ · β dPϕ + β(1) ·

m∑
i=1

n∂Σiϕ (q). (12)

In particular, if for anyβi as above we haveddλMϕ(Tλ)|λ=0 = 0, then eachΣi has zeroϕ-mean
curvature, and

m∑
i=1

n∂Σiϕ (q) = 0. (13)

We call condition (13) thebalance conditionatq.
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3.2 The smoothn-dimensional case

In this subsection we assumen > 2 and we compute the first variation ofMϕ . Given aC1 vector
field g : Rn → Rn we set divϕ,τ g := tr((Id − nϕ ⊗ νϕ)∇g). The next result was proved, for
∂Σ = ∅, in [3].

THEOREM 3.6 LetΣ ⊂ Rn be a smooth hypersurface with boundary. Forλ ∈ R, let ψλ :
Rn → Rn be a family of diffeomorphisms such thatψ0 = Id andψλ − Id has compact support
in Rn. SetΣλ := ψλ(Σ). Then

d

dλ
Mϕ(Σλ)|λ=0 =

∫
Σ

divϕ,τ g dPϕ =

∫
Σ

κϕνϕ · g dPϕ +

∫
∂Σ

n∂Σϕ · g dHn−2, (14)

whereg := ∂ψλ
∂λ |λ=0.

Proof. By the area formula it is well known that

dHn−1(ψλ(x)) = dHn−1(x)+ λdivτ g(x)dHn−1(x)+ o(λ). (15)

Denoting byνλ a smooth euclidean unit normal vector field onΣλ, we obtain

d

dλ
Mϕ(Σλ)|λ=0 =

∫
Σ

d

dλ
ϕo(νλ(ψλ))|λ=0 dHn−1

+

∫
Σ

ϕo(ν)divτ g dHn−1

=

∫
Σ

nϕ ·
d

dλ
νλ(ψλ)|λ=0 dHn−1

+

∫
Σ

ϕo(ν)divτ g dHn−1.

Following [6] one can prove that even ifg is not necessarilyϕ-normal, we have

d

dλ
νλ(ψλ)|λ=0 = −ν∇g + (ν · ν∇g)ν onΣ.

Hence

d

dλ
Mϕ(Σλ)|λ=0 =

∫
Σ

nϕ · (−ν∇g + (ν · ν∇g)ν)dHn−1
+

∫
Σ

ϕo(ν)divτ g dHn−1

=

∫
Σ

(div g − nϕ · νϕ∇g)dPϕ,

which proves the first equality in (14).
Forρ small enough let

Uρ := {x + σnϕ(x) : σ ∈ ]−ρ, ρ[, x ∈ Σ},

Σ±
ρ := {x ± ρnϕ(x) : x ∈ Σ}, (16)

Σρ := {x + σnϕ(x) : x ∈ ∂Σ, σ ∈ ]−ρ, ρ[}.

Let ge : Uρ → Rn be defined asge(y) := g(y − dϕ(y,Σ)T
o(∇dϕ(y,Σ))), wheredϕ(·,Σ) :=

dϕ(·,Σ) on {x + σnϕ(x) : σ ∈ [0, ρ[, x ∈ Σ} anddϕ(·,Σ) := −dϕ(·,Σ) on {x + σnϕ(x) : σ ∈

]−ρ,0[, x ∈ Σ}. Using the coarea formula, (7), and the divergence theorem it is not difficult to
check that ∫

Σ

divϕ,τ g dPϕ = lim
ρ→0+

1

2ρ

∫
Uρ

div(ge)dx = lim
ρ→0+

[Iρ + IIρ ], (17)
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where

Iρ :=
1

2ρ

[ ∫
Σ+
ρ

ge · ν̃+
ρ dHn−1

+

∫
Σ−
ρ

ge · ν̃−
ρ dHn−1

]
, I Iρ :=

1

2ρ

∫
Σρ

ge · ν̃ρ dHn−1,

and̃ν±
ρ and̃νρ are the unit euclidean normal vectors respectively toΣ±

ρ andΣρ , pointing outwards
fromUρ .

Using the area formula and applying (15) withg(·) = T o(∇dϕ(·,Σ)) one can check that

lim
ρ→0+

Iρ =

∫
Σ

κϕνϕ · g dPϕ .

Therefore, in view of (17), to conclude the proof of the last equality in (14) we have to show that

lim
ρ→0+

IIρ =

∫
∂Σ

n∂Σϕ · g dHn−2. (18)

Let TΣρ be the tangent bundle toΣρ and letfρ : TΣρ → [0,+∞[ be the Finsler norm obtained
as “restriction ofϕ toΣρ”, defined as follows:

{ξ ∈ Tx(Σρ) : fρ(x, ξ) 6 1} =Wϕ ∩ Tx(Σρ), x ∈ Σρ .

For anyx, y ∈ Σρ , let

dfρ (x, y) := inf

{ ∫ 1

0
ϕ(γ, γ̇ )dt : γ ∈ AC([0,1]; Rn), γ (0) = x, γ (1) = y, γ (t) ∈ Tγ (t)(Σρ)

}
,

and letdρ : Σρ → R be defined as follows:dρ(y) := dfρ (y, ∂Σ) if y = x + σnϕ(x), x ∈ ∂Σ and
σ > 0, anddρ(y) := −dfρ (y, ∂Σ) if y = x + σnϕ(x), x ∈ ∂Σ andσ < 0.

Using the coarea formula on manifolds [12] and recalling that∇τdρ is the tangential gradient of
dρ onΣρ , we have

IIρ =
1

2ρ

∫ ρ

−ρ

dσ

∫
{x∈Σρ : dρ (x)=σ }

ge · ν̃ρ

|∇τdρ |
dHn−2. (19)

Using the eikonal equationf oρ (x,∇τdρ(x)) = 1 wheref oρ (x, ξ
o) := sup{ξ · ξo : fρ(x, ξ) 6 1} for

any(x, ξo) in the cotangent bundle ofΣρ , we have

IIρ =
1

2ρ

∫ ρ

−ρ

dσ

∫
{x∈Σρ : dρ (x)=σ }

ge(x) · ν̃ρ(x)f
o
ρ

(
x,

∇τdρ(x)

|∇τ dρ(x)|

)
dHn−2(x).

Lettingρ → 0+ and setting

V (x) := span{Tx(∂Σ), nϕ(x)}, x ∈ ∂Σ,

we get

lim
ρ→0+

IIρ =

∫
∂Σ

g · ν̃f o0 (x, η(x))dHn−2,

where
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(a) ν̃ : ∂Σ → Rn is the vector field pointing outwards fromΣ determined by the following
conditions:

ν̃(x) ∈ V (x)⊥, |̃ν(x)| = 1, x ∈ ∂Σ;

(b) η : ∂Σ → Rn is the vector field determined (up to sign) by the following conditions:

η(x) ∈ Tx(∂Σ)
⊥

∩ V (x), |η(x)| = 1, x ∈ ∂Σ;

(c) f o0 (x, ξ
o) := sup

{
ξ · ξo : ξ ∈Wϕ ∩ V (x)

}
, x ∈ ∂Σ .

To conclude the proof of (18) it is sufficient to show that

n∂Σϕ (x) = f o0 (x, η(x))̃ν(x), x ∈ ∂Σ. (20)

To this end we observe that, thanks to (8), (i) of Definition 3.1 and (a), the vectorsν̃(x) andn∂Σϕ (x)

are parallel and point in the same direction. Moreover,

η(x) = ±
ΠV (x)νϕ(x)

|ΠV (x)νϕ(x)|
. (21)

Observe now that, by definition, the normal toWϕ atnϕ(x) is νϕ(x)/|νϕ(x)|. Therefore the normal
toWϕ ∩ ∂V (x) at nϕ(x) (in the spaceV (x)) isΠV (x)νϕ(x)/|ΠV (x)νϕ(x)| = ±η(x). This implies
that the supremum definingf o0 (x, η(x)) (see (c)) is attained atnϕ(x), i.e.,

f o0 (x, η(x)) = |nϕ(x) · η(x)|. (22)

Hence
f o0 (x, η(x)) = |nϕ(x) · η(x)| = |nϕ(x)−ΠTx (∂Σ)nϕ(x)| = |n∂Σϕ (x)|. 2

REMARK 3.7 In the caseϕ(ξ) = |ξ |, the above argument gives the classical divergence theorem
on a manifold with boundary.

REMARK 3.8 If n = 2, formula (14) reduces to (9).

COROLLARY 3.9 Let{Ei} be a smooth partition ofRn and letΣij := ∂Ei ∩ ∂Ej , T :=
⋃
i,j Σij ,

Γ :=
⋃
i,j ∂Σij . Forλ ∈ R, letψλ : Rn → Rn be a family of diffeomorphisms such thatψ0 = Id

andψλ − Id has compact support inRn. SetΣ ij
λ := ψλ(Σij ) andTλ :=

⋃m
i=1Σ

ij
λ . Then

d

dλ
Mϕ(Tλ)|λ=0 =

∫
T

κϕνϕ · g dPϕ +

∫
Γ

( ∑
i,j

n
∂Σij
ϕ

)
· g dHn−2, (23)

whereg := ∂ψλ
∂λ |λ=0. In particular, if for anyψλ as above we haveddλMϕ(Tλ)|λ=0 = 0, then each

Σij has zeroϕ-mean curvature and ∑
i,j

n
∂Σij
ϕ = 0 onΓ. (24)

We call condition (24) the (n-dimensional version of the)balance conditiononΓ ; this condition is,
in three dimensions, locally equivalent to condition (21) of [19].

REMARK 3.10 Condition (24) is equivalent to requiring that for anyq ∈ Γ there exist an
open neighbourhoodU of q and constantsδij ∈ {−1,1} (possibly depending onU ) such that∑
i,j δijnϕ |Σij

(p) = 0 for anyp ∈ Γ ∩ U .
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4. First variation of Mϕ in the crystalline case

To state the main result (Theorem 4.8) we need some preliminaries. LetΣ ⊂ Rn be a Lipschitz
hypersurface with boundary. In the following any Lipschitz function or vector field defined on
Σ will be considered as defined up to∂Σ . We denote byν anHn−1-almost everywhere defined
euclidean unit normal toΣ and we set, as usual,νϕ := ν/ϕo(ν). We denote by Lip(Σ; Rn) the set
of all Lipschitz vector fields onΣ , and define

Norϕ(Σ; Rn) := {X : Σ → Rn : X(x) ∈ T o(νϕ(x)) forHn−1-a.e.x ∈ Σ},

Lipν,ϕ(Σ; Rn) := Lip(Σ; Rn) ∩ Norϕ(Σ; Rn),

L2
τ (Σ; Rn) := {N ∈ L2(Σ; Rn) : N(x) · νϕ(x) = 0 forHn−1-a.e.x ∈ Σ}, (25)

Lipτ (Σ; Rn) := {X ∈ Lip(Σ; Rn) : X(x) · νϕ(x) = 0 forHn−1-a.e.x ∈ Σ},

Lipc(Σ) := {ψ ∈ Lip(Σ) : spt(ψ) ∩ ∂Σ = ∅}.

The following definition is the same as in [3, Definition 2.1], where it was introduced in the case
∂Σ = ∅.

DEFINITION 4.1 LetΣ ⊂ Rn be a Lipschitz hypersurface with boundary. We say thatΣ is
Lipschitzϕ-regular if there exists a vector fieldnϕ ∈ Lipν,ϕ(Σ; Rn). We denote byR∂ϕ(Rn) the
class of all Lipschitzϕ-regular hypersurfaces.

Even in the case∂Σ = ∅, the geometry of Lipschitzϕ-regular sets is nontrivial and strictly related
to the geometry ofWϕ (see [4, Section 4], [2, Figure 7]).

With a little abuse of notation, we sometimes write(Σ, nϕ) ∈ R∂ϕ(Rn), and we say that(Σ, nϕ)
is Lipschitzϕ-regular.

We now define theϕ-weak tangential divergence of a vector field; we follow the definition given
in [3, Definition 4.1] for the case∂Σ = ∅, the only difference being that the operator is now tested
on compactly supported Lipschitz functions. We refer to [3] for the motivations of such a definition
and for an explanation why it generalizes the definition of divϕ,τ given in subsection 3.2.

DEFINITION 4.2 Let (Σ, nϕ) ∈ R∂ϕ(Rn) and let v ∈ L2(Σ; Rn). We define the function
divϕ,nϕ ,τ v : Lipc(Σ) → R as follows: for anyψ ∈ Lipc(Σ) we set

〈divϕ,nϕ ,τ v, ψ〉 :=
∫
Σ

ψv · νϕ divτ nϕ dPϕ −

∫
Σ

[∇τψ − (nϕ · ∇τψ)νϕ ] · v dPϕ . (26)

Let

H div
τ,ϕ(Σ; Rn) := {N ∈ L2

τ (Σ; Rn) : divϕ,nϕ ,τ N ∈ L2(Σ)},

H div
ν,ϕ(Σ; Rn) := {N ∈ Norϕ(Σ; Rn) : divϕ,nϕ ,τ N ∈ L2(Σ)}.

REMARK 4.3 Forv ∈ H div
τ,ϕ(Σ; Rn) ∪ H div

ν,ϕ(Σ; Rn), the operator divϕ,nϕ ,τ v does not depend on
the choice ofnϕ in Lipν,ϕ(Σ; Rn) (see [3, (A2) of Lemma 4.4 and Corollary 4.7]). Accordingly we
shall use the notation divϕ,τ v in place of divϕ,nϕ ,τ v. Moreover, ifΣ is contained in a hyperplane, the
function divϕ,τ v coincides with the usual (weak) tangential divergence divτ v (see [4, Remark 2.2]).

The following definition is suggested by Definition 3.1.
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DEFINITION 4.4 Letx ∈ ∂Σ be such that bothTx(Σ) andTx(∂Σ) exist, and letz ∈ Rn \ Tx(Σ).
We define the vectorz∂Σ ∈ Tx(∂Σ)

⊥ as the rotation throughπ/2 of the vectorz − ΠTx (∂Σ)z in
such a way thatz∂Σ points outwards fromΣ .

Given anHn−2-almost everywhere defined vector fieldN : ∂Σ → Rn which is nontangent to
Σ , we defineN∂Σ : ∂Σ → Rn asN∂Σ (x) := (N(x))∂Σ .

ASSUMPTION To simplify the computations, from now on we will assume thatϕ is crystalline and
that the partitionsT are polyhedral. See Remark 4.11 for a discussion on when such an assumption
can be weakened.

PROPOSITION4.5 Let (Σ, nϕ) ∈ R∂ϕ(Rn) and assume thatΣ polyhedral. For any vector field

N ∈ H div
ν,ϕ(Σ; Rn), there exists a function̂N ∈ L∞(∂Σ; Rn) such that

N̂(x) ∈ Tx(∂Σ)
⊥ forHn−2-a.e.x ∈ ∂Σ,

and∫
Σ

ψ divϕ,τ N dPϕ =

∫
Σ

ψ divτ nϕ dPϕ−
∫
Σ

∇τψ ·(N−nϕ)dPϕ−
∫
∂Σ

ψN̂∂Σ
·nϕ dHn−2 (27)

for anyψ ∈ Lip(Σ).

Proof. Let us first assume thatΣ is contained in a hyperplane. Let us denote byν a unit normal
vector toΣ and byν̃ the unit normal vector to∂Σ in the hyperplane containingΣ and pointing
outwards fromΣ . Let us consider the tangent vector fieldN − nϕ . By Remark 4.3 we have
divϕ,τ (N − nϕ) = divτ (N − nϕ) Hn−1-almost everywhere onΣ . Using the results of [1] (see
also [16, Lemma 9.2]) we see thatN − nϕ admits a trace along̃ν on ∂Σ , which we denote by
[N − nϕ, ν̃], and [N − nϕ, ν̃] ∈ L∞(∂Σ). Moreover, recalling (6), we have∫

Σ

ψ divϕ,τ (N − nϕ)dPϕ = ϕo(ν)

∫
Σ

ψ divτ (N − nϕ)dHn−1

= ϕo(ν)

(
−

∫
Σ

∇τψ · (N − nϕ)dHn−1
+

∫
∂Σ

ψ [N − nϕ, ν̃] dHn−2
)

(28)

for anyψ ∈ Lip(Σ). Let us define

N̂(x) := nϕ(x)−ΠTx (∂Σ)nϕ(x)+ [N − nϕ, ν̃ ]̃ν(x) forHn−2-a.e.x ∈ ∂Σ. (29)

Note thatN̂ is nontangent toΣ andN̂∂Σ
· nϕ = −[N − nϕ, ν̃ ]̃ν · n∂Σϕ . Therefore (27) follows from

(28) by observing thatϕo(ν) = ν̃ · n∂Σϕ .
Assume now thatΣ is polyhedral. We can reduce to the case in whichΣ is the union of two

sheetsΣ1,Σ2 each lying in a hyperplane. SinceN has square integrable divergence, it is not difficult
to check that(N̂|Σ1)

∂Σ1 = −(N̂|Σ2)
∂Σ2 Hn−2-almost everywhere onΣ1 ∩ Σ2. Then (27) follows

from the previous case. 2

REMARK 4.6 Letζ ∈ H div
τ,ϕ(Σ; Rn). Reasoning as in Proposition 4.5 we can show that∫

Σ

ψ divϕ,τ ζ dPϕ = −

∫
Σ

∇τψ · ζ dPϕ +

∫
∂Σ

ψζ · n∂Σϕ dHn−2
∀ψ ∈ Lip(Σ). (30)
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4.1 Lipschitzϕ-regular polyhedral partitions: statement of the main result

The following definition is suggested by the results in subsection 3.2. In two dimensions, it is
essentially the same definition given by J. E. Taylor in [28].

DEFINITION 4.7 Let{Ei} be a Lipschitz partition ofRn. For anyi 6= j letΣij := ∂Ei ∩ ∂Ej and
Γ :=

⋃
i,j ∂Σij . We say that{Ei} is Lipschitzϕ-regular, and we write{Ei} ∈ RPϕ(Rn), if, for

anyi 6= j ,Σij ∈ R∂ϕ(Rn) and there exist vector fieldsnijϕ ∈ Lipν,ϕ(Σij ; Rn) satisfying∑
i,j

(nijϕ )
∂Σij = 0 onΓ. (31)

Let {Ei} ∈ RPϕ(Rn) and setT :=
⋃
i,j Σij . We denote byH div

ν,ϕ(T ; Rn) (resp. Norϕ(T ; Rn))
the space of all vector fieldsN : T → Rn such thatN|Σij ∈ H div

ν,ϕ(Σij ; Rn) (resp.N|Σij ∈

Norϕ(Σij ; Rn)) for anyi 6= j .
Let (Σ, nϕ) ∈ R∂ϕ(Rn), Σ polyhedral, andv ∈ Lip(Σ; Rn). SinceΣ has a boundary, when

computing the first variation ofMϕ we cannot restrict ourselves toϕ-normal vector fields, and
tangent vector fields must be considered; as already remarked in the Introduction, this is one of the
main additional difficulties in the computation of the first variation ofMϕ , as compared with [3].

Let (Σ, nϕ) ∈ R∂ϕ(Rn). Reasoning as in [3, Lemma 3.3], one finds that there existsρ > 0 such
that the mapFnϕ (x, t) := x + tnϕ(x), mappingΣ × ]−ρ, ρ[ onto its image, is bi-Lipschitz. We set
F−1
nϕ
(·) = (πnϕ (·), tnϕ (·)) ∈ Σ × ]−ρ, ρ[.

For t ∈ R with |t | < ρ, ρ > 0 small enough, defineUρ ,Σ±
ρ andΣρ as in (16). Given a Lipschitz

functionψ and a Lipschitz vector fieldη defined onΣ , we denote byψe := ψ(πnϕ ) : Uρ → R,
ηe := η(πnϕ ) : Uρ → Rn the (Lipschitz) extensions ofψ andη respectively onUρ along the vector
field nϕ . DefineF̃ (z, t) := z + tve(z) onUρ . Set alsõF t (·) := F̃ (·, t) andΣv

t := F̃ t (Σ). Finally,
let

Var(Mϕ,Σ)(v) := lim inf
t→0+

Mϕ(Σ
v
t )−Mϕ(Σ)

t
. (32)

Before proceeding with the computation, we split the vector fieldv into its normal and tangential
part as follows:

v = ψvnϕ + tv, ψv := v · νϕ . (33)

It is immediate to check thattv · νϕ = 0, and thereforetv is tangent toΣ . We also setψev := (ψv)
e,

tev := (tv)
e, and

Bϕ(Σ) :=

{
v ∈ Lip(Σ; Rn) : ψv ∈ Lip(Σ),

∫
Σ

(ψv)
2 dPϕ 6 1

}
,

Bϕ(T ) :=

{
v ∈ Lip(T ; Rn) : ψv |Σij

∈ Lip(Σij ) ∀i 6= j,

∫
T

(ψv)
2 dPϕ 6 1

}
.

The vector field(
∫
Σ
(nϕ)

2 dPϕ)−1nϕ belongs toBϕ(Σ). In particular,Bϕ(Σ) is nonempty. Notice
also that ifv ∈ Bϕ(Σ) thentv is a Lipschitz field. Finally, alsoBϕ(T ) is nonempty.

The main result of the paper is the following.
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THEOREM 4.8 Letϕ be crystalline. Let{Ei} ∈ RPϕ(Rn) be a polyhedral partition and letΓ :=⋃
i,j ∂Σij . Then

inf
v∈Bϕ(T )

Var(Mϕ, T )(v)

= − min

{[ ∫
T

(divϕ,τ N)
2 dPϕ

]1/2

: N ∈ H div
ν,ϕ(T ; Rn),

∑
i,j

N̂|Σij

∂Σij
= 0 onΓ

}
. (34)

All examples in Section 5 are focused on explicit computation of a solution of the minimum problem
on the right hand side of (34).

REMARK 4.9 Formula (34) gives, loosely speaking, the expression of (minus) the norm of the
gradient of the functionalMϕ . If Nmin is one minimizer of (34), then the (uniquely defined) quantity
divϕ,τ Nmin is expected to identify the initial velocity ofT , if we considerT as the initial datum for
the crystalline mean curvature flow for partitions.

4.2 Proof of Theorem 4.8

Let us denote byΣ one of theΣij of the partition. The proof of Theorem 4.8 is divided into five
steps.

Step 1. We have

inf
v∈Bϕ(Σ)

Var(Mϕ,Σ)(v) = sup
N∈Hdiv

ν,ϕ(Σ;Rn)
inf

v∈Bϕ(Σ)
{I (N, v)+ II (N, v)} , (35)

where

I (N, v) =

∫
Σ

(ψv divτ nϕ − ∇τψv · (N − nϕ))dPϕ,
(36)

II (N, v) =

∫
Σ

(−N · νϕ∇t
e
v + div tev )dPϕ .

Let v ∈ Bϕ(Σ). Following the same computations as in the proof of Theorem 5.1 in [3], it turns
out that (32) can be written as

Var(Mϕ,Σ)(v) = sup
N∈Norϕ(Σ;Rn)

{I (N, v)+ II (N, v)}, (37)

whereI (N, v) is as in (36) and

II (N, v) =

∫
Σ

(−N · νϕ∇t
e
v + ν · ν∇tev + divτ tv)dPϕ . (38)

Recalling the definition of the (euclidean) tangential divergence divτ , we can rewriteII (N, v) as
in (36). Using (37) and arguing as in [3, Proposition 5.2], we get

inf
v∈Bϕ(Σ)

Var(Mϕ,Σ)(v) = sup
N∈Norϕ(Σ;Rn)

inf
v∈Bϕ(Σ)

{I (N, v)+ II (N, v)}. (39)
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Taking v of the formψnϕ , ψ ∈ Lipc(Σ), we haveII (N, v) = 0 andI (N, v) = 〈divϕ,τ N,ψ〉.
Hence infBϕ(Σ) I (N, v) = infBϕ(Σ){I (N, v) + II (N, v)} = −∞ if N /∈ H div

ν,ϕ(Σ; Rn), and (35)
follows.

Step 2. The integralII (N, v) in (36) has the expression

II (N, v) =

∫
∂Σ

v · n∂Σϕ dHn−2, (40)

and in particular it is independent ofN .
Let N ∈ H div

ν,ϕ(Σ; Rn). Sincetev is Lipschitz continuous and tangential, we haveνϕ∇tev = 0
Hn−1-almost everywhere onΣ , hence from Remark 4.3 we get

divϕ,τ tv = divτ tv = div tev −N · νϕ∇t
e
v Hn−1-a.e. onΣ. (41)

Therefore, from (41), (36) and (30) (applied withψ ≡ 1) we obtain

II (N, v) =

∫
Σ

divϕ,τ tv dPϕ =

∫
∂Σ

tv · n∂Σϕ dHn−2
=

∫
∂Σ

v · n∂Σϕ dHn−2,

where the last equality follows from the decomposition (33).

Step 3. We have

inf
v∈Bϕ(Σ)

Var(Mϕ,Σ)(v)

= sup
N∈Hdiv

ν,ϕ(Σ;Rn)
inf

v∈Bϕ(Σ)

{ ∫
Σ

ψv divϕ,τ N dPϕ +

∫
∂Σ

v · N̂∂Σ dHn−2
}
. (42)

If N ∈ H div
ν,ϕ(Σ; Rn), from (36) and (27) we obtain

I (N, v) =

∫
Σ

ψv divϕ,τ N dPϕ +

∫
∂Σ

ψvN̂
∂Σ

· nϕ dHn−2

=

∫
Σ

ψv divϕ,τ N dPϕ +

∫
∂Σ

ψv(N̂
∂Σ

− n∂Σϕ ) · nϕ dHn−2. (43)

Taking into account (40) and (43) we get

I (N, v)+II (N, v) =

∫
Σ

ψv divϕ,τ N dPϕ+

∫
∂Σ

(v ·n∂Σϕ +ψvnϕ ·(N̂∂Σ
−n∂Σϕ ))dHn−2. (44)

SinceN̂∂Σ
− n∂Σϕ is parallel toνϕ , recalling (33) we have

ψvnϕ · (N̂∂Σ
− n∂Σϕ ) = v · (N̂∂Σ

− n∂Σϕ ).

Hence (44) becomes

I (N, v)+ II (N, v) =

∫
Σ

ψv divϕ,τ N dPϕ +

∫
∂Σ

v · N̂∂Σ dHn−2,

which, taking into account (39), gives (42).
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Step 4. Relation (34) holds with the infimum on the right hand side in place of the minimum.
Recalling thatT =

⋃
i,j Σij , the definitions of Norϕ(T ; Rn) and of H div

ν,ϕ(T ; Rn), when
computing Var(Mϕ, T )(v) we can add the contributions of allΣij . To simplify notation, we write

Nij = N̂|Σij

∂Σij
. Using step 3, we get,

inf
v∈Bϕ(T )

Var(Mϕ, T )(v) = sup
N∈Hdiv

ν,ϕ(T ;Rn)
inf

v∈Bϕ(T )

{ ∫
T

ψv divϕ,τ N dPϕ +

∫
Γ

v ·

( ∑
i,j

Nij

)
dHn−2

}
.

Observe now that if for a vector fieldN ∈ H div
ν,ϕ(T ; Rn) we have

∑
i,j Nij 6= 0 onΓ then

inf
v∈Bϕ(T )

{ ∫
T

ψv divϕ,τ N dPϕ +

∫
Γ

v ·

( ∑
i,j

Nij

)
dHn−2

}
= −∞. (45)

This follows from the fact thatT is polyhedral, hence we can arbitrarily fixv onΓ without violating
the constraintv ∈ Bϕ(T ) (in particular the fact thatψv ∈ Lip(T ; Rn)).

We finally obtain

inf
v∈Bϕ(T )

Var(Mϕ, T )(v) = sup
N∈Hdiv

ν,ϕ(T ;Rn),
∑
i,j Nij=0

inf
v∈Bϕ(T )

{ ∫
T

ψv divϕ,τ N dPϕ
}

= − inf
N∈Hdiv

ν,ϕ(T ;Rn),
∑
i,j Nij=0

[ ∫
T

(divτ N)
2 dPϕ

]1/2

. (46)

Step 5. The minimum problem in (34) admits a solutionNmin ∈ H div
ν,ϕ(T ; Rn). Moreover, ifN1, N2

are two minimizers of (34), then divϕ,τ N1 = divϕ,τ N2 Hn−1-almost everywhere onT .
The set

C :=
{

divϕ,τ N : N ∈ H div
ν,ϕ(T ; Rn),

∑
i,j

Nij = 0 onΓ
}

is a closed convex subset ofL2(T ). Indeed, the convexity follows from the fact thatH div
ν,ϕ(T ; Rn)

is a convex subset of the Hilbert space{N ∈ L2(T ; Rn) : divϕ,τ N ∈ L2(T )}, and the condition∑
i,j Nij = 0 is linear.
Following [3], let us prove thatC is closed. Letfk := divϕ,τ Nk ∈ C be such thatfk → f

in L2(T ) as k → ∞. We have to prove thatf ∈ C. Since supk ‖Nk‖L2(T ;Rn) < ∞, possibly
passing to a subsequence we can assume that{Nk} converges weakly inL2(T ; Rn) to a vector field
N ∈ L2(T ; Rn). SinceNk ∈ Norϕ(T ; Rn), we deduce thatN ∈ Norϕ(T ; Rn). Moreover, for any
ψ ∈ Lip(T ) from (27) we obtain∫

T

ψf dPϕ = lim
k→∞

∫
T

ψ divϕ,τ Nk dPϕ =

∫
T

ψ divτ nϕ dPϕ − lim
k→∞

∫
T

∇τψ · (Nk − nϕ)dPϕ

=

∫
T

ψ divτ nϕ dPϕ −

∫
T

∇τψ · (N − nϕ)dPϕ .

It follows that f = divϕ,τ N , henceN ∈ H div
ν,ϕ(T ; Rn) and

∑
i,j Nij = 0 onΓ . ThereforeC is

closed inL2(T ; Rn). The conclusion now follows since the functional in (34) is strictly convex in
the divergence.

The proof of the theorem is complete.
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REMARK 4.10 Ifn = 2 the vector fieldNmin is unique, since any vector fieldN ∈ H div
ν,ϕ(T ; R2) is

uniquely determined by its divergence and the value at one point.

REMARK 4.11 Ifn = 2 then Lipν,ϕ(Σ; R2) is dense inH div
ν,ϕ(Σ; R2). Indeed, any vector fieldξ ∈

H div
ν,ϕ(Σ; R2) is nonconstant only whereΣ coincides with a segment parallel to an edge ofWϕ : on

such segments the normal component ofξ is constant and the tangential component belongs toW1,2.
Henceξ is continuous and can be approximated inW1,2 by a sequence of Lipschitz continuous
vector fields.

Finally, if n = 2, Theorem 4.8 holds also whenT is piecewiseC1,1, instead of polygonal.
Indeed, one can directly prove (27) under the assumptionN ∈ Lipν,ϕ(Σ; R2), and then conclude
by approximation and using the previous observation.

REMARK 4.12 All results of Sections 3 and 4 can be easily generalized in the presence of a family
of Finsler normsϕij (satisfying some compatibility conditions, see for instance [22]). For example,
in the crystalline case, it is enough to consider the appropriate normϕij on each polyhedral interface
dividingEi andEj and consequently to define the Cahn–Hoffman fieldnϕij . In a similar way, it is
possible to generalize relation (34) in the case of several norms.

5. Examples

In this section we show with some examples how formula (34) leads to an explicit computation of
the crystalline mean curvature. As already observed in Remark 4.10, in two dimensions each edge
of the partition has constantϕ-curvature and the solutionNmin of the minimum problem on the right
hand side of (34) is unique; in three dimensions in general it is not true that each facet of the partition
has constantϕ-mean curvature already in the two-phases cases (see [2]). Moreover, uniqueness of
Nmin in general is not expected; however, two solutions of (34) have the same divergence.

Recall that whenn = 2 the sets∂Ei ∩ ∂Ej are often denoted byΣk; in this caseLk denotes the
length ofΣk.

In two dimensions, we also give the following definition, whose meaning will be discussed at
length in what follows.

DEFINITION 5.1 Let {Ei} be a Lipschitzϕ-regular partition ofR2 and letq be any multiple
junction ofT . LetNmin be the solution of (34). We say thatT is stableif, denoting byΣ1, . . . , Σm
all the edges ofT havingq as an extremum (m > 3), (Nmin)|Σi (q) is not a vertex ofWϕ for any
i = 1, . . . , m. We say thatT is unstableif it is not stable.

5.1 Two-dimensional examples

We begin with the two-dimensional case, where we assume thatWϕ is a regular octagon centered
at the origin (see Figure 1). We denote byl its side length and byr the radius of the circumscribed
circle. The vectorsnai andnbi satisfy the balance condition

∑3
i=1 n

a
i =

∑3
i=1 n

b
i = 0.

As shown by J. Taylor in [28], there are only eight possible configurationsT with one triple
junction andT ∈ RPϕ(R2) (see Figure 2); each of the three edgesΣ1, Σ2, Σ3 meeting atq is
parallel to an edge ofWϕ and the possible configurations are given by the one in Figure 2 and by its
rotations through multiples ofπ/4.

Each of these configurations (assumingq is not adjacent to another triple junction) gives rise to
a different vector fieldNmin : T → R2 (the minimizing solution of (34)).
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FIG. 1. The Wulff shapeWϕ . The vectorsna
i

andnb
i

(
∑3
i=1 n

a
i

=
∑3
i=1 n

b
i

= 0) delimitate the admissible ranges of a field
N at a triple junctionq. For instance, the vectorsX, Y,Z form an admissible triplet, i.e.X + Y + Z = 0.

1

3

Σ 2

Σ

Σ

FIG. 2. Example of a Lipschitzϕ-regular partitionT with one triple junction, when the Wulff shape is an octagon.

The balance condition ∑
i,j

N̂|Σij

∂Σij
= 0 onΓ (47)

appearing in (34) now reads

N|Σ1(q)+N|Σ2(q)+N|Σ3(q) = 0. (48)

As shown in Figure 1, in order to satisfy the balance condition (48) the vector(Nmin)|Σi (q) can take
values only in the range betweennai andnbi , i = 1,2,3.
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Let us consider for instance the configurationT in Figure 3. We want to explicitly compute the
crystallineϕ-curvature ofT , at least in the special casesL1 = L2 = L3 (Example 1) andL1 � 1
andL2 = L3 (Example 2).

Note thatr := |nb2| = l/(2 sin(π/8)). Moreover, by symmetry we obtain

|A− na1| = |B − nb1| = |na3 − nb3| = |na2 − nb2| =: δ. (49)

The balance condition
∑3
i=1 n

b
i = 0 implies that the line passing throughnb1 andnb3 is parallel to

the line passing throughA and the origin. These observations and elementary computations yield

δ = r

(
2 sin(π/8)−

1

2 cos(π/8)

)
, |na1 − nb1| = r

(
1

cos(π/8)
− 2 sin(π/8)

)
. (50)

Denote byX an arbitrary vector of the segment connectingna1 andnb1 and letx := |A − X| ∈

[δ, l− δ]. If Y (resp.Z) is a vector belonging to the segment connectingna2 andnb2 (resp.na3 andnb3)
the conditionX + Y + Z = 0 implies

y = y(x) =
δ

l − 2δ
(−x + l − δ), z = z(x) =

δ

l − 2δ
(x − δ), (51)

wherey := |nb2 − Y | andz := |na3 − Z| (see Figure 1).

REMARK 5.2 Since in two dimensionsNmin is unique and its values are fixed (up to sign) at the
three vertices of the partition different fromq (where it equalsA, D, C, see Figure 3), it follows
that the triplet of the values ofNmin atq uniquely determinesNmin onΣ1,Σ2,Σ3, simply by linear
interpolation.

Σ 1

Σ 3

Σ 2

A

C

D

q

FIG. 3. The values of any admissible vector field are fixed (up to sign) with valuesA,D,C at the vertices of the partition
different fromq; we also plot an admissible triplet atq.

Thanks to Remark 5.2, we can rewrite the functional appearing on the right hand side of (34) as
a function of the variablesx, y(x), z(x) which are in a one-to-one correspondence with triplets of
values ofNmin at q. An easy computation shows that, for a vector fieldN which is linear on each
Σi and satisfies the required constraints, we have, for the configuration in Figure 3,∫

T

(divτ N)
2 dPϕ =

x2

L1
ϕo(ν1)+

(l − y(x))2

L2
ϕo(ν2)+

(l − z(x))2

L3
ϕo(ν3), (52)

whereνi are unit normal vectors toΣi , i = 1,2,3. Observing thatϕo(ν1) = ϕo(ν2) = ϕo(ν3) =:
ϕo(ν), and inserting relations (51) into (52), we reduce the problem of findingNmin in (34) to the
problem

min
x∈[δ,l−δ]

f (x), f (x) := αx2
+ βx + γ, (53)
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where

α =
1

L1
+

δ2

(l − 2δ)2

(
1

L2
+

1

L3

)
> 0,

β =
2lδ

l − 2δ

(
1

L2
−

1

L3

)
+

2δ2

(l − 2δ)2

(
δ

(
1

L2
−

1

L3

)
−

l

L2

)
, (54)

γ = l2
(

1

L2
+

1

L3

)
+

2lδ

l − 2δ

(
δ

L3
−
l − δ

L2

)
+

δ2

(l − 2δ)2

(
(l − δ)2

L2
+
δ2

L3

)
,

and
1

ϕo(ν)

∫
T

(divτ Nmin)
2 dPϕ = min

x∈[δ,l−δ]
f (x).

Let us denote byxmin ∈ [δ, l − δ] the minimum point in (53).
Recalling Definition 5.1, we observe that the condition

xmin ∈ ]δ, l − δ[ (55)

is equivalent to the stability ofT (stability in the sense of Definition 5.1 can always be expressed
through an inclusion relation similar to (55), for any polygonal Wulff shape and any admissible
triple junction).

If T is stable then no formation of new edges fromq is expected during the flow (for short
times); if T is unstable and, in addition,f ′(xmin) > 0 (resp.f ′(xmin) < 0) if xmin = δ (resp.
xmin = l − δ) then the appearance of a new edge starting fromq is expected (see Example 1).

We can now consider some special partitionsT .

EXAMPLE 1 Let us consider the configurationT of Figure 4 where we assume

L1 = L2 = L3. (56)

na
1

na
3

na
2

A
D

C

FIG. 4. Example 1 (L1 = L2 = L3). We plot the vector fieldNmin. In this casexmin = |A− na1| = δ.
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q

A

C

D

FIG. 5. Example 1: the appearance of the new vertical edge atq in the evolution is due to the fact thatxmin is not in the
interior of the interval [δ, l − δ]. The edge is vertical, sincexmin tends to be smaller thanδ and the constraintnϕ ∈ T o(νϕ)

cannot be violated.

In this case we have

−
β

2α
=

δ2l

(l − 2δ)2 + 2δ2
<
l

2
< l − δ.

To check that−β/(2α) > δ we have to verify that(l − 2δ)(l − 3δ) 6 0; sinceδ < l/2, this reduces
to checking whetherδ > l/3. However, an elementary computation based on (50) yieldsδ < l/3.
We conclude thatxmin = δ andf ′(xmin) > 0. The situation is depicted in Figure 4: the vector field
Nmin is the linear interpolation betweenA andna1 (recall that in this case|A − na1| = xmin) onΣ1;
similarly, it is the linear interpolation betweenC andna2 onΣ2 and betweenD andna3 onΣ3.

In this case the triple junction isunstableand a new edge is expected to appear in the subsequent
evolution (cf. [28]). Our variational analysis allows us to determine a priori which new edge will
appear. More precisely, a new vertical edge will be created as time flows, as in Figure 5. The reason
why this should happen can be explained as follows: when minimizing the functionf in (53), the
value ofxmin tends to decrease; ifxmin < δ the constraintNmin ∈ T o(νϕ) cannot be satisfied onΣ3
any more, unless a new vertical edge appears. On this new edgeNmin will belong to a different edge
ofWϕ , precisely the edge connectingE andna3 (see Figure 1).

EXAMPLE 2 If we letL1 = +∞ andL2 = L3 in Figure 3, we get−β/(2α) = l/2 ∈ ]δ, l − δ[.
Therefore, if

L2 = L3 and L1 is sufficiently large,

we deduce that the minimum pointxmin for f in (53) belongs to the interior of the interval [δ, l−δ].
Again, corresponding to this point, there are a unique triplet atq and a unique vector fieldNmin
defined onT (by linear interpolation) whose tangential divergence is theϕ-curvature ofT . In this
case the triple junction isstable.

EXAMPLE 3 Let us consider the configuration of Figure 6. In this case the functionf to be
minimized in (53) is

f (x) =
x2

L1
+
(l − y(x))2

L2
+
z(x)2

L3
. (57)

If x ∈ ]δ, l − δ[ decreases theny ∈ [0, l] increases andz decreases. It follows that to minimize
f in (57) the value ofxmin must be as small as possible, i.e.xmin = δ. Moreover,f ′(xmin) > 0.
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na
2

na
3

na
3na

1

Σ 1

Σ 3

Σ 2

A

C

FIG. 6. Example 3: this triple junction is always unstable, for any choice ofL1, L2 andL3. Here we plotNmin (linear
interpolation onΣ1 andΣ2 and constant vector onΣ3).

Therefore(Nmin)|Σi = nai for any choice ofLi , i = 1,2,3, and the triple junction isalways
unstable. In Figure 6 we plotNmin (linear interpolation onΣ1 andΣ2, and constant vector onΣ3).

EXAMPLE 4 Let us consider the partitionT of Figure 7 having two adjacent triple junctionsq1
andq2. In this case we have two free variablesx1, x2 ∈ [δ, l− δ], wherexi := |A−X(qi)| andX is
an arbitrary admissible vector field onΣ1. For a vector field which is linear on eachΣi and satisfies
the required constraints we have∫

T

(divτ N)
2 dPϕ

= ϕo(ν)

[
(x1 − x2)

2

L1
+
(l − y(x1))

2

L2
+
(l − z(x1))

2

L3
+
(l − y(x2))

2

L4
+
z(x2)

2

L5

]
, (58)

wherey(xi) =
δ

l−2δ (−xi + l − δ) andz(xi) =
δ

l−2δ (xi − δ), i = 1,2. Inserting these relations in
(58) we are reduced to the following minimum problem:

min
(x1,x2)∈[δ,l−δ]2

f (x1, x2), f (x1, x2) = α1x
2
1 + α2x

2
2 + α12x1x2 + β1x1 + β2x2 + γ,

Σ 2

Σ 1

Σ 5

Σ 4
Σ 3

3
na

q
2 1

q

C D

C

FIG. 7. Example 4: two adjacent triple junctionsq1, q2; the functionf to be minimized is a quadratic polynomial in two
variables.
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where

α1 =
1

L1
+

δ2

(l − 2δ)2

(
1

L2
+

1

L3

)
> 0,

α2 =
1

L1
+

δ2

(l − 2δ)2

(
1

L4
+

1

L5

)
> 0,

α12 = −
2

L1
,

(59)

β1 =
2δ

l − 2δ

[
l

(
1

L2
−

1

L3

)
+

δ

l − 2δ

(
δ

(
1

L2
−

1

L3

)
−

l

L2

)]
,

β2 =
2δ

l − 2δ

[
l

L4
+

δ

l − 2δ

(
δ

(
1

L4
−

1

L5

)
−

l

L4

)]
,

γ = l2
(

1

L2
+

1

L3
+

1

L4

)
+

δ4

(l − 2δ)2

(
1

L3
+

1

L5

)
+
δ2(l − δ)2

(l − 2δ)2

(
1

L2
+

1

L4

)
+

2lδ

l − 2δ

(
δ

L3
+
δ − l

L2
+
δ − l

L4

)
.

The discussion on whether the configuration in Figure 7 is stable or unstable is now more
complicated, in view of the dependence of the minimization problem (59) onLi , i = 1, . . . ,5,
and each situation must be analyzed separately.

Observe that stability in the sense of Definition 5.1 is equivalent to

xmin = (x1min, x2min) ∈ ]δ, l − δ[2. (60)

If T is not stable, then basically at least one of the two triple junctions is not stable; if in addition
the gradient off points inside [δ, l − δ]2, then the appearance of a new edge from one of the two
triple junctions (or from both) is expected during the subsequent crystalline flow.

EXAMPLE 5 Let us consider the partitionT of Figure 8, which coincides with the partition of
Figure 7 except for the way the network attaches to the edgeΣ3. Again, we have two free variables
x1, x2 ∈ [δ, l − δ], xi := |A − X(qi)| andX an admissible vector field onΣ1. In this case (58) is

Σ 2

Σ 1

Σ 5

Σ 4
Σ 3

3
na

1
qq

2

3
na

C

C

FIG. 8. Example 5: this configuration isalwaysunstable, for any choice ofLi , i = 1, . . . ,5. Note that it consists of two
unstable adjacent triple junctions.
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replaced by∫
T

(divτ N)
2 dPϕ

= ϕo(ν)

[
(x1 − x2)

2

L1
+
(l − y(x1))

2

L2
+
(z(x1))

2

L3
+
(l − y(x2))

2

L4
+
z(x2)

2

L5

]
. (61)

We observe that the second and third terms on the right hand side of (61) are strictly increasing
in x1 ∈ ]δ, l − δ[, and the fourth and fifth terms are strictly increasing inx2 ∈ ]δ, l − δ[. Since the
first term is zero whenx1 = x2, it follows that the minimum of the function in (61) is attained for
x1 = x2 = δ, therefore this configuration of two adjacent triple junctions isalways unstable.

The instability of the configuration in Figure 8 could be related to the observation of Cahn
and Kalonji [10], where they emphasize that neighbouring triple junctions must belong to different
symmetry classes.

5.2 A three-dimensional example

In three dimensions the geometry of Lipschitzϕ-regular partitions is more rich, and the junctions are
lines instead of isolated points. Let us fix for simplicity the Wulff shapeWϕ to be the cube of side
2l, i.e.ϕ(ξ1, ξ2, ξ3) := 1

l
max(|ξ1|, |ξ2|, |ξ3|). We want to construct Lipschitzϕ-regular partitions.

Let us consider a Lipschitz partition{Ei} of R3 with the property that any surface∂Ei ∩ ∂Ej =

Σij is a union of rectangles parallel to some facet of∂Wϕ , and two rectangles whose boundaries
intersect belong to nonparallel planes (see for instance Figure 9, where a partition into five phases
is depicted). We have the following observation.

E 5

E 3

E 4

E 1

E 2

FIG. 9. A Lipschitzϕ-regular partition ofR3 into five solid phases whenWϕ is a cube (the phaseE5 is the exterior of the
cube).

REMARK 5.3 The partition{Ei} is Lipschitz ϕ-regular, so that there exist vector fieldsnijϕ ∈

Lip(Σij ; R3) satisfying (31).

Indeed, anyq ∈ Γ :=
⋃
i,j Σij has a neighbourhoodUq such thatΓ ∩ Uq coincides (up to

translations and rotations) with one of the two sets of Figure 10. One can prove that the Lipschitz
ϕ-regularity of the partition is a consequence of the Lipschitzϕ-regularity of the two configurations
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Τ2Τ1

FIG. 10. The local geometry ofΓ for a Lipschitzϕ-regular partition.

T1, T2 in Figure 10. By considering horizontal sections ofT1, T2, the proof of the Lipschitzϕ-
regularity can be reduced to a two-dimensional problem, i.e., to the proof of the Lipschitzϕ̃-
regularity of T̃1 and T̃2, where{ϕ̃ 6 1} = W̃ϕ is the horizontal section of the cubeWϕ (that is,
the square of side 2l centered at the origin, see Figure 11). Proving the Lipschitzϕ̃-regularity ofT̃1
andT̃2 is then the analog of proving the Lipschitz regularity of the set in Figure 2, with the octagon
replaced by the square (see Figure 11).

The first two assertions of the remark below follow from the fact that when we compute the
Euler equation of the functional in (34), any vector field with constant divergence on each rectangle
is a critical point, hence it is a minimizer since the functional is convex. The third assertion is a
consequence of [2, Lemma 5.1].

REMARK 5.4 Any vector field minimizing (34) has constant divergence on each rectangle ofΣij .
Conversely, assume that there exists a vector fieldN ∈ H div

ν,ϕ(T ; R3) satisfying (47) and such that
divτN is constant on each rectangle ofΣij . ThenN is a solution of the minimum problem on the
right hand side of (34). Finally, there exists a minimizerNmin of (34) such that, for any rectangleR
of T , the normal trace [Nmin|R, ν̃R] is constant on any edgee ⊂ ∂R, wherẽνR is the euclidean unit
normal to∂R pointing outwards fromR (in the plane ofR).

Notice that the admissible triplet of vectors for the configurationT̃1 in Figure 11 is unique, while
there are infinitely many admissible quadruplets for the configurationT̃2.

Observe also that no matching condition is required for the Lipschitzϕ-regularity in three
dimensions on zero-dimensional singular sets, i.e. we do not have to impose any condition on the
isolated points which are intersections of segments belonging toΓ .

Τ1Wφ Τ2
∼∼ ∼

FIG. 11. Two Lipschitz regular partitions̃T1 andT̃2 (trijunction and quadrijunction) ofR2 with respect to the metric whose
unit ballW̃ϕ is the horizontal section ofWϕ .
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Under our assumptions on the partition{Ei}, it is possible to compute its crystalline mean
curvature. As we shall see from (62) and (63), we can equivalently rewrite the minimum problem in
(34) as the constrained minimization of a quadratic polynomial depending only on a finite number
of variables.

LetN ∈ H div
ν,ϕ(T ; R3) be any vector field with constant divergence on each rectangleR of Σij ,

and having constant normal trace [N|R, ν̃R] on each edgee ⊂ ∂R. We definexije := [N|R, ν̃R]|e ∈

[−l, l].
Notice that if e does not belong toΓ (as for instance the upper horizontal frontal edge in

Figure 9), the quantityxije is determined by the geometry of the partition (and is equal tol or −l).
Condition (47) reduces to the linear system∑

R

(x
ij
e ν̃R + nijϕ · νR νR)

∂R
= 0 ∀e ⊂ Γ, (62)

where the sum is over all pairsR ⊆ Σij such thatR ⊃ e, andνR denotes a euclidean unit normal
toR.

Recalling the divergence theorem and the fact thatN has constant divergence on each rectangle,
we see that the function to be minimized is now the quadratic polynomial∫

T

(divτ N)
2 dPϕ = ϕo(ν)

∑
ij

∑
R⊆Σij

1

H2(R)

( ∑
e⊂∂R

H1(e)x
ij
e

)2
(63)

in the variablesxije , under the constraint (62). Finally, observe that the stability condition now reads
x
ij
e ∈ ]−l, l[ for any edgee ⊂ Γ .
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