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This paper is devoted to the study of linear and nonlinear stability of undercompressive shock
waves for first order systems of hyperbolic conservation laws in several space dimensions. We first
recall the framework proposed by Freistühler to extend Majda’s work on classical shock waves to
undercompressive shock waves. Then we show how the so-called uniform stability condition yields
a linear stability result in terms of a maximalL2 estimate. We follow Majda’s strategy on shock
waves with several improvements and modifications inspired from Métivier’s work. The linearized
problems are solved by duality and the nonlinear equations by mean of a Newton type iteration
scheme. Finally, we show how this work applies to phase transitions in an isothermal van der Waals
fluid.

1. Introduction

In [14, 13], Majda proved the (local in time) existence of multidimensional shock waves for systems
of conservation laws. We refer to [15, 21] for an overview of the method and its applications to
gas dynamics. Majda’s analysis dealt with shock waves satisfying Lax’s entropy inequalities, and it
relied on a uniform stability condition. His work was later refined by Métivier and Mokrane [16, 17],
using new ideas of paradifferential calculus.

In several applications such as magnetohydrodynamics or the modeling of phase transitions, it
happens that some shock waves violate Lax’s entropy inequalities. Depending on their nature, these
discontinuous solutions bear the name of undercompressive or overcompressive shock waves (we
shall recall these notions later on). To select the physically relevant discontinuities, an additional
admissibility criterion may be required (this is the case for undercompressive shock waves).
For isothermal subsonic phase transitions, Slemrod and Truskinovsky independently derived an
admissibility criterion based on the theory of capillarity [24, 25] (see also [22]). In this paper,
we focus on undercompressive shocks and we shall follow a general approach, using an abstract
admissibility criterion, as suggested by Freistühler. The analysis applies to some concrete problems
(this approach was also used by Colombo and Corli in [6] for one-dimensional problems).

Our purpose is to establish the (local in time) existence of multidimensional undercompressive
shock waves under a uniform stability assumption. This is the extension of Majda’s work proposed
by Freisẗuhler in [10] (see also [9]). In particular, the uniform stability assumption stated below
was already formulated in [10]. For technical reasons, we have adopted Métivier’s approach and
we shall often refer to [16] for detailed proofs. However, we emphasize that the analysis of [16]
does not apply when solving the linearized equations (see Section 5 below), and we need here to
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make a specific assumption that is due to the undercompressive nature of the shocks we consider.
This assumption is highly reasonable though and is met in our main example. This example deals
with subsonic phase transitions in a van der Waals fluid. We are interested there in the existence
of propagating interfaces separating liquid and vapor phases. Such an interface is not known in
advance, and we thus face a free boundary problem. The evolution of this free boundary is governed
by the Rankine–Hugoniot conditions and the visco-capillary admissibility criterion described below.
In Section 6, we shall show how Freistühler’s general framework, which we develop here, can be
used to solve this specific problem of fluid dynamics. The stability of multidimensional dynamic
phase transitions was first adressed by Benzoni-Gavage in [1, 2].

The remainder of this paper is organized as follows: in Section 2, we introduce the framework
of our study and state our main assumptions. We recall the definition of undercompressive shock
waves. In Section 3, we study the linear stability of a fixed planar undercompressive shock and
show how the so-called uniform stability condition yields a maximalL2 estimate. The study of
planar shock waves is extended to the variable coefficients case in Section 4. In Section 5, we shall
detail how to solve the linearized equations as well as the nonlinear problem. In particular, we shall
explain why Ḿetivier’s approach cannot be used. Finally, Section 6 is devoted to the application of
our work to isothermal phase transitions in a van der Waals fluid.

2. Description of the problem

We consider a system ofn conservation laws inR × Rd :

d∑
j=0

∂jfj (u) = 0, (1)

wherex0 is the time variable, also denoted byt in what follows,(x1, . . . , xd) is the space variable
and∂j stands for the partial derivative with respect toxj . The fluxesf0, . . . , fd areC∞ functions
defined on an open subsetU of Rn with values inRn. The jacobian matrix offj at a pointu will be
denoted byAj (u). For the sake of completeness, we assume thatf0 is aC∞ diffeomorphism on its
range. One can simply think off0 as the identity. We assume that the space dimensiond is strictly
greater than 1 (that is,d > 2) and make the following hyperbolicity assumption:

ASSUMPTION1 There exists aC∞ mappingS : U → Mn(R) such that

• ∀j = 0, . . . , d, ∀u ∈ U, S(u)Aj (u) is symmetric,
• ∀K compact⊂ U, ∃cK > 0 such thatS(u)A0(u) > cKI for all u ∈ K.

Moreover, if we define the matrixA(u, ξ) by

∀u ∈ U, ∀ξ ∈ Rd , A(u, ξ) :=
d∑
j=1

ξjA0(u)
−1Aj (u), (2)

thenA(u, ξ) is diagonalizable overR with C∞ eigenvaluesλ1, . . . , λm (defined onU × Rd \ {0})
of fixed multiplicitiesα1, . . . , αm. Without loss of generality, we may assume that

∀u ∈ U, ∀ξ ∈ Rd \ {0}, λ1(u, ξ) < · · · < λm(u, ξ).
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We point out that Assumption 1 is easy to check on the system, unlike the block structure
condition defined by Majda [14]. However, one could replace the last part of Assumption 1 (that
is, the constant multiplicity assumption) by the more abstract block structure condition, as in [14,
16]. We also note that the equations of ideal magnetohydrodynamics are symmetrizable but violate
Assumption 1. An open and interesting question is whether the block structure condition is satisfied
by the MHD system. We refer to [4] for some results on shock waves in MHD.

We first recall a basic fact on piecewise smooth solutions to (1) (we refer to [20] for the proof).
LetΓ = {xd −ϕ(x0, . . . , xd−1) = 0} be a smooth hypersurface inRd+1 andu be a function smooth
on either side ofΓ . Thenu is a weak solution of (1) if and only ifu satisfies (1) (in the classical
sense) on either side ofΓ and the Rankine–Hugoniot conditions hold at each point ofΓ :

∀x = (x0, . . . , xd) ∈ Γ,

d−1∑
j=0

∂jϕ [fj (u)](x)− [fd(u)](x) = 0, (3)

the partial derivatives ofϕ in the above formula being evaluated at(x0, . . . , xd−1). As usual we have
let

[fj (u)](x) := lim
s→0+

(fj (x + sn)− fj (x − sn)) with n := (−∂0ϕ, . . . ,−∂d−1ϕ,1)

a normal vector toΓ at pointx. In what follows, we omit the dependence onx in the expressions
[fj (u)].

In this paper, we are interested in the stability of undercompressive shock waves. To fix ideas
and notations, we consider a planar shock

u =

{
ur if xd > σt + ν · y,

ul if xd < σt + ν · y,
(4)

which is a solution to (1). In (4),ur andul are fixed vectors belonging to the open setU , y =

(x1, . . . , xd−1) is the vector formed by the tangential space coordinates,ν is a vector inRd−1 and
σ is the speed of propagation of the front. This corresponds to the equation

ϕ(x0, . . . , xd−1) = σx0 +

d−1∑
j=1

νjxj

for the shock front curve. Clearlyu is a solution of (1) if and only if

σ [f0(u)] +

d−1∑
j=1

νj [fj (u)] = [fd(u)].

Performing a rotation of the axes, we may assumeν = 0. Changing the last space variablexd
to xd − σ t , and correspondingly the fluxfd to fd − σf0, we may also assume that the shock is
stationary, that is,σ = 0 (this will simplify the statement of Assumption 2). Note that Assumption 1
is still satisfied after this change of observer. We assume that the shocku is noncharacteristic. More
precisely, we make the following assumption:
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ASSUMPTION2 There exist two integersp, q ∈ {1, . . . , m} such that

λq−1(ul, ed) < 0< λq(ul, ed) and λp(ur , ed) < 0< λp+1(ur , ed),

whereed := (0, . . . ,0,1) ∈ Rd is the vector of propagation of the shock waveu.

If q = 1 (resp.p = m) the first inequality on the left (resp. the last inequality on the right) is
ignored. Assumption 2 is illustrated by Figure 1 where the characteristics entering the shock front
curve{xd = σ t} are depicted (here we have not assumedσ = 0).

xd

t

xd = σ t

ur

ul
λ1(ur)

λp(ur)

λq(ul)

λm(ul)

α1 + · · · + αp

αq + · · · + αm

FIG. 1. Characteristics entering the shock front.

Following Freisẗuhler [8], we define the number

κ := (αq + · · · + αm)+ (α1 + · · · + αp)− n, (5)

representing the amount by which the number of incoming characteristics (counted with
multiplicity) exceedsn. We introduce the following terminology:

DEFINITION 1 If κ = 1 (that is,p = q andλp is a simple eigenvalue), thenu is called ap-Lax
shock wave.

If κ < 1 (that is,p < q), thenu is called anundercompressive shock wave.
If κ > 1 (that is,p > q), thenu is called anovercompressive shock wave.

From now on, we only consider the case of undercompressive shocks, that is,κ 6 0. As
already mentioned in some previous works (see e.g. [23] and references therein), in the case of
an undercompressive shock as initial data, the associated Riemann problem has several solutions.
In other words, the Rankine–Hugoniot conditions (3) are not sufficient to single out a unique weak
piecewise smooth solution. Additional constraints on the shocku are needed. As explained in the
introduction, we shall follow a general approach and will not discuss the way how the additional
“admissibility criterion” is derived (except in Section 6 where we shall apply our results to phase
transitions in van der Waals fluids). We thus fix, once for all, aC∞ functionh : U×U×R×Rd−1

→

RN−n, whereN is an integer such that

N − n = 1 − κ > 1.



SHOCK WAVES 371

We focus on the case where the additional constraints take the form

h(ul, ur , σ, ν) = 0.

The integerN − n counts the number of additional jump conditions that need to be prescribed and
N is the total amount of prescribed jump conditions including the Rankine–Hugoniot conditions.
We now introduce the following definition:

DEFINITION 2 Let u, defined by (4), be a planar undercompressive shock wave. We shall say that
u is anadmissiblediscontinuous solution if

σ [f0(u)] +

d−1∑
j=1

νj [fj (u)] − [fd(u)] = 0, h(ul, ur , σ, ν) = 0. (6)

Of course, there are many possible choices forh (see e.g. Section 6), and our definition of
admissible solutions heavily depends on the choice ofh. The uniform stability assumption stated
below also heavily depends on the choice ofh. The reader is refered to [1, 2] for a comparison of
stability results according to the adopted criterion.

The (local in time) existence of admissible undercompressive shock waves is a free boundary
problem. The functionϕ defining the shock front is part of the unknown of the problem. To
circumvent this difficulty, we introduce a change of variables inRd+1 with the formula

Φ(x0, . . . , xd) := (x0, . . . , xd−1, xd + ϕ(x0, . . . , xd−1)).

We have chosen here the standard change of variables, as in [14, 16, 17]. It maps the hyperplane
{xd = 0} onto the hypersurfaceΓ and the two half-spaces{±xd > 0} on the two sides ofΓ . We
now perform a change of unknown functions. Ifu is a smooth function on either side ofΓ , then the
functionu] defined by

∀(x0, . . . , xd) ∈ Rd+1, u](x0, . . . , xd) := u(Φ(x0, . . . , xd))

is smooth on either side of the hyperplane{xd = 0}. It is now a straightforward application of the
chain rule to verify thatu defines an admissible undercompressive shock if and only if{

L(u±

] , ϕ)u
±

] = 0, ±xd > 0,

B(u+

] , u
−

] , ϕ) = 0, xd = 0,
(7)

whereu+

] (resp.u−

] ) denotes the restriction ofu] to the half-space{xd > 0} (resp.{xd < 0}), and
the operatorsL andB are defined by the following formulas:

L(v,ψ)w :=
d−1∑
j=0

Aj (v)∂jw + Ãd(v,∇ψ)∂dw (8a)

with

Ãd(v,∇ψ) := Ad(v)−

d−1∑
j=0

∂jψAj (v), (8b)

B(w+, w−, ψ) :=


d−1∑
j=0

∂jψ [fj (w)] − [fd(w)]

h(w−, w+, ∂0ψ,∇yψ)

 . (8c)
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Now that we have fixed the domain, the problem reduces to the following question: given an initial
datumu0 that is smooth on either side of a hypersurface{xd = ϕ0(x1, . . . , xd−1)}, does there exist a
solution(u], ϕ) of (7) with initial value(u0

], ϕ
0), at least locally in time? Following Freistühler [10],

we shall answer this question in the affirmative under a uniform stability assumption. This extends
Majda’s work to the framework set by Freistühler for undercompressive shocks. As in Majda’s
analysis, special attention will be paid to the linear stability of the reference undercompressive
shocku with respect to small perturbations.

3. The constant coefficient linearized system

3.1 The linearized equations

We first examine the linear stability of the reference planar shocku (ν = 0 andσ = 0). We introduce
the linearized operators about the shocku. Considering a familyus = u + sv andϕs = sψ , we
define the linear operators

Lu(v
±, ψ) :=

d

ds
L(u±

s , ϕs)u
±
s

∣∣∣∣
s=0
, Bu(v, ψ) :=

d

ds
B(u+

s , u
−
s , ϕs)

∣∣∣∣
s=0
.

Sinceu is constant on either side of{xd = 0}, the linearized operators read

Lu(v
±, ψ) = Luv

±
=

d∑
j=0

Aj (ur,l)∂jv
±, ±xd > 0,

Bu(v, ψ) =


d−1∑
j=0

∂jψ [fj (u)] − Ad(ur)v
+

+ Ad(ul)v
−

∂σh∂0ψ + dνh · ∇yψ + durh · v+
+ dulh · v−

 , xd = 0.

We let

b0(u) :=

(
[f0(u)]
∂σh

)
, bj (u) :=

(
[fj (u)]
∂νjh

)
, 1 6 j 6 d − 1,

and

M(u)
(
v+

v−

)
:=

(
−Ad(ur)

durh

)
v+

+

(
Ad(ul)

dulh

)
v−.

Then the linearized boundary value operatorBu reads

Bu(v, ψ) =

d−1∑
j=0

∂jψ bj (u)+M(u)
(
v+

v−

)
.

We are now led to considering the following boundary value problem for the unknown functions
(v±, ψ): {

Luv
±

= f±, ±xd > 0,

Bu(v, ψ) = g, xd = 0,
(9)

where the source termsf± andg belong to appropriate function spaces.
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Note that (9) is a constant coefficient hyperbolic boundary value problem; moreover, the
boundary{xd = 0} is noncharacteristic because of Assumption 2: both matricesAd(ur) and
Ad(ul) are nonsingular. Kreiss’s theory [12] does not apply directly because the boundary conditions
involve partial derivatives ofψ . Nonetheless, we attack (9) by the same kind of arguments. Formally,
we perform a Laplace transform inx0 and a Fourier transform in the tangential space variables
(x1, . . . , xd−1). We also make the change of variables(xd 7→ −xd) in the evolution equation for
v−. This yields the following system of ODEs:(

τA0(ur)+ i

d−1∑
j=1

ηjAj (ur)
)
V +

+ Ad(ur)
dV +

dxd
= F+, (10a)

(
τA0(ul)+ i

d−1∑
j=1

ηjAj (ul)
)
V −

− Ad(ul)
dV −

dxd
= F−, (10b)

in the domain{xd > 0}, with the boundary conditions:(
τb0(u)+ i

d−1∑
j=1

ηjbj (u)
)
Ψ +M(u)

(
V +(0)
V −(0)

)
= G,

on {xd = 0}. The complex numberτ = γ + iη0 has nonnegative real part. In what follows, we shall
denote byη the vector(η0, η1, . . . , ηd−1) ∈ Rd .

Because the boundary is noncharacteristic, we may rewrite systems (10a)–(10b) as an ODE
system of the form

d

dxd

(
V +

V −

)
= A(u, η, γ )

(
V +

V −

)
+Ad(u)−1

(
F+

F−

)
with A(u, η, γ ) :=

(
Ar(u, η, γ ) 0

0 Al(u, η, γ )

)
.

(11)

MatricesAr,l andAd in (11) are defined by

Ar,l(u, η, γ ) := ∓Ad(ur,l)
−1

(
γA0(ur,l)+ i

d−1∑
j=0

ηjAj (ur,l)
)
,

Ad(u) :=

(
Ad(ur) 0

0 −Ad(ul)

)
.

Defining

Aj (u) :=

(
Aj (ur) 0

0 Aj (ul)

)
,

we also have

A(u, η, γ ) := −Ad(u)−1
(
γA0(u)+ i

d−1∑
j=0

ηjAj (u)
)
.

Finally, we define the symbol associated with the shock front:

b(u, η, γ ) := γ b0(u)+ i

d−1∑
j=0

ηjbj (u). (12)
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As noted by Hersh [11], the homogeneous part of the ODEs (11) is hyperbolic whenγ > 0, that
is, the matrixA(u, η, γ ) does not admit purely imaginary eigenmodes whenγ > 0. Forγ > 0, we
defineE−(η, γ ) as the stable subspace ofA, that is, the set of boundary values atxd = 0 of solutions
to (11) that are square integrable on [0,∞[ whenF+ = F− = 0. The dimension ofE−(η, γ ) is
equal to the dimension ofE−(0,1) for all (η, γ ), γ > 0 (this is just a continuity/connectedness
argument). To compute the dimension ofE−(0,1), we seek the eigenmodes ofA(u,0,1). These
are the rootsω of the dispersion equation

det[ωI −A(u,0,1)] = 0.

The definition ofA shows thatωI − A(u,0,1) is singular if and only ifA0(ur) + ωAd(ur) or
A0(ul) − ωAd(ul) is singular. As a consequence,ω satisfies the dispersion equation if and only if
there exists an integerk ∈ {1, . . . , m} such that

λk(ur , ed)ω = −1 or λk(ul, ed)ω = 1,

whereed = (0, . . . ,0,1) ∈ Rd . Assumption 2 shows that such values ofω are negative fork =

p + 1, . . . , m in the first case andk = 1, . . . , q − 1 in the second case. Taking multiplicities into
account, this shows thatE−(0,1) has dimensionn− κ, with κ defined by (5).

For fixedη 6= 0, the stable subspaceE−(η, γ ) admits a continuous extension to(η,0) (see
[3]); we still denote this extension byE−(η,0). However, forγ = 0, vectors in the extended stable
subspace do not always correspond to boundary values of square integrable functions because of the
possible occurrence of purely imaginary eigenmodes. This is widely detailed in [1, 7, 14] for Euler’s
equations of isentropic gas dynamics.

We define the hemisphere ofRd+1 as

Σ := {(η, γ ) ∈ Rd+1 : γ 2
+ |η|2 = 1 andγ > 0}.

Following Freisẗuhler [10], we make the following uniform stability assumption:

ASSUMPTION3 (Uniform stability) There exists a positive constantc > 0 such that for all
(η, γ ) ∈ Σ ,

∀(χ, Z) ∈ C × E−(η, γ ), |χb(u, η, γ )+M(u)Z| > c(|χ | + |Z|).

By compactness ofΣ , Assumption 3 is equivalent to the requirement that for all(η, γ ) ∈ Σ ,
the subspace {

(χ, Z) ∈ C × E−(η, γ ) : χb(u, η, γ )+M(u)Z = 0
}

is reduced to{0}. This is true because the mapping

(χ, Z) ∈ C × C2n
7→ χb(u, η, γ )+M(u)Z

has values inCN , andN = n − κ + 1 is the dimension ofC × E−. Assumption 3 is therefore
the direct extension of Majda’s uniform stability condition to undercompressive shock waves, once
additional jump conditions have been prescribed.

In the next subsection, we show that Assumption 3 yields a maximalL2 energy estimate for the
linearized problem (9).



SHOCK WAVES 375

3.2 Stability of a planar undercompressive shock

In order to state our first result, we need to introduce a few notations. Denote byΩ andω the
domains

Ω := Rd+1
+ = {(x0, . . . , xd) ∈ Rd+1 : xd > 0} and ω := Rd = ∂Ω.

Forγ > 0 ands ∈ R we define the following symbols:

∀ξ ∈ Rd , λs,γ (ξ) := (γ 2
+ |ξ |2)s/2.

The usual Sobolev spacesH s(Rd) are equipped with the weighted norms (depending on the positive
parameterγ )

‖v‖2
s,γ :=

1

(2π)d

∫
Rd
λ2s,γ (ξ)|̂v(ξ)|2 dξ.

These weighted norms enable one to construct a parameter version of the classical pseudodifferential
calculus that is of constant use in the study of initial boundary value problems for hyperbolic systems
(see e.g. [5, 12, 14]).

The spaceL2(Ω) is equipped with the usual norm

|||v|||20 :=
∫
Ω

|v(z)|2 dz.

The Laplace transform performed in the normal modes analysis amounts to working with the
new functions̃v := exp(−γ t)v andψ̃ := exp(−γ t)ψ , γ > 0. This leads to the introduction of the
weightedoperators:

Lγu ṽ := Luṽ + γA0(u)̃v, Bγu (̃v, ψ̃) := Bu(̃v, ψ̃)+ γ ψ̃b0(u).

One easily checks that (9) is equivalent to{
Lγu ṽ = exp(−γ t)f for xd > 0,

Bγu (̃v, ψ̃) = exp(−γ t)g for xd = 0.

For convenience, we drop the tilde from̃v andψ̃ . The basic estimate is the same as for uniformly
stable Lax shocks:

THEOREM 1 Let u be an admissible planar shock satisfying Assumption 3. Then there exists a
constantC > 0 such that for allv ∈ H 1(Ω), for all ψ ∈ H 1(ω) and for allγ > 1, the following
estimate holds:

γ |||v|||20 + ‖v|xd=0‖
2
0 + ‖ψ‖

2
1,γ 6 C

(
1

γ
|||Lγuv|||20 + ‖Bγu (v, ψ)‖2

0

)
. (13)

Energy estimates in Sobolev spaces of higher order are also available, provided thatv andψ are
sufficiently regular.

To prove Theorem 1, one uses a Kreiss symmetrizer. This is possible because the boundary
conditions satisfy an analogue of the uniform Lopatinskiı̆ condition. We shall not detail the proof,
and refer the interested reader to [5, 7, 12, 16].
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4. The variable coefficient linearized problem

It is crucial in the proof of nonlinear stability of a planar shock to obtain an estimate of the same type
as (13) for the linearized operators about interfaces that are close to but different from hyperplanes.
The proof is entirely similar to Ḿetivier’s, so we omit it. We shall only give some indications and
references.

We keep the sameu as in the preceding section. There exists an open setU in Rn×Rn×R×Rd−1

containing(0,0,0,0) such that for all(wr , wl, σ, ν) ∈ U , one has

ul + wl ∈ U, λq−1(ul + wl, ξ) < σ < λq(ul + wl, ξ),

ur + wr ∈ U, λp(ur + wr , ξ) < σ < λp+1(ur + wr , ξ),

whereξ := (−ν,1) ∈ Rd . In other words,U is an open set such that all planar shocks associated
with elements ofU are noncharacteristic. Furthermore, one can chooseU such that all planar shocks
associated with elements ofU are uniformly stable, that is, satisfy Assumption 3. We fix a compact
subsetK ⊂ U and consider mappingṡur , u̇l, ϕ such thatϕ is defined onRd , u̇r (resp.u̇l) is defined
on {xd > ϕ(x0, . . . , xd−1)} (resp.{xd 6 ϕ(x0, . . . , xd−1)}) and(u̇r , u̇l,∇ϕ) takes its values inK.
We define a function

a :=

{
ur + u̇r(x) if xd > ϕ(x0, . . . , xd−1),

ul + u̇l(x) if xd < ϕ(x0, . . . , xd−1).

The regularity ofu̇r , u̇l and ϕ has not been specified yet. One can think of them as smooth
perturbations of the stationary shock waveu (some kind of first order correction in an asymptotic
expansion). We shall be more precise below.

With a slight abuse of notation, we often use the shorthanda to denote all functions(u̇r , u̇l, ϕ),
but we point out that we shall linearize both operatorsL andB with respect tou andϕ. More
precisely, we consider a familyus = a] + sv andϕs = ϕ + sψ . Then we define

La(v
±, ψ) :=

d

ds
L(u±

s , ϕs)u
±
s |s=0, (14a)

Ba(v, ψ) :=
d

ds
B(u+

s , u
−
s , ϕs)|s=0. (14b)

Recall thata] is the function deduced froma after the change of variablesΦ. A direct computation
shows that

La(v
±, ψ) =

d−1∑
j=0

Aj (a
±

] )∂jv
±

+

d−1∑
j=0

(dAj (a
±

] ) · v±)∂ja
±

] + Ãd(a
±

] ,∇ϕ)∂dv
±

−

d−1∑
j=0

∂jψAj (a
±

] )∂da±

] + (duÃd(a
±

] ,∇ϕ) · v±)∂da±

] , ± xd > 0,

and

Ba(v, ψ) =


d−1∑
j=0

∂jψ [fj (a])] − Ãd(a
+

] ,∇ϕ)v
+

+ Ãd(a
−

] ,∇ϕ)v
−

∂σh∂0ψ + dνh · ∇yψ + durh · v+
+ dulh · v−

 , xd = 0.
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Here, the partial derivatives ofh are evaluated at the point(a−

] ,a
+

] ,∇ϕ). We decompose the
linearized operatorLa as

La(v
±, ψ) = L(a±

] , ϕ)v
±

−

d−1∑
j=0

∂jψAj (a
±

] )∂da±

] + E(a±

] , ϕ)v
±

whereL is defined by (8a)–(8b) and

E(a±

] , ϕ)v
± :=

d−1∑
j=0

(dAj (a
±

] ) · v±)∂ja
±

] + (duÃd(a
±

] ,∇ϕ) · v±)∂da±

]

is the zero order part (inv±) of La. The principal part ofLa is obtained by dropping the terms
in ψ and the zero order terms inv± in the expression ofLa, and thus coincides with the operator
L(a±

] , ϕ). With little risk of confusion, we shall still denote byLa the principal part of this operator.
From now on, we only consider the principal part of the linearized operators. With the same
notations as in the preceeding section, the (principal part of the) linearized equations read

Lav =

d∑
j=0

Aj (a)∂jv = f, xd > 0,

Ba(v, ψ) =

d−1∑
j=0

∂jψbj (a)+M(a)v = g, xd = 0,

(15)

once we definev := (v+, v−) and perform the change of variablexd 7→ −xd in the evolution
equation forv−. Our goal is to obtain anL2 estimate for theweightedsystem:{

Lγav := Lav + γA0(a)v = exp(−γ t)f, xd > 0,

Bγa (v, ψ) := Ba(v, ψ)+ γψb0(a) = exp(−γ t)g, xd = 0.
(16)

To quantify our results, we fix a constantK > 0 and assume that

‖∇ϕ‖W1,∞(Rd ) 6 K, ‖(u̇r , u̇l)‖W1,∞(Ω) 6 K.

Then we have the following result:

THEOREM 2 Assume that(u̇r,l,∇ϕ) takes its values in a compact subsetK ⊂ U . Then there exist
two constantsC(K) > 0 andγ0 > 1, depending only onK andK, such that for allv ∈ H 1(Ω) and
all ψ ∈ H 1(ω), the following estimate holds:

∀γ > γ0, γ |||v|||20 + ‖v|xd=0‖
2
0 + ‖ψ‖

2
1,γ 6 C(K)

(
1

γ
|||Lγav|||20 + ‖Bγa (v, ψ)‖2

0

)
, (17)

where the operatorsLγa andBγa are the principal parts of the linearized operators, as defined in (16).

Theorem 2 is proved as in [16], using the Bony–Meyer paradifferential calculus. This technique
enables us to circumvent the difficulty of Lipschitzean coefficients. It also enables us to control the
constantC(K), and to show that it only depends onK. We refer the reader to [16, 7] for a complete
proof which we omit here.
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5. Well-posedness of the linearized problem

In this section, we are going to solve the linearized equations (15) supplemented with an initial
condition. Recall that the linearized operators have the following form:

Lav =

d∑
j=0

Aj (a)∂jv, xd > 0,

Ba(v, ψ) =

d−1∑
j=0

∂jψbj (a)+M(a)v, xd = 0.

We first solve the boundary value problem{
Lav = f, xd > 0,

Ba(v, ψ) = g, xd = 0,
(18)

with no initial condition and dataf andg in weighted spaces. This is done with the help of a suitable
dual problem that we introduce in the next subsection. In [16], Métivier uses a symmetric form of
the equations. These arguments cannot be used here because of the undercompressive character of
our shock waves (see especially the proof of Lemma 3.2.1 in [16]). Some modifications are required.
They are detailed in the next subsection.

5.1 The dual problem. Basic properties

The symbolb defined by (12) will not be used any more, so with little risk of confusion, we define
the matrix

b(a) := (b0(a) · · · bd−1(a)).

With this definition, we have
Ba(v, ψ) = b(a)∇ψ +M(a)v.

Moreover, the uniform stability condition implies that the matrixb(a) is one-to-one for alla =

(u̇r , u̇l,∇ϕ) ∈ U . As a consequence, forU small enough, there exists aC∞ mappingP : U →

GlN (R) such that

∀a ∈ U, P (a)b(a) =

(
Id
0

)
.

The boundary conditions in (18) equivalently read(
∇ψ

0

)
+ P(a)M(a)v = P(a)g.

We make the following (reasonable) assumption:

ASSUMPTION4 The matrixM(u) ∈ MN,2n(R) has maximal rank.

When dealing with Lax shock waves, the analogue of Assumption 4 is automatically satisfied
because the shock wave is noncharacteristic (see [16]).

Up to shrinkingU , the matrixM(a) has still maximal rank for alla = (u̇r , u̇l,∇ϕ) ∈ U and we
have the following lemma:
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LEMMA 1 There exists aC∞ mappingN : U → M2n−N,2n(R) such that for alla ∈ U ,

R2n
= Ker P(a)M(a)⊕ KerN(a).

Moreover, there exist twoC∞ mappings

M ′ : U → M2n,N (R) and N ′ : U → M2n,2n−N (R)

such that for alla ∈ U ,
I2n = M ′(a)P (a)M(a)+N ′(a)N(a).

Proof. Because the matrixP(a)M(a) has maximal rank for alla ∈ U , we can chooseN(a) ∈

M2n−N,2n(R), depending smoothly ona ∈ U , such that the matrix(
P(a)M(a)
N(a)

)
is invertible for alla ∈ U . Such a matrixN(a) automatically satisfies

R2n
= KerP(a)M(a)⊕ KerN(a).

Moreover,N(a) has maximal rank. We obtain the second part of Lemma 1 by defining

(
M ′(a) N ′(a)

)
:=

(
P(a)M(a)
N(a)

)−1

,

whereM ′ andN ′ have the dimensions (number of columns) indicated in the statement. 2

We define

Madj(a) := (Ad(a)M ′(a))T , Nadj(a) := (Ad(a)N ′(a))T , (19)

so that the following equality holds:

Ad(a) = Madj(a)T P(a)M(a)+Nadj(a)TN(a).

This is precisely the decomposition obtained in [16]. However, one cannot reproduce Métivier’s
argument here because the dimensions of matrices do not agree (this is because our shock is
undercompressive and so we have additional jump conditions). We have the following result:

LEMMA 2 For alla ∈ U , the following decomposition holds:

R2n
= KerMadj(a)⊕ KerNadj(a).

Proof. Using the definition of the matricesM ′ andN ′, we easily see that the matrix(
M ′(a)T

N ′(a)T

)
is invertible. Because the matrixAd(a) is also invertible, the matrix(

Madj(a)
Nadj(a)

)
is invertible (see (19)). The result immediately follows. 2
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Integrating by parts, one shows that

∀u, v ∈ C∞
c (Ω), 〈〈Lau, v〉〉L2(Ω) = 〈〈u,L∗

av〉〉L2(Ω), 〈〈Lγau, v〉〉L2(Ω) = 〈〈u, (Lγa )∗v〉〉L2(Ω),

whereL∗
a and(Lγa )∗ are given by

L∗
a := −

d∑
j=0

Aj (a)T ∂j −

( d∑
j=0

∂jAj (a)T
)
, (Lγa )∗ := L∗

a + γA0(a)T .

We define the dual boundary conditions of (18) in the following way:

Nadj(a)v = 0, div(Madj
1 (a)v) = 0, xd = 0, (20)

whereMadj
1 (a) is the matrix formed by the firstd rows ofMadj(a). In (20), “div” stands for the

divergence operator inω = Rd . The main result of this subsection can be stated as follows:

PROPOSITION1 Let γ > 1, f̃ ∈ L2(Ω) andg̃ ∈ L2(ω). If (v, ψ) ∈ L2(Ω) × L2(ω) is a weak
solution of {

Lγav = f̃ , xd > 0,

Bγa (v, ψ) = g̃, xd = 0,

then for allw ∈ C∞
c (Ω) such that

Nadj(a)w|xd=0 = 0, div−γ (M
adj
1 (a)w|xd=0) = 0

we have
〈〈f̃ , w〉〉L2(Ω) + 〈P(a)g̃,Madj(a)w〉L2(ω) = 〈〈v, (Lγa )∗w〉〉L2(Ω).

The operator div−γ is defined onH 1(Rd; Rd) by

div−γ u := −γ u0 +

d−1∑
j=0

∂juj .

Furthermore, the linear problem{
L∗

aw = 0, xd > 0,

Nadj(a)w = 0, div(Madj
1 (a)w) = 0, xd = 0,

satisfies the backward uniform Kreiss–Lopatinskiı̆ condition, that is, the analogue of the uniform
stability condition (Assumption 3) withγ changed to−γ .

Proof. Becausev ∈ L2(Ω) andLγav ∈ L2(Ω), a classical result by Friedrichs ensures that the
trace ofv on ω is well defined and belongs toH−1/2(ω). (Here, we use the symmetrizability of
the hyperbolic equations, given by Assumption 1.) Moreover, the following equality holds for all
w ∈ C∞

c (Ω):

〈〈f,w〉〉L2(Ω) = 〈〈v, (Lγa )∗w〉〉L2(Ω) − 〈Ad(a)v,w〉H−1/2(ω),H1/2(ω).
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Using the equality

(
∇
γψ

0

)
+ P(a)M(a)v = P(a)g̃ with ∇

γψ :=


γψ + ∂0ψ

∂1ψ
...

∂d−1ψ

 ,

we obtain

〈Ad(a)v,w〉H−1/2(ω),H1/2(ω) = 〈P(a)g̃,Madj(a)w〉L2(ω) + 〈ψ,div−γM
adj
1 (a)w〉L2(ω)

+ 〈N(a)v,Nadj(a)w〉H−1/2(ω),H1/2(ω).

The first part of the proposition follows. We now turn to the study of the boundary value problem{
L∗

aw = 0, xd > 0,

Nadj(a)w = 0, div(Madj
1 (a)w) = 0, xd = 0.

We freeze the coefficients and check the backward uniform Kreiss–Lopatinskiı̆ condition. Once the
(backward) Laplace transform inx0 and the Fourier transform inx1, . . . , xd−1 are performed, the
interior equations read

ATd
dŵ

dxd
−

(
γAT0 − i

d−1∑
j=0

ηjATj
)
ŵ = 0, xd > 0,

and the boundary conditions read

Nadjŵ(0) = 0, (−γ + iη0, iη1, . . . , iηd−1) ·M
adj
1 ŵ(0) = 0.

In what follows, we consider the usual hermitian structure on the spacesCm, defined by the
hermitian form

〈X, Y 〉Cm :=
m∑
i=1

XiYi,

and the sign⊥ denotes the orthogonal complement with respect to this hermitian structure. It is
proved in [5] that the stable subspace of the matrix

(ATd )
−1

(
γAT0 − i

d−1∑
j=0

ηjATj
)

is equal to(AdE−(η, γ ))⊥. Definee := (γ + iη0, iη1, . . . , iηd−1)
T . We thus need to check that for

all (η, γ ) ∈ Σ , the subspace

{Z ∈ (AdE−(η, γ ))⊥ : NadjZ = 0 and〈M
adj
1 Z, e〉Cd = 0}

is trivial. LetZ ∈ (AdE−(η, γ ))⊥ satisfyZ ∈ KerNadj and

〈M
adj
1 Z, e〉Cd = 0.
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Let Y ∈ CN . Because of Assumption 3, there existχ ∈ C andX ∈ E−(η, γ ) such that

Y = χ

(
e

0

)
+ PMX.

We now compute

〈MadjZ, Y 〉CN = χ〈M
adj
1 Z, e〉Cd + 〈MadjZ,PM〉CN = 〈Z, (Madj)T PMX〉C2n

= 〈Z,AdX〉C2n − 〈Z, (Nadj)TNX〉C2n = 0.

Because this equality holds for allY ∈ CN , we haveZ ∈ KerMadj; but we also haveZ ∈ KerNadj,
and thusZ = 0 (see Lemma 2). This completes the proof. 2

If w ∈ C∞
c (Ω) satisfies

Nadj(a)w|xd=0 = 0, div−γ (M
adj
1 (a)w|xd=0) = 0,

we have the estimate

γ |||w|||
2
0 + ‖w|xd=0‖

2
0 6

C(K)

γ
|||(Lγa )∗w|||

2
0. (21)

This estimate is proved as the main estimate of Theorem 2, using Kreiss symmetrizers and
paradifferential calculus. We are now able to solve the linearized equations in weighted spaces.

5.2 Existence of solutions in weighted spaces

Forγ > 1, the space exp(γ t)L2(Ω) is the set of functionsf defined onΩ such that exp(−γ t)f ∈

L2(Ω). The space exp(γ t)H s(ω) is defined in a similar way whens ∈ R. This subsection is devoted
to the proof of the following result:

PROPOSITION2 Under Assumptions 1–4, there existsγ0 > 1 such that for allγ > γ0, for
all f ∈ exp(γ t)L2(Ω) and for all g ∈ exp(γ t)L2(ω), there exists a weak solution(v, ψ) ∈

exp(γ t)L2(Ω)× exp(γ t)H 1/2(ω) of the linearized equations{
Lav = f, xd > 0,

Ba(v, ψ) = g, xd = 0.

Proof. Let F denote the subspace

F := {w ∈ C∞
c (Ω) : Nadj(a)w|xd=0 = 0 and div−γ (M

adj
1 (a)w|xd=0) = 0}.

We let f̃ := exp(−γ t)f , g̃ := exp(−γ t)g. We define a linear form on(Lγa )∗F by the following
formula:

`[(Lγa )∗w] := 〈〈f̃ , w〉〉L2(Ω) + 〈P(a)g̃,Madj(a)w〉L2(ω).

The linear form̀ is well defined because of (21) and there exists a constantC > 0 such that

|`[(Lγa )∗w]| 6 C|||(Lγa )∗w|||0.
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Applying the Hahn–Banach Theorem and then the Riesz Theorem, we can conclude that there exists
a functioñv ∈ L2(Ω) such that for allw ∈ F ,

`[(Lγa )∗w] = 〈〈̃v, (Lγa )∗w〉〉L2(Ω). (22)

If we first choose test functionsw ∈ C∞
c (Ω), we deduce that̃v is a weak solution of

Lγa ṽ = f̃ ,

or equivalently, the functionv := exp(γ t )̃v is a weak solution in exp(γ t)L2(Ω) of

Lav = f.

Using once again Friedrichs’s result, we infer that the trace ofṽ onω is well defined and belongs to
H−1/2(ω). Furthermore, the following equality holds for allw ∈ F :

〈〈̃v, (Lγa )∗w〉〉L2(Ω) = 〈〈f̃ , w〉〉L2(Ω) + 〈P(a)M(a)̃v,Madj(a)w〉H−1/2(ω),H1/2(ω),

and combining this equality with (22) yields

∀w ∈ F, 〈P(a)M(a)̃v,Madj(a)w〉H−1/2(ω),H1/2(ω) = 〈P(a)g̃,Madj(a)w〉L2(ω).

By a continuity argument, this equality still holds for allw ∈ H 1(Ω) such thatNadj(a)w = 0 and
div−γ (M

adj
1 (a)w) = 0 on the boundaryω. Note that these equalities make sense because the trace

of functions inH 1(Ω) is well defined and belongs toH 1/2(ω).
Let θ be a function inH 1/2(ω) that takes its values inRN . We write θ = (θ1, θ2) whereθ1

(resp.θ2) takes its values inRd (resp.RN−d ). Then there exists a functionw ∈ H 1(Ω) such that

Nadj(a)w|xd=0 = 0, Madj(a)w|xd=0 = θ.

This classical lifting argument works because both matricesNadj(a) andMadj(a) are Lipschitzean.
Consequently, for allθ2 ∈ H 1/2(ω; RN−d), we have

〈P(a)M(a)̃v, (0, θ2)〉H−1/2(ω),H1/2(ω) = 〈P(a)g̃, (0, θ2)〉L2(ω),

and for allθ1 ∈ H 1/2(ω; Rd) satisfying div−γ θ1 = 0, we have

〈P(a)M(a)̃v, (θ1,0)〉H−1/2(ω),H1/2(ω) = 〈P(a)g̃, (θ1,0)〉L2(ω).

The result of the proposition follows from the following lemma:

LEMMA 3 Letγ > 1 and letu ∈ H−1/2(Rd; Rd) be such that for allw ∈ C∞
c (Rd; Rd), one has

div−γ w = 0 ⇒ 〈u,w〉H−1/2,H1/2 = 0.

Then there existsψ ∈ H 1/2(Rd; R) such that

u = ∇
γψ =


γψ + ∂0ψ

∂1ψ
...

∂d−1ψ

 .

Furthermore, the solutionψ satisfies‖ψ‖1/2,γ 6 ‖u‖−1/2,γ .



384 J.-F. COULOMBEL

Applying Lemma 3, we can conclude that there existsψ̃ ∈ H 1/2(Rd) such that(
∇
γ ψ̃

0

)
+ P(a)M(a)̃v = P(a)g̃.

Proposition 2 follows by settingψ := exp(γ t)ψ̃ . 2

We refer to [7, 17] for the proof of Lemma 3, which is a very classical result.

5.3 Final steps in the analysis

Proposition 2 asserts the existence of weak solutions as long as the data belong to weighted spaces,
but we have said nothing yet about the uniqueness of weak solutions and continuity with respect
to the data. The lack of regularity of weak solutions makes it impossible to use our main energy
estimate (Theorem 2). The next step consists in showing that weak solutions exhibited in Proposition
2 arestrongsolutions, in the following sense: there exist sequences(vν) in exp(γ t)H 1(Ω) and(ψν)
in exp(γ t)H 1(ω) such that

exp(−γ t)vν → exp(−γ t)v in L2(Ω),

Lγa (exp(−γ t)vν) → f̃ in L2(Ω),

exp(−γ t)vν
|xd=0

→ exp(−γ t)v|xd=0 in H−1/2(Rd),

exp(−γ t)ψν → exp(−γ t)ψ in H 1/2(Rd),

Bγa (exp(−γ t)vν,exp(−γ t)ψν) → g̃ in L2(Rd).

Furthermore(exp(−γ t)vν,exp(−γ t)ψν) satisfies the energy estimate (17). Using the convergences
stated above, we conclude that exp(−γ t)ψ ∈ H 1(Rd) and exp(−γ t)v|xd=0 ∈ L2(Rd), and
(exp(−γ t)v,exp(−γ t)ψ) satisfies the energy estimate (17). In particular, we have a uniqueness
result in weighted spaces. We refer to [16, 17] for the details (the regularized sequence is obtained
via tangential mollifiers).

Continuing the analysis of the linearized equations, one shows that for data vanishing in the
past (f = 0 andg = 0 for t < 0), solutions also vanish in the past and one can then solve the
boundary value problem (18) supplemented with an initial condition. The arguments are similar to
those in [5, 16]. This extends the previous work by Rauch [18] that dealt withC∞ coefficients. We
can summarize the main result on the linear problem in the following way:

THEOREM 3 Under Assumptions 1–4, consider the data

f ∈ L2(]0, T [ × Rd+), g ∈ L2(]0, T [ × Rd−1), v0 ∈ L2(Rd+), ψ0 ∈ H 1/2(Rd−1),

whereT is a fixed positive number. Then the linearized problem

d∑
j=0

Aj (a)∂jv = f, xd > 0, t ∈ ]0, T [,

d−1∑
j=0

∂jψbj (a)+M(a)v = g, xd = 0, t ∈ ]0, T [,
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supplemented with the initial condition

v|t=0 = v0, ψ|t=0 = ψ0,

has a unique solution(v, ψ) ∈ L2(]0, T [ × Rd+) × H 1(]0, T [ × Rd−1) such thatv ∈

C([0, T ];L2(Rd+)) and for allγ > γ0 and allt ∈ [0, T ], the following estimate holds:

e−2γ t
‖v(t)‖2

L2(Rd+)
+ γ ‖e−γ sv‖2

L2(]0,t [×Rd+)
+ ‖e−γ sv|xd=0‖

2
L2(]0,t [×Rd−1)

+ ‖e−γ sψ‖
2
H1(]0,t [×Rd−1)

6 C

(
1

γ
‖e−γ sf ‖

2
L2(]0,t [×Rd+)

+ ‖e−γ sg‖2
L2(]0,t [×Rd−1)

+ ‖v0‖
2
L2(Rd+)

+ ‖ψ0‖
2
H1/2(Rd−1)

)
.

The constantsC andγ0 are independent oft, T , f, g, but depend on the constantK > 0 and on the
compact setK (see Theorem 2).

In order to construct an iteration scheme to solve the nonlinear equations, we need to know
more about the regularity of the solutions to the linear problem. The main question is: given
data that belong to higher order Sobolev spaces, does the solution also belong to a higher order
Sobolev space? The question was addressed in [19] and the answer is yes provided that a number of
compatibility conditions hold. These compatibility conditions are satisfied when the initial datav0
andψ0 are zero, and the source termsf andg vanish in the past.

To obtain an energy estimate in a Sobolev space, one first commutes the linearized equations
with tangential derivatives and uses Theorem 3 (as well as Gagliardo–Nirenberg inequalities to
estimate commutators). The normal derivatives are directly estimated by using the equation

∂dv = Ad(a)−1f −

d−1∑
j=0

Ad(a)−1Aj (a)∂jv.

This is possible because the interface is noncharacteristic (Assumption 2), so one can reproduce
Métivier’s analysis (see [16]). Finally, let us assume thatu̇ ∈ H s(ΩT ) andϕ ∈ H s+1(ωT ), where
ΩT := ]−∞, T ]×Rd+,ωT := ]−∞, T ]×Rd−1, s > (d+3)/2, and(u̇, ϕ) vanish fort < T0. (Recall
that(u̇, ϕ) is the perturbation of the planar interface about which the equations are linearized). Then,
if f ∈ H s(ΩT ) andg ∈ H s(ωT ) vanish in the past, the solution(v, ψ) to the linearized system
(18) satisfiesv ∈ H s(ΩT ), ψ ∈ H s+1(ωT ), and the energy estimate

γ |||v|||2H s
γ (ΩT )

+ ‖v|xd=0‖
2
H s
γ (ωT )

+ ‖ψ‖
2
H s+1
γ (ωT )

6 C(K)

(
1

γ
|||f |||

2
H s
γ (ΩT )

+ ‖g‖2
H s
γ (ωT )

)
+
C(K)

γ
(1 + ‖v‖2

W1,∞(ΩT )
+ ‖f ‖

2
L∞(ΩT )

)(|||u̇|||2H s
γ (ΩT )

+ ‖ϕ‖
2
H s+1
γ (ωT )

).

Here, we have kept the notations of [16]: for instance,H s
γ (ΩT ) denotes the space exp(γ t)H s(ΩT )

and is equipped with the norm

|||v|||H s
γ (ΩT )

:=
∑
|α|6s

γ s−|α|
|||exp(−γ t)∂αv|||L2(ΩT )

.
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We now describe the iteration scheme used to solve the nonlinear equations (7). In [13], Majda
used a classical Picard iteration scheme

L(uν+, ϕ
ν)(uν+1

+ − u
app
+ ) = −L(uν+, ϕ

ν)u
app
+ ,

L(uν−, ϕ
ν)(uν+1

− − u
app
− ) = −L(uν−, ϕ

ν)u
app
− ,

(23)

for the interior equations, together with a Newton scheme for the boundary conditions. In (23), the
functions(uapp

+ , u
app
− ) are an approximate solution constructed with compatible initial conditions

(see [14, 16]). In [16], Ḿetivier first reduces the nonlinear boundary conditions to linear boundary
conditions. This is made possible by the uniform stability condition but it heavily uses the particular
form of the Rankine–Hugoniot conditions. It can therefore hardly apply in our framework because
of the additional jump conditions. We thus go back to Majda’s method which was also used in
[17]. The scheme used for the interior equations is defined by (23) and the solution(uν+1

+ − u
app
+ ,

uν+1
− − u

app
− ) is sought as a function vanishing fort < 0. (The approximate solutionuapp equals

the initial condition att = 0). This is made possible by the arguments developed when solving the
linearized problems. As said previously, the nonlinear boundary conditions are solved by a Newton
method. Recall that we look foru+, u− andϕ that satisfyB(u+, u−, ϕ) = 0 on {xd = 0}, so the
Newton method reads

dB(uν+, u
ν
−, ϕ

ν) · (uν+1
+ − uν+, u

ν+1
− − uν−, ϕ

ν+1
− ϕν) = −B(uν+, u

ν
−, ϕ

ν). (24)

Using (8c) and the definition of the linearized operatorB (see (14b)), we may rewrite (24) as

Baν (u
ν+1
+ − u

app
+ , uν+1

− − u
app
− , ϕν+1

− ϕapp)

= Baν (u
ν
+ − u

app
+ , uν− − u

app
− , ϕν − ϕapp)− B(uν+, u

ν
−, ϕ

ν),

with aν := (uν+, u
ν
−, ϕ

ν). At each step of the iteration scheme, the initial conditions are

(uν+1
+ − u

app
+ , uν+1

− − u
app
− , ϕν+1

− ϕapp)|t=0 = 0.

Using this iteration scheme, we end up with the main result of this paper:

THEOREM 4 Fix an integers > (d + 3)/2, and initial data(u0
+, u

0
−, ϕ

0) satisfying

u0
+ − ur ∈ H s+1/2(Rd+), u0

− − ul ∈ H s+1/2(Rd+), ϕ0
∈ H s+1/2(Rd−1),

such thatu0
+ − ur , u0

− − ul andϕ0 have compact support and satisfy the natural compatibility
conditions up to orders − 1. Assume also that(u0

+ − ur , u
0
− − ul, ϕ

0) takes its values in a compact
subset ofU . Then there exists a unique smooth solution(u+, u−, ϕ) of (7) defined on a time interval
[0, T ] with T > 0. Furthermore, the solution(u+, u−, ϕ) satisfies

u+ − ur ∈ H s(]0, T [ × Rd+), u− − ul ∈ H s(]0, T [ × Rd+), ϕ ∈ H s+1(]0, T [ × Rd−1).

Recall that when the initial data satisfy the regularity assumptions of Theorem 4, and are
compatible up to orders − 1, one can construct an approximate solution(uapp

+ , u
app
− , ϕapp) that

satisfies

u
app
+ − ur ∈ H s+1(Ω), u

app
− − ul ∈ H s+1(Ω), ϕapp

∈ H s+1(Rd−1),
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and

∀j = 0, . . . , s − 1,

{
∂
j
t [L(uapp

± , ϕapp)u
app
± ]|t=0 = 0,

∂
j
t B(u

app
+ , u

app
− , ϕapp) = 0.

We refer to [16, 7] for the proof of Theorem 4. The idea is to prove that for the iteration scheme
defined above, the sequence(uν,∇ϕν) is bounded inH s and converges inL2. Then one shows that
the limit is actually a solution inH s .

6. Isothermal phase transitions

In this section, we show how our analysis applies to the case of isothermal phase transitions in a van
der Waals fluid. We refer to [2] for the proofs of the result stated below. We are interested here in
the isothermal Euler equations{

∂tρ + ∇ · (ρu) = 0,

∂t (ρu)+ ∇ · (ρu ⊗ u)+ ∇p(ρ) = 0.

As usual,ρ stands for the density of the fluid,u for the velocity,p for the pressure. It is a well
known fact that this system meets Assumption 1 in the region where it is hyperbolic, that is, in the
region{p′(ρ) > 0}. In the following,v stands for the specific volume of the fluid,v := 1/ρ. We
assume that the fluid obeys a van der Waals pressure law

p(ρ) = P(v) =
RT

v − b
−
a

v2
.

The parametersa andb are positive andR stands for the perfect gas constant. WhenT is below the
critical temperatureTc := 8a/(27bR), the isothermal curve(v 7→ P(v)) is nonmonotone and we
thus expect phase boundaries to propagate. More precisely,P decreases but on an interval ]v∗, v

∗[.
The interval ]b, v∗[ (resp. ]v∗,∞[) is referred to as the liquid (resp. vapor) phase. Another important
feature of the pressure lawP is the existence and uniqueness of the so-called Maxwell equilibrium
points(vm, vm). These are defined by

vm < v∗ < v∗ < vm, P (vm) = P(vm) =: P ,
∫ vm

vm

(P − P(v))dv = 0.

We let

U :=

{
(ρr ,ur) if x · n > σt,

(ρl,ul) if x · n < σt,

be a weak solution of the Euler equations with 1/ρr and 1/ρl close to Maxwell equilibrium points
(vm, v

m) (for instance 1/ρl close tovm and 1/ρr close tovm). Without loss of generality, we may
assume that the following inequalities hold:

ur · n − cr < σ < ur · n, ul · n − cl < σ < ul · n,

wherec is the sound speed in the fluid (recall thatc is given byc(ρ) :=
√
p′(ρ)). This corresponds

to an undercompressive shock wave withκ = 0 (see (5) and Definition 1). Following Slemrod [24],
we shall say thatU is anadmissible phase transitionif there exists a traveling wave

ρ(t, x) = ρ̃((x · n − σ t)/ε), u(t, x) = ũ((x · n − σ t)/ε)
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satisfying
ρ̃(+∞) = ρr , ρ̃(−∞) = ρl, ũ(+∞) = ur , ũ(−∞) = ul,

that is a solution to the Euler equations supplemented with a capillarity coefficientε2 and a viscocity
coefficientνε (ν > 0):

∂tρ + ∇ · (ρu) = 0,

∂t (ρu)+ ∇ · (ρu ⊗ u)+ ∇p(ρ) = νε∆u − ε2
∇(∆v).

Let F denote the specific free energy of the fluid,F ′(v) = −P(v). It is shown in [2] that
admissible phase transitions satisfy the Rankine–Hugoniot conditions together with the additional
(nonexplicit) jump condition

[F ] + [v]
P(vr)+ P(vl)

2
= −νj

∫
R
ṽ′(ξ)2 dξ,

where
j := ρr(ur · n − σ) = ρl(ul · n − σ)

denotes the mass transfer across the discontinuity. On account of the Rankine–Hugoniot conditions,
the additional jump condition can be rewritten as[

f ′(ρ)+
1

2
(u · n − σ)2

]
= −νj

∫
R
ṽ′(ξ)2 dξ,

wheref (ρ) := ρF(1/ρ) stands for the free energy per unit volume. We have thus a (nonexplicit)
form for the functionh introduced in Definition 2. The reader will note that the functionh depends
on ν > 0. Therefore, there is a very wide choice of admissibility criteria. The following theorem is
proved in [2] (we refer to this paper for a precise statement):

THEOREM 5 (Benzoni-Gavage [2]) For sufficiently small viscosity coefficientν, there exist
admissible planar phase transitions, and such phase transitions are linearly uniformly stable, that
is, meet Assumption 3. The space dimension is eitherd = 2 ord = 3.

In order to apply the analysis developed in this paper, we only need to check Assumption 4,
since we already know that Assumptions 1–3 are satisfied. Performing a change of observer, we
may assume thatσ = 0, n = (0, . . . ,0,1) and that the velocities on either side of the shock are
parallel ton, that is,ur,l = (0, . . . ,0, ur,l).

For the particular system of Euler’s equations supplemented with the above additional jump
condition, it is proved in [2] that the matrixM involved in the linearized boundary conditions is
given by

M =


ur 0 ρr −ul 0 −ρl
0 ρrurId−1 0 0 −ρlulId−1 0

u2
r + c2

r 0 2ρrur −(u2
l + c2

l ) 0 −2ρlul
f ′′(ρr) 0 ur ν̃ul − f ′′(ρl) 0 ν̃ρl − ul

 ,

whereν̃ = αν + o(ν), α being a positive constant. Recall thatf is the free energy per unit volume.
In order to check thatM has maximal rank, we are going to show that the submatrixM1 consisting
of the firstd + 1 columns and of the last column ofM is invertible. We have

f ′′(ρ) =
1

ρ
p′(ρ) =

c2

ρ
,
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and therefore

M1 =


ur 0 ρr −ρl
0 ρrurId−1 0 0

u2
r + c2

r 0 2ρrur −2ρlul
c2
r /ρr 0 ur ν̃ρl − ul

 .

The determinant ofM1 is given by

detM1 = (ρrur)
d−1(u2

r − c2
r )([u][ρ] + ν̃ρrρl),

soM1 is an invertible matrix for sufficiently small viscosity coefficientν. Assumption 4 is therefore
met and we can apply the existence result of Section 5 to these admissible phase transitions.
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10. FREISTÜHLER, H. Some results on the stability of non-classical shock waves.J. Partial Differential
Equations11 (1998), 25–38. Zbl 0903.35006 MR 99e:35142

11. HERSH, R. Mixed problems in several variables.J. Math. Mech.12 (1963), 317–334. Zbl 0149.06602
MR 26 #5304

12. KREISS, H. O. Initial boundary value problems for hyperbolic systems.Comm. Pure Appl. Math.23
(1970), 277–298. Zbl 0193.0690 MR 55 #10862

13. MAJDA, A. The existence of multi-dimensional shock fronts.Mem. Amer. Math. Soc.281 (1983).
Zbl 0517.76068 MR 85f:35139

http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0928.76015&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0980.76023&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0920.76001&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0487.35002&format=complete
http://www.ams.org/mathscinet-getitem?mr=83j%3A35001
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0977.35085&format=complete
http://www.ams.org/mathscinet-getitem?mr=2000h%3A35100
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0811.35078&format=complete
http://www.ams.org/mathscinet-getitem?mr=96c%3A35114
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0820.35092&format=complete
http://www.ams.org/mathscinet-getitem?mr96i%3A35084
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0903.35006&format=complete
http://www.ams.org/mathscinet-getitem?mr=99e%3A35142
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0149.06602&format=complete
http://www.ams.org/mathscinet-getitem?mr=26%20%235304
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0193.0690&format=complete
http://www.ams.org/mathscinet-getitem?mr=55%20%2310862
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0517.76068&format=complete
http://www.ams.org/mathscinet-getitem?mr=85f%3A35139


390 J.-F. COULOMBEL

14. MAJDA, A. The stability of multi-dimensional shock fronts.Mem. Amer. Math. Soc.275 (1983).
Zbl 0506.76075 MR 84e:35100

15. MAJDA, A. Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables.
Springer, New York (1984). Zbl 0537.76001 MR 85e:35077
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