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This paper is devoted to the study of linear and nonlinear stability of undercompressive shock
waves for first order systems of hyperbolic conservation laws in several space dimensions. We first
recall the framework proposed by Fréikter to extend Majda’s work on classical shock waves to
undercompressive shock waves. Then we show how the so-called uniform stability condition yields
a linear stability result in terms of a maximaP estimate. We follow Majda’s strategy on shock
waves with several improvements and modifications inspired fragtiviér's work. The linearized
problems are solved by duality and the nonlinear equations by mean of a Newton type iteration
scheme. Finally, we show how this work applies to phase transitions in an isothermal van der Waals
fluid.

1. Introduction

In [14,[13], Majda proved the (local in time) existence of multidimensional shock waves for systems
of conservation laws. We refer tb [15,/21] for an overview of the method and its applications to
gas dynamics. Majda’s analysis dealt with shock waves satisfying Lax’s entropy inequalities, and it
relied on a uniform stability condition. His work was later refined bgtMier and Mokrane [16, 1.7],
using new ideas of paradifferential calculus.

In several applications such as magnetohydrodynamics or the modeling of phase transitions, it
happens that some shock waves violate Lax’s entropy inequalities. Depending on their nature, these
discontinuous solutions bear the name of undercompressive or overcompressive shock waves (we
shall recall these notions later on). To select the physically relevant discontinuities, an additional
admissibility criterion may be required (this is the case for undercompressive shock waves).
For isothermal subsonic phase transitions, Slemrod and Truskinovsky independently derived an
admissibility criterion based on the theory of capillarity [[24, 25] (see also [22]). In this paper,
we focus on undercompressive shocks and we shall follow a general approach, using an abstract
admissibility criterion, as suggested by Frafder. The analysis applies to some concrete problems
(this approach was also used by Colombo and Corlilin [6] for one-dimensional problems).

Our purpose is to establish the (local in time) existence of multidimensional undercompressive
shock waves under a uniform stability assumption. This is the extension of Majda’s work proposed
by Freistihler in [10] (see alsd_[9]). In particular, the uniform stability assumption stated below
was already formulated in_[10]. For technical reasons, we have adopttidiéf's approach and
we shall often refer ta_[16] for detailed proofs. However, we emphasize that the analysis of [16]
does not apply when solving the linearized equations (see S¢gtion 5 below), and we need here to
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368 J.-F. COULOMBEL

make a specific assumption that is due to the undercompressive nature of the shocks we consider.
This assumption is highly reasonable though and is met in our main example. This example deals
with subsonic phase transitions in a van der Waals fluid. We are interested there in the existence
of propagating interfaces separating liquid and vapor phases. Such an interface is not known in
advance, and we thus face a free boundary problem. The evolution of this free boundary is governed
by the Rankine—Hugoniot conditions and the visco-capillary admissibility criterion described below.

In Sectior , we shall show how Frdister's general framework, which we develop here, can be
used to solve this specific problem of fluid dynamics. The stability of multidimensional dynamic
phase transitions was first adressed by Benzoni-Gavagé in [1, 2].

The remainder of this paper is organized as follows: in Se€fion 2, we introduce the framework
of our study and state our main assumptions. We recall the definition of undercompressive shock
waves. In Sectiofi|3, we study the linear stability of a fixed planar undercompressive shock and
show how the so-called uniform stability condition yields a maxith&lestimate. The study of
planar shock waves is extended to the variable coefficients case in $éction 4. In Section 5, we shall
detail how to solve the linearized equations as well as the nonlinear problem. In particular, we shall
explain why Metivier's approach cannot be used. Finally, Sedfion 6 is devoted to the application of
our work to isothermal phase transitions in a van der Waals fluid.

2. Description of the problem

We consider a system afconservation laws iR x R?:

d
0j fi(u) =0, (2)
j=0
wherexg is the time variable, also denoted byn what follows, (x1, ..., xz) is the space variable
andd; stands for the partial derivative with respectvio The fluxesfo, ..., fq areC* functions

defined on an open subdggétof R” with values inR”. The jacobian matrix of; at a point: will be
denoted byA; (u). For the sake of completeness, we assume fhiat aC> diffeomorphism on its
range. One can simply think g% as the identity. We assume that the space dimensisrstrictly
greater than 1 (that ig, > 2) and make the following hyperbolicity assumption:

ASSUMPTION1 There exists & mappings : U — M, (R) such that

o Vj=0,...,d, YueU, Su)A;(u) is symmetric,
e VK compactc U, Icx > 0 suchthaS(u)Ag(u) > cxI forallu € K.

Moreover, if we define the matrit (u, &) by
d
VueU, Ve e R, A, &)= &Aou) " A;w), 2
j=1

thenA(u, &) is diagonalizable oveR with C* eigenvalues.y, ..., A,, (defined onU x R? \ {0})
of fixed multiplicitiesay, . . ., a,,. Without loss of generality, we may assume that

YueU, Ve e RI\ {0}, A1(u,&) <+ < Am(u, £).
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We point out that Assumption| 1 is easy to check on the system, unlike the block structure
condition defined by Majda [14]. However, one could replace the last part of Assumiption 1 (that
is, the constant multiplicity assumption) by the more abstract block structure condition/as in [14,
16]. We also note that the equations of ideal magnetohydrodynamics are symmetrizable but violate
Assumptioni L. An open and interesting question is whether the block structure condition is satisfied
by the MHD system. We refer tol[4] for some results on shock waves in MHD.

We first recall a basic fact on piecewise smooth solutiong|to (1) (we referito [20] for the proof).
LetI" = {x; —¢(xo0, ..., xq—1) = O} be a smooth hypersurfaceltf 1 andu be a function smooth
on either side of”". Thenu is a weak solution of (1) if and only i satisfies[(lL) (in the classical
sense) on either side &f and the Rankine—Hugoniot conditions hold at each point of

d-1
VX = (x0,...,Xq) € T, ¢ [fj)]x) = [fa)](x) =0, 3)
-y

J

the partial derivatives af in the above formula being evaluated ag, . . . , x4—1). As usual we have
let

[fi)](Xx) == Cirr(;(fj(x +sn) — fi(x—=sn)) with n:=(=dop,...,—0s-1¢,1)

a normal vector td” at pointx. In what follows, we omit the dependence »in the expressions
;).

In this paper, we are interested in the stability of undercompressive shock waves. To fix ideas
and notations, we consider a planar shock

u, ifxg>ot+v-y,
u::r d y (4)

u fxg<ot+v-y,

which is a solution to[(1). I {4)x, andu; are fixed vectors belonging to the open &gty =
(x1,...,x4-1) is the vector formed by the tangential space coordinatésa vector inR9-1 and
o is the speed of propagation of the front. This corresponds to the equation

d=1

@(x0, ..., xX4q—1) = 0xgo+ Z ViX;
j=1

for the shock front curve. Clearly is a solution of|[(1L) if and only if

d—1
oLfo] + D vl W] = [faW].
s

J

Performing a rotation of the axes, we may assume 0. Changing the last space variahig

to x4 — ot, and correspondingly the fluf; to f; — o fo, we may also assume that the shock is
stationary, that is; = 0 (this will simplify the statement of Assumptiph 2). Note that Assumgtjon 1
is still satisfied after this change of observer. We assume that the shiscloncharacteristic. More
precisely, we make the following assumption:
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ASSUMPTION2 There exist two integers, g € {1, ..., m} such that
hg—1(up,eq) <0< rg(up,eq) and Ap(uy,eq) <0< Appa(ur, eq),
wheree; = (0, ..., 0, 1) € R? is the vector of propagation of the shock wawe

If ¢ = 1 (resp.p = m) the first inequality on the left (resp. the last inequality on the right) is
ignored. Assumptiof|2 is illustrated by Figuirie 1 where the characteristics entering the shock front
curve{x,; = ot} are depicted (here we have not assumied 0).

t

' X4 =0t
aq + . + am
Am (Ug)
ol + e + ap
)\q(ul)
us A (ur)
)\p(ur)
Uy
Xd
FiG. 1. Characteristics entering the shock front.
Following Freistihler [8], we define the number
K::(aq+"'+am)+(al+"'+ap)_n9 (5)

representing the amount by which the number of incoming characteristics (counted with
multiplicity) exceeds:. We introduce the following terminology:

DEFINITION 1 If k = 1 (thatis,p = g andX, is a simple eigenvalue), thenis called ap-Lax
shock wave

If «k <1 (thatis,p < g), thenu is called arundercompressive shock wave

If « > 1 (thatis,p > g), thenu is called arovercompressive shock wave

From now on, we only consider the case of undercompressive shocks, thatjs0. As
already mentioned in some previous works (see €.d. [23] and references therein), in the case of
an undercompressive shock as initial data, the associated Riemann problem has several solutions.
In other words, the Rankine—Hugoniot conditionk (3) are not sufficient to single out a unique weak
piecewise smooth solution. Additional constraints on the shoake needed. As explained in the
introduction, we shall follow a general approach and will not discuss the way how the additional
“admissibility criterion” is derived (except in Sectiph 6 where we shall apply our results to phase
transitions in van der Waals fluids). We thus fix, once for alli®afunctions : U x U x Rx R4t —
RN—" whereN is an integer such that

N—-n=1—-«k2>1
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We focus on the case where the additional constraints take the form
h(uy,u,,o,v) =0.

The integertN — n counts the number of additional jump conditions that need to be prescribed and
N is the total amount of prescribed jump conditions including the Rankine—Hugoniot conditions.
We now introduce the following definition:

DEFINITION 2 Letu, defined by[(#), be a planar undercompressive shock wave. We shall say that
u is anadmissiblediscontinuous solution if

d=1

ol foW]+ Y vlfW] - [faW] =0, A, up.0,v) =0. (6)

j=1

Of course, there are many possible choicesidsee e.g. Section] 6), and our definition of
admissible solutions heavily depends on the choick. dfhe uniform stability assumption stated
below also heavily depends on the choice:oflhe reader is refered tbl[1, 2] for a comparison of
stability results according to the adopted criterion.

The (local in time) existence of admissible undercompressive shock waves is a free boundary
problem. The functionp defining the shock front is part of the unknown of the problem. To
circumvent this difficulty, we introduce a change of variableR#r! with the formula

D(x0, ..., xq) ‘= (X0, ..., Xq—1, Xq + @(x0, ..., Xq-1)).

We have chosen here the standard change of variables, las inl[14, 16, 17]. It maps the hyperplane
{x4s = 0} onto the hypersurfac€ and the two half-spacdstx; > 0} on the two sides of". We

now perform a change of unknown functionsulis a smooth function on either side bf then the
functionuy defined by

V(x0, ..., xa) € R up(xo, ..., xq) == u(®(xo, ..., x1))

is smooth on either side of the hyperplang = 0}. It is now a straightforward application of the
chain rule to verify that: defines an admissible undercompressive shock if and only if

L(ugt, (p)uét =0, +x; > 0,

7
Buf,u;,¢)=0, xa=0, @

Whereu;r (resp.uﬁ* ) denotes the restriction af; to the half-spacé¢x; > 0} (resp.{xy < 0}), and
the operatord. and B are defined by the following formulas:

d-1
L, y)w =Y A;j@)djw + Ag(v, V§)dgw (8a)
j=0
with
- d—1
g, V) 1= Ag(v) = ) 90 Aj(v), (8b)
j=0
d—1
Bt .y i | 22 VL@] = [a)] | (80)

i=0
h(w=, wt, doyr, Vyyr)
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Now that we have fixed the domain, the problem reduces to the following question: given an initial
datumu? that is smooth on either side of a hypersurfage= ¢%(x1, ..., x4—1)}, does there exist a
solution(uy, ¢) of (7)) with initial value(ug, ¢9), at least locally in time? Following Freigtler [10],

we shall answer this question in the affirmative under a uniform stability assumption. This extends
Majda’s work to the framework set by Frdistier for undercompressive shocks. As in Majda’s
analysis, special attention will be paid to the linear stability of the reference undercompressive
shocku with respect to small perturbations.

3. The constant coefficient linearized system
3.1 The linearized equations

We first examine the linear stability of the reference planar shidok= 0 ando = 0). We introduce
the linearized operators about the shackConsidering a familyty;, = u + sv andg; = sy, we
define the linear operators

d d
LuwE, ) = gL(u;t,so‘ou% . Bu,y) = aB(uj,u;,goo

s=0 s=0

Sinceu is constant on either side ¢f; = 0}, the linearized operators read
d
Ly=, ¥) = Lov™ =Y Ajup)djv*,  £xg >0,
j=0
d—1
D YL W] — Aa)vt + Aguv™
By(v, ¢) = j=0 , xqa=0.

dohdoy + dyh - Vyyr +dy, b - vt 4+ dyh - v™

wow = (7). b= (). 1<i<an

vh . (—Auuy) Ag(up)\ —
e (17) = (7307 ) e ()

Then the linearized boundary value operdigreads

We let

and

d-1 l)+
Bu(v, ) =) 99 bj (W) + M (W) (U_) :
j=0

We are now led to considering the following boundary value problem for the unknown functions
(CRNOF
Lovt = fi, 4x4>0,
Bu(vv ]/f)zgﬂ -deOa

where the source termg. andg belong to appropriate function spaces.

(9)
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Note that [(9) is a constant coefficient hyperbolic boundary value problem; moreover, the
boundary{x; = 0} is noncharacteristic because of Assumpf{ion 2: both matricg®,) and
A4 (up) are nonsingular. Kreiss's theofy [12] does not apply directly because the boundary conditions
involve partial derivatives ofr. Nonetheless, we attadK (9) by the same kind of arguments. Formally,
we perform a Laplace transform ixpy and a Fourier transform in the tangential space variables
(x1,...,x4-1). We also make the change of variableg — —x) in the evolution equation for
v~. This yields the following system of ODEs:

o dv+

(vAotw,) +i; A )V + Adr) g = F. (10a)
& dv-

(v ot + i;njAj(uz))v— ~ gt g— = F-, (10b)

in the domain{x; > 0}, with the boundary conditions:

d—1 +
(vbow) +i Y npby(w) )& + M) (5—533) .
=1

on{xy; = 0}. The complex number = y + ing has nonnegative real part. In what follows, we shall
denote by the vector(ng, 11, . . ., na—1) € R?.
Because the boundary is noncharacteristic, we may rewrite sydtenjs [10h)—(10b) as an ODE

system of the form
d (vt) vt _1(Fy

A ) 0 (11)
. I T ua na V
with A(u, n, y) := ( 0 A, n, y)) .
MatricesA,; and.A, in (I7)) are defined by
d-1
Ari(u,n,y) i= FAar) ™ (y Aotur) +i Y i 4w,
j=0
o Ag(uy) 0
Ad(W = ( 0 —Ad<w>> |
Defining
) . Aj(ur) 0
AW = ( 0 Aj(uz)) ’
we also have i
A, y) = =A@ 7 (yAoW) +1 Y A W)
j=0
Finally, we define the symbol associated with the shock front:
d—1
b(u, n, ) = ybo(U) +i Y _ 1;b;(u). (12)

Jj=0
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As noted by Herst [11], the homogeneous part of the OPHs (11) is hyperbolicyvked, that
is, the matrixA(u, n, y) does not admit purely imaginary eigenmodes whesn 0. Fory > 0, we
define€~ (n, y) as the stable subspaceéfthat is, the set of boundary valuesiat= 0 of solutions
to (1) that are square integrable on 40[ when F,. = F_ = 0. The dimension of~(n, y) is
equal to the dimension &~ (0, 1) for all (n, y), y > 0 (this is just a continuity/connectedness
argument). To compute the dimension&f (0, 1), we seek the eigenmodes 4i(u, 0, 1). These
are the roots of the dispersion equation

detlwl — A(u,0,1)] =0.

The definition of A shows thatw!l — A(u, 0, 1) is singular if and only ifAg(u,) + wA4(u,) or
Ao(u;) — wAg(uy) is singular. As a consequence satisfies the dispersion equation if and only if
there exists an integére {1, ..., m} such that

Mc(r,e)o =—=1 or A(uy, eq)o =1,

wheree; = (0,...,0,1) € R?, Assumptiorﬂz shows that such valuesuofire negative fok =
p+ 1 ....,minthefirstcase and = 1,...,¢ — 1 in the second case. Taking multiplicities into
account, this shows th&t™ (0, 1) has dimension — «, with « defined by|(b).

For fixedn # 0, the stable subspace (5, y) admits a continuous extension (g, 0) (see
[3]); we still denote this extension k&~ (n, 0). However, fory = 0, vectors in the extended stable
subspace do not always correspond to boundary values of square integrable functions because of the
possible occurrence of purely imaginary eigenmodes. This is widely detailed in [1, 7, 14] for Euler’s
equations of isentropic gas dynamics.

We define the hemisphere Bf t1 as

Zi={(m,y) e R :y2 4y =1andy > 0}.

Following Freistihler [10], we make the following uniform stability assumption:

AssumpPTION3 (Uniform stability) There exists a positive constant> 0 such that for all
(my) e,

V(x,2) eCx & (my),  Ixbu,ny)+MWZ| = cx|+IZD.

By compactness of', Assumptior] B is equivalent to the requirement that forally) € X,
the subspace
{x.2)eCxE M, y): xbu,n,y)+MWZ =0}

is reduced td0}. This is true because the mapping
(X, 2) € CxC¥ > xb(u,n,y) +MU)Z

has values irCV, andN = n — « + 1 is the dimension of x £~. Assumptior] B is therefore
the direct extension of Majda’s uniform stability condition to undercompressive shock waves, once
additional jump conditions have been prescribed.

In the next subsection, we show that Assump@)n 3 yields a maxirhehergy estimate for the
linearized problen (9).
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3.2 Stability of a planar undercompressive shock

In order to state our first result, we need to introduce a few notations. Denaf2 &yd » the
domains
2= Rff'l ={(x0,...,xg) eR:x;, >0 and w:=R?=0%.

Fory > 0 ands € R we define the following symbols:
VE e R, X(E) =2+ 1D

The usual Sobolev spacés (R?) are equipped with the weighted norms (depending on the positive
parametey)

2 .
Ioli2, =

(2m)? /Rd W2 (E) D)) dé.

These weighted norms enable one to construct a parameter version of the classical pseudodifferential
calculus that is of constant use in the study of initial boundary value problems for hyperbolic systems
(see e.gl]5,12,14)).

The spacd.?(£2) is equipped with the usual norm

ol := / (@) 2z,
2

The Laplace transform performed in the normal modes analysis amounts to working with the
new functions := exp(—y¢)v andy ;= exp(—y 1)y, y > 0. This leads to the introduction of the
weightedoperators:

LUV = Ly + y Ao,  BL @, %) = Bu@, ¥) + y¥bo(u).

One easily checks thdf|(9) is equivalent to

LIV = exp(—yt) f forx; > 0,

BL (@, ¥) = exp(—yt)g forxq = 0.
For convenience, we drop the tilde frdFrande. The basic estimate is the same as for uniformly
stable Lax shocks:

THEOREM1 Letu be an admissible planar shock satisfying Assumgtion 3. Then there exists a
constantC > 0 such that for alb € H1(£2), for all ¥ € H(w) and for ally > 1, the following
estimate holds:

1
yI0IG + llvy, oI5 + 1115, < c(;mﬁﬁ vl + 18] (v, w>n5). (13)

Energy estimates in Sobolev spaces of higher order are also available, providedatithf are
sufficiently regular.

To prove Theorem]1, one uses a Kreiss symmetrizer. This is possible because the boundary
conditions satisfy an analogue of the uniform Lopatihskindition. We shall not detail the proof,
and refer the interested reader[to[ [5, 7/12, 16].
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4. The variable coefficient linearized problem

Itis crucial in the proof of nonlinear stability of a planar shock to obtain an estimate of the same type
as [I3) for the linearized operators about interfaces that are close to but different from hyperplanes.
The proof is entirely similar to Mtivier's, so we omit it. We shall only give some indications and
references.

We keep the sameas in the preceding section. There exists an opei 8eR” x R” x R x R?~1
containing(0, 0, 0, 0) such that for allw,, w;, o, v) € U, one has

u+w €U, Ag—1(up+wp, &) <o < rg(u +wy, §),
ur +w, € U, Ap(ur"‘wr’g) <o <)‘p+1(ur+wr’€),

where¢ = (—v, 1) € R?. In other words{/{ is an open set such that all planar shocks associated
with elements of{/ are noncharacteristic. Furthermore, one can chblomech that all planar shocks
associated with elements &fare uniformly stable, that is, satisfy Assumptjign 3. We fix a compact
subsetC ¢ ¢/ and consider mappings., i;, ¢ such thai is defined orR?, i, (resp.i;) is defined
on{x; > ¢(xo,...,xq-1)} (resp.{xgs < @(xo,...,xq—1)}) and@i,, u;, Vo) takes its values i.
We define a function

up +u,(X) if xg > @(xo, ..., x4-1),

u+u(x) ifxg < e(xo, ..., x4-1).

The regularity ofu,,#; and ¢ has not been specified yet. One can think of them as smooth
perturbations of the stationary shock wavésome kind of first order correction in an asymptotic
expansion). We shall be more precise below.

With a slight abuse of notation, we often use the shortlaatwddenote all functionsi,, i;, ¢),
but we point out that we shall linearize both operatbrand B with respect tau and ¢. More
precisely, we consider a family, = a; + sv andg, = ¢ + sy. Then we define

d
La@*, ) = aL(uf, puE |s—o, (14a)

d
Ba(v, ¥) = gB(ujr, Ug s Ps)ls=0 (14b)

Recall that; is the function deduced fromafter the change of variabl@s. A direct computation
shows that

d—1 d—1
La@™, ¥) = Y Aj@)dv* + Y (dA;@&) - v)da + Aa(a, Vo)dav™
j=0 j=0

d—1
— > 0w Aj@D)daaE + (duAa(@, Vo) - v5)dsar, +x4 >0,
j=0

and

Ba(v, ¥) =

d—1
> o vlfi@)] — Aa@l, Vo)t + Ag(a;, Vo)v~ “o
j=0 5 X4 = L.

dshdoyr +dvh - Vo +dy h - vt +dyh v
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Here, the partial derivatives of are evaluated at the poirg, , a&* , Vo). We decompose the
linearized operatof; as

d—1
La@™, ¥) = L&, p)v* = Y 9 ¥A;(@)daa + E@;, o)™
j=0
whereL is defined by[(8a)£(8b) and
d—1
E@ . o) =) (dA;@) - vHojar + (duAa(@r, Vo) - v5)ogar
j=0

is the zero order part (in™) of L. The principal part ofC, is obtained by dropping the terms

in ¢ and the zero order terms irt in the expression of,, and thus coincides with the operator
L(a;t, @). With little risk of confusion, we shall still denote i the principal part of this operator.
From now on, we only consider the principal part of the linearized operators. With the same
notations as in the preceeding section, the (principal part of the) linearized equations read

d
Lav =) Aj@dv = f. x4 >0,
= (15)
Ba(v, ¥) =) 0jyb;(@ + M@v =g, xq=0,
j=0

once we defin@ := (v*,v™) and perform the change of variablg — —x, in the evolution
equation fory~. Our goal is to obtain afi? estimate for theveightedsystem:

(16)
BY (v, ) = Ba(v, ¥) + y¥bo(@) = exp(—yt)g, x4 =0.

To quantify our results, we fix a constakit> 0 and assume that

:zgv = Lav + y Ao(@v = exp(—y1) f, xg > 0,

IVellwiowey < K, Gy, u)llwrs gy < K.
Then we have the following result:

THEOREM2 Assume thafi, ;, V) takes its values in a compact sub&et U/. Then there exist
two constant<’ (K) > 0 andyp > 1, depending only ok andk, such that for alb € H(£2) and
all ¥ € H(w), the following estimate holds:

1
Yy 2 y0,  vIIG+ v, ol + v, < C<K>(;|||££vm%+ 1B (v, w>||8>, (17)

where the operatoi8} andB} are the principal parts of the linearized operators, as defingd]in (16).

Theorenm P is proved as in [16], using the Bony—Meyer paradifferential calculus. This technique
enables us to circumvent the difficulty of Lipschitzean coefficients. It also enables us to control the
constaniC(K), and to show that it only depends &nh We refer the reader to [16, 7] for a complete
proof which we omit here.
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5. Well-posedness of the linearized problem

In this section, we are going to solve the linearized equatjons (15) supplemented with an initial
condition. Recall that the linearized operators have the following form:

d

Lav =) _ Aj@dv, x4>0,
j=0

Il
©

d-1
Baw. ) =Y _0j¥bj(@ + M@v, x4
j=0

We first solve the boundary value problem

:Eav =f, xq > 0,
Ba(v’ I//) = gv Xd = O’

with no initial condition and datg andg in weighted spaces. This is done with the help of a suitable

dual problem that we introduce in the next subsection. In [1&ti\er uses a symmetric form of

the equations. These arguments cannot be used here because of the undercompressive character of
our shock waves (see especially the proof of Lemma 3.2[11n [16]). Some modifications are required.
They are detailed in the next subsection.

(18)

5.1 The dual problem. Basic properties

The symbob defined by[(IR) will not be used any more, so with little risk of confusion, we define
the matrix

b(@ = (bo(@) --- bg-1(a)).

With this definition, we have
Ba(v, ¥) = b@Vy + M(a)v.

Moreover, the uniform stability condition implies that the mathiga) is one-to-one for ala =
(ity, u;, Vo) € U. As a consequence, for small enough, there existsC&° mappingP : U —
Gly(R) such that

Yaeld, P@b(a = (%’) .

The boundary conditions iff (IL8) equivalently read

<V0w> + P(@M(@v = P(a)g.

We make the following (reasonable) assumption:
ASSUMPTION4 The matrixM (u) € My 2,(R) has maximal rank.

When dealing with Lax shock waves, the analogue of Assumption 4 is automatically satisfied
because the shock wave is honcharacteristic [sée [16]).

Up to shrinkingl{, the matrixM (a) has still maximal rank for ath = (it,-, it;, Vo) € U and we
have the following lemma:
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LEMMA 1 There exists &° mappingN : U — Mao,_y.2,(R) such that for alb € U,
R?" = Ker P(a)M(a) ® Ker N ().
Moreover, there exist tw6> mappings
M U —> My y@®R) and N :U - Mz 2-n(R)

such that for alb € U,
Iy = M'(@Q)P(a)M(a) + N'(a)N (a).

Proof. Because the matri® (a)M (a) has maximal rank for alh € U/, we can choos&/(a) €
Mo,_n 2, (R), depending smoothly oa € U, such that the matrix

P(@)M(a)
N(a)

is invertible for alla € /. Such a matrixV (a) automatically satisfies
R?" = Ker P(a)M(a) ® Ker N (a).

Moreover,N (a) has maximal rank. We obtain the second part of Letijna 1 by defining

1
(M@ N@)= (P (2(";)(6‘)> ,

whereM’ andN’ have the dimensions (number of columns) indicated in the statement. [
We define
M*@) = (A@M'@)",  N*@) = (As@N'@)", (19)
so that the following equality holds:
As@ = M*I@" P@M @ + N*@)" N (.

This is precisely the decomposition obtained|inl [16]. However, one cannot reprodetdgeis
argument here because the dimensions of matrices do not agree (this is because our shock is
undercompressive and so we have additional jump conditions). We have the following result:

LEMMA 2 For alla € U, the following decomposition holds:
R?" = Ker M®(a) @ Ker N2%(a).
Proof. Using the definition of the matrice®’ andN’, we easily see that the matrix
M/(a)T
N/(a)T
is invertible. Because the matri%, (a) is also invertible, the matrix
Mad‘j(a)
Nadj(a)

is invertible (se€[(79)). The result immediately follows. O
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Integrating by parts, one shows that
Yu,v € C(2), (Lau, U»LZ(_Q) = {(u, £ZU»L2(Q)7 (Lau, U»LZ(_Q) = ((u, (Eg)*U»LZ(Q)v

whereL} and(L£})* are given by
d d
Lhi= =Y A@T - (X gA@T). (LD = Li+r @
j=0 j=0

We define the dual boundary conditions[of](18) in the following way:
Ni@y =0, div(M¥@v) =0, x;=0, (20)
Whererdj(a) is the matrix formed by the firsf rows of Madia). In (20), “div" stands for the

divergence operator i = R?. The main result of this subsection can be stated as follows:

PROPOSITIONL Lety > 1, f € L2(R) andg € L%(w). If (v, ¥) € L2(2) x L%(w) is a weak
solution of -
Lhv=f, xq > 0,

Bi(v,¥) =%, xa=0,
then for allw € C2°(£2) such that
. _ i
Nﬁ‘dl(a)w‘w:0 =0, div_,(M; @w, _,) =0

we have ~ _
(f. w) 2 + (P@F, MA@ w) 2., = (v, (LE)* W) 200).

The operator div, is defined oni}(R¢; RY) by

d-1
div_, u := —yug + Z oju;.
j=0
Furthermore, the linear problem
Liw =0, xq > 0,

Ndi@w =0, div(M ¥ @w) =0, x; =0,

satisfies the backward uniform Kreiss—Lopatifgiandition, that is, the analogue of the uniform
stability condition (Assumptiop]3) witlr changed te-y .

Proof. Becausev € L?(2) andLhv € L?(£2), a classical result by Friedrichs ensures that the
trace ofv on w is well defined and belongs tH ~1/2(w). (Here, we use the symmetrizability of
the hyperbolic equations, given by Assumptign 1.) Moreover, the following equality holds for all
w € CX(2):

(fs wh @) = (v, (ﬁg)*w»LZ((z) — (Aa(@)v, W) H-1/2(), HY/2(w) -
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Using the equality
y¥ + doyr
VY -~ . oy
< 0 > + P(@M@v = P(@g with V¢ = _ ,
0q—1¥
we obtain
(Ad @V, W) 17200 117200y = (P@F, MPU@w) 2, + (W, div_y MEY@w) 2,
+ (N@v, NN@w) 41720y g1/2(0)-
The first part of the proposition follows. We now turn to the study of the boundary value problem
Liw =0, xq > 0,
Ndi@w =0, div(M¥@w) =0, x4 =0.

We freeze the coefficients and check the backward uniform Kreiss—Lopaitaskiition. Once the
(backward) Laplace transform ixp and the Fourier transform iy, ..., x;—1 are performed, the
interior equations read

r dw

Addx_d

d-1
— ()/.Ag —i an.AjT)@ =0, x4>0,
j=0

and the boundary conditions read
NG =0, (—y +ino.int.....ina—1) - M; D) = 0.

In what follows, we consider the usual hermitian structure on the sp@€esdefined by the
hermitian form

m

<X, Y)(Cm = Z Xi?i,
i=1

and the signl denotes the orthogonal complement with respect to this hermitian structure. It is
proved in [5] that the stable subspace of the matrix

d-1
ADTH(rAf =i Y AT
j=0
is equal to(A4sE~ (1, ¥))*. Definee := (y +ino, in1, ..., ina—1)" . We thus need to check that for
all (n, y) € X, the subspace
(Z € (A€ (1, )" N3Z = 0 and(M29Z, ¢)ca = O)
is trivial. Let Z € (A4€~ (n, y))* satisfyZ € Ker N34 and

(M29Z, e)ca = 0.
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LetY e CV. Because of Assumptid::r} 3, there exist C andX € £~ (n, y) such that

Y = x (8) + PMX.
We now compute

(M7, Vyon = T(MEVZ, ) ca + (MPNZ, PM)ew = (Z, (M PMX)con

= (Z, AaX)con — (Z, (NAHT NX) 20 = 0.
Because this equality holds for alle CV, we haveZ e Ker M29; but we also have e Ker N39,
and thusZ = 0 (see Lemmp]2). This completes the proof. |

If w e C(£2) satisfies
. _ g

N@w,, =0, div_, (MY @wy, _,) =0,
we have the estimate
C(K)

14

This estimate is proved as the main estimate of Thedrem 2, using Kreiss symmetrizers and
paradifferential calculus. We are now able to solve the linearized equations in weighted spaces.

yIwli§ + llwy,, 11§ < L wlip. (21)

5.2 Existence of solutions in weighted spaces

Fory > 1, the space expt)L?(£2) is the set of functiong defined on2 such that exp-y1) f €
L?(£2). The space exy 1) H® (w) is defined in a similar way whene R. This subsection is devoted
to the proof of the following result:

PrROPOSITION2 Under Assumptionf] [1-4, there exists > 1 such that for ally > yo, for
all f e exp(yt)L?(£2) and for allg € exp(yr)L?(w), there exists a weak solutiof, /) €
exp(yt)L2(£2) x exp(yt) HY?(w) of the linearized equations

:Eav = f, xq > 0,
Ba(v, ‘(/f) = g7 Xd = O

Proof. Let F denote the subspace
Fi={w e @) : N9@w, _, =0and div, (M @uw), ) = 0}.

We Ietf = exp(—yt) f, T := exp(—yt)g. We define a linear form onCk)* F by the following
formula: _ _
LD W] = (L w)p20) + (P@F, MU @w) 12,

The linear form¢ is well defined because g¢f (21) and there exists a conétant0 such that

[eL(L)*w]| < CILD*wllo.
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Applying the Hahn—Banach Theorem and then the Riesz Theorem, we can conclude that there exists
a functiond € L2(£2) such that for alw € F,

LR w] = (T, (L) w) 1200 (22)
If we first choose test functions € C2°(£2), we deduce thal is a weak solution of
Liv=f,
or equivalently, the function := exp(y )7 is a weak solution in exgyr)L2(52) of
Lav = f.

Using once again Friedrichs'’s result, we infer that the tradémi w is well defined and belongs to
H~Y2(w). Furthermore, the following equality holds for all € F:

(@, (LE ) 12y = (2 W) 122) + (P@QM @V, MPU@w) y-1/2(4) 11/2(0):
and combining this equality with (R2) yields
Vwe F, (P@M@7, M2 @w)y 12 g1/2) = (P@F, M2 @w),2(,).-

By a continuity argument, this equality still holds for alle HY(£2) such thatv@i(ayw = 0 and
div,y(MfdJ(a)w) = 0 on the boundarw. Note that these equalities make sense because the trace
of functions inH1(£2) is well defined and belongs #/2(w).

Let 6 be a function inHY2(w) that takes its values iRY. We write6 = (61, 62) whered
(resp.6,) takes its values iR? (resp.RV~¢). Then there exists a functian € H1(£2) such that

NY@uw, =0 MU@uw, ,=0.

This classical lifting argument works because both matric&$(a) and M29(a) are Lipschitzean.
Consequently, for alt, € HY?(w; RN~9), we have

(P@M @), (0, 02)) y-1/2(4). H1/2(w) = (P (@, (0, 02)) 1 2()»
and for allo; € HY2(«w; RY) satisfying div, 6; = 0, we have
(P(@M @)V, (61, 0))}171/2(0)),}11/2((,)) = (P(a)g, (01, 0)>L2(w)'

The result of the proposition follows from the following lemma:
LEMMA 3 Lety > 1andletu € H~Y2(R?; R?) be such that for all € C°(R?; R?), one has
div_y w =0 = (u, w)y-172 y12 =0.
Then there existg € HY2(R?; R) such that
Yy + doyr
T
3d—.1¢
Furthermore, the solutiopr satisfieg|y |12, < llull—1/2,y-
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Applying Lemmd 8, we can conclude that there exists H/2(R¢) such that
o
(Volﬁ> + P(@M(@)v = P(a)g.

Proposition 2 follows by setting: := exp(yt)@. O

We refer to[7.17] for the proof of Lemnja 3, which is a very classical resullt.

5.3 Final steps in the analysis

Propositiorf 2 asserts the existence of weak solutions as long as the data belong to weighted spaces,
but we have said nothing yet about the uniqueness of weak solutions and continuity with respect
to the data. The lack of regularity of weak solutions makes it impossible to use our main energy
estimate (Theorefr 2). The next step consists in showing that weak solutions exhibited in Proposition
arestrongsolutions, in the following sense: there exist sequerie&sin exp(y ) H1(£2) and(y")

in exp(yt) H(w) such that

exp(—yHv’ — exp(—yt)v  in L3(£2),
LLexp(—yHv’) — f in L3(£2),
eXp(—y 1)), = eXH—y Dy, _, in HY2(RY),
exp(—y )Y — exp(—yHy  in HY?(RY),
BY (exp(—y v’ exp(—yn)y") > g in LAR).

Furthermorgexp(—y1)v’, exp(—y 1)) satisfies the energy estimdte](17). Using the convergences
stated above, we conclude that expr)y < HL(RY) and exp—y v, _, € L%[R4), and
(exp(—y v, exp(—y1)yr) satisfies the energy estimafe(17). In particular, we have a uniqueness
result in weighted spaces. We referl[tol[16, 17] for the details (the regularized sequence is obtained
via tangential mollifiers).

Continuing the analysis of the linearized equations, one shows that for data vanishing in the
past (f = 0 andg = 0 forz < 0), solutions also vanish in the past and one can then solve the
boundary value problen (IL8) supplemented with an initial condition. The arguments are similar to
those in[[%, 16]. This extends the previous work by Rauch [18] that dealtGRitlcoefficients. We
can summarize the main result on the linear problem in the following way:

THEOREM3 Under Assumptior{s] [}-4, consider the data
feL?Q0.T[xRY). geL?(0.T[x R, woe L2RY). yoe HY2RI™Y,

whereT is a fixed positive number. Then the linearized problem

d
Aj@djv=f x4>0,t€]0, Tl
j=0

d-1
3 vbj(@+M@v=g, x4=01¢€l0,TI[,
j=0
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supplemented with the initial condition

v\t:O = Yo, w\r:o = wo’

has a unique solutiorv, ¥) € L2(0,7T[ x RY) x H(0,T[ x R?"1) such thatv e
C([0, T]; L%(R<)) and for ally > yp and allz € [0, T, the following estimate holds:

—2yt 2 —ys. 12 —ys 2 —ys 2
¢ ”U(t)”LZ(Ri) +rle v”#(]O,z[xRi) Flle v, oll2qo sxra-yy T 1€ ¥ 10 ipxri-1)

1 _ 2 — 2 2 2
g C <;”e ysf”Lz(]O,l[X]Ri) + ”e ysg”LZ(]Q’[[X]Rdfl) + ”vO”LZ(Ri) + ||1/f0||H1/2(R471) .

The constant€” andyg are independent af T, f, g, but depend on the constakit> 0 and on the
compact sek (see Theorer|2).

In order to construct an iteration scheme to solve the nonlinear equations, we need to know
more about the regularity of the solutions to the linear problem. The main question is: given
data that belong to higher order Sobolev spaces, does the solution also belong to a higher order
Sobolev space? The question was addressédlin [19] and the answer is yes provided that a hnumber of
compatibility conditions hold. These compatibility conditions are satisfied when the initiabglata
andyg are zero, and the source terfisndg vanish in the past.

To obtain an energy estimate in a Sobolev space, one first commutes the linearized equations
with tangential derivatives and uses Theoigm 3 (as well as Gagliardo—Nirenberg inequalities to
estimate commutators). The normal derivatives are directly estimated by using the equation

d—1
v =A@ 71 =Y As@ A @dv.

j=0
This is possible because the interface is noncharacteristic (Assurfiption 2), so one can reproduce
Métivier's analysis (se¢ [16]). Finally, let us assume that H*(27) andg € H*+*1(wr), where
27 1=]—00, TIxRL, wy :=]—o00, T[xR¥1, 5 > (d+3)/2, and(it, ¢) vanish fort < Tp. (Recall
that(iz, ¢) is the perturbation of the planar interface about which the equations are linearized). Then,
if f e H'(2r) andg € H'(wr) vanish in the past, the solutidm, 1) to the linearized system
(18) satisfies € H*(£27), ¥ € H*tY(w7), and the energy estimate

2 2 2
PNy py + W01yl o) + 1V 10,

< C(K) E|||f|||2 +llgl?
S y W @ 8 Hs (wr)

C(K)

A 101510 gy + 1 0o Wil o) + 10150, )

(o1)

Here, we have kept the notations lof [16]: for instanﬁg(ﬂr) denotes the space exz) H* (27)
and is equipped with the norm

ol 2 =Y v “llexp(—y 0 vll 2y

lo|<s
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We now describe the iteration scheme used to solve the nonlinear equglionsl((7). In [13], Majda
used a classical Picard iteration scheme

L(M+,(p )(le+1 ipp) _ —L(M+,(ﬂ )uapp

23
L@”, ") @™ —u®) = —L@w", 9")u® (23)

for the interior equauons together with a Newton scheme for the boundary conditions] In (23), the
functlons(ualpp %P are an approximate solution constructed with compatible initial conditions
(see[[14,16]). In[16], Nativier first reduces the nonlinear boundary conditions to linear boundary
conditions. This is made possible by the uniform stability condition but it heavily uses the particular
form of the Rankine—Hugoniot conditions. It can therefore hardly apply in our framework because
of the additional jump conditions. We thus go back to Majda’s method which was also used in
[17]. The scheme used for the interior equations is define@ By (23) and the sakdtidn— 5",
u”Tt — u®P) is sought as a function vanishing for< 0. (The approximate solution®PP equals
the initial condition at = 0). This is made possible by the arguments developed when solving the
linearized problems. As said previously, the nonlinear boundary conditions are solved by a Newton
method. Recall that we look for,., u_ andg that satisfyB(u,u_, ¢) = 0 on{x; = 0}, so the
Newton method reads

dB',u”, ¢") - T —ul u? —u " - oY) = — B, u”, ¢"). (24)

Using [8¢) and the definition of the linearized operatqisee [14h)), we may rewritg (P4) as

Baw (u? 1 — 12PP 7+ 3PP ol ap)

= Bav (ul} — uipp, —u®P v — PP _ B(u' ,u’,¢"),

with a” := (u, u”, ¢"). At each step of the iteration scheme, the initial conditions are

+1 app _v+1 app a
(u\)+ - l/t+ ’ MU ’ (p - pp)|r:0 =0.

Using this iteration scheme, we end up with the main result of this paper:

THEOREM4 Fix aninteges > (d + 3)/2, and initial data(u?r, ud, ¢9) satisfying
ug _ ur c HS‘+1/2(R1), I/lg _ Ml c HY+1/2(R1), (pO c H‘Y+1/2(Rd_l),

O — u; and¢® have compact support and satisfy the natural compatibility
conditions up to ordey — 1. Assume also thz{u‘i —up,u® —uy, ¢9) takes its values in a compact

subset o/. Then there exists a unique smooth soluiien, u_, ¢) of (7) defined on a time interval
[0, T]with T > 0. Furthermore, the solutiof, u_, ¢) satisfies

such that® — u,, u°

uy —u, € H'(Q0, T[ x RY), —u € H*(10, T[ x RY), ¢ e H*T1(0, T[ x R,

Recall that when the initial data satisfy the regularity assumptions of Thefofem 4, and are
compatible up to ordes — 1, one can construct an approximate solutipf™”, 12°?, 2PP) that
satisfies

uipp_ur c HS+1(Q), Mipp_ul c HS+1(Q), wappe HS-‘rl(Rd—l)’
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and ]

0/ [LWZ®, p*Pu|,_, =0,

Bth(uipp, u?PP 2Py = Q.

We refer to [16,7] for the proof of Theorehj 4. The idea is to prove that for the iteration scheme

defined above, the sequeneé, V") is bounded inH* and converges ifi?. Then one shows that
the limit is actually a solution irH*.

Vji=0,...,s =1, {

6. Isothermal phase transitions

In this section, we show how our analysis applies to the case of isothermal phase transitions in a van
der Waals fluid. We refer ta [2] for the proofs of the result stated below. We are interested here in
the isothermal Euler equations

{Btp+V-(pU)=O,
3 (pu) + V- (pu®u) + Vp(p) =0.

As usual,p stands for the density of the fluid, for the velocity, p for the pressure. It is a well
known fact that this system meets Assumpfibn 1 in the region where it is hyperbolic, that is, in the
region{p’(p) > 0}. In the following, v stands for the specific volume of the fluid,,= 1/p. We
assume that the fluid obeys a van der Waals pressure law

p RT a
plp) = Pv) = —— — 5.
The parameterg andb are positive and® stands for the perfect gas constant. Wiieis below the
critical temperaturd, := 8a/(27bR), the isothermal curvév — P (v)) is nonmonotone and we
thus expect phase boundaries to propagate. More precisegcreases but on an interval] v*|.
The interval b, v,[ (resp. b*, o) is referred to as the liquid (resp. vapor) phase. Another important
feature of the pressure la® is the existence and uniqueness of the so-called Maxwell equilibrium
points(v,,, v™). These are defined by

m

v
U < Vs <V <™, P(v,)=POW") =P, / (P — P(v))dv = 0.
Um

We let
U {(pr, u,) ifx-n>ot,

(o1, u) ifx-n<ot,

be a weak solution of the Euler equations wittpland ¥/ p; close to Maxwell equilibrium points
(vm, v™) (for instance Yp; close tov,, and Y p, close tov™). Without loss of generality, we may
assume that the following inequalities hold:

Uu-N—c¢, <o <U--N, UW-N—¢ <o <U-N,

wherec is the sound speed in the fluid (recall tikas given byc(p) := /p’(p)). This corresponds
to an undercompressive shock wave witk= 0 (see[(b) and Definitign 1). Following Slemrad [24],
we shall say that/ is anadmissible phase transitidhthere exists a traveling wave

p(t,X) =p((X-n—0ot)/e), U, x) =U(X-n—ot)/e)
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satisfying

p(+00) = pr, p(—=00) = p1,  U(+00) = Uy, U(—00) = Uy,
that is a solution to the Euler equations supplemented with a capillarity coeffi€iant a viscocity
coefficientve (v > 0):

dp+V-(pu) =0,
3 (pU) + V- (pU® U) + Vp(p) = veAu — e2V(Av).

Let F denote the specific free energy of the fluid,(v) = —P(v). It is shown in [2] that
admissible phase transitions satisfy the Rankine—Hugoniot conditions together with the additional
(nonexplicit) jump condition

P(,) + P _

[F]+ [

_vj / ) de,
R

where

ji=pU-N=0)=p U -N—0)
denotes the mass transfer across the discontinuity. On account of the Rankine—Hugoniot conditions,
the additional jump condition can be rewritten as

1 -
[f’(p) +5U-n- a)z} = —vjf V()% dt,
R

where f(p) ;= pF(1/p) stands for the free energy per unit volume. We have thus a (nonexplicit)
form for the function introduced in Definitioff . The reader will note that the functiodepends
onv > 0. Therefore, there is a very wide choice of admissibility criteria. The following theorem is
proved in [2] (we refer to this paper for a precise statement):

THEOREMS (Benzoni-Gavagé [2]) For sufficiently small viscosity coefficient there exist
admissible planar phase transitions, and such phase transitions are linearly uniformly stable, that
is, meet Assumption|3. The space dimension is either2 ord = 3.

In order to apply the analysis developed in this paper, we only need to check Assupjption 4,
since we already know that Assumptidri$ [1-3 are satisfied. Performing a change of observer, we
may assume that = 0,n = (0, ..., 0, 1) and that the velocities on either side of the shock are
parallel ton, thatis,u,; = (0, ..., 0, u, ).

For the particular system of Euler's equations supplemented with the above additional jump
condition, it is proved in[[2] that the matrid involved in the linearized boundary conditions is
given by

Uy 0 or —uy 0 -0
M= 0 oruplg—1 0 0 —piuilg—1 0
uf + C,? 0 20ruy, _(”12 + clz) 0 —2p1u;
f"(or) 0 ur vur— (o) 0 vor — u

whereb = av + o(v), @ being a positive constant. Recall théats the free energy per unit volume.
In order to check tha¥f has maximal rank, we are going to show that the submatiixconsisting
of the firstd + 1 columns and of the last column of is invertible. We have

" 1 / 62
) =—-p=—,
o o



SHOCK WAVES 389

and therefore

Uur 0 Pr —pI

M — 0 prurly_1 0 0
1= uf + cr2 0 20,1,  —2pju;
2/ pr 0 ur Vo —uy

The determinant oM is given by
detMy = (pyu,)* " w2 — A ([ullp] + Vor01).

soMjy is an invertible matrix for sufficiently small viscosity coefficiantAssumptiotj 4 is therefore
met and we can apply the existence result of Sefjon 5 to these admissible phase transitions.
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