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We rigorously derive the notion of crystalline mean curvature of an anisotropic partition with
no restriction on the space dimension. Our results cover the case of crystalline networks in two
dimensions, polyhedral partitions in three dimensions, and generic anisotropic partitions for smooth
anisotropies. The natural equilibrium conditions on the singular set of the partition are derived. We
discuss several examples in two dimensions (also for two adjacent triple junctions) and one example
in three dimensions when the Wulff shape is the unit cube. In the examples we also analyze the
stability of the partitions.

1. Introduction

The study of the properties of polycrystalline materials is an important field of research in material
science and in chemistry; in particular, understanding the geometry and stability of triple (and more
generally multiple) junctions of interfaces is of interest in microstructures and in the evolution of
grain boundaries [8]/ [11]/ [17].123]. [21].[10].

In this paper we are interested in deriving rigorously the notion of crystalline mean curvature of
an anisotropic partition with no restriction on the space dimension. Our study includes crystalline
networks in two dimensions and polyhedral partitions in three-dimensional space; we can also treat
an arbitrary smooth anisotropy. As a by-product of our results, we derive the necessary conditions
that multiple junctions must satisfy in order to be an equilibrium configuration. We also uniquely
find the velocity field which is expected to drive the subsequent evolution process.

From the mathematical point of view, the first definitions and results on crystalline geometry
were given by J. E. Taylor in several papers (see for instance [24], [27][[9], [26], [28]). In these
papers the author defines crystalline mean curvature for a polygonal curve and for a network of
curves, looking at the rate of change of the total free energy surface with volume swept under
deformations. In this way the crystalline curvature flow for a polygonal curve is derived, as well
as the motion of networks and triple junctions. A rather interesting discussion on whether (and

TEmaiI: belletti@mat.uniroma?2.it
¢Emai|: riey@mat.uniroma2.it

§Email: novaga@dm.unipi.it

© European Mathematical Society 2003



332 G. BELLETTINI, M. NOVAGA & G. RIEY

how) additional line segments have to be added at triple junctions to decrease the total energy is
outlined in [28]; the utility of this issue relies once more on the associated evolution process. As we
shall see, in three dimensions the situation is much more difficult; we referto [[25], [27],[[22], [3],
[4] for some results in this direction. Concerning other results on anisotropic partitions and related
evolution problems, we refer td [14], [13], [15]. [20].

Our approach is based on ideas different from those in the above cited papers, and relies in
particular on the theory outlined inl[3] where, through the first variation of the total energy, the
crystalline (or, in general, anisotropic) mean curvaiyés computed for boundaries of sets (i.e.
when only two phases are present). Some by-products of those computations, which are performed
in any dimension, are: (i) a (pointwise) definition @f as the unique solution of a variational
problem; (ii) L and BV -regularity of«,; (iii) the facet breaking/bending phenomena (for the
related flow) in connection with the regularity af.

Following those ideas, in order to derive the anisotropic mean curvature of a partition (i.e., when
at least three different phases are present) it is natural to compute the first variation of the energy,
now defined as the Minkowski contes,, of the whole interface in the relative geometry induced
by the anisotropy itself.

Beside the usual difficulties (i.e., the nonsmoothness both of the interface and of the density
of energy, see [3]), we must face further difficulties due to the fact that now we cannot restrict the
variation tog-normal vector fields; indeed tangential components cannot be neglected, especially in
a neighbourhood of the singular set.

Let us briefly explain the content of the paper and the main results. After introducing the
notation (Sectiofi|2), we begin by computing the first variation of the energy in the smooth case,
i.e. when the anisotropy is strictly convex and smooth (Sefjon 3). We perform the first variation
first in two dimensions using a parametric approach (Thegrein 3.4) and then in any dimension
(Theoren 3.6). These computations could be of some interest from the point of view of Finsler
geometry, since they are based on an integration by parts formula on manifolds with boundary
(formula [14)). Furthermore, these results are enlightening in order to approach the crystalline case.
One observation of this section is of particular interest: given a manfofd R” with boundary, we
can define the analog of the unit conormal vector fiqj& on the boundary of, in the geometry
induced by the anisotropy (see the last part of the proof of Theprégm 3.6 and Definifion 3.1). This
vector field is constructed starting from the intrinsic unit vector fig)do X' (sometimes called the
Cahn-Hoffman field[19]). More precisely)> turns out to be, o X, the component of*> in
the normal space t6X rotated throughr/2 in such a way thatgz points outwards fron¥. It is
throughn?> that the equilibrium condition at the junction can be expressed in any dimension (see
(24)). Such an equilibrium condition is (locally near the singular set) equivalent to the usual force
balance (also called Young’s law or Herring conditionl [18], [19], [22]).

In Sectior{ # we focus our attention on the nonsmooth, in particular crystalline, case. To make
the computations rigorous, we need to introduce several definitions, which resemble those given
in [3] for the two-phases case.

The main result of the paper is contained in Thedrer 4.8; roughly speaking, it turns out that the
(uniquely determined) mean curvatuigof a crystalline partitiorf” is the tangential divergence of
a vector fieldVmin which minimizes the functional

/ (div, N)?dP, (1)
T
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among all Cahn—Hoffman vector fieldé Hd'V(T R™) satisfying the condmor{j N9Zii =0

on the singular set common to all the “shee}:s of T. Here dP, is the density of the Minkowski
content, which is expressed in a natural way through the dual pdr(aurface tension) ap (see

@). The symboHd"’(T R™) denotes the space where the functloﬁlal (2) is naturally defined, i.e. the
space of alko-normal vector fields whose restriction to eakf} has square integrable divergence.
Finally, N%iisa suitabler /2 rotation of a well defined trac¥ of N on 0X;; (see Definitio).

As shown in Sectiof|5, in a number of situations the minimum prollém (1) can be made explicit
and its solution explicitly computed. For instance, in the two-dimensional crystalline case and for
certain three-dimensional partitions, the functiopdl (1) reduces to a quadratic polynomial in a finite
number of variables, to be minimized on a compact domain. This observation allows us to compute
the pointwise crystalline mean curvature for many (possibly adjacent) triple or multiple junctions
in two dimensions as well as for a partition in three dimensions. Of course, the function to be
minimized can be quite involved, as for instance for two or more than two adjacent triple junctions
in a network. We show here explicit computations in two dimensions when the Wulff shape is
an octagon (see Examples 1, 2, 3, and Examples 4 and 5 for two adjacent triple junctions) and
in three dimensions when the Wulff shape is a cube (see subsgcfjon 5.2). In two dimensions, we
discuss the stability of triple junctions, in connection with the related evolution process. We show
that some triple junctions aswaysunstable (Example 3), as are suitable adjacent triple junctions
(Example 5).

Finally, our results give a unique velocity field in the associated evolution process (the
anisotropic mean curvature flow of the partition) and indicate, in two dimensions, the nature of the
process leading to the creation of new edges at a triple junction (in agreement with the observations
in [28]); see the discussion in Example 1. In three dimensions far more complicated behaviours are
expected, beside the facet breaking/bending phenomena observed in the two-phasés case [3].

Using our approach, in a subsequent papér [5] we shall investigate the local existence and
unigueness of the crystalline flow for a partition in two dimensions.

2. Notation

In the following we denote bythe standard euclidean scalar produdifnand by - | the euclidean
norm inR", n > 2. Given two vectorg, b € R", we denote by: ® b the matrix whose entries are
(a ® b);j = a;b;. The symbolH* denotes th&-dimensional Hausdorff measurel®t, k < [0, n].
Given a linear subspadé C R” we denote by/* the orthogonal complement &f. Given a vector
v € R?, we denote by the rotation ofv throughs/2 around the origin in counterclockwise
direction.

2.1 Finsler norms

We denote by : R" — [0, +oo[ a Finsler normonR”, i.e. a convex function satisfying

p(A&) = AlpE), @& =clél, reR, £eR", (2)
for somec > 0. We define
e the dualp? : R" — [0, +oo[ of ¢, 9?(£?) :=sup{& - €2 : p(§) < 1} for any&? € R”;

e the unit baIIW(p = {& e R": p(&) < 1}, sometimes called th&/ulff shape
o the unit ballF, := {£° € R" : ¢°(£°) < 1}, sometimes called therank diagram
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o the duality mappings

1
T(E) = €R" £ =) =) = 50(0(®)), &R,
(3)
1
TOE) = {E €R" €6 = "€ = 9(®)°} = 00", & R,

d denoting the usual subdifferential for convex functions.

We say thaty is smoothif 1V, and F, are two strictly convex bodies with smooth boundary. We
say thaip is crystallineif W, is a convex polytope.

Concerning the relations between the above definitions and anisotropic and crystalline motion
by mean curvature we refer for instanceltb [6], [3], and references therein.

2.2 Lipschitz hypersurfaces with boundary. The Minkowski content

By a Lipschitz hypersurface with (Lipschitz) boundavg mean an(n — 1)-dimensional bounded
setX c R" which can be written locally as a Lipschitz graph on an open set, and such that each
point of its boundary can be written locally as a Lipschitz graph on an open Lipschitz subset of
R L If x € ¥ (resp.x € 3X) we denote byl (X) (resp.Ty (3 X)) the tangent space tb (resp.
to 9.X) atx. We also denote by, (x) (resp.f1r, (5 x)) the orthogonal projection ofi. (X) (resp.
onT,(0X)).If g : ¥ — R" is a Lipschitz vector field, we denote by diy the euclidean tangential
divergence ofg on X; if f : ¥ — R is a Lipschitz function, we denote by, f the tangential
gradient of f on X.

Given a Lipschitz hypersurfac®& < R" with boundary, we define th®linkowski content
M, (X) of X with respect to the norm as

SR A .
My (X) = ILrllollf ZH ({x eR" 1dy(x, ) < p}), 4)

whered, (x, X) = inf{p(y —x) : y € X}. The quantityM, (%) is a surface measure naturally
associated witlp and X'. We refer for instance t@ [7] for its use in geometric anisotropic evolution
problems. It turns out that

My () = fx o () dH L, 5)

wherev(x) is a euclidean unit normal vector B at (" ~1-almost every) € X. From the integral
representation oM, (X) in @ itis natural to regar@?(v) as the surface tension of a flat interface
whose normal is. We indicate by ®, the measure o' given by

dP,(B) := f (V) dH"1, B aBorel set (6)
BNXY

At each pointr € R” whered,, (x, X) is differentiable, we hav&d, (x, X) € dF,, that s,

©°(Vdy(x, 2)) = 1. (")
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2.3 Partitions

Given a locally finite family{E;} of open subsets oR"” with Lipschitz boundary such that
UZLE =R"andE; N E; = ¢ fori # j, we say tha{E;} is aLipschitz(resp.smooth partition
of R" if X;; := 9E; NJE; is a Lipschitz (resp. smooth) hypersurface with Lipschitz (resp. smooth)
boundary.

For notational simplicity, when = 2 the set9E; N dE; are often denoted by, using one
index only.

Whenever: = 2, by anm-multiple junctionof {E;} (m > 3 a natural number) we mean a point
g belonging tom distinct arcs, where aarc is one of theX;. If m = 3 we say thay is atriple
junctionof {E;}.

3. First variation of M, in the smooth case

Throughout all this section, we assume thais smooth. Accordingly, we assume th&atis an

(n — 1)-dimensional smooth bounded embedded orientable manifold with (smooth) boundary. We
recall thatv is a smooth euclidean unit normal vector field®pwe assume to be smoothly defined

up tod X. At each point off we define

® vy, =v/p°(V);
e the p-normal vector fieldn, := T°(v,) = (pg(v(p) = <pg(v), sometimes called th€ahn—
Hoffman field
and at each point af ,
e thep-mean curvature,, := div, n, of 2.

Concerning the previous definitions and their connections with geometric anisotropic evolution
problems wher X = ¢ we refer for instance to [3].

DEFINITION 3.1 We denote by)> : 9= — R” the vector field defined as follows: if € 9%
then

(i) n*(x) € {spanT (0 X), ny(x)}+;

(i) |n22(x)| = |ny(x) — HTX(ag)ntp(x)“

(iii) n9* (x) points outwards front.
Observe that

dim{span7, (3 %), n,(x)*} = 1. (8)
This follows from the fact that, (x) andT, (3 X') are linearly independent, which is a consequence
of the property, (x) - v, (x) = 1.
Note also that im = 2 dimensions condition (i) reduces;t@z(x) -ny(x) = 0, and condition

(ii) reduces tdn)> (x)| = |ny(x)|.
REMARK 3.2 If ¢(&§) = |&], then nzz is the usual conormal unit euclidean vector pointing
outwards fromx'.

REMARK 3.3 The vector fieldi?¥ (x) is obtained by subtracting from, (x) its component in
T, (0X), and then by performing a suitable rotation througf? of the resulting vector (in the
two-dimensional spacg, (9 X)1).
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3.1 The smootl2-dimensional case

In this subsection we assume= 2 and we compute the first variation 8, using a parametric
approach.

THEOREM3.4 Let ¥ c R? be a smooth simple curve with boundadyy = {p,q}. Let
y : [0,1] — R? be a regular parametrization & with y(0) = p andy(1l) = g¢. Let
B € C%([0, 1]; R?), » € R, and letX;, be the curve parametrized by+ 15. Then

d

5 Me(Zp=0= fz koVy - BAPy + 107 (q) - B(L) + > (p) - B(O). (9)

Proof. Setr := y'/|y’| andv := . Recalling [(5) we have

d d 1 0 !/
FMe(Zi-0= afo (v + 1)) di,_,

1
= /0 92 (v) - (B dt

La
- _/0 L) - B = gl 0@)t - B+ (p)T - pO. (10)

We now observe thgt+ = —8 - vt + B - Tv. Moreover,¢Z (v) = ny by definition, and from
[6, Proposition 3.1, Example 4.2] we hayg, (v)7 - v = 0 andk, = k¢g, (v)T - 7, Wherex is the
euclidean curvature. Therefore

ld 1
[ geron-pta=- [ xegwr-cpooid == [ou - pap,.

Then [9) follows from[(IP) and (11). O

COROLLARY 3.5 Let{E;} be a smooth partition d&2 and lety be ann-multiple junction of{E;},
m > 3. LetXq,..., X, be them arcs of the partition meeting gt and setl’ := | J/_; X;. Let
i : [0,1] — R? be a regular parametrization &f; such thaty;(1) = ¢ fori = 1,...,m. Let
Bi € C2([0, 1]; R?) be such thag; (0) = 0 andp; (1) = B;(1) =: B(1) for everyi, j € {1,...,m},
let» € R and X! be the curve parametrized py+ Ag;, and setly, := |J/_; Zi. Then

d 7 .
Mo Tz = fT Kpvy - B APy + (1) - ;ngzl @) (12)

In particular, if for anyg; as above we hav%Mw(TA)h:O = 0, then each¥; has zerap-mean
curvature, and

> nd¥iq) =0. (13)
i=1

We call condition|[(IB) théalance conditioratq.



CRYSTALLINE MEAN CURVATURE 337

3.2 The smooth-dimensional case

In this subsection we assume> 2 and we compute the first variation f(,. Given ac* vector
field g : R — R" we set diy, ; g := tr((Id — ny, ® vy)Vg). The next result was proved, for
0X =0,in[3].

THEOREM3.6 LetX c R”" be a smooth hypersurface with boundary. ko R, let v, :
R" — R" be a family of diffeomorphisms such thét = Id andy; — Id has compact support
inR". SetX) := v, (X). Then

d ) .
—My(Z) 0 = / divy ; gdP, = / KpVy - g AP, —l—/ n% . g dH" 2, (14)
di b b ax

whereg ‘= %MZO.

Proof. By the area formula it is well known that
dH" (. (1) = dH" 1) + Adive g()AH" L) + o(b). (15)

Denoting byv;, a smooth euclidean unit normal vector field by, we obtain

d d .
d—Mw(Ex)M:o:/ —— ¢’ (¥)) o dH”_1+/ ¢°(v) div, g dH"
A 5 di b
d , _
=/ ny - v (Wi dH"‘1+/ ¢°(v) div, gdH" .
X X

Following [6] one can prove that evendfis not necessarily-normal, we have

d
a”x(lﬁx)u:o =—vVg+(v-vWgv onx.

Hence
d

My (Z)p=0 = / ng - (—vVg+ (v - wWev)dH" 1 + / @°(v) div, g dH" L
dr > x

= / (divg —ngy - v,Vg)dP,,
z

which proves the first equality ifi (.4).
For o small enough let

U, ={x+on,x):0€]-p,p[, x € X},
Eff ={xEpny,(x): x e X}, (16)
Yo ={x+on,(x):x€dX, o €]-p,pl}.

Letg® : U, — R" be defined ag¢(y) := g(y — dy(y, 2)T°(Vdy(y, X))), Whered, (-, ) :=

dy(-, Zyon{x +ony(x) 0 €0, p[, x € X} andﬁw(', ) = —do(-, X)yon{x +on,(x):0 €
]—p.0[, x € X}. Using the coarea formuld,](7), and the divergence theorem it is not difficult to
check that

1
di P, = lim — div(g®)dx = lim [I, +11,], 17
/Z Vy - g dP, erT8+ 2 /Up iv(g) pl)”(]ﬁ[ p+11p] (17)
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1
v dH”‘l], I, =~ / €V, A,
r 2p Js,

andi? andv, are the unit euclidean normal vectors respectivelEﬁbandzp, pointing outwards
from Up
Using the area formula and applylr@lS) with) = T”(Vﬁw(-, X)) one can check that

where

1
[ = e_~+d n—1 / e
gl L T

p

lim Ip_/ KoVy - g dP,.
x

p—0F

Therefore, in view of[(1]7), to conclude the proof of the last equality in (14) we have to show that

lim 11p_/ nd¥ . gdH" 2. (18)
X

p—0t

Let TX, be the tangent bundle tb, and letf, : TX, — [0, +-oo[ be the Finsler norm obtained
as “restriction ofp to X,", defined as follows:

el (X)) fr(x,8) <Y =W,NT(X,), x¢€X,.

Foranyx,y € X,, let

1
d,(x,y) = inf {/0 p(y,y)de 1y € AC([0,1]; R"), y(O) = x, y() =y, y(t) € Ty(t)(zp)}v

and letd, : ¥, — R be defined as followsi, (y) := dy, (v, %) if y = x + ony,(x), x € 3¥ and
o > 0,andd,(y) = —df,(y,0X) if y =x + ony(x), x € 9¥ ando < 0.

Using the coarea formula on manifolds [12] and recalling ¥hat, is the tangential gradient of
d, on X,, we have

U
11, = d(f / S P dH 2, (19)
a (xeZ, :d,(x)=0} |V dpl

Using the eikonal equatioﬁ;’(x, Ved,(x)) =1 Wheref (x,£% :=sup&-&%: f,(x,&) < 1} for
any (x, £°) in the cotangent bundle & ,, we have

1 Vedy(x) -
11, = d 0 —”) dH"2(x).
’ =2 U/{xexp tdy(x)= a} 8°@ B, < V2 dp(x)] 0

Letting o — 0T and setting
V(x) == spaniT, (%), ny(x)}, xe€dx,

we get
lim np_/ g -VfS(x, n(x)) dH" 2,
b

p—0t
where
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(@ v : 00X — R"is the vector field pointing outwards froth determined by the following
conditions:
Tx) e V), Px)l=1 xe€dx;

(b) n:0X — R"is the vector field determined (up to sign) by the following conditions:
nx) e TOX NVEK), Ihx)l=1 xedX;
(€) f9(x, &%) :=sup{é -£2: Ee W, NV}, xedX.
To conclude the proof of (18) it is sufficient to show that
nd¥ (x) = fg(x. n(x)¥(x), xe€dx. (20)

To this end we observe that, thanks (8), (i) of Defini 3.1and (a), the ve“t(to)sandngz (x)
are parallel and point in the same direction. Moreover,
Iy (x)vy(x)
|HV(x)V<p(x)| i
Observe now that, by definition, the normabig, atn, (x) is v, (x)/|v, (x)|. Therefore the normal
to W, NaV(x) atn,(x) (in the space/ (x)) is ITy (x) v, (x) /|y x)ve (x)| = £n(x). This implies
that the supremum definingf (x, n(x)) (see (c)) is attained at,(x), i.e.,

Jo (e, n(x0) = Ing(x) - n(x)]. (22)

n(x) ==+ (21)

Hence
f3 G n(x)) = Ing(x) - n(0)] = Ing(x) — M1, 23y ()| = In)> (x)]. m

REMARK 3.7 Inthe case (&) = ||, the above argument gives the classical divergence theorem
on a manifold with boundary.

REMARK 3.8 Ifn = 2, formula[I4) reduces tp](9).

COROLLARY 3.9 Let{E;} be a smooth partition &” and letX;; := 0E; NJE;, T := Ui’j i
I = Ui’j 0X;;. Fora € R, lety;, : R" — R" be a family of diffeomorphisms such thép = Id

andy;, — Id has compact support iR". Set):ij =¥ (Xy;) andTy = /L, Ei'j. Then

d X _
d_)LM‘P(T)L)‘)»:O = / Koy - 8 AP, +f < ng 1) g dH" 2, (23)
T r i
whereg = %MZO. In particular, if for anyy; as above we havgl M, (T3)),_, = 0, then each
%;j has zerap-mean curvature and
no™ =0 onr. (24)

iJj
We call condition[(Z}) then-dimensional version of théjalance conditioron I”; this condition is,
in three dimensions, locally equivalent to condition (21) of [19].

REMARK 3.10 Condition [(ZB) is equivalent to requiring that for apye I there exist an
open neighbourhood of ¢ and constants;; € {—1, 1} (possibly depending o®’) such that
Zi‘j Sijn(pl):[_j (p) =0foranype I'NU.
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4. First variation of M, in the crystalline case

To state the main result (Theor¢m4.8) we need some preliminaries LetR” be a Lipschitz
hypersurface with boundary. In the following any Lipschitz function or vector field defined on
¥ will be considered as defined up &&. We denote by anH"~1-almost everywhere defined
euclidean unit normal t&’ and we set, as usual, := v/¢’(v). We denote by LipX’; R") the set

of all Lipschitz vector fields or¥', and define

Nor,(2; R") := {X : ¥ — R": X(x) € T°(v,(x)) for H" L-a.ex € X},
Lip, , (X R") := Lip(¥; R") N Nor, (X; R"),
L2(Z;R") := (N € L3(Z;R") : N(x) - v,(x) = O forH" L-a.ex € X}, (25)
Lip, (Z; R") == {X € Lip(Z; R") : X (x) - v,(x) = 0 for H" L-a.ex € ¥},
Llpc(Z‘) = {y € Lip(2) : spty) NdX = @}.

The following definition is the same as in [3, Definition 2.1], where it was introduced in the case
X =4.

DEFINITION 4.1 LetX < R”" be a Lipschitz hypersurface with boundary. We say thats
Lipschitze-regular if there exists a vector field, € Lip, ,(X;R"). We denote b)ﬂz?p(IR{") the
class of all Lipschitzp-regular hypersurfaces.

Even in the caseX = @, the geometry of Lipschitg-regular sets is nontrivial and strictly related
to the geometry o¥V,, (seell4, Section 4].[2, Figure 7]).

With a little abuse of notation, we sometimes wii, n,) € Rg (R™), and we say that¥, n,)
is Lipschitzg-regular.

We now define the-weak tangential divergence of a vector field; we follow the definition given
in [3| Definition 4.1] for the cas@ X' = ¢, the only difference being that the operator is now tested
on compactly supported Lipschitz functions. We refei o [3] for the motivations of such a definition
and for an explanation why it generalizes the definition of,digiven in subsectiop 3,2.

DEFINITION 4.2 Let (X, ny) € RZ(R") and letv € L2%(X;R"). We define the function
diVy n,.r v : Lip.(X) — R as follows: for any) € Lip,.(X) we set

(divg p,.r v, ¥) 1= / Y - v, dive n, dP, — / [Ve — (ng - Ve¥)vg] - vdPy,. (26)
b x
Let

Hd“’(Z‘ R") := {N € LZ(Z;R") : diVy,,, - N € L3A(D)},

H™ (2, R") 1= {N € Nor,(Z; R") : divy,, . N € LA(2)}.
REMARK 4.3 Forv € Hd'V(E R™) U Hd'V(E R"), the operator diy.,, . v does not depend on
the choice of, in Lip, W(E R™) (seel[3, (A2) of Lemma 4.4 and Corollary 4.7]). Accordingly we

shall use the notation djv; v in place of diy, ,, - v. Moreover, if X' is contained in a hyperplane, the
function div, ; v coincides with the usual (Weak) tangential divergence di{see([4, Remark 2.2]).

The following definition is suggested by Definitipn 3.1.
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DEFINITION 4.4 Letx € X be such that botlf, (¥) andT, (3 X) exist, and let € R\ T, (X).
We define the vector?® e T,(3X)* as the rotation through /2 of the vector; — ITr, 55z in
such a way that’% points outwards fronk.

Given anH"~2-almost everywhere defined vector fiedd: 3~ — R which is nontangent to
¥, we defineN%% : ¥ — R" asN?¥ (x) ;= (N(x))?%.
ASsSuUMPTION To simplify the computations, from now on we will assume that crystalline and

that the partitiong™ are polyhedral. See Remark 4.11 for a discussion on when such an assumption
can be weakened.

PROPOSITION4.5 Let(X, n,) € Rg(R”) and assume tha¥ polyhedral. For any vector field

N e HM(3; R"), there exists a functioV e L (3 2; R") such that

N(x) e T,(0X)L forH" 2aexcdX,

and
f Y divy,e N dP, = / ¥ diven, dP,— f Ve (N=ny) dPy— f YNZ ., a2 (27)
X X X D)

foranyy € Lip(X).

Proof. Let us first assume tha¥ is contained in a hyperplane. Let us denotevbs unit normal
vector to X and byv the unit normal vector té@ X in the hyperplane containing and pointing
outwards fromX. Let us consider the tangent vector fie — n,. By Remark[ 4B we have
divy (N — ny) = dive(N — ny) H"~1-almost everywhere o&. Using the results of [1] (see
also [16, Lemma 9.2]) we see that — n, admits a trace along on 3%, which we denote by
[N —ny,v],and [N —ny, V] € L*(3%). Moreover, recallin(ﬂ6), we have

/ Y divy (N —ny) dP, = (p”(u)/ ¥ dive (N — ny) dH" 1
X P
= ¢’ (v) (_/ Ve - (N — n(p) dHn_l +/ V[N — n(va)]dHn_2> (29
= D
foranyy € Lip(X). Let us define

N(x) = ny(x) — 1,550 (x) + [N — n,, V]¥(x)  for H" 2-aex € 9. (29)

Note thatV is nontangent ta@ andN?* - n, = —[N —n,, ¥ - nd*. Therefore](2]7) follows from
(28) by observing thap? (v) =V - n}*.

Assume now that’ is polyhedral. We can reduce to the case in whigls the union of two
sheets¥1, X, each lying in a hyperplane. Sindehas square integrable divergence, itis not difficult
to check that N x,)? "t = —(N|x,)?*? H"~2-almost everywhere o&'1 N . Then [2) follows
from the previous case. O

REMARK 4.6 Let; € HI(¥; R"). Reasoning as in Propositibn 4.5 we can show that

/ divy. . ¢ dP, = —/ V,¢~§d7?(p+/ ye-ndTdH'? vy elip(s).  (30)
X X 91X
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4.1 Lipschitze-regular polyhedral partitions: statement of the main result

The following definition is suggested by the results in subsegtioh 3.2. In two dimensions, it is
essentially the same definition given by J. E. Taylot in [28].

DEFINITION 4.7 Let{E;} be a Lipschitz partition oR". For anyi # j let &;; := dE; N 9E; and
r = Ui’j 9X;;. We say tha{E;} is Lipschitze-regular, and we write{E;} € RP,(R"), if, for

anyi # j, Xjj € R;}(R") and there exist vectorfieldéf € Lip, ,(Zi;; R") satisfying

Y @i)’*i =0 onr. (31)
i,j

Let {Ei} € RP,(R") and setl := |J; ; ;. We denote byH(T; R") (resp. Nog(T; R"))
the space of all vector fieldy : T — R" such thatN|s,, € HI(X;;; R") (resp. Nz, €
Nor, (X;;; R™)) for anyi # j.

Let (¥, ny) € RZ(R”), X polyhedral, and € Lip(X'; R"). SinceX has a boundary, when
computing the first variation oM, we cannot restrict ourselves {gnormal vector fields, and
tangent vector fields must be considered; as already remarked in the Introduction, this is one of the
main additional difficulties in the computation of the first variation\df,, as compared with [3].

Let (X, ny) € RZ(R"). Reasoning as in [3, Lemma 3.3], one finds that there existsO such
that the mapF,,, (x, 1) := x +tn,(x), mappingX x |—p, p[ onto its image, is bi-Lipschitz. We set
F () = (10, (), 12, ()) € 2 x ]=p, pl.

Fort € Rwith |t| < p, p > 0 small enough, defing,, Epi andX, asin ). Given a Lipschitz
functiony and a Lipschitz vector fielg defined onX, we denote by/¢ := ¥ (w,,) : Uy — R,
n¢ = n(my,) : U, — R" the (Lipschitz) extensions af andy respectively o/, along the vector
field ny,. DefineF(z, 1) i= z + tv¢(z) on U,. Set alsoF' () := F(-, 1) andx} = FI(X). Finally,
let

My (Z)) = My(X)

; (32)

Var(M,, X)(v) = Iimglf

Before proceeding with the computation, we split the vector fieldto its normal and tangential
part as follows:

v=Ynng +ty, Yy =V V. (33)

Itis immediate to check that - v, = 0, and therefore, is tangent ta¥. We also set/{ := ()¢,
tf == (t,)¢, and

By(X) == {v € Lip(Z; R") 1 ¢, € Lip(2), fz(llfu)zd% < 1},

By(T) = {v € Lip(T: R") : Y5, € Lip(Zij) Vi # J, /va)zdm < 1}.
The vector field( [ (n,)? dP,)~1n, belongs toB,(X). In particular,B,(X) is nonempty. Notice

also that ifv € B,(X) thent, is a Lipschitz field. Finally, als®,(T) is nonempty.
The main result of the paper is the following.
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THEOREM4.8 Letg be crystalline. Le{E;} € RP,(R") be a polyhedral partition and I¢t :=
Ui,j 82,’j. Then

inf  Var(M,, T)(v)
vEBy(T)

1/2 _ Ty
=_ min{[/T(div(,,,r N)de} N e HY(T;R"), ZN'EU %i _o onF}. (34)
i,j

All examples in Sectiop|5 are focused on explicit computation of a solution of the minimum problem
on the right hand side of (84).

REMARK 4.9 Formula[(3}) gives, loosely speaking, the expression of (minus) the norm of the
gradient of the functionaM,,. If Nmin is one minimizer oﬂ'(_B’]4), then the (uniquely defined) quantity
div,, - Nmin is expected to identify the initial velocity df, if we considerT as the initial datum for

the crystalline mean curvature flow for partitions.

4.2  Proof of Theorerh 4]8

Let us denote by one of theX;; of the partition. The proof of Theoren 4.8 is divided into five
steps.

Step1l We have

inf_ Var(M,, X)(v) = sup inf  {I(N,v) +1I(N,v)}, (35)
vEB,(X) NeHE%():;R”)UEBw( )

where

I(N,v) = / (Y divy ny — Very - (N — n(p)) dP(p,
> (36)
II(N,v) = / (=N - v, Vty +dive)) dP,.
X

Letv € B,(X). Following the same computations as in the proof of Theorem 51 in [3], it turns
out that [[32) can be written as

Var(My, X)(v) = sup {I(N,v) +1I(N,v)}, (37)
NeNor, (X;Rm)

wherel (N, v) is as in[(36) and
II(N,v) = / (=N v Vt, +v - vVil +dive 1) dP,,. (38)
=

Recalling the definition of the (euclidean) tangential divergence, e can rewritel I (N, v) as
in (38). Using [(3}) and arguing as in [3, Proposition 5.2], we get

inf _ Var(M,, 2)(v) = sup inf_ {I(N,v)+II(N,v)}. (39)
veB,(X) NeNor, (Z;Rn) v€Bp(X)
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Taking v of the formyn,, ¥ € Lip.(X), we havelI(N,v) = 0 and/(N,v) = (divy; N, ¥).
Pince ings,(z) I (N, v) = infg,){I(N,v) + II(N,v)} = —co if N ¢ HIV(Z;R"), and )
oliows.

Step2 Theintegrall I (N, v) in (3G) has the expression
I11(N,v) = / v-nd¥ dH" 2, (40)
ED>

and in particular it is independent of.

Let N € va{ig(z; R™). Sincer{ is Lipschitz continuous and tangential, we haye/s; = 0

H"~L-almost everywhere o, hence from Rematk 4.3 we get
divy . t, = div; 1, = diveé — N - v, V¢  H' l-ae.onz. (41)

Therefore, from[(41)[ (36) anfl (B0) (applied with= 1) we obtain

II(N, U):/ divy, . t, dP,, =f ty - n* dH"—zzf vend¥ dH" 2,
X D) D)

where the last equality follows from the decompositior] (33).
Step 3 We have

inf_ Var(M,, X)(v)
)

veBy(

=  sup inf {/wvdivw,,NdP(p—i—/ v.ﬁ“dﬁn—z}. (42)
NeHdY (z:R veBe(D) [y 0z

If N e HY (2; R"), from ) and) we obtain
I(N,v) = / Yy divy, . N dP, +/ Yy N°¥ . n, dH" 2
P X
- / Y, div, . N dP, +f Yo(N?Z = nd%) - ny dH" 2, (43)
X X
Taking into accoun{ (40) anfl (#3) we get
I(N,v)+1I(N,v) :/ s divw,,NdP¢+/ W-ndE +yng - (NF —nd¥)) dH"2. (44)
P b))
SinceN?* — nl¥ is parallel tov,, recalling ) we have

Yong - (N> —nd¥) =v- (N> —nd¥).

Hence[(44) becomes

I(N,v)+ I1(N, v):f Ipvdivw,tNdP¢+f v NOZ dH"2,
X X

which, taking into accounf (39), gives (42).
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Step 4 Relation[(34) holds with the infimum on the right hand side in place of the minimum.
Recalling thatT = Ui’j %, the definitions of Nqs(7T; R") and of Hﬁ'},f(T; R™), when
computing VatM,, T)(v) we can add the contributions of all;;. To simplify notation, we write

0z
Nij = Ni5, . Using step 3, we get,

infT) Var(My, T)(v) = sup inf {/ Yy divy . N dP,, +f v- (ZNij) dH”z}.
T r i,j

VEB( NeHI(T;Rn) veBy(T)

Observe now that if for a vector field € HI (T R") we have)"; ; Nij # 0onT then

. - y n=2l _ _
Ueglf(r){/Tt/fvdwdeP(p—i-/Fv (;Nl]>dH }_ 0o. (45)

This follows from the fact thal is polyhedral, hence we can arbitrarily fixon I" without violating
the constraint € B, (T) (in particular the fact thap, € Lip(T; R™)).
We finally obtain

inf )Var(M¢,T)(v) = sup inf {/ Yy divw,,NdP(p}
T

VEB, (T NeHS (TR, Y, ; N'_j:OveB(p(T)

1/2
- inf [ / (div, N)de(p} . (46)
T

NeH;{i;(T;Rn), >, Nij=0

Step5 The minimum problem i4) admits a solutidyin € HIY (T R™). Moreover, ifN1, N>
are two minimizers of (34), then djy N1 = div,, - N2 H"~*-almost everywhere off.
The set _
C:= { divg.: N : N e HV(T;R"), SN =0 onr}
i,j

is a closed convex subset bf(T'). Indeed, the convexity follows from the fact thHﬂL‘,{(T; R™)
is a convex subset of the Hilbert spagé € L2(T;R") : div, , N € L%(T)}, and the condition
>_i.j Nij = Ois linear.

Following [3], let us prove tha€ is closed. Letf; := div, ; Ny € C be such thatfy — f
in L?(T) ask — oo. We have to prove thaf € C. Since SUR I[Nkl L2r.rny < 00O, pOssibly
passing to a subsequence we can assuméahaconverges weakly iL2(7; R") to a vector field
N € L%T;R"). SinceNy € Nor, (T; R"), we deduce thatv e Nor,(7; R"). Moreover, for any
¥ € Lip(T) from (27) we obtain

/wfdm: lim /yfoliv(p,r dem:/ ¥ div, n, dP, — lim fV,¢~(Nk—n¢)dP¢
T k—oo JT T k—oo JT
=/T¢div,n¢d7>¢—/TV,¢-(N—nw)dm.

It follows that f = div,.. N, henceN ¢ H®(T;R") and)_; ; Nij = 0 onI". ThereforeC is

closed inL2(T; R™). The conclusion now follows since the functional (34) is strictly convex in
the divergence.
The proof of the theorem is complete.
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REMARK 4.10 Ifn = 2 the vector fieldVmin is unique, since any vector fiel e Hﬂi(‘,f(T; R?) is
uniquely determined by its divergence and the value at one point.

REMARK 4.11 Ifn = 2then Lig, ,(X; R?) is dense it (X; R?). Indeed, any vector field

Hv"iig(z; R?) is nonconstant only wherE coincides with a segment parallel to an edgyf: on
such segments the normal componerit sfconstant and the tangential component belongg*g.
Hence¢ is continuous and can be approximatediit? by a sequence of Lipschitz continuous
vector fields.

Finally, if n = 2, Theoren] 48 holds also whéhis piecewiseC11, instead of polygonal.
Indeed, one can directly pro 27) under the assumptioa Lip,, ,(X; RR?), and then conclude
by approximation and using the previous observation.

REMARK 4.12 All results of Sectiorj3 3 afndl 4 can be easily generalized in the presence of a family
of Finsler normsp;; (satisfying some compatibility conditions, see for instance [22]). For example,
in the crystalline case, it is enough to consider the appropriate pgram each polyhedral interface
dividing E; and E; and consequently to define the Cahn—Hoffman figjdl. In a similar way, it is
possible to generalize relatidn {34) in the case of several norms.

5. Examples

In this section we show with some examples how formula (34) leads to an explicit computation of
the crystalline mean curvature. As already observed in Remark 4.10, in two dimensions each edge
of the partition has constaptcurvature and the solutiamin of the minimum problem on the right
hand side of (34) is unique; in three dimensions in general it is not true that each facet of the partition
has constanp-mean curvature already in the two-phases cases|[(see [2]). Moreover, uniqueness of
Nmin in general is not expected; however, two solutions of (34) have the same divergence.

Recall that whem = 2 the set$ E; N 9 E; are often denoted bfy; in this casel; denotes the
length of .

In two dimensions, we also give the following definition, whose meaning will be discussed at
length in what follows.

DEFINITION 5.1 Let{E;} be a Lipschitzg-regular partition ofR? and letg be any multiple
junction of T'. Let Nmin be the solution of (34). We say thdtis stableif, denoting by X1, ..., %,

all the edges of" havingqg as an extremurmu{ > 3), (Nmin)|x; (¢) is not a vertex oV, for any
i =1,...,m. We say thaf’ is unstableif it is not stable.

5.1 Two-dimensional examples

We begin with the two-dimensional case, where we assumé/tjés a regular octagon centered
at the origin (see Figufg 1). We denote/lys side length and by the radius of the circumscribed
circle. The vectora? andn? satisfy the balance condition’>_; n¢ = 32 ; n? = 0.

As shown by J. Taylor in_[28], there are only eight possible configurationgth one triple
junction andT € RP(p(RZ) (see FigurcﬂZ); each of the three eddes X», X3 meeting aly is
parallel to an edge of,, and the possible configurations are given by the one in Fjgure 2 and by its
rotations through multiples of /4.

Each of these configurations (assuminig not adjacent to another triple junction) gives rise to
a different vector fieldVyin : 7 — R? (the minimizing solution 0@4)).
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C D

FiG. 1. The Wulff shap@V,. The vectors:{ andnf’ (Zf’zl nd = Zf’zl nf’ = 0) delimitate the admissible ranges of a field
N at a triple junctiory. For instance, the vectops, Y, Z form an admissible triplet, i.eX + Y + Z = 0.

FiG. 2. Example of a Lipschitg-regular partition?” with one triple junction, when the Wulff shape is an octagon.

The balance condition .
Y Ny, "=0 onr (47)
iJ
appearing in[(34) now reads

Nix,(@) + Ni5,(q) + Nis;3(q) = 0. (48)

As shown in Figurg[L, in order to satisfy the balance condifioh (48) the vewtar)| x, (¢) can take
values only in the range betweef andnf’, i=123.
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Let us consider for instance the configuratibin Figure[3. We want to explicitly compute the
crystallineg-curvature ofT, at least in the special casés = L, = L3 (Example 1) and.; > 1
andLy = L3 (Example 2).

Note thatr := |n’§| =1/(2sin(z/8)). Moreover, by symmetry we obtain

|A —nd| = |B —nb| = |n§ —n§| = |n% —nh| =: 6. (49)

The balance conditio__; n” = 0 implies that the line passing through andn} is parallel to
the line passing through and the origin. These observations and elementary computations yield

b

1 . B 1
2c0&{n/8)>’ Iny =l = r(cos(n/S)

Denote byX an arbitrary vector of the segment connectiﬁ_‘gandn’i and letx := |A — X| €

[6,1— 8]..If Y (resp.Z)isa ve.ctor.belonging to the segment connecﬂ@gndng (resp.ng andng)
the conditionX + Y + Z = O implies

8= r<2 sin(z/8) — — ZSin(JT/S)). (50)

(x —=9), (51)

) )
y:y(x)ZZ——za(_XH_‘S)’ Z:Z(x):l—ZcS

wherey := |nl2’ —Ylandz := |n§ — Z| (see Figurﬂl).

REMARK 5.2 Since in two dimension¥n is unique and its values are fixed (up to sign) at the
three vertices of the partition different frogn(where it equalsA, D, C, see Figuré]3), it follows
that the triplet of the values @¥in atq uniquely determined/in on X1, Yo, X3, simply by linear
interpolation.

FiG. 3. The values of any admissible vector field are fixed (up to sign) with vadyés, C at the vertices of the partition
different fromg; we also plot an admissible triplet @t

Thanks to Rematk 5 2, we can rewrite the functional appearing on the right hand $idg of (34) as
a function of the variables, y(x), z(x) which are in a one-to-one correspondence with triplets of
values ofNpin atg. An easy computation shows that, for a vector fidldvhich is linear on each
X; and satisfies the required constraints, we have, for the configuration in Fjgure 3,

] — 2 ] — 2
(I —y(x)) (p”(vz)—i-( z;x)) o

L 7 (va), (52)

2
/ (div, NY2dP, = —¢°(v1) +
T Ly
wherey; are unit normal vectors t&;, i = 1, 2, 3. Observing thap?(v1) = ¢°(v2) = ¢?(v3) =:
¢°(v), and inserting relation$ (51) intp (52), we reduce the problem of finding in (34) to the
problem

LJmin . fO0) = ax® 4 By, (53)
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where
1+ 82 1+1 0
o = — —_—s | — — ] > 0,
L1 (—=282\L, L3
28 (1 1 252 1 1 l
= ([=——=)+—=(5(—— =) —-—). 54
P l—28<L2 L3>+(l—28)2( <L2 Lg) L2> ®4)
_p 1+1 N 28 (8§ 1-36 N 82 (1—5)2+32
V=L T ) T\ 1s T L, (—202\ 1, "13)
and
1

div; Nmin)2dP, = mi :

27() /;( Ve Nmin)® dPy xe{?,llrlé] fx)

Let us denote bymin € [8, [ — §] the minimum point in[(5B).
Recalling Definitiof 5.1, we observe that the condition

is equivalent to the stability of (stability in the sense of Definitign §.1 can always be expressed
through an inclusion relation similar tp (55), for any polygonal Wulff shape and any admissible
triple junction).

If T is stable then no formation of new edges frgnis expected during the flow (for short
times); if T is unstable and, in additiory,’ (xmin) > O (resp. f'(xmin) < 0) if xmin = & (resp.
xmin = [ — 8) then the appearance of a new edge starting fydmexpected (see Example 1).

We can now consider some special partitidhs

ExAmPLE 1 Let us consider the configuratighof Figure/ 4 where we assume

L1=Lyr=Ls. (56)

e

FiG. 4. Example 141 = Lp = L3). We plot the vector fiel&Vpin. In this casemin = [A — n{| = 4.
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C

Fic.5. Example 1: the appearance of the new vertical edgeimathe evolution is due to the fact thag,, is not in the
interior of the interval §, / — §]. The edge is vertical, sincey, tends to be smaller thahand the constraint, € T (vyp)
cannot be violated.

In this case we have
B 821 [ s

—_—_—=— < = < | — 0.

20 (1—28)24252 2

To check that-8/(2a) > & we have to verify thatl — 25)(I — 38) < 0; sinces < [/2, this reduces
to checking whethes > 7/3. However, an elementary computation based oh (50) ytelds /3.
We conclude thatmin = 8 and f/(xmin) > 0. The situation is depicted in Fig 4: the vector field
Nmin is the linear interpolation betweehandn{ (recall that in this caspA — n§| = xmin) ON X'1;
similarly, it is the linear interpolation betwe&handn$ on X, and betweerD andn§ on X3.

In this case the triple junction instableand a new edge is expected to appear in the subsequent
evolution (cf. [28]). Our variational analysis allows us to determine a priori which new edge will
appear. More precisely, a new vertical edge will be created as time flows, as in[Higure 5. The reason
why this should happen can be explained as follows: when minimizing the fun£tior(53), the
value ofxmin tends to decrease;ifnin < 8§ the constrainiVmin € T°(v,,) cannot be satisfied ob’3
any more, unless a new vertical edge appears. On this newNgglg&vill belong to a different edge
of W,, precisely the edge connectitgandns (see FigurE]l).

EXAMPLE 2 If weletL; = +oo andLy = L3 in Figure[3, we get-8/(20) =1/2 € 18,1 — 5.
Therefore, if
L, =Lz and L1 is sufficiently large

we deduce that the minimum poinin for f in (53) belongs to the interior of the interval | — 5].
Again, corresponding to this point, there are a unique triplet ahd a unique vector field/min
defined onT (by linear interpolation) whose tangential divergence isgkmirvature ofT. In this
case the triple junction istable

ExamPLE 3 Let us consider the configuration of Figyre 6. In this case the funcfida be
minimized in [53) is

x2 (- yx))? +z<x>2.

fo =T+ o (57)

If x €]68,1 — §[ decreases then € [0, /] increases and decreases. It follows that to minimize
f in (57)) the value ofcmin must be as small as possible, igin = §. Moreover, f(xmin) > 0.
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FIG. 6. Example 3: this triple junction is always unstable, for any choicégfL, and L3. Here we plotNpmn (linear
interpolation on¥’; and X» and constant vector ob'3).

Therefore(Nmin)|z;, = n{ for any choice ofL;, i = 1,2, 3, and the triple junction islways
unstable In Figurg § we plotVimin (linear interpolation orz; and X, and constant vector ab3).

EXAMPLE 4 Let us consider the partitiofi of Figure[7 having two adjacent triple junctiops
andgs>. In this case we have two free variablasxs € [, [ — 8], wherex; := |A — X (¢;)| andX is
an arbitrary admissible vector field dfy. For a vector field which is linear on ea¢h and satisfies
the required constraints we have

/ (div; N)?dP,

T

e fGi—x)? (= ya)? | (I —zx))? | (- y(x2)? | z(x2)?

_(p(v)[ L1 * Lo - L3 * Ly * Ls } (58)

wherey (x;) = 55 (—x; +1 — 8) andz(x;) = =5 (x; — 8),i = 1, 2. Inserting these relations in
(58) we are reduced to the following minimum problem:

min fx1, x2),  f(x1, x2) = @1x? + apx3 4+ agox1x2 + Brx1 + Baxz + v,
(x1.x2)€[8,1—8]2

B

FIG. 7. Example 4: two adjacent triple junctiogs, g»; the function f to be minimized is a quadratic polynomial in two
variables.
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where
1 52 1 1
o] = L_1+—(l—28)2(L_2+L_3> > 0,
1 52 1 1
=7, (1—26)2<L_4+L_5) =0
2
12 = —L—ly

(59)

28 1 1 8 1 1 [
=) s l(nn) )
25 l b 1 1 l
=gl ea ) m))
(1 1 1 84 1 1 21-8%2/1 1
r= (z*a*a)*m(a*a)*m(z*a)
218 1) §—1 §—1
et )
The discussion on whether the configuration in Figufe 7 is stable or unstable is now more
complicated, in view of the dependence of the minimization problern (59.0m = 1,...,5,

and each situation must be analyzed separately.
Observe that stability in the sense of Definition]5.1 is equivalent to

Xmin = (X1min, X2min) € 16,1 — 6[2- (60)

If T is not stable, then basically at least one of the two triple junctions is not stable; if in addition
the gradient off points inside §, [ — §]?, then the appearance of a new edge from one of the two
triple junctions (or from both) is expected during the subsequent crystalline flow.

ExXAMPLE 5 Let us consider the partitih of Figure[8, which coincides with the partition of
Figure[T except for the way the network attaches to the eggé\gain, we have two free variables
x1,x2 € [8,1 — 8], x; :==|A — X(¢;)| andX an admissible vector field of;. In this case[(58) is

FiG. 8. Example 5: this configuration @waysunstable, for any choice df;,i = 1,..., 5. Note that it consists of two
unstable adjacent triple junctions.



CRYSTALLINE MEAN CURVATURE 353

replaced by

/ (div; N)?dP,
T

o [G1i—x? | (= yx)? | )? | (= y(x2)? | z(x)?
_<p(v)[ I + I + L + L4 + L. } (61)

We observe that the second and third terms on the right hand side| of (61) are strictly increasing
in x1 € 18,1 — §[, and the fourth and fifth terms are strictly increasingire 1§, — §[. Since the
first term is zero when; = xp, it follows that the minimum of the function if (p1) is attained for
x1 = x2 = §, therefore this configuration of two adjacent triple junctionalvgays unstable

The instability of the configuration in Figufg 8 could be related to the observation of Cahn
and Kalonji [10], where they emphasize that neighbouring triple junctions must belong to different
symmetry classes.

5.2 Athree-dimensional example

In three dimensions the geometry of Lipschitzegular partitions is more rich, and the junctions are
lines instead of isolated points. Let us fix for simplicity the Wulff shapg to be the cube of side

20, i.e.p(&1, &2, &3) = }max(|§1| |&2], |€3]). We want to construct Lipschitz-regular partitions

Let us consider a Lipschitz partitiofE;} of R3 with the property that any surfades; N 0E; =

%;j is a union of rectangles parallel to some faceb#¥,, and two rectangles whose boundanes
intersect belong to nonparallel planes (see for instance Higure 9, where a partition into five phases
is depicted). We have the following observation.

E;
A
i \ —— E3
|
| 2 1
E, — .|
2 //:77T 77777 T //E4

FIG. 9. A Lipschitze-regular partition ofR3 into five solid phases whew,, is a cube (the phasgs is the exterior of the
cube).

REMARK 5.3 The partition{E;} is Lipschitz ¢-regular, so that there exist vector fleld$ €
Lip(Z;;; R®) satisfying [31).

Indeed, anyy € I' := |, ij Zij has a neighbourhootl, such thatl" N U, coincides (up to
translations and rotations) with one of the two sets of Figuie 10. One can prove that the Lipschitz
@-regularity of the partition is a consequence of the Lipscpitegularity of the two configurations
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FIG. 10. The local geometry af for a Lipschitze-regular partition.

T1, T> in Figure[10. By considering horizontal sectionsTaf 7>, the proof of the Lipschitzp-
regularity can be reduced to a two-dimensional problem, i.e., to the proof of the Lipgthitz
regularity of 71 and 7z, where{g < 1} = W, is the horizontal section of the cub#), (that is,

the square of side/Zentered at the origin, see Fig 11). Proving the Lips@hitzgularity of 71
andT; is then the analog of proving the Lipschitz regularity of the set in F@lre 2, with the octagon
replaced by the square (see Figurg 11).

The first two assertions of the remark below follow from the fact that when we compute the
Euler equation of the functional i (B4), any vector field with constant divergence on each rectangle
is a critical point, hence it is a minimizer since the functional is convex. The third assertion is a
consequence of [2, Lemma 5.1].

REMARK 5.4 Any vector field minimizing[(34) has constant divergence on each rectanglg.of
Conversely, assume that there exists a vector field H,f’,'(‘,f(T; RR3) satisfying ) and such that
div; N is constant on each rectangle Bf;. ThenN is a solution of the minimum problem on the
right hand side of (34). Finally, there exists a minimi2&si, of (34) such that, for any rectangke
of T, the normal traceNmin|z, Vr] is constant on any edgecC 9 R, wherevy, is the euclidean unit

normal tod R pointing outwards fronR (in the plane ofR).

Notice that the admissible triplet of vectors for the configuraiipin Figure 1] is unique, while
there are infinitely many admissible quadruplets for the configurdtion

Observe also that no matching condition is required for the Lipsehitegularity in three
dimensions on zero-dimensional singular sets, i.e. we do not have to impose any condition on the
isolated points which are intersections of segments belonging to

3

FIG. 11. Two Lipschitz regular partitiori and7 (trijunction and quadrijunction) dk? with respect to the metric whose
unit ball W, is the horizontal section afV,.
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Under our assumptions on the partiti¢a;}, it is possible to compute its crystalline mean
curvature. As we shall see frofn (62) apd](63), we can equivalently rewrite the minimum problem in
(39) as the constrained minimization of a quadratic polynomial depending only on a finite number
of variables.

LetN e Hﬂi(‘,f(T; RR3) be any vector field with constant divergence on each rectahgie’; ;,

and having constant normal trac¥ g, vg] on each edge C 9R. We definexéj = [Nir, Vr]|e €
[—1,1].
Notice that ife does not belong td” (as for instance the upper horizontal frontal edge in
Figure@), the quantity,’ is determined by the geometry of the partition (and is equabto-1).
Condition [47) reduces to the linear system

Y (g +n vpvr)’®F =0 VecT, (62)
R

where the sum is over all pai® € X;; such thatR > e, andvr denotes a euclidean unit normal
to R.

Recalling the divergence theorem and the fact thatas constant divergence on each rectangle,
we see that the function to be minimized is now the quadratic polynomial

/(divr NZdP, = ¢’() Y >
T

ij RgE,v_,-

1 R
T (;:R Hie)xd') (63)

in the variabIeScéj , under the constrai2). Finally, observe that the stability condition now reads
x; €]-1,1[forany edges C I.
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