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A variational model of irrigation patterns
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Irrigation and draining systems, plants and trees together with their root systems, lungs and
cardiovascular systems have a common morphology which seems to derive from topological
constraints together with energy saving requirements. All of these systems look like spatial trees and
succeed in spreading out a fluid from a source onto a volume. The associated morphology is a tree of
bifurcating vessels. Their intuitive explanation is that transport energy is saved by using broad vessels
as long as possible rather than thin spread out vessels. In this paper, we define a general formalism
dealing with irrigation patterns. Related to martingale theory, this formalism permits one to define
irrigation trees and their vessels, to give a generic form to their energy, and to show compactness
for the irrigation patterns with bounded energy as well as a lower semicontinuity result for the cost
functional. As a consequence, we show that a variety of source to volume irrigation problems are
well posed.

Introduction

The function of many natural flow systems is to connect by a fluid flow a finite size volume to
a source. This happens with drainage networks, actual plants and trees, root systems, bronchial
systems, cardiovascular systerns| [19]. Typically, the network system is designed according to the
following principles: (i) The network supplies an entire volume of an organism and a space filling
hierarchical branching pattern is required; (ii) the biological networks have evolved to minimize
energy dissipation. Sometimes two more principles are added, namely (iii) the size of the final
branches of the network is a size-invariant unit, and (iv) the equality of flow supply through the
network system([25],[26]/[27].]3]. In the case of trees and plants, the energy criterion must be
related to the mechanical stability of the trunk and branches in response to wind and gravity. In the
case of irrigation networks, the energy criterion aims at a reduction of the overall resistance of the
system.

To be able to derive quantitative properties from this set of principles, a basic assumption is
usually made, namely that the network has a branched tree structure made at each scale of tubes of
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a certain uniform length, radius and with a given branching number. In other terms, the irrigation
system is a fully homogeneous tree in scales, sizes and shapes. Then, under these somewhat ad
hoc assumptions, the above principles have been shown by the just mentioned authors to imply
that the network has a fractal-like structure with self-similar properties. The irrigation network is
then characterized by how the branching ratios, and the ratios of radii and lengths of the tubes
change through the network. The above principles permit one to conclude that the branching ratios
are constant, say, and the radii and length ratios scale as powers.dfhis heuristic reasoning

ends up with a structure described as a self-similar fractal [25], [26], [27]. Let us mention that in
geomorphology, an early study of the fractal-like behavior of natural drainage networks was started
by R. E. Horton[[14], A. N. Strahler [20], and generalized by E. Tokunaga [22].

The above treatment has some weak points, namely, the assumption of the existence of a network
structure doing the job, the assumption that the network is a tree with countable branches and the
very strong homogeneity assumption involved in heuristic calculations. These properties should be
deduced from first principles, a basic variational principle related to the cost of irrigation should be
at the basis of both facts, as requested_ in [25]. Autholis in [27] acknowledge thite of the very
large number of numerical and empirical studies, no general theory based on fundamental laws has
yet been developed for (...) fractal behavior (IL)s our purpose here to discuss the first mentioned
assumption, namely the proper existence of an irrigation tree irrigating a volume and with minimal
resistance. This paper is not, however, the first mathematical attempt and we know of two other
works addressing the existence problem, namely [5]land [29].

Before describing those works, let us remark that, in spite of the many and diverse modelling
aspects involved in the formalization of the irrigation trees, it seems sound in the first mathematical
inquiries to adopt the simplest variational formalization coping with the essential features of
the problem. This same Occam’s razor principle is adopted in the just mentioned mathematical
references.

In [5], the problem of finding a maximal irrigated volume with minimal cost is addressed2Let
be a fixed open domain. A point sour§e= 2 is fixed. We say that a compakt C €2 isirrigable if
the complementary sét = 2 \ K is connected and contaids U is called therrigation network
The authors fix an “accessibility profile”, namely a functign: R, — R, increasing and such
that f(0) = 0. A pointx € K is said f-irrigable if there is a pathx(s) such thatx(0) = x,

x(L) = S, and for every € [0, L], B(x(s), f(s)) C U, whereB(x, r) denotes the ball with center

x and radiug-. In other terms, there is a thick path insiddeading tox. This path becomes thinner
when approaching the irrigated point, but with a thinning rate uniformly bounded from below. The
authors show first that if slightly superlinear at 0 (e.d.(s) = 5%, 0 < « < 1) then the problem of
irrigating a maximal positive volume is well posed. Namely: there ex{stsith maximal volume
among allf-irrigable sets. Next, a cost functional is associated with each accessibility path to
This cost functional is assumed to be lower semicontinuous with respect to the uniform convergence
of paths.K being fixed, one can therefore associate with eaéh K a minimal accessibility cost

ck (x). The irrigation cost ofK is then defined as(K) = fK ck (x) dx. Then the existence of a
maximal irrigated volume with minimal costc(K) is proved. To the best of our knowledge, this
paper is the only one addressing the existence of thick embedded irrigation networks. Its weak point
is the somewhat floppy expression of the cost functional.

Qinglan Xia's paper([29] was communicated to us while we were in the course of revising
the present paper. Although the mathematical treatment proposed by this author and ours are very
different, the considered energy functional is exactly the same and the addressed end problem is
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also essentially the same. Xia treats the irrigation problem as a transport problem from a fixed
probability measurg.* to a fixed probability measuye~. He does not consider as [ [5] a volume
representation of the network but treats it roughly as an embedded graph with a countable number
of vertices and satisfying the Kirchhoff law. The network is then elegantly represented as a one-
dimensional flat current with non-integer multiplicity satisfying

3G =p" —p”

(in the earlier version of this paper), or, equivalently, as a vector measure supported by a countable
graph (in the later version). The multiplicity of each edge of the graph represents the fluid flow
along the vertex and the conditidG = ™ — .~ implies that the Kirchhoff law is satisfied at each
vertex of the graph. When such graphs are finite, Xia considers the same energy we shall consider,
namely

E*G)= ) w(e)®lengthe), (0.1)

e edge ofG

where O0< a < 1. (When the graph is infinite, he uses a relaxed version of the same functional.)
This energy deserves some explanation. Assume that a tube or a bilzifugicates into two smaller
edgese; etep. Then by the Kirchhoff laww(e) = w(e1) + w(e2). It is immediately seen that if
«a = 1, there is no energy loss in this bifurcation, whilerif< 1, it would be more advantageous
from the energy saving viewpoint to avoid a bifurcation. In fluid mechanics, this amounts to stating a
qualitative Poiseuille law, according to which the resistance of a tube increases when it gets thinner.
In the case of trees, the same energy criterion translates the fact that mechanical strength is increased
by avoiding branching. In the case of the transportation problem addressed in [29], the interpretation
reads as followstn shipping two items from nearby cities to the same far away city, it may be less
expensive to first bring them into a common location and put them on a single truck for most of the
transport. In this case, a¥ shaped” path is preferable to aV shaped” path”. The choice of the
power functionw® with 0 < o < 1 is just a way to express the above requirement by an example.
Clearly, any function concave near 0 would do the same job for the mathematical discussion. In the
following, we shall refer to Xia's approach as the “Eulerian” approach.

Let us return to our aims here. We shall consider a single squice- §g, a Dirac mass, and
any irrigated measure—. The mathematical approach developed here is actually different from the
one proposed in Xia’s paper. An irrigation system is not defined as an embedded graph, but as an
(usually uncountable) set of paths or “fibers” starting from the source and arriving at every point of
the support of the irrigated measure. Our initial search space for a solution will therefore be larger,
since it allows a priori spreading trees where each fiber of a set with positive measure could go
its way without following a branch. (This is an abstraction of what happens with grass, where no
trunk or branch is formed and the paths, coinciding with the grass leaves, are numerous but thin and
straight.) We shall refer to this approach as “Lagrangian”, as opposed to the Eulerian one. Let us
give some details.

Our formalism considers paths starting from the source and representing, according to the
different interpretations, either the trajectoryRA of a fluid particle, or a fiber of a tree. We shall
call these infinitely many paths “fibers” and denote themytgy, 1) € RY, wherer is time (or
length along the fiber) angd denotes a particle, belonging to an abstract probability spacé/e
shall introduce a stopping tims, (p) for each fiber, namely the first time it stops for ever. This will
allow us to define the irrigation measure, as a density measure of the fibers stopping in any given
volume.
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In SectiorD., we define what we call a set of fibers, namely, a set of trajecjgrigsstarting
all from a source poing,(0) = S and indexed by a probability spagec §2. We then defing -
vessels, or branches, as equivalence classes under the equivalence petatjdh x, (s) andy, (s)
coincide up to time. We also define ¥ -flows at timer” as x -vessels which have not yet stopped.

Next, we address all measurability questions raised by this formalism, related in particular to the
stopping or absorption time, (p) and the measurability of branchespwvessels. We define what

we call afterwards “non-spread flow”, namely sets of fibers which remain all in branghHéss)

with positive measure or stop. All the notations and definitions are summarized in the index at the
end of this paper.

In Sectior] 2, we define our cost functional as an integral over the geflofvs. This functional
is equivalent to the above mentioned enefgy|(0.1), defined in [29]. We make precise the notion of
pointwise convergence for sets of fibers.

In Sectior] B, the irrigation measure is defined and its weak continuity with respect to pointwise
convergence of the sets of fibers is proved. Se¢flon 6 shows the lower semicontinuity of the cost
functional under pointwise convergence.

Section[# proves a technically useful result, namely that a non-spread set of fibers can be
reconstructed from the knowledge of theflows for a dense subset of valuesrof

Sectionj b addresses a structural invariance of the problem, namely the invariance of the irrigation
measure and cost functional under any measure preserving bijection)offiines.

Section[J explains why we cannot have a compactness result for the set of fibers. This is
easily explained: we can exchange wildly the fibers by measure preserving maps in the minimizing
process, thus obstructing the convergence of fibers whilectiews intuitively converge. Thus,
Section$ 7 and|8 reduce the set of fibers to what we call “histograms”, which correspond roughly to
equivalence classes under measure preserving rearrangements of the fibers. Compactness properties
of histograms are proved (they simply derive from the Ascoli-Arzeeorem).

The conclusive Sectidrj 9 shows our main existence result, of a set of fibers solving the irrigation
problem of a source to a given measure, as well as variants involving several measures, sources and
interactions of trees like in the bronchial-cardiovascular system.

At this point, a comparison between the Lagrangian and Eulerian formalisms and results would
be premature, but the impatient reader can go directly to Subsgctjon 9.1. Both solutions turn out to
be equivalent as far as existence is concerned, and complementary as for the structure they give to
the solution. All necessary tools turn out to be available in the union of both papers to prove this
equivalence, and we give a (sketchy) proof in the above-mentioned subsection.

Needless to say, the results given here and by the above-mentioned authors open more questions
than they solve. In particular, existence results open the way to the structural questions (homogeneity
of the irrigation tree, scaling laws...) for which, for the time being, only heuristic results seem at
hand.

1. Absorption time, flows and irrigation patterns

If X is a subset oR", we shall denote b§{*(X) the outer Hausdorff measure of dimensioof
X and by| X| its outer Lebesgue measureulfs any real function defined on a subsztc RY, we
shall use the notation oac= supu — infu, ||u]eo = sSuplu(x)|.

Let (£2, | - |) be a probability space which we interpret as the reference configuration of a fluid
incompressible material body. (We can also interpret it as the trunk section of a tree, this trunk being
thought of as a set of fibers which can bifurcate into branchesetAf fibers of2 with source point
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S € RY is a mapping
x:2 xRy - RY

such that:

(C1) For a.ematerial pointp € £2, x,(t) : t — x(p,t) is Lipschitz continuous with Lipschitz
constant less than or equal to one.
(C2) Fora.ep € £2, x,(0) = S.

It is tacitly understood that the-algebra of measurable sets@fis complete w.r.t. the probability
measure, i.e. that sets contained in a measurable negligible sets are measurable. This is used
sometimes in what follows. We shall consider the source gomfR”" as given and we will denote
by Cs(£2) the set of all possiblg’s of £2 with sources.

We remark that in classical continuum mechanics, widere 3, (seel[12],[[2B]) the parameter
t represents the time variable and, under suitable smoothness assumptisres motion of the
material body, i.e. a smooth one-parameter family of deformations. Since we are not interested
here in studying physical motions, but we inquire into the possible (idealstefeof the fluid
body with the aim of studying a general variational theory for such shapes, the varlzseonly
the meaning of a geometric parameter. Therefore there is no risk of confusion in referriag to
time as we frequently do, after the previous clarification. This time may also be associated with a
geodesic distance from the source, in case we think of the set of fibers as a tree or plant and the
source as a (thinned) trunk.

DEerFINITION 1.1 Givert € R, we shall say that two poinfs, g € £2 belong to the samg-vessel
of valuer and we will writep =~ ¢ if

Xxp(8) = xq(s) foralls €[0,1].

For everyr € R, the equivalence relatiory, induces a decomposition @ into equivalence
classesX. We will call such classeg-vessels

DEFINITION 1.2 Givenp € £ andr € Ry, the equivalence class aof, which containsp and
which will be denoted by}]; will be named the¢-vessel of the poing atz.

Giveny € Cg(£2) andr > 0, we shall denote by, (x) the set of ally-vessels at, that is,
Vi(x) i= 82/~.

The quotients/; (x) for differentt arise from different equivalence relations, but there is a natural
and obvious inclusion between them. They make a filtratiom2ofsinceVv:’ > 1, Vp € £2,
[Pl C [P

We make a few comments in order to explain the above definitions. We are taking a Lagrangian
(referentia) description of the fluid configurations. At eacthe decomposition a2 induced by~,
corresponds to dividing the body into parts which are mapped, thrgugtto tube-like regions of
RY which we are going to identify with rectifiable curves. Since we control only the total amount of
fluid carried by these regions, we shrink them to their axial curves. Thus, at east of fibersy
can be regarded as a set of curves, obtained by vargiagihdeed, by Definitiop I]1y, coincides
on the interval [Qr] with any other functiony, for ¢ varying in the setp];. For anyp € 2 we
shall refer toy,, as they-fiber of the pointp, and forV = [p]; we shall denote by the function
defined on [0¢*], wheret* = supt € Ry | V € Vi(x)}, such thatyy = x, on [0, +*] for every
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p € V; we shall callyy the x-fiber of the x-vesselV. As mentioned above, our discourse can
easily be interpreted in another way, as modelling a tree, in which cagethesels represent the
branches.

DEFINITION 1.3 Lety e Cs(£2). The functiono, : 2 — R, defined by
oy (p) :=inf{r € Ry | x,(s) is constant ons[ oo[}

will be called theabsorption timeWe shall say that a point € £2 is absorbedwheno, (p) < oo.
A point p € £2 is absorbed attime if o, (p) < z.

DEFINITION 1.4 Lety € Cg(£2) andr > 0. We shall say thak c £2 is anabsorbed se#t time
tif o, (p) <tforae.p e X.If X € Vi(x) is absorbed at, we shall call it arabsorbedy -vessel
att. We shall denote by, (x) the set of absorbed points at time

DEFINITION 1.5 Lety € Cs(£2),7 > 0andX € V,(x). We shall say thaX is ax-flowatz ifitis
not an absorbeg-vessel. We shall denote 1%, () the set ofy-flows att and byF; (x) the union
of all x-flows at:.

REMARK 1.1 We notice that by Definitions 1/4—1.5 evegyvessel with zero measure is an
absorbed,-vessel, so every-flow has a positive outer measure.

DEFINITION 1.6 Let/ C R.. We shall say that the one-parameter family of d¢ts a x-vessel
evolutionif V; € V;(x) for everyr € I andV; is decreasing under inclusion. In particular, we shall
say thatV; is a x-flow evolutionif also V; € F;(x) for everyt € I.

GivenV e V;(x), there exists a uniqug-vessel evolutiorV; for s € [0, ¢] such thatV, = V.
The flow evolution is obviously not uniquely determined aftarnless we are in the particular case
considered in the following definition.

DEFINITION 1.7 We shall say that € F;(x) is anon-breakingy -flow if there is nos > # such
that there aré/1, V> € F;(x) with V; c V fori = 1, 2 andVy # V.

REMARK 1.2 If V € F(x) is a non-breaking -flow there exists a uniquely determingédflow
evolutionV; for s € I, wherel = {s >t | 3V’ € Fy(x), V' C V}, such thatV, = V. We shall
refer to/ as thesurvival intervalof the non-breaking flovy .

DEFINITION 1.8 LetV, be ay-flow evolution forz varying in an interval c R,. We define the
dispersionD; (V;) of V; onI as the set of pointg € | J,., V: suchthaip ¢ (,., V; and, for every
t € I, p does not belong to any-flow W € F,(x), W # V,.

Roughly speaking, the dispersion f is the set of points of som&, which leave the flow by
stopping or by continuing their motion within a vessel of null measure.

REMARK 1.3 The conditions fop belonging toD; (V;) can be tested by checking them only on a
dense subset df. Moreover, ifV; has a non-negligible dispersion énthenyy, , whereb = sup(l),
is not constant oi.

Let us introduce the following set:
Mi(x) :=={p € 2 |oy(p) >t} =2\ A ().

DEFINITION 1.9 Lety € Cg(£2) andr > 0. We shall call the sef;(x) = M;(x) \ F:(x) the
spread flowat .
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The spread flow at timeis the set ofy -vessels with zero measure which are not made of absorbed
fibers. Let us point out some trivial monotonicity properties of the above introduced-sgts.and
M;(x) are decreasing, whereds (7) is increasing.

DEFINITION 1.10 Lety € Cg(£2). We shall say thay is anon-spread set of fibeig|S;(x)| =0
for everyr € R,.

REMARK 1.4 In order thaty is a non-spread set of fibers it suffices th&tx)| = 0 for everyt
in a dense subsé? C R.. Indeed, suppose th&s, ()| # 0 for somer € D. Then|S;(x)| # O
for everys € [t,t + 1/n], otherwiseS;(x) would have zero measure. Sinfeis dense iR, it
follows thatD N[z, + 1/n] # @ and we get a contradiction.

PROPOSITIONL.1 If x € Cs(£2) is a measurable mapping with respect to the product measure,
then for every € R4, x (-, t) is measurable and all the-vessels o}, (x) are measurable sets.

Proof. The first claim is true in general for ae(see([13],[10]) and sincg (-, ¢) is a continuous
function of it also holds for every € R, . The second claim follows from the first one, as we
are going to show. Lep € 2 and letD C R, be a countable dense subset. We remark that
q € [pl: € Vi(x) if and only if for everys € D withs < r,q € X(-,s)*l(x,,(s)), which is a
measurable set. Sp], = (), x (., s)*l(xp (s)), and the assertion holds. (]

DEFINITION 1.11 Letr € R4 and letD C R, be a dense subset. For any- 0, we take a finite
setofincreasingvalugs e D,fork =1,...,n,withty < e,t—¢ < t, <tande < fr11—1; < 2s.
We sety; : p — x(p,t) and

X, (p) if p e Fi,(x),
X (p) = xu(p) HpeFOO\Fy, 00 fork=1....n-1
S if p & Fiy(x).

We shall refer togy; as ans-approximationon D of the mappingy; : p — x(p, 1).

REMARK 1.5 Itis easy to see thdlty’ — x:lloc < 2¢ and sox/ — x; ase — 0. The key point
for proving this is to observe that j} ¢ F,(x) then eitherp € S, (x) or p is absorbed before
t1. Because of the non-spread hypotheSjsy) has zero measure for also that for almost every
p & F,(x), p is absorbed beforg. Sincer > t, > 11, x(p,t) = x(p, t1) because is absorbed
beforer;. Thus,

Ix; () = x: I =1IS = x:l = lx(p.0) — x(p, O = llx(p,.0) — x(p, 1| <11

because is 1-Lipschitz. For the other cases, similar arguments apply. For almostever, (x)\
Fy.1(x), p is absorbed beforg 1 so thaty (p, 1) = x(p, tk+1). Thus,

Ix; (P) = xi(DIl = lx(p, &) — x (2. Ol = lIx(p, &) — x (P, trx D)l < 2e.

PROPOSITION1.2 Lety € Cg(£2) be a non-spread set of fibers. If there exists a dense subset
D c R4 such that, for every € D, everyy-flow V € F;(x) is a measurable set, thepn= x (-, 1)
is a measurable function for everye R .

Proof. We first point out that, for every € D, F;(x) is at most a countable set. Indeed, for every
t € Ry, Fi(x) is a set of disjoint measurable subsets with positive measure. As a consequence,
F,(x) is measurable; moreover, givere D, for every subsedt ¢ RY, x(-, /)" 1(A) N F,(x) is a
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measurable set, since it is a countable union of measurable sejg. hetans-approximation ofy,

on D. For every subset c R, by the previous assertiotx?)1(A) is a measurable set and since
x{ — x: ase — 0, x; turns out to be a measurable function as a pointwise limit of measurable
functions. O

REMARK 1.6 We notice thatS;(x)| = 0 is essential to the measurability gf-, 7). Indeed, if
IS:(x)] # 0, even if for every € R, all the x-vesselsV € V;(x) are measurable sets afidy) is
also measurable, we cannot expe¢t ¢) to be a measurable function, as we can see in the following
example. Takes = 0, the origin of the plane, and consider a segmermf length 1/2, orthogonal
to the x-axis with middle point(0, 1/2). Let V be a Vitali non-measurable subsetio{see [13])

and define
tx ifxeV,

—tx ifxel\V,

with 2 = I. All the x-vessels for - 0 are negligible (and therefore measurable), so there are no
x-flows, andS;(x) = I is measurable. However is clearly not measurable.

x(x,t)={

LEMMA 1.1 Letf : 2 x Ry — R be such thatf (-, #) is measurable for in a dense subset
D Cc Ry and f(p, -) is continuous for a.ep € £2. Thenf is a measurable mapping.

Proof. We give the proof of this well-known lemma for the sake of completeness (setle.g. [7]). Let
a,b € D. Foranyc > 0 ande > 0, we introduce the setg = {(p,1) € 2 xRy | f(p,t) > ¢}
andV(a,b) ={p € 2| f(p,s) > c+¢Vs € [a,b] N D}. We are going to show that, modulo a
negligible set,
U= U V.(a,b) x [a, b].

a,beD

eeD
In order to prove the inclusiop) V. (a, b) x [a, b] C U, we notice thatif(p, t) € V. (a, b) X [a, b]
then, for every € [a,b] N D, f(p,s) > ¢+ ¢, and since we can assunfép, -) is continuous, by
passing to the limit we gef(p, 1) > c+¢ > c.

Let us show the reverse inclusionifif p, r) > ¢ then there exists > 0 such thatf (p, t) > ¢+

2¢, S0, by continuity, we can take b in such a way that for everye [a, bl we havef (p, s) > c+¢
andt € [a, b]. Now, sincef (-, t) is measurable for evenye D, the setV,(a, b) is measurable for
any fixeda, b, ¢, since it is a countable intersection of measurable sets. Therefore the above equality
leads to the conclusion of the lemma. O

By combining Propositiop 1|1, Propositipn 1.2 and Lenimé 1.1, we get the following claim.

PrROPOSITION1.3 Lety € Cg(£2) be a non-spread set of fibers. Theis measurable if and only
if for everyt in a dense subsé@ C R everyx-flow V € F;(x) is a measurable set and if and only
if for everyr € R, everyy-vesselV € V;(x) is a measurable set.

The previous results can be summarized in the following theorem. Although they cannot be
directly deduced from any reference known to us, the results obviously fall in the general framework
of time dependent random functions and continuous martingales as studied (¢.d.) in [17].

THEOREM 1.1 For every set of fiberg € Cs(£2) the following statements are equivalent.

1. x is measurable.
2. x(-, 1) is measurable for everyin a dense subsé? C R, .
3. x (-, t) is measurable for evenye R,.
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If, in addition, x is a non-spread set of fibers, then the following items are also equivalent to the
three above.

4. Everyy-vessel is measurable for everg R...
5. Everyy-flow is measurable for everyin a dense subsé C R...

DEFINITION 1.12 We shall say thgt € Cs(£2) is anirrigation patternof £2 if it is measurable.
The set of all irrigation patterns a2 will be denoted byPg(£2).

REMARK 1.7 We introduce measurability because we want to define a cost functional which takes
the form of an integral.

REMARK 1.8 Anirrigation patterry is generally characterized by each one of the first three items
of Theorenj 1J1, and if is also non-spread, then it can be characterized by all the items.

ProPOSITION1.4 For everyy € Ps(£2), the absorption functioa, is a measurable mapping.

Proof. Let us first recall some obvious properties of measurable functions[(ske([13], [10]): the
difference of two measurable functions is a measurable function, so the set on which two measurable
functions agree is measurable and finally the set on which a sequence of measurable functions agree
is measurable. We are going to prove that for every0 the set4,(x) is measurable. Leb c R

be any countable dense subset. Sinee x (p, s) is Lipschitz continuous, the conditien, (p) < ¢

is equivalent to saying that for evesye D with s > 1, x(p,s) = x(p,t), thatis,(x (-, s))sep

is a sequence of functions which agreepasSince, by item 3 of Theorefn 1.1, such functions are
measurable, the set where they agree is also measurable. |

PROPOSITION1.5 Lety € Pg(£2) be a non-spread irrigation pattern. Then, for a.e= 2 and
for everyt < o, (p), there existd/ € F;(x) such thaip € V.

Proof. Let (p, t) be such that the conclusion does not hold. Det R, be a dense subset. We fix
s € Dsuchthat < s < o, (p). Thusp belongs to the spread flosy (x). Since| |, Ss(x)| =0,
we see that the set of poingsfor which the conclusion does not hold is a negligible set. [

2. Cost functional, irrigation patterns convergence

For any giveny € Pg(£2) anda € ]0, 1[, we introduce the followinglensity cost functian
ox(p, 1) (p, 1) = |[pl*

(of coursep, (p, t) = oo when|[p];| = 0). For everyr € R, the cost functional is defined as

cy (1) == / ¢y (p,t)dp
M;(x)

and the total cost is given by
I(x) = / cy (1) dr.
R4

PrROPOSITION2.1 If x € Pg(£2) issuchthatl (x) < oo, theny is a non-spread irrigation pattern.
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Proof. The assumptiod (x) < oo implies thatc, (1) < oo for a.e.t, and this in turn implies that
|S:(x)] = 0. Indeed, given we have|S;(x) N V| = 0 for every absorbeg-vesselV € V,(x), so
the trace ofS;(x) on the (countable) union of all the-vessels of positive measure is a negligible
set (see Rema@A). Sap, 1) = co a.e. onS;(x) and therefore, (1) = oo when|S;(x)| # 0.0

DEFINITION 2.1 Let(xs)nen C Cs(£2) be a sequence of sets of fibers®f We shall say that the
sequenceonvergedo a set of fiberg, i.e. x, — x,iffora.e.p € 22, (x.)p(t) = xp(t) for every
1t e R+.

PROPOSITION2.2 Let(x.).en C Cs(£2) be a sequence of sets of fiberss®f Theny, — yx if
and only if x, converges tg a.e. inf2 x Ry.

Proof. If x, — x then, by definition(x,),(t) — x,(¢) for everyr € R, andforeveryp € £2\Ng
with |[Ng| = 0. Thereforey, (p, 1) — x(p, t) forevery(p, t) € (2 xR, )\N' with N’ = No xR,
and sincgN’| = 0 we conclude thag, — x a.e. in$2 x R,.. Conversely, assume that — x for
every(p, 1) € (2 x Ry) \ N with [N’| = 0. Denote byE, the p-section of2 x R and byN,
the set suchthav’ N E, = {p} x N,. The Fubini theorem says that

0=|N|=//Q N 1N(p,t)dpdt=/9</]R 1Np(t)dt>dp.

Then, for almost every, fR+ 1y,(r)dr = O, that is to say|N,| = 0. For such values op,
(Xn)p — xpfora.er e R,. Sincefora.ep € £2, (x»), andy, are uniformly Lipschitz continuous
with respect ta, we finally get the assertion. O

The above proposition implies that(if,,),cn € Ps(£2) is a sequence of irrigation patterns and
xn — X,theny € Ps(£2).

ProrPOsSITION2.3 If x, = x,thenfora.ep € £2,
oy (p) <liminfo,, (p).
n—oQ

Proof. We fix p € £ and?r > liminf,_,« oy, (p). For infinitely many values ofi we have
xn(p,s) = const fors € [7, co[. By passing to the limit on the previous valuesmoive get
x(p, s) = const fors € [z, oo[, which implies, by definitiong, (p) < 7. O

3. Irrigation measure
Let x € Ps(£2). We introduce thérigation function
ix(p) = x(p,ox(p)),

defined on the measurable s&} of absorbed points. We have(p) = lim,_ x(p,t) and so
iy © Ay — R is a measurable function, as the pointwise limit of a sequence of measurable
functions.

The functioni, induces the image (push-forward) measuyedefined by the formula

fy (A) = li (A

for any Borel setdt ¢ RY. We shall refer tqu,, as theirrigation measurenduced byy .
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LEMMA 3.1 Let(i,),cy be any sequence of measurable functions farimto RY and for every
n € N U {oo} let u,, be the image measure inducediRy|f for everye > 0 there exisi: andi,
such that{p € 2 | i5(p) # in(p)}| < € for everyn € NU {oo} andi{ — if, a.e. ins2, then

Mn — Koo, Ie
/fd,u/n g /fdﬂoo

Proof. For everyn € N U {00}, let u¢ be the image measure induced iy First we notice
that [ fdui = [ f oifdx and so, by applying the Lebesgue Theorem we [¢to i& dx —
[ foit dx = [ fdu, forevery f € Co(RY). Then, forn large enoughj [ £ du — [ £ dieol
< &. Moreover, for everyr € N U {oco} we have

deun—/fduz

Then, forn large enough, we can estimate

for every f € Co(RM).

< g0scf.

‘/fdﬂn_/fd,uoo'<28050f+8.

By takinge arbitrarily small, we get the assertion. O

LEMMA 3.2 Let(xn).en be a sequence of irrigation patterns such thaf $dp,) < oo. If x, —
Xoos then for everye > 0 there exisi andis, such thaf{p € 22 | i (p) # iy, (p)}| < & for every
n € NU {oo} andi — i a.e.ing.

Proof. We begin by showing that there exists a constant 0 such that, for every € N and
t € Ry, IM;(x2)| < ct~1. Indeed, the condition Syd (x») < oo implies that, for every: andt,
fé |M,(x,)|ds is bounded; moreoveM;(x,)| is a decreasing function afand so the assertion
follows by integrating over [(x].

Givene > 0, we fixz in such away thatr 1 < . Theni,, (t) — xa (-, 1) # 0 atmost onM,,, (1),
which has measure less tharSincey, (-, t) — xoo(:, 7), we get the conclusion. O

By combining Lemmals 3]1 afd 3.2, we can state the following result.

THEOREM3.1 Let(x,).en be a sequence of irrigation patterns such thaf, $Up,) < oco. If
Xn = X, thenp,, — uy.

REMARK 3.1 In general the above statement does not hold true without the assumption
sup, I (x») < oc. Indeed, lets, 0 € RY be two given points, and consider the sequence of irrigation
patterns given by

N forr < m,
Pty =1 +1-0S+@¢—-nQ forn<tr<n+1,
0 fortr>n+1,

for everyn € N. Let x (p, t) = S for everyr € R,. We havel (x,) =n + 1, x, — x, buti, is the
constant function of valu@ for everyn andi is the constant function of valuge
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4. Irrigation pattern reconstruction

In this section we shall show that a non-spread irrigation pattern can be reconstructed from the
knowledge of the flows and their fibers for a dense subset of the values of the parameter.

LEMMA 4.1 Lety, x' € Ps(£2) be two non-spread irrigation patterns such that, for evary
a dense subsdd C Ry, 7 (x) = Fi(x') andyy = xy, on [0, ] for every V e F;(x). Then
Oy =0y a.e.

Proof. We can assum® to be a countable set. Fore D, let
Vi)={pefR]|o(p) <s <oyu(p) andxl’, is not constant ondl, (p), s]}.

Then, modulo a negligible s€iy € 2 | o (p) < oy (p)} = Usep V (5). We claim thaiV (s)| = 0

for everys € D. Indeed, fors € D fixed, and everyp € V (s), if x’ is non-spread, thep belongs

to a negligible setV, or to ay’-flow V e F(x’), as stated in Propositign 1.5. Thénis also a
x-flow and xy = x;, on [0, 5], S0 x, = X;, on [0, s], in contradiction to the definition oV (s).
SoV(s) C N, and thereforgV (s)| = 0. Thus|J, V(s)| = 0 and so, ifx" is non-spread, then
o, < o, almost everywhere. If botly and x” are non-spread then, by the last inequality, we get
Oy =0y a

ProPOSITION4.1 Lety, x' € Ps(£2) be two non-spread irrigation patterns such that, for every
tinadense subsé C Ry, 7 (x) = F(x') andxy = xy, on [0, 7] for everyV € F;(x). Then
x = x' a.e.

Proof. For a.e.p € £2, by applying Proposition 1}5 and Leminal4.1, we find that for evesyD
with 1 < o, (p) = o,/(p) there existsV e F;(x) = F:(x’) such thatp € V andx(p,1) =
x'(p, t). By passing to the limit, the previous equality still holds fo= o, (p) = o,/(p), and by
definition, it also holds for > o, (p) = o,/ (p). Thus,x = x" a.e. O

For everyr € R, let F; be a set of subsets ¢, determined modulo a negligible set, and for
everyV e F; let f|, be a Lipschitz continuous function, with a Lipschitz constant less than or
equal to one, from [r] to RY and such thay|,(0) = S. We introduce the followingompatibility
conditions

(P1) For every in a dense subsé? C R, F; is a set of disjoint non-negligible measurable sets
V; andf{,i £ f{,j fori # j.

(P2) If 11 < 1, then for everyV e F,, there existsW e F;, such thatv ¢ W and f\’,2 is an
extension off;!.

Given anyV € F;, we can by (P1), (P2) define the associated evolutian for s < ¢ and the
dispersionD;(Vy) on any! c [0, ] formally as in Definitior] 1.8, by only taking into account the
valuesr € D (see Remark1]3).

(P3) LetV € F; and let(Vy) be the associated evolution fore I C [0, t]. If |D; (V)| # 0O, then
ff,y = constonl.

(P4) LetV e F; and let(Vy) be the associated evolution for I [0, t]. ThenV = M= Vs-

(P5) If vV e F; is a non-breaking set then the mappifiyis not constant on [0] for somes in
its survival intervall .
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We remark that, givery € Pg(£2), if for everys, 7, = F;(x) and f|, = XV o for every
V e F (%), then the compatibility conditions (P1)—(P5) are satisfied (see R-rk 1.3). Conversely,
if (P2) holds, we introduce the following notion afconstructed irrigation patterty arguing as
follows.

For everyt € D, let F; = y.x, V. By (P2), the set-valued functioRy, is decreasing under
inclusion with respect to. We can define the function

o(p):=sufs e Ry | p € F}

and for everyr < o(p) we definey, to be the fiber of the poinp in [0, 7] equal to the fiberf|,

of V e F; such thatp € V. Thanks to (P2)x, is then coherently defined on,[@(p)], and by
a constant extension ow (p), oo[, on all of R. The required Lipschitz continuity of the fibers
is easily verified. By varying in 2 we get a set of fiberg which we shall call aeconstructed
irrigation pattern

THEOREM4.1 Assume that the compatibility conditions (P1)—(P5) hold. Then there is a unique
non-spread reconstructed irrigation pattgra Pg(£2) such that for every € R, F; = F;(x) and
xv = fi, on [0, ] foreveryV e F(x).

Proof. Let x be the reconstructed irrigation pattern anct ;. We have to prove that € F;(x).
Since the points o¥/ have the same fiber on,[f], V is contained in g -vessel at. We claim that
V is ax-vessel. Indeed, lgb € V andqg ¢ V and letV; be the evolution oV on [0, ¢]. We show
that, modulo a negligible se, ¢ [p];. Leta = sups € D | ¢ € V;}. By (P4), sinceg ¢ V;, we
havea < randq € V,. Let] = [a,t]. If ¢ & D;(Vy), then there exists < s <t andW e Fg,
W # Vs such thay € W. Then by (PL)x, = fy, # fiy = xq on[0.s] C [0,7];s0q ¢ [p]:-
Assumey € D;(Vy). Theno(q) = a. If |[D;(Vy)| # 0, then by (P3)y, = f{, is not constant by
construction ond, ] = [0 (q), t] and again we have ¢ [ p];. Thus the possible exceptions are the
pointsq such thaty € D;(V,) and|D;(V,)| = 0, wherel is defined as above dependinggriNow,
letA ={a e Ry | |Dy| =0} for I = [a,t] and D, = D;(Vy). ThenD = J,.4 D. is negligible
and containsg], \ V. It remains to show tha’ is not an absorbeg-vessel. We argue as follows.
If there exists > ¢ such that there arg,, Vo € F; with V1 # Vo andVy, Vo C V, thenf§l # f;z
on [t, s] and so at least one df, V> is a non-negligible subset &f made of points; such that
Xq IS not constant. Otherwisg has a unique evolutioki; on its survival interval and by (P5) we
can find a suitable € 7, s > 1, such thatfy, is not constant orv[s] and soV; is a non-negligible
subset ofV consisting of non-absorbed pomts Section 6 shows the lower semicontinuity of the cost
functional under pointwise convergence.

Finally, we notice that since any other vessel has an empty intersectiowittiurns out to be
an absorbed set, and by Theoien] 1.1, we can concludg tisat non-spread irrigation patterii.]

5. Irrigation pattern equivalence

A natural outcome of the results obtained in the previous section is the choice to consider two
irrigation patternsequivalentif their flows have the same measures and the same fibers. More
precisely, we make the following definition.

DEFINITION 5.1 Let$2, £2' be two probability spaces. We shall say that two irrigation patterns
x € Ps(£2) andy’ € Pg(£2) areequivalentf, for everys in a dense subsé? c R, there exists
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a measure preserving bijectigrl : F,(x) — F,(x') such that for every € F(x), xv =

Xl/I/’(V)
on [0, ].

Now we show that the equality of the measures of the flows, required in the previous definition,
implies further interesting properties of equivalent irrigation patterns.

PROPOSITIONS.1 Lety, x' € Pg(£2) be two equivalent irrigation patterns. Lat < 2, V1 €
Fu(x)andVa € Fp,(x). If Vo C Vithenw2(Vo) C Wt (Vy).

Proof. SinceV, C Vi, it follows that v, = xv;, on [0, #1] and SOxy (v, = Xy vy ON [0, 1],
which in turn implies the assertion. O

LEMMA 5.1 Lety, x’ be two equivalent irrigation patterns and lgt< 7. Then for everyV ¢
Fr, (XD
[V FoGOl = [W(V)\ Fr(x)I. (5.2)

Proof. We notice that for everyv e F,(x) we have eitheW C VorwWnV =@,soV \ F,(x)
can be obtained by subtracting frovhits (disjoint) subsets i¥;,(x). So, by Definitior] 5.1 and
Propositiof 5.]1, we can deduce the assertion. O

LEMMA 5.2 Lety, x' be two equivalent irrigation patterns. Then for eveig a countable dense
subsetD C R, and for everyV € F,(x) with ¥/ (V) € F(x’), we have

ANV = 1A N V) (5.3)
M, () NV = M () NPV (5.4)

Proof. We fixt > 0,V € F(x), ¢ > 0 and define/, as the set of points df which are absorbed,
i.e. lost by the total flowF; () in the interval f, r + ¢]. That is,

Ve =V A\ Frie(X).

By Lemmd[ 5.1 we know thdt,| = |(¥!(V)).|. Let’ > . Then there exists at most one subset
Z(t") c V with Z(t') € Fy(x) such thatxz. is constant ons] ¢']. It is easy to verify that if

there exists such a subset:’) c V, thenw! (Z(')) ¢ ¥!(V) and it satisfies the corresponding

condition, that in,:,,,/(Z(t,)) is constant onz], +']. Furthermore, we have

|Z(t)| = W' (Z(t'))]. (5.5)

A point p € V is absorbed if and only ip € Z(¢') for everyt’ > ¢ or if, for ¢ arbitrarily small,
there exists’ € D, > t, such thatp € Z(+') C V andp is lost by the total flow in the interval
[t/,¢ +¢]. Thus

Anv= () zohv() U @@y (5.6)

t'eD, t'>t neNt'=t+k/2", keN

By passing to the measures [n (5.6) and by udingd (5.5), we defduge (5.3). To[prgve (5.4) we notice
thatM;(x) NV =V \ (A;(x) N V) and so, by Definitiof 5]1 anfl ($.3), we obtdin {5.4). U

THEOREMS5.1 Lety, x' € Ps(£2) be two equivalent irrigation patterns. Thétyx) = I(x') and
My = My
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Proof. The equalityl (x) = I(x') easily follows from Definitiofi 5]1 and Lemrha 5.2. To prove that
Wy = |1y, We proceed as follows. Lete N, ¢ = 1/n, and letr = n. We fix a dense seb C R,

as in Definition[5.]L and consider arapproximationy, on [0, n] of p — x(p,n), following
Definition[1.11. We denote by, the image measure induced Jgy. Analogously, we consider the
corresponding-approximation on [0r] of p — x’(p, n) and the corresponding image measure
w,. Foralli, for V. e F,(x) and forB C RY, let FE(x) = {V € F, () | xv(&) € B}, the
flow arriving in B at timer;. Then, for every Borel se8 ¢ R", we can compute.,(B) from the

equality
pn(BY=Y" > IV\F (0l
tieD Ve]:tl’?(x)
andu, (B) from the analogous formula

pp(BY =" > WV Fyyy ).

HEDVeF(x)

By applying Lemma 5]1 we obtaim, = .. Finally, by applying Lemmf 3|1, we hayg, — 1,
andu,, — p, asn — oo. So we finally gefu, = . O

6. Semicontinuity properties

Giveny e Ps(£2) andr € R, we denote by, (,) the characteristic function d#f; (x), that is,

1 ifoyu(p) >1t,

xm o (ps 1) = {o otherwise

LEMMA 6.1 If x, — x,thenfora.e(p,t) € 2 x Ry,
xm, 00 (P 1) < iMinf x4, (P, 1)

Proof. We fix (p, ) € £ x Ry and suppose that limipf, o xu,(x,) (P, t) = 0. This means that
XM, () (P, 1) = 0 for infinitely many values of and then for such valugs, (p, s) is constant for
all s > ¢. Sincex,(p,s) — xp(s) pointwise ins for a.e.p, we see thaj, (s) is constant for all
s > t. Thuso, (p) < tandyuy,)(p,t) =0. O

LEMMA 6.2 If x, — x,thenfora.e(p,t) € 2 x R4,
oy (p, 1) < liminf g, (p,1).
n—>oo

Proof. We fix (p, t) € £2 x R4 and for every integet we denote by, the x,-vessel containing.
Let V. =, U, Vi We claim thatp ~; ¢ for a.e.q € V. Indeed, ifg € V theng € V, for
infinitely manyn and soy,, (p, s) = x.(q, s) for everys € [0, t]. We know that, modulo a negligible
set,(xn)g = x4 and this impliesy, (s) = x,(s) for everys € [0, ¢], which meang ~; g. Thus,
each element o¥ is in the y-vessel containing so that|V| < |[p];|. On the other hand,

v :nleoo( U vk’ > limsup|V,|. 6.7)

k>n n— 00
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Therefore

<plet<ivpe?
< (limsup|V,,[)*~ = liminf |V, |*"t = liminf ¢, (p, 7). O (6.8)
n—0oo n—00

n— oo

(pX(pvt)

THEOREMG6.1 If x, — x, then
I(x) <liminf I(x,).
n— oo

Proof. By applying the previous two lemmas and the Fatou Lemma, we easily get

10 = / / G0 (pa 1) < / / I N O, o @0 ) (s 1)
R, J2 Ry J@ "7

< Iiminf/ /(XM,(Xn)goXn)(p,t) = liminf I (x,). O
R, J@2 n—>oo

n—oo

7. Obstruction to compactness and histograms

In general, the class of irrigation patterns definedoes not enjoy any compactness property.
There are trivial examples of sequences of irrigation patterns, even with bounded cost, which have
no convergent subsequence. Indeed, for ewery N we divide 2 = [0, 1] into 2n increasingly
numbered subintervals and we denotesB the union of all odd-numbered intervals and £y

the union of the even-numbered ones. Giser: 0, we fix P € RY such thatP — 0] < 1 and for

everyt € R, we consider the sequence of irrigation patterns a.e. given by

(1) = if p e 2,

P D= N min, )P if p e 21,

fork =0,1,...,2n — 1. For everyn € N we havel (x,) = 2~ but compactness fails. Therefore

we are forced to check compactness in restricted classes of irrigation patterns. In all that follows,
2 = [0, 1] is endowed with the Lebesgue measure, and witlrtadgebra of Lebesgue measurable

sets. As we shall prove in Lemrpa P.1, there is no loss of generality in this assumption. We shall
always be able to replace any probability space ]J@vith no atoms by [01].

DEFINITION 7.1 We shall say that the irrigation patteyrn: [0, 1] x R, — R is ahistogramif
for everyr € Ry all V e F;(x) are intervals, modulo a negligible set.

REMARK 7.1 We observe that the condition for an irrigation pattern [0,1] x Ry — RV
to be a histogram can be tested on a dense subsetR. . This is a simple consequence of the
compatibility condition (P4).

The main result in this section relies on the following statement which we shall prove at the end,
after some lemmas.

THEOREM7.1 Lety € Pg(£2). Then there exists a histogram patterrequivalent toy .

DEFINITION 7.2 Letyx € Pg(£2) and for a fixedr € Ry let Vi, Vo € Fi(x). We define the
separation timepsep between; and V> as follows:

psep Vi, V2) :=supls € Ry, s <1 |3V € Fo(x) : Vi, Va2 C V.
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REMARK 7.2 GivenVy, Vo, V3 € F;(x), we have

psed V1, V2) = min(psed(V1, V3), pser V2, V3)).

DEFINITION 7.3 LetG C F;(x) be any subset. We shall say that a total orgleén G is coherent
with psep if the following condition is satisfiedpsed V1, V2) < min(pseg(V1, X), psed V2, X)) for

any Vi, X, Vo € G with Vi < X < Va. (Note that by Remark 7.2 the inequality can be replaced
by equality.) We shall say tha endowed with the relatioss coherent withpsep is a coherently
ordered set

LEMMA 7.1 LetG C F;(x) be acoherently ordered set. Th&rtan be coherently extended to all

Proof. Let V € F(x) \ G. We show thatg can be extended tg U {V}. Let f : G — R. We
shall say thatf is aconcave likdunction if f(Y) > min(f(X), f(Z)) forany X, Y, Z € G with
X <Y < Z.Now, letX € G. We define the functiorf : X — pseg(X, V) and we notice that since
< is coherentf is a concave like function. As a consequence, we see that for évery either
of the following two statements holds true:

(&) VY € Gsuchthat < X: f(X) > f(Y),or
(b) VY € GsuchthatX < Y: f(X) = f(Y).

Therefore, if we set

Gi={XeG|VY el YX:f(X)=f(V)}
G2={XeG|VV¥eG, XY f(X)= f(Y)},
Y <X

theng = G1 U G». We claim that ifX € G; and , thenY e Gjp; we shall say tha@; has the
left segment property
TakeZ < Y;thenZ Y < X sothatf(Z) < f(X)and f(Y) > min(f(X), f(Z)) = f(Z).
Analogously, ifX € G, andX < Y thenY € Go; we shall say thag, has theright segment
property Now we extends to G U {V} by settingX < V for everyX € Gy andV < X for every
X € G\ G1 C G2. The left segment property ¢fi makes such an extension an order. We have to
show that such an extension preserves the coherencepyihiTo this end, we fix any three sets
V1, V2, X to be tested as in Definitign 7.3. Of course, we only have to take care of the case in which
one of them igV, since< is already supposed to be coherentoiThe case/ = Vi is an obvious
consequence of the fact th&te G, and of the definition ofj,. Analogously, the casg& = V; is
trivial by the definition ofG1. WhenV = X, suppose by contradiction that, for= 1 ori = 2,
psed V1, V2) > f(Vi), so f(V1) = f(V2). We have by constructioll; € G andV, & Gi. Let
W e G be such thaV; < W < V5. Since< is coherent irg we havepsed W, V1) > pseg(V1, V2)
and sopsegW, V1) > f(V1). This inequality obviously implieg' (W) = f(V1) and sof takes the
same value on every order interval betwégnand V,. Therefore, sincéd; € G; and< is a total
order, we gel» € G; and this is a contradiction.
Finally, we can conclude that since the property remains true step by step by joining one set at a
time and it is of finite type, it holds true for the whatg (). O

DEFINITION 7.4 Giventy, t2 € Ry, 11 < t2, let F, (x) be coherently ordered by, fori =1, 2.
We shall say thak;, and<,, arecompatibleif for any V1, W1 € F;,(x) andVz, W» € F,(x) such
thatV, C Vi andW, C Wy, if V2 <, Wa thenVy <, W1. In such a case we shall say ti#gt(x),
fori = 1, 2, arecoherently ordered and compatible



408 F. MADDALENA, J.-M. MOREL & S. SOLIMINI

The following property is a straightforward consequence of the last definition.

LEMMA 7.2 Letr; < 12 < t3 and letF;, (x) be coherently ordered by, fori = 1, 2, 3. If 7, (x)
is compatible with7,,(x) and F,(x) is compatible with7,,(x), thenF;, (x) is compatible with
F3(X)-

LEMMA 7.3 Let7 c R, be afinite set of values and |&% (x) be coherently ordered by, and
compatible fors € 7. Given anyr € R, there exists a coherent ordgy which is compatible with
every=<, fors € 7.

Proof. Lets = maxp € 7 | p < t}andt = minfp € 7 | p > t}. GivenW € F;(x),
we setF (W) = {V € F(x) | V ¢ W}. By varying W, we get different sets of sets each one
collecting they -flows at: which are contained in the samyeflow W at the times. Let G(W) =
(Ve FW)|3IX € Fo(x): X C VL If Vi, Vo € G(W) and X1, Xo € Fy(x) satisfyX1 C Vi,
X5 C Vo, we defineVy <, Vo if X1 <; X», thatis, we define i (W) the coherent order inherited
from F; (x).

We show thatg; does not depend on the choiceXf, X». Indeed, letX; <, X2 andYs <, Y1,
with X;,Y; c V; fori = 1, 2. Since<; is a total ordering, we hav&, <; Y1 or Y1 <; Xo. If
X2 <; Y1 thenX1 <; X2 < Y1, psed X1, Y1) > 1 andpsed X1, X2) < t contradicts the coherence
of <. Otherwise, a similar argument leads to a contradiction frarg; Y1 <. X2. Notice that,
is coherent withpsep since for evenys, V2 € G(W) we havepsed V1, V2) = psef X1, X2), where
X, and X, are contained respectively vy and Vs, at timez. Thus everyG(W) is endowed with
the orders; inherited from<, and by Lemm4 7]1 we can exterd to a total ordering on all of
Fr(W).

If V1 € F;(W1) andV, € F;(W2) andWy <; Wa, we setVy <; V. The reader can easily check
that<;, is coherent and compatible witk, and<;. Then, by Lemm@ 7]2%; is compatible with
<, foreveryp e 7. O

LEMMA 7.4 There exists a dense subgetc R, and for everyr € D a coherent ordering,
such that all the sets df; (x) are coherently ordered and compatible.

Proof. Let D C R, be any countable dense set. By applying Leriméa 7.3 we can proceed step by
step, definingg,; by adding one value at a time. O

Given two intervalsly, I» C R4, we shall writel; < I if x < y for everyx € I; and
everyy € I>. Let D C R, be a subset and Ie%; () be coherently ordered for everye D. Let
T" = (Iv)ver, (x) be afamily of open disjoint intervals of [a] such thatly| = |V|and ifV <; W
thenly < Iy. We shall refer taZ’ as anordered family of intervalsLet 71 = (I&)Vef,(x) and
12 = (IZ)yer,(y) be two ordered families of intervals. We shall wiité < 72 whenever for every
V € F:(x) the middle point ofl\} is less than or equal to the middle pointltéf.

DEFINITION 7.5 Letry, 10 € Ry, 11 < 12, and letZt = (I(})Veftl(x) andZ2 = (I{E)Veftz(x) be

two ordered families of intervals. We shall say ti#ét andZ’2 arecompatibleif I{,Zz C I"}l for any
V1 e Fi (x) andVz € F,(x) such thatV> C V.

Let D C R4 be a given subset and |65 (x) be coherently ordered by, and compatible
fort € D. If ' are compatible ordered families of intervals forakk D, then we shall refer to
Ip = (Z"),ep as acompatible gridLetl p = (Z%);cp andJp = (J"),ep be two compatible grids.
We shall writel p < Jp if 7! < J' for everyt € D.
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LEMMA 7.5 Let7 c R4 be any finite subset and 16 (x) be coherently ordered by, and
compatible forr € 7. Then there exists a compatible gtig such thatl < J7 for any other
compatible grid)s.

Proof. Lett;,i =1,...,n, bethe elements ¢f listed in increasing order. We start wiffit which,
being an ordered family of intervals, consists of subintervals pf]®aving a total measure less
than one; we place consecutively such intervals starting from zero. Thus the inter¥alsush out
to be arranged in [aL] to the left as much as possible. Now we pas&’tcand we put the intervals
I; € 7' which are contained in the same interyat 7" consecutively and on the left af We can
easily iterate this procedure step by step for all values .of O

LEMMA 7.6 LetD cC R4 be a countable subset. Then there exists a compatiblé grid

Proof. Let D = |, 7,, with 7, C 7,1 for everyn € N. For everyn, we take a compatible grid
I 7, asin Lemma 7]5. We observe that the restrictioh0f, to 7, is a compatible grid. So, by the
minimality property ofl 7., we can compare the corresponding interval$of, andlz, and the
first ones turn out to be at most shifted to the right side ofL]J0Thus, for fixedr € D, we have
t € 7T, for everyn greater than some and the ordered family of intervalE has the intervals at
most shifted to the right. We can pass to the limikas co and thanks to the boundedness of D
we get a limit gridl p = (Z");cp- Now, for everyt € D, " is an ordered family of intervals and
all Z' are compatible and dg, is a compatible grid. O

Proof of TheorelLet Ip = (T"):ep as given by Lemm.6 and for everg D setF, = 7°.
Fix 1 € D. To everyl|, € I' we associate|, = XV, @nd we easily verify that the compatibility
conditions (P1)—(P5) are satisfied. Thus for evegyD the intervald/{, are the flows of an irrigation
patterny’ which is a histogram equivalent jo O

8. Compactness properties

The main result of this section relies on the following compactness theorem which we shall prove
after some preliminary lemmas.

THEOREM8.1 Let(x,).en be a sequence of histograms witty,,) bounded. Then there exists a
subsequencéxy, ke CONverging to an irrigation pattep.

In the following we shall often need to pass to a subsequence of a given one, so to keep the
notation as simple as possible, we will not use further subscripts, but we will relabel the sequence
every time. Thereforg,x,),en Will denote at each step a relabelled suitable subsequence for which
all previously proved lemmas simultaneously hold.

The following statement is an easy variant of the Adzé{scoli Theorem.

LEMMA 8.1 Let(x,).eny be a sequence of histograms witliy,) bounded. Then the sequence
admits a converging subsequerigg, ),cn such that(x,), — x, for everyp e QN [0, 1].

LEMMA 8.2 Let(x,).en be a sequence of histograms witty,) bounded. Then, upon passing
to a subsequence, we can find a countable dense sDbseR . such that(c,, ()),cn is bounded
onD.

Proof. Indeed,

f liminfc,, () <lim inf[ Cy, (1) = liminf I (x,) < o0
R n—o0 R+ n— o0

n—oo
+
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and so liminf— e ¢y, (1) < oo for a.e.t, which in turn implies that for a.e. € Ry, ¢y, (t)
has a bounded subsequence. Then, by a diagonal selection argument we get a bounded sequence
(¢, ("))nen for ¢ in a countable dense subdetc R. O

We fix D as in Lemm& 8]2. Lete D andk € N be fixed and for every index let
Ff ) = AV € Fixa) | IV] > 1/k).

We take a subsequence ©f,),cn in such a way that every sequen@dg,),cn of flows selected

from F¥(x,) converges to some intervll contained in [01] asn — oo (there are finitely many

such intervals). By Lemn@.l we haye, — fi, on [0, /] with f|, = x, foreveryp e QN V. By

a diagonal selection we pass to a subsequence for which the previous convergence is true for every
integerk and for everyr € D. We denote by.(¢) the union of the open limit intervals determined

for a givent € D.

LEMMA 8.3 With the above notation we also have, for evegy D,
lim [M;(xx) \ L(®)| = 0.
n—od

Proof. Fix k € N and, for every integen, let Lﬁ(r) = UVeF,"(xn) V. Since each of these flows

converges to a limit interval contained Ir(r), we have|L’,§ (t)\ L@)| — 0asn — oo. Moreover,
O (P, ) = K% fora.e.p € M;(x,) \ LK (t). Therefore|M, (x,) \ Lk (t)| < k*~Lc,, (1), and since
¢, (t) is bounded for € D, by takingk arbitrarily large, we reach the conclusion. O

LEMMA 8.4 Upon replacindg x,),en by a suitable subsequence, for everg D there exists a
negligible setvV (¢) such that
U M) c L) UN@).

n k>n

Proof. Indeed, 1y, Loy — O in L1([0, 1]) by Lemm, so we can take a subsequence
converging to zero off a negligible s&(r). Then for everyp ¢ L(t)UN (¢) we havely, ,,,)(p) =0

for n large enough. Through a diagonal selection we can get a suitabléich simultaneously
satisfies the property for everye D. O

Proof of Theorem 8|1 For everyr € D let 7; be the set of limit open intervals to which all the
non-vanishingy,-flows converge, leL(¢) = UvEf, V,o(p) =sufdr € Ry | p € L(¢)} and for

V e F; let f, be the relevant limit fiber. Since the sBtand the fibergf, satisfy the compatibility
condition (P2), as is easy to verify, we can define the reconstructed irrigation pattéfe have to
prove thaty, — x fora.e.p € [0, 1]. To this end, letN = [ J,.p N(?), obtained in Lemm4,
and fixp € [0,1]\ N. Lett € D witht < o(p). Thenp is an inner point for one of the limit
intervalsV € F; and so there exists > 0 such thatp — ¢, p + ¢] C V and, for a suitably large
neN,[p—e¢ p+e] CV,withV, € F,(x,) andV, — V.Letg e QN[p — ¢, p + €]. Then for
every integeln, (Xn)p = (Xn)qv we know that(Xn)q = (Xn)V,, and(Xn)Vn g f\l/ = Xp On [Ov t]v
thus(x.), — xp on[0,a(p)]. If t > o (p), then sincep ¢ N (1) U L(t), by Lemmd 8.4 for large
enough,p & M,(x,). Therefore(x,), is constant onz oo[. Thus the uniform distance between
(xn)p and the constant functiox, (p, o (p)) is less than or equal to — o (p)|, which can be taken
arbitrarily small on § (p), oo[ by the Lipschitz continuity ofg,. Then(x,), uniformly converges
to x(p, o (p)) = xp on[o(p), oo[. Finally, x is an irrigation pattern since it is a set of fibers and it
is the pointwise limit of a sequence of irrigation patterns. O
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9. Minimization problems on irrigation patterns

The compactness properties in the previous section, the possibility of taking minimizing sequences
among the histograms guaranteed by the results in Section 8, the semicontinuity properties in
Section  and the weak continuity of the irrigation measugeestablished in Sectidn 3, enable

us to easily find a solution of the minimization problem

min, cps(2) E (X)), (9.9)
for 2 =0, 1], in which E(y) is a functional of the type
E(x) =100+ J(ny), (9.10)

whereJ : M, (RY) — R is a weakly lower semicontinuous functional defined on the space
M, @RN) of positive finite Radon measures R, provided we are able to find any irrigation
patterny € Pg(£2) such that/ (x) < oo andJ(u,) < oo. This last condition is not a completely
trivial requirement and we refer the reader(tol [29], [5], [6] for more information on this point.

By the results of Sectiof| 8, we can say that the minimum irrigation pattern can be taken
as a histogram. More generally, the minimization problem]|(9.9) can be solved for a gereral
measurable s&? whereu is a measure with no atom. This immediately follows by the next simple
lemma which shows how a non-atomic measure can be transported to yield the Lebesgue measure.

LEMMA 9.1 Lets2 be a measurable set equipped with a probability measwigh no atom. Then
there exists a measurable mappifig 2 — [0, 1] such thatT#u(B) = |B| for every Borel set
B C [0, 1], whereT#u is the image measure induced By

Proof. By the Lyapunov theorem, the no-atom condition permits us to split any measurable subset
of the £2 into two parts with equal measure. We define recursively a sequ@&hsey of mappings

T, : £2 — [0, 1]. We setTy = 0 and, givert,,, we divide its level sets in two parts of equal measure;
then we defind;,,1 by adding tdT;, the quantity 2" only on one of such parts. Th@h#u turns out

to be the sum of’2equally spaced Dirac masses in 1. By monotonicity7,, uniformly converges

to a function7. By Lemmg 3.1, T#u is the weak limit of the sequenc&, #u),cn and so it is the
Lebesgue measure. |

For any fixeds2 as above, we set(£2) = inf,cp,2) E(x). The previous results allow us to
state that, givery € Ps([0, 1]) and any set2, x (T (p), t) defines an equivalent irrigation pattern
belonging toPs(£2), and this in turn allows us to deduce that

m(82) < m([0, 1]).

Now, thanks to the compactness results mentioned at the beginning of this section, we can find a
histogramy’ such thatt (x") < m(£2) and thus we obtain

m(£2) =m([0, 1]),

som(£2) does not depend on the particular choiceafFinally, by Lemmg 9]1 we can exhibit a
minimum irrigation pattern on every sgt.
A case of particular interest is given by

_ O If l"l’)( = ﬁa
Tuy) = {oo otherwise
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for a givenit € M1(RY), which leads to the minimization problem with boundary condition
Ky =M.

More generally, we can consider systems of finitely (or even countably) many irrigation patterns
X1, - - -, Xn DY minimizing functionals of the type

n
E(X s xn) = 9100 + 1ty s ) + J2(S1, -, S), (9.11)
i=1

where S1,...,S5, € RN are the source points respectively gf, ..., x, and J» is a lower
semicontinuous function. Among those problems we point out two cases of special interest in which
n = 2 and which can be included in a more general clagsoEmission problems

(TP1) Porous systems like those involving lungs and bronchial trees could be modelled in this
setting. Here ~
Jl(l’«xp sz) = JO(MX1) + J(M)(lv ng)»
where

~ 0 if py, = Wy,
Tt ) = {oo othé(liwisex2

(TP2) Systems involving two networks with a common source like source-mouth in the case of
rivers, or root-foliage in the case of trees can be cast in this formulation. Here

J2(S1, S2) = Jo(S1) + J(S1, S2),

where
0 ifS1 =25y,

J (81, §2) = {oo otherwise.

Now a clarification concerning the structural condition (C2) fixing the sosra# a set of
fibers is in order. The elimination of (C2) would introduce the need of further conditions to test
the measurability ofy and would not lead to any substantial advantage, since the cost of an
irrigation pattern with many sources is an additive function. In this perspective, the last systems
can be considered with any arbitrary number of irrigation patterns by adding a boundary condition
involving all the sources. We can pictorially explain this point by saying that, thanks to the additivity
property, the tree model can be employed for a forest. Such a model can be interpretad syscat
path (see [[29]). We refer the reader to the works![16]./ [15], [21]) [11], [9] and to the survéys [1],
[8], [24] for an account of the broad subjectayftimal transport problems

9.1 The Eulerian and Lagrangian approaches

It is now time to compare the results presented in this paper with the Eulerian treatment given by
Qinglan Xia. He starts with finite atomic measureandb and defines a “path” fromto b as a flow

on a finite embedded graph whose vertices either have at least one arriving edge and one departing
edge, or belong ta or b. He denotes by the (straight) edges of the graph, oye) the flow inside,

and bye a unit vector oriented by. He writes ] = Hle for the vector measure obtained as the
product of the Hausdorff measure restricted@ tnd of the vectoé. Then the embedded path from

a to b can be written as the vector measure

G =) welel.
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With this simple formalism, the Kirchhoff law can be expressed in a synthetic way as
div(G) =a — b.

Letting G4 be the set of all such paths between atomic measuegglb in a compact and convex
subset ofR", Xia defines org 4 the cost functional

M*(G) =) w(e)*lengthle).

e

Then he proceeds to define transport paths connecting two Radon megaswaed .~ with equal
total mass. He says that a vector meastins atransport pathbetweenu™ and ™ if there are
sequences of atomic measuegsand b;, and pathsG; connectinga; to b; such thata; and b;
converge weakly toe™ andp~ andG; — T weakly in the sense of vector measures. This implies
div(T) = u™ — u~ in the distribution sense. The energy of any such path is defined by relaxation
as

M(T) :=infliminf M%(G;),

1—> 00

where the infimum is taken over the set of all possible approximating graph sequenées G;
of T.

Xia's existence theorem states the existence of an optimal transport path between any two Radon
measureg ™ andp~ with the same mass, provided-11/m < a < 1. Another topic addressed in
Section 7 of his paper is the existence of a “transport plan” associated with each path. This roughly
says which point oft™ goes to which point of.~.

It is quite desirable to establish an equivalence between the Lagrangian approach (applied
here) and the Eulerian one. None of them has the final desirable form and they are therefore
complementary. The Eulerian form is a bit abstract since it does not yield the expected description of
the solution as a countable graph. The Lagrangian presentation instead does not immediately yield
the elegant embedded solution as a vector measure. Let us just give hints of how this equivalence can
be proved. Given an Eulerian soluti@hwith ™ a Dirac mass, we know that it can be assigned a
sequence of approximating finite grapgiiswithout loops, that is, trees. With such finite graphs, we
can easily associate pattergsby parameterizing the tree from root to leaves by arc length. Then,
by our compactness result (Theorem 8.1) and the lower semicontinuity result on pattern energies, it
is easily deduced that there exists a limit Lagrangian solytiétlom the Eulerian one, and whose
energy is lower than or equal to the energyrof

Conversely, consider a Lagrangian optimal solutignwhich we can always parameterize by
length. Using its filtration structure, we can approximgatley a sequence of finite tre€g with the
root as a source and whose leaves give an atomic melgs@g monotone convergence, the energy
of the G; tends to the energy gf and by the result of Section 8; tends to the irrigation measure
of x. In addition,G;, viewed as a vector measure, tends to an Eulerian PaBy Xia’s relaxed
definition of energy, we deduce that the Eulerian enerdgy flower than or equal to the energy of
x. Thus both energies are equal and both formulations are equivalent.

Our results are slightly more restrictive in that we imppse= §g, a Dirac mass. Also, we do
not specify when a feasible solution is attainable. The measure structure on the set of paths (fibers)
seems, however, to be a valuable tool. Thanks to the integration tools on the filtration they provide,
it can be easily proved that trees irrigating sets with positive Lebesgue measure are incompatible
with Poiseuille law([4]. In other terms, infinite irrigation trees seem to be impossible from the fluid
mechanics viewpoint.
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Index of main notations in order of appearance

e x: 2 xRy — RV: setof fibers

e x(p,t) € RN: position of pointp € £2 at timet

o t— x(p,t):fiberofp

¢ [p];: equivalence class gf under the equivalence ~; ¢ if x,(s) = x,(s) forall s € [0, 7]

e x-vesselclass of equivalence at timaunder>;

o Vi(x) := 2/~ set of y-vessels at time

o o, (p) =inf{r e Ry | x,(s) is constant ont] co[}: absorption (stopping) time gf

e pis absorbed at timeif o, (p) < ¢

e absorbed,-vessel at time: if o, (p) <t fora.e.p € 2

e A,(x): set of absorbed points at time

o x-flow: non-absorbeg -vessel (has positive measuresi)

o F;(x): set ofx-flows at timer

o F;(x): union of all x-flows at timer

o y-flow evolution:V; such thatV; € F;(x) for all r andV; decreasing under inclusion

e D;(V;): dispersion of g -flow evolution on an interval; set of points which leave the-flow
without going into anotheg -flow W # V,;

o M,(x) = x(£2,1)\ A;(x): non-absorbed fibers at time

S:(x) = M:(x) \ F:(x): spread flow, i.e. set of nhon-absorbed fibers which do not belong to a

x -flow

non-spread set of fibers:|i; (x)| = O for everyt

irrigation pattern: set of fiberg which is measurable

Ps(£2): set of all irrigation patterns, i.e. of all measurable sets of fibers

¢y (t): cost functional at time

I (x) cost functional of the irrigation pattern

Xxn — x: convergence almost everywhere of irrigation patterns

iy (p) = x(p, oy (p)):irrigation function

Uy (A) = |i;1(A)|: irrigation measure induced by

histogram: irrigation pattersy : [0, 1] x Ry — RY such that ally-flows V e F;(x) are

intervals
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