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A variational model of irrigation patterns
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Irrigation and draining systems, plants and trees together with their root systems, lungs and
cardiovascular systems have a common morphology which seems to derive from topological
constraints together with energy saving requirements. All of these systems look like spatial trees and
succeed in spreading out a fluid from a source onto a volume. The associated morphology is a tree of
bifurcating vessels. Their intuitive explanation is that transport energy is saved by using broad vessels
as long as possible rather than thin spread out vessels. In this paper, we define a general formalism
dealing with irrigation patterns. Related to martingale theory, this formalism permits one to define
irrigation trees and their vessels, to give a generic form to their energy, and to show compactness
for the irrigation patterns with bounded energy as well as a lower semicontinuity result for the cost
functional. As a consequence, we show that a variety of source to volume irrigation problems are
well posed.

Introduction

The function of many natural flow systems is to connect by a fluid flow a finite size volume to
a source. This happens with drainage networks, actual plants and trees, root systems, bronchial
systems, cardiovascular systems [19]. Typically, the network system is designed according to the
following principles: (i) The network supplies an entire volume of an organism and a space filling
hierarchical branching pattern is required; (ii) the biological networks have evolved to minimize
energy dissipation. Sometimes two more principles are added, namely (iii) the size of the final
branches of the network is a size-invariant unit, and (iv) the equality of flow supply through the
network system [25], [26], [27], [3]. In the case of trees and plants, the energy criterion must be
related to the mechanical stability of the trunk and branches in response to wind and gravity. In the
case of irrigation networks, the energy criterion aims at a reduction of the overall resistance of the
system.

To be able to derive quantitative properties from this set of principles, a basic assumption is
usually made, namely that the network has a branched tree structure made at each scale of tubes of
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a certain uniform length, radius and with a given branching number. In other terms, the irrigation
system is a fully homogeneous tree in scales, sizes and shapes. Then, under these somewhat ad
hoc assumptions, the above principles have been shown by the just mentioned authors to imply
that the network has a fractal-like structure with self-similar properties. The irrigation network is
then characterized by how the branching ratios, and the ratios of radii and lengths of the tubes
change through the network. The above principles permit one to conclude that the branching ratios
are constant, sayn, and the radii and length ratios scale as powers ofn. This heuristic reasoning
ends up with a structure described as a self-similar fractal [25], [26], [27]. Let us mention that in
geomorphology, an early study of the fractal-like behavior of natural drainage networks was started
by R. E. Horton [14], A. N. Strahler [20], and generalized by E. Tokunaga [22].

The above treatment has some weak points, namely, the assumption of the existence of a network
structure doing the job, the assumption that the network is a tree with countable branches and the
very strong homogeneity assumption involved in heuristic calculations. These properties should be
deduced from first principles, a basic variational principle related to the cost of irrigation should be
at the basis of both facts, as requested in [25]. Authors in [27] acknowledge thatIn spite of the very
large number of numerical and empirical studies, no general theory based on fundamental laws has
yet been developed for (...) fractal behavior (...). It is our purpose here to discuss the first mentioned
assumption, namely the proper existence of an irrigation tree irrigating a volume and with minimal
resistance. This paper is not, however, the first mathematical attempt and we know of two other
works addressing the existence problem, namely [5] and [29].

Before describing those works, let us remark that, in spite of the many and diverse modelling
aspects involved in the formalization of the irrigation trees, it seems sound in the first mathematical
inquiries to adopt the simplest variational formalization coping with the essential features of
the problem. This same Occam’s razor principle is adopted in the just mentioned mathematical
references.

In [5], the problem of finding a maximal irrigated volume with minimal cost is addressed. LetΩ

be a fixed open domain. A point sourceS ∈ Ω is fixed. We say that a compactK ⊂ Ω is irrigable if
the complementary setU = Ω \ K is connected and containsS. U is called theirrigation network.
The authors fix an “accessibility profile”, namely a functionf : R+ → R+, increasing and such
that f (0) = 0. A point x ∈ K is saidf -irrigable if there is a pathx(s) such thatx(0) = x,
x(L) = S, and for everys ∈ [0, L], B(x(s), f (s)) ⊂ U , whereB(x, r) denotes the ball with center
x and radiusr. In other terms, there is a thick path insideU leading tox. This path becomes thinner
when approaching the irrigated point, but with a thinning rate uniformly bounded from below. The
authors show first that iff slightly superlinear at 0 (e.g.f (s) = sα, 0 < α < 1) then the problem of
irrigating a maximal positive volume is well posed. Namely: there existsK with maximal volume
among allf -irrigable sets. Next, a cost functional is associated with each accessibility path tox.
This cost functional is assumed to be lower semicontinuous with respect to the uniform convergence
of paths.K being fixed, one can therefore associate with eachx ∈ K a minimal accessibility cost
cK(x). The irrigation cost ofK is then defined asc(K) =

∫
K

cK(x) dx. Then the existence of a
maximal irrigated volumeK with minimal costc(K) is proved. To the best of our knowledge, this
paper is the only one addressing the existence of thick embedded irrigation networks. Its weak point
is the somewhat floppy expression of the cost functional.

Qinglan Xia’s paper [29] was communicated to us while we were in the course of revising
the present paper. Although the mathematical treatment proposed by this author and ours are very
different, the considered energy functional is exactly the same and the addressed end problem is
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also essentially the same. Xia treats the irrigation problem as a transport problem from a fixed
probability measureµ+ to a fixed probability measureµ−. He does not consider as in [5] a volume
representation of the network but treats it roughly as an embedded graph with a countable number
of vertices and satisfying the Kirchhoff law. The network is then elegantly represented as a one-
dimensional flat currentG with non-integer multiplicity satisfying

∂G = µ+
− µ−

(in the earlier version of this paper), or, equivalently, as a vector measure supported by a countable
graph (in the later version). The multiplicity of each edge of the graph represents the fluid flow
along the vertex and the condition∂G = µ+

−µ− implies that the Kirchhoff law is satisfied at each
vertex of the graph. When such graphs are finite, Xia considers the same energy we shall consider,
namely

Eα(G) =

∑
e edge ofG

w(e)α length(e), (0.1)

where 0< α < 1. (When the graph is infinite, he uses a relaxed version of the same functional.)
This energy deserves some explanation. Assume that a tube or a branche bifurcates into two smaller
edgese1 et e2. Then by the Kirchhoff law,w(e) = w(e1) + w(e2). It is immediately seen that if
α = 1, there is no energy loss in this bifurcation, while ifα < 1, it would be more advantageous
from the energy saving viewpoint to avoid a bifurcation. In fluid mechanics, this amounts to stating a
qualitative Poiseuille law, according to which the resistance of a tube increases when it gets thinner.
In the case of trees, the same energy criterion translates the fact that mechanical strength is increased
by avoiding branching. In the case of the transportation problem addressed in [29], the interpretation
reads as follows:In shipping two items from nearby cities to the same far away city, it may be less
expensive to first bring them into a common location and put them on a single truck for most of the
transport. In this case, a “Y shaped” path is preferable to a “V shaped” path”.The choice of the
power functionwα with 0 < α < 1 is just a way to express the above requirement by an example.
Clearly, any function concave near 0 would do the same job for the mathematical discussion. In the
following, we shall refer to Xia’s approach as the “Eulerian” approach.

Let us return to our aims here. We shall consider a single sourceµ+
= δS , a Dirac mass, and

any irrigated measureµ−. The mathematical approach developed here is actually different from the
one proposed in Xia’s paper. An irrigation system is not defined as an embedded graph, but as an
(usually uncountable) set of paths or “fibers” starting from the source and arriving at every point of
the support of the irrigated measure. Our initial search space for a solution will therefore be larger,
since it allows a priori spreading trees where each fiber of a set with positive measure could go
its way without following a branch. (This is an abstraction of what happens with grass, where no
trunk or branch is formed and the paths, coinciding with the grass leaves, are numerous but thin and
straight.) We shall refer to this approach as “Lagrangian”, as opposed to the Eulerian one. Let us
give some details.

Our formalism considers paths starting from the source and representing, according to the
different interpretations, either the trajectory inRN of a fluid particle, or a fiber of a tree. We shall
call these infinitely many paths “fibers” and denote them byχ(p, t) ∈ RN , wheret is time (or
length along the fiber) andp denotes a particle, belonging to an abstract probability spaceΩ. We
shall introduce a stopping timeσχ (p) for each fiber, namely the first time it stops for ever. This will
allow us to define the irrigation measure, as a density measure of the fibers stopping in any given
volume.
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In Section 1, we define what we call a set of fibers, namely, a set of trajectoriesχp(t) starting
all from a source pointχp(0) = S and indexed by a probability spacep ∈ Ω. We then defineχ -
vessels, or branches, as equivalence classes under the equivalence relationp ' q if χp(s) andχq(s)

coincide up to timet . We also define “χ -flows at timet” as χ -vessels which have not yet stopped.
Next, we address all measurability questions raised by this formalism, related in particular to the
stopping or absorption timeσχ (p) and the measurability of branches orχ -vessels. We define what
we call afterwards “non-spread flow”, namely sets of fibers which remain all in branches (χ -flows)
with positive measure or stop. All the notations and definitions are summarized in the index at the
end of this paper.

In Section 2, we define our cost functional as an integral over the set ofχ -flows. This functional
is equivalent to the above mentioned energy (0.1), defined in [29]. We make precise the notion of
pointwise convergence for sets of fibers.

In Section 3, the irrigation measure is defined and its weak continuity with respect to pointwise
convergence of the sets of fibers is proved. Section 6 shows the lower semicontinuity of the cost
functional under pointwise convergence.

Section 4 proves a technically useful result, namely that a non-spread set of fibers can be
reconstructed from the knowledge of theχ -flows for a dense subset of values oft .

Section 5 addresses a structural invariance of the problem, namely the invariance of the irrigation
measure and cost functional under any measure preserving bijection of theχ -flows.

Section 7 explains why we cannot have a compactness result for the set of fibers. This is
easily explained: we can exchange wildly the fibers by measure preserving maps in the minimizing
process, thus obstructing the convergence of fibers while theχ -flows intuitively converge. Thus,
Sections 7 and 8 reduce the set of fibers to what we call “histograms”, which correspond roughly to
equivalence classes under measure preserving rearrangements of the fibers. Compactness properties
of histograms are proved (they simply derive from the Ascoli–Arzelà theorem).

The conclusive Section 9 shows our main existence result, of a set of fibers solving the irrigation
problem of a source to a given measure, as well as variants involving several measures, sources and
interactions of trees like in the bronchial-cardiovascular system.

At this point, a comparison between the Lagrangian and Eulerian formalisms and results would
be premature, but the impatient reader can go directly to Subsection 9.1. Both solutions turn out to
be equivalent as far as existence is concerned, and complementary as for the structure they give to
the solution. All necessary tools turn out to be available in the union of both papers to prove this
equivalence, and we give a (sketchy) proof in the above-mentioned subsection.

Needless to say, the results given here and by the above-mentioned authors open more questions
than they solve. In particular, existence results open the way to the structural questions (homogeneity
of the irrigation tree, scaling laws...) for which, for the time being, only heuristic results seem at
hand.

1. Absorption time, flows and irrigation patterns

If X is a subset ofRN , we shall denote byHα(X) the outer Hausdorff measure of dimensionα of
X and by|X| its outer Lebesgue measure. Ifu is any real function defined on a subsetΩ ⊂ RN , we
shall use the notation oscu = supu − inf u, ‖u‖∞ = sup|u(x)|.

Let (Ω, | · |) be a probability space which we interpret as the reference configuration of a fluid
incompressible material body. (We can also interpret it as the trunk section of a tree, this trunk being
thought of as a set of fibers which can bifurcate into branches.) Aset of fibers ofΩ with source point
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S ∈ RN is a mapping
χ : Ω × R+ → RN

such that:

(C1) For a.e.material pointp ∈ Ω, χp(t) : t 7→ χ(p, t) is Lipschitz continuous with Lipschitz
constant less than or equal to one.

(C2) For a.e.p ∈ Ω, χp(0) = S.

It is tacitly understood that theσ -algebra of measurable sets ofΩ is complete w.r.t. the probability
measure, i.e. that sets contained in a measurable negligible sets are measurable. This is used
sometimes in what follows. We shall consider the source pointS ∈ RN as given and we will denote
by CS(Ω) the set of all possibleχ ’s of Ω with sourceS.

We remark that in classical continuum mechanics, whereN = 3, (see [12], [23]) the parameter
t represents the time variable and, under suitable smoothness assumptions,χ is a motion of the
material body, i.e. a smooth one-parameter family of deformations. Since we are not interested
here in studying physical motions, but we inquire into the possible (idealized)shapesof the fluid
body with the aim of studying a general variational theory for such shapes, the variablet has only
the meaning of a geometric parameter. Therefore there is no risk of confusion in referring tot as
time, as we frequently do, after the previous clarification. This time may also be associated with a
geodesic distance from the source, in case we think of the set of fibers as a tree or plant and the
source as a (thinned) trunk.

DEFINITION 1.1 Givent ∈ R+, we shall say that two pointsp, q ∈ Ω belong to the sameχ -vessel
of valuet and we will writep 't q if

χp(s) = χq(s) for all s ∈ [0, t ].

For everyt ∈ R+, the equivalence relation't induces a decomposition ofΩ into equivalence
classesX. We will call such classesχ -vessels.

DEFINITION 1.2 Givenp ∈ Ω and t ∈ R+, the equivalence class of't which containsp and
which will be denoted by [p]t will be named theχ -vessel of the pointp at t .

Givenχ ∈ CS(Ω) andt > 0, we shall denote byVt (χ) the set of allχ -vessels att , that is,

Vt (χ) := Ω/'t .

The quotientsVt (χ) for different t arise from different equivalence relations, but there is a natural
and obvious inclusion between them. They make a filtration ofΩ, since∀t ′ > t, ∀p ∈ Ω,
[p]t ′ ⊂ [p]t .

We make a few comments in order to explain the above definitions. We are taking a Lagrangian
(referential) description of the fluid configurations. At eacht the decomposition ofΩ induced by't

corresponds to dividing the body into parts which are mapped, throughχ , into tube-like regions of
RN which we are going to identify with rectifiable curves. Since we control only the total amount of
fluid carried by these regions, we shrink them to their axial curves. Thus, at eacht a set of fibersχ
can be regarded as a set of curves, obtained by varying [p]t . Indeed, by Definition 1.1,χp coincides
on the interval [0, t ] with any other functionχq for q varying in the set [p]t . For anyp ∈ Ω we
shall refer toχp as theχ -fiber of the pointp, and forV = [p]t we shall denote byχV the function
defined on [0, t∗], wheret∗ = sup{t ∈ R+ | V ∈ Vt (χ)}, such thatχV = χp on [0, t∗] for every
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p ∈ V ; we shall callχV the χ -fiber of theχ -vesselV . As mentioned above, our discourse can
easily be interpreted in another way, as modelling a tree, in which case theχ -vessels represent the
branches.

DEFINITION 1.3 Letχ ∈ CS(Ω). The functionσχ : Ω → R+ defined by

σχ (p) := inf{t ∈ R+ | χp(s) is constant on [t, ∞[}

will be called theabsorption time. We shall say that a pointp ∈ Ω is absorbedwhenσχ (p) < ∞.
A point p ∈ Ω is absorbed at timet if σχ (p) 6 t .

DEFINITION 1.4 Letχ ∈ CS(Ω) andt > 0. We shall say thatX ⊂ Ω is anabsorbed setat time
t if σχ (p) 6 t for a.e.p ∈ X. If X ∈ Vt (χ) is absorbed att , we shall call it anabsorbedχ -vessel
at t . We shall denote byAt (χ) the set of absorbed points at timet .

DEFINITION 1.5 Letχ ∈ CS(Ω), t > 0 andX ∈ Vt (χ). We shall say thatX is aχ -flowat t if it is
not an absorbedχ -vessel. We shall denote byFt (χ) the set ofχ -flows att and byFt (χ) the union
of all χ -flows att .

REMARK 1.1 We notice that by Definitions 1.4–1.5 everyχ -vessel with zero measure is an
absorbedχ -vessel, so everyχ -flow has a positive outer measure.

DEFINITION 1.6 LetI ⊂ R+. We shall say that the one-parameter family of setsVt is aχ -vessel
evolutionif Vt ∈ Vt (χ) for everyt ∈ I andVt is decreasing under inclusion. In particular, we shall
say thatVt is aχ -flow evolutionif alsoVt ∈ Ft (χ) for everyt ∈ I .

Given V ∈ Vt (χ), there exists a uniqueχ -vessel evolutionVs for s ∈ [0, t ] such thatVt = V .
The flow evolution is obviously not uniquely determined aftert , unless we are in the particular case
considered in the following definition.

DEFINITION 1.7 We shall say thatV ∈ Ft (χ) is anon-breakingχ -flow if there is nos > t such
that there areV1, V2 ∈ Fs(χ) with Vi ⊂ V for i = 1, 2 andV1 6= V2.

REMARK 1.2 If V ∈ Ft (χ) is a non-breakingχ -flow there exists a uniquely determinedχ -flow
evolutionVs for s ∈ I , whereI = {s > t | ∃V ′

∈ Fs(χ), V ′
⊂ V }, such thatVt = V . We shall

refer toI as thesurvival intervalof the non-breaking flowχ .

DEFINITION 1.8 LetVt be aχ -flow evolution fort varying in an intervalI ⊂ R+. We define the
dispersionDI (Vt ) of Vt on I as the set of pointsp ∈

⋃
t∈I Vt such thatp 6∈

⋂
t∈I Vt and, for every

t ∈ I , p does not belong to anyχ -flow W ∈ Ft (χ), W 6= Vt .

Roughly speaking, the dispersion ofVt is the set of points of someVt which leave the flow by
stopping or by continuing their motion within a vessel of null measure.

REMARK 1.3 The conditions forp belonging toDI (Vt ) can be tested by checking them only on a
dense subset ofI . Moreover, ifVt has a non-negligible dispersion onI , thenχVb

, whereb = sup(I ),
is not constant onI .

Let us introduce the following set:

Mt (χ) := {p ∈ Ω | σχ (p) > t} = Ω \ At (χ).

DEFINITION 1.9 Letχ ∈ CS(Ω) and t > 0. We shall call the setSt (χ) = Mt (χ) \ Ft (χ) the
spread flowat t .
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The spread flow at timet is the set ofχ -vessels with zero measure which are not made of absorbed
fibers. Let us point out some trivial monotonicity properties of the above introduced sets.Ft (χ) and
Mt (χ) are decreasing, whereasAχ (t) is increasing.

DEFINITION 1.10 Letχ ∈ CS(Ω). We shall say thatχ is anon-spread set of fibersif |St (χ)| = 0
for everyt ∈ R+.

REMARK 1.4 In order thatχ is a non-spread set of fibers it suffices that|St (χ)| = 0 for everyt

in a dense subsetD ⊂ R+. Indeed, suppose that|St (χ)| 6= 0 for somet ∈ D. Then|Ss(χ)| 6= 0
for everys ∈ [t, t + 1/n], otherwiseSt (χ) would have zero measure. SinceD is dense inR+, it
follows thatD ∩ [t, t + 1/n] 6= ∅ and we get a contradiction.

PROPOSITION1.1 If χ ∈ CS(Ω) is a measurable mapping with respect to the product measure,
then for everyt ∈ R+, χ(·, t) is measurable and all theχ -vessels ofVt (χ) are measurable sets.

Proof. The first claim is true in general for a.e.t (see [13], [10]) and sinceχ(·, t) is a continuous
function of t it also holds for everyt ∈ R+. The second claim follows from the first one, as we
are going to show. Letp ∈ Ω and letD ⊂ R+ be a countable dense subset. We remark that
q ∈ [p]t ∈ Vt (χ) if and only if for everys ∈ D with s 6 t , q ∈ χ(·, s)−1(χp(s)), which is a
measurable set. So [p]t =

⋂
s χ(·, s)−1(χp(s)), and the assertion holds. 2

DEFINITION 1.11 Lett ∈ R+ and letD ⊂ R+ be a dense subset. For anyε > 0, we take a finite
set of increasing valuestk ∈ D, for k = 1, . . . , n, with t1 < ε, t−ε < tn < t andε < tk+1−tk < 2ε.
We setχt : p 7→ χ(p, t) and

χε
t (p) =

χtn(p) if p ∈ Ftn(χ),

χtk (p) if p ∈ Ftk (χ) \ Ftk+1(χ), for k = 1, . . . , n − 1,

S if p 6∈ Ft1(χ).

We shall refer toχε
t as anε-approximationonD of the mappingχt : p 7→ χ(p, t).

REMARK 1.5 It is easy to see that‖χε
t − χt‖∞ < 2ε and soχε

t → χt asε → 0. The key point
for proving this is to observe that ifp 6∈ Ft1(χ) then eitherp ∈ St1(χ) or p is absorbed before
t1. Because of the non-spread hypothesis,St (χ) has zero measure for allt so that for almost every
p 6∈ Ft1(χ), p is absorbed beforet1. Sincet > tn > t1, χ(p, t) = χ(p, t1) becausep is absorbed
beforet1. Thus,

‖χε
t (p) − χt (p)‖ = ‖S − χt‖ = ‖χ(p, 0) − χ(p, t)‖ = ‖χ(p, 0) − χ(p, t1)‖ 6 t1

becauseχ is 1-Lipschitz. For the other cases, similar arguments apply. For almost everyp ∈ Ftk (χ)\

Ftk+1(χ), p is absorbed beforetk+1 so thatχ(p, t) = χ(p, tk+1). Thus,

‖χε
t (p) − χt (p)‖ = ‖χ(p, tk) − χ(p, t)‖ = ‖χ(p, tk) − χ(p, tk+1)‖ 6 2ε.

PROPOSITION1.2 Letχ ∈ CS(Ω) be a non-spread set of fibers. If there exists a dense subset
D ⊂ R+ such that, for everyt ∈ D, everyχ -flow V ∈ Ft (χ) is a measurable set, thenχt = χ(·, t)

is a measurable function for everyt ∈ R+.

Proof. We first point out that, for everyt ∈ D, Ft (χ) is at most a countable set. Indeed, for every
t ∈ R+, Ft (χ) is a set of disjoint measurable subsets with positive measure. As a consequence,
Ft (χ) is measurable; moreover, givent ∈ D, for every subsetA ⊂ RN , χ(·, t)−1(A) ∩ Ft (χ) is a
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measurable set, since it is a countable union of measurable sets. Letχε
t be anε-approximation ofχt

onD. For every subsetA ⊂ RN , by the previous assertion,(χε
t )−1(A) is a measurable set and since

χε
t → χt asε → 0, χt turns out to be a measurable function as a pointwise limit of measurable

functions. 2

REMARK 1.6 We notice that|St (χ)| = 0 is essential to the measurability ofχ(·, t). Indeed, if
|St (χ)| 6= 0, even if for everyt ∈ R+ all theχ -vesselsV ∈ Vt (χ) are measurable sets andSt (χ) is
also measurable, we cannot expectχ(·, t) to be a measurable function, as we can see in the following
example. TakeS = 0, the origin of the plane, and consider a segmentI , of length 1/2, orthogonal
to thex-axis with middle point(0, 1/2). Let V be a Vitali non-measurable subset ofI (see [13])
and define

χ(x, t) =

{
tx if x ∈ V ,

−tx if x ∈ I \ V ,

with Ω = I . All the χ -vessels fort 6= 0 are negligible (and therefore measurable), so there are no
χ -flows, andSt (χ) = I is measurable. Howeverχ is clearly not measurable.

LEMMA 1.1 Letf : Ω × R+ → R be such thatf (·, t) is measurable fort in a dense subset
D ⊂ R+ andf (p, ·) is continuous for a.e.p ∈ Ω. Thenf is a measurable mapping.

Proof. We give the proof of this well-known lemma for the sake of completeness (see e.g. [7]). Let
a, b ∈ D. For anyc > 0 andε > 0, we introduce the setsU = {(p, t) ∈ Ω × R+ | f (p, t) > c}

andVε(a, b) = {p ∈ Ω | f (p, s) > c + ε ∀s ∈ [a, b] ∩ D}. We are going to show that, modulo a
negligible set,

U =

⋃
a,b∈D
ε∈D

Vε(a, b) × [a, b].

In order to prove the inclusion
⋃

Vε(a, b) × [a, b] ⊂ U , we notice that if(p, t) ∈ Vε(a, b) × [a, b]
then, for everys ∈ [a, b] ∩ D, f (p, s) > c + ε, and since we can assumef (p, ·) is continuous, by
passing to the limit we getf (p, t) > c + ε > c.

Let us show the reverse inclusion: iff (p, t) > c then there existsε > 0 such thatf (p, t) > c+

2ε, so, by continuity, we can takea, b in such a way that for everys ∈ [a, b] we havef (p, s) > c+ε

andt ∈ [a, b]. Now, sincef (·, t) is measurable for everyt ∈ D, the setVε(a, b) is measurable for
any fixeda, b, ε, since it is a countable intersection of measurable sets. Therefore the above equality
leads to the conclusion of the lemma. 2

By combining Proposition 1.1, Proposition 1.2 and Lemma 1.1, we get the following claim.

PROPOSITION1.3 Letχ ∈ CS(Ω) be a non-spread set of fibers. Thenχ is measurable if and only
if for every t in a dense subsetD ⊂ R+ everyχ -flow V ∈ Ft (χ) is a measurable set and if and only
if for every t ∈ R+ everyχ -vesselV ∈ Vt (χ) is a measurable set.

The previous results can be summarized in the following theorem. Although they cannot be
directly deduced from any reference known to us, the results obviously fall in the general framework
of time dependent random functions and continuous martingales as studied (e.g.) in [17].

THEOREM 1.1 For every set of fibersχ ∈ CS(Ω) the following statements are equivalent.

1. χ is measurable.
2. χ(·, t) is measurable for everyt in a dense subsetD ⊂ R+.
3. χ(·, t) is measurable for everyt ∈ R+.
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If, in addition,χ is a non-spread set of fibers, then the following items are also equivalent to the
three above.

4. Everyχ -vessel is measurable for everyt ∈ R+.
5. Everyχ -flow is measurable for everyt in a dense subsetD ⊂ R+.

DEFINITION 1.12 We shall say thatχ ∈ CS(Ω) is anirrigation patternof Ω if it is measurable.
The set of all irrigation patterns ofΩ will be denoted byPS(Ω).

REMARK 1.7 We introduce measurability because we want to define a cost functional which takes
the form of an integral.

REMARK 1.8 An irrigation patternχ is generally characterized by each one of the first three items
of Theorem 1.1, and ifχ is also non-spread, then it can be characterized by all the items.

PROPOSITION1.4 For everyχ ∈ PS(Ω), the absorption functionσχ is a measurable mapping.

Proof. Let us first recall some obvious properties of measurable functions (see [13], [10]): the
difference of two measurable functions is a measurable function, so the set on which two measurable
functions agree is measurable and finally the set on which a sequence of measurable functions agree
is measurable. We are going to prove that for everyt > 0 the setAt (χ) is measurable. LetD ⊂ R+

be any countable dense subset. Sinces 7→ χ(p, s) is Lipschitz continuous, the conditionσχ (p) 6 t

is equivalent to saying that for everys ∈ D with s > t , χ(p, s) = χ(p, t), that is,(χ(·, s))s∈D

is a sequence of functions which agree atp. Since, by item 3 of Theorem 1.1, such functions are
measurable, the set where they agree is also measurable. 2

PROPOSITION1.5 Letχ ∈ PS(Ω) be a non-spread irrigation pattern. Then, for a.e.p ∈ Ω and
for everyt < σχ (p), there existsV ∈ Ft (χ) such thatp ∈ V .

Proof. Let (p, t) be such that the conclusion does not hold. LetD ⊂ R+ be a dense subset. We fix
s ∈ D such thatt < s < σχ (p). Thusp belongs to the spread flowSs(χ). Since|

⋃
s∈D Ss(χ)| = 0,

we see that the set of pointsp for which the conclusion does not hold is a negligible set. 2

2. Cost functional, irrigation patterns convergence

For any givenχ ∈ PS(Ω) andα ∈ ]0, 1[, we introduce the followingdensity cost function:

ϕχ (p, t) : (p, t) 7→ |[p]t |
α−1

(of courseϕχ (p, t) = ∞ when|[p]t | = 0). For everyt ∈ R+, the cost functional is defined as

cχ (t) :=
∫

Mt (χ)

ϕχ (p, t) dp

and the total cost is given by

I (χ) :=
∫

R+

cχ (t) dt.

PROPOSITION2.1 If χ ∈ PS(Ω) is such thatI (χ) < ∞, thenχ is a non-spread irrigation pattern.
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Proof. The assumptionI (χ) < ∞ implies thatcχ (t) < ∞ for a.e.t , and this in turn implies that
|St (χ)| = 0. Indeed, givent we have|St (χ) ∩ V | = 0 for every absorbedχ -vesselV ∈ Vt (χ), so
the trace ofSt (χ) on the (countable) union of all theχ -vessels of positive measure is a negligible
set (see Remark 1.4). Soϕ(p, t) = ∞ a.e. onSt (χ) and thereforecχ (t) = ∞ when|St (χ)| 6= 0.2

DEFINITION 2.1 Let(χn)n∈N ⊂ CS(Ω) be a sequence of sets of fibers ofΩ. We shall say that the
sequenceconvergesto a set of fibersχ , i.e.χn → χ , if for a.e.p ∈ Ω, (χn)p(t) → χp(t) for every
t ∈ R+.

PROPOSITION2.2 Let(χn)n∈N ⊂ CS(Ω) be a sequence of sets of fibers ofΩ. Thenχn → χ if
and only ifχn converges toχ a.e. inΩ × R+.

Proof. If χn → χ then, by definition,(χn)p(t) → χp(t) for everyt ∈ R+ and for everyp ∈ Ω\NΩ

with |NΩ | = 0. Thereforeχn(p, t) → χ(p, t) for every(p, t) ∈ (Ω×R+)\N ′ with N ′
= NΩ×R+,

and since|N ′
| = 0 we conclude thatχn → χ a.e. inΩ × R+. Conversely, assume thatχn → χ for

every(p, t) ∈ (Ω × R+) \ N ′ with |N ′
| = 0. Denote byEp thep-section ofΩ × R+ and byNp

the set such thatN ′
∩ Ep = {p} × Np. The Fubini theorem says that

0 = |N | =

∫ ∫
Ω×R+

1N (p, t) dp dt =

∫
Ω

( ∫
R+

1Np (t) dt

)
dp.

Then, for almost everyp,
∫
R+

1Np (t) dt = 0, that is to say,|Np| = 0. For such values ofp,
(χn)p → χp for a.e.t ∈ R+. Since for a.e.p ∈ Ω, (χn)p andχp are uniformly Lipschitz continuous
with respect tot , we finally get the assertion. 2

The above proposition implies that if(χn)n∈N ∈ PS(Ω) is a sequence of irrigation patterns and
χn → χ , thenχ ∈ PS(Ω).

PROPOSITION2.3 If χn → χ , then for a.e.p ∈ Ω,

σχ (p) 6 lim inf
n→∞

σχn(p).

Proof. We fix p ∈ Ω and t > lim infn→∞ σχn(p). For infinitely many values ofn we have
χn(p, s) = const for s ∈ [t, ∞[. By passing to the limit on the previous values ofn we get
χ(p, s) = const fors ∈ [t, ∞[, which implies, by definition,σχ (p) 6 t . 2

3. Irrigation measure

Let χ ∈ PS(Ω). We introduce theirrigation function

iχ (p) = χ(p, σχ (p)),

defined on the measurable setAχ of absorbed points. We haveiχ (p) = limt→∞ χ(p, t) and so
iχ : Aχ → RN is a measurable function, as the pointwise limit of a sequence of measurable
functions.

The functioniχ induces the image (push-forward) measureµχ defined by the formula

µχ (A) := |i−1
χ (A)|

for any Borel setA ⊂ RN . We shall refer toµχ as theirrigation measureinduced byχ .
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LEMMA 3.1 Let(in)n∈N be any sequence of measurable functions fromΩ into RN and for every
n ∈ N ∪ {∞} let µn be the image measure induced byin. If for every ε > 0 there existiεn andiε∞
such that|{p ∈ Ω | iεn(p) 6= in(p)}| < ε for everyn ∈ N ∪ {∞} and iεn → iε∞ a.e. inΩ, then
µn ⇀ µ∞, i.e. ∫

f dµn →

∫
f dµ∞

for everyf ∈ C0(RN ).

Proof. For everyn ∈ N ∪ {∞}, let µε
n be the image measure induced byiεn. First we notice

that
∫

f dµε
n =

∫
f ◦ iεn dx and so, by applying the Lebesgue Theorem we get

∫
f ◦ iεn dx →∫

f ◦ iε∞ dx =
∫

f dµε
∞ for everyf ∈ C0(RN ). Then, forn large enough,|

∫
f dµε

n −
∫

f dµ∞|

6 ε. Moreover, for everyn ∈ N ∪ {∞} we have∣∣∣∣ ∫ f dµn −

∫
f dµε

n

∣∣∣∣ 6 ε oscf.

Then, forn large enough, we can estimate∣∣∣∣ ∫ f dµn −

∫
f dµ∞

∣∣∣∣ 6 2ε oscf + ε.

By takingε arbitrarily small, we get the assertion. 2

LEMMA 3.2 Let(χn)n∈N be a sequence of irrigation patterns such that supn I (χn) < ∞. If χn →

χ∞, then for everyε > 0 there existiεn andiε∞ such that|{p ∈ Ω | iεn(p) 6= iχn(p)}| < ε for every
n ∈ N ∪ {∞} andiεn → iε∞ a.e. inΩ.

Proof. We begin by showing that there exists a constantc > 0 such that, for everyn ∈ N and
t ∈ R+, |Mt (χn)| < ct−1. Indeed, the condition supn I (χn) < ∞ implies that, for everyn andt ,∫ t

0 |Ms(χn)| ds is bounded; moreover|Ms(χn)| is a decreasing function ofs and so the assertion
follows by integrating over [0, t ].

Givenε > 0, we fixt in such a way thatct−1 < ε. Theniχn(t)−χn(·, t) 6= 0 at most onMχn(t),
which has measure less thanε. Sinceχn(·, t) → χ∞(·, t), we get the conclusion. 2

By combining Lemmas 3.1 and 3.2, we can state the following result.

THEOREM 3.1 Let (χn)n∈N be a sequence of irrigation patterns such that supn I (χn) < ∞. If
χn → χ , thenµχn ⇀ µχ .

REMARK 3.1 In general the above statement does not hold true without the assumption
supn I (χn) < ∞. Indeed, letS, Q ∈ RN be two given points, and consider the sequence of irrigation
patterns given by

χn(p, t) =

S for t 6 n,

(n + 1 − t)S + (t − n)Q for n 6 t 6 n + 1,

Q for t > n + 1,

for everyn ∈ N. Let χ(p, t) = S for everyt ∈ R+. We haveI (χn) = n + 1, χn → χ , but in is the
constant function of valueQ for everyn andi is the constant function of valueS.
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4. Irrigation pattern reconstruction

In this section we shall show that a non-spread irrigation pattern can be reconstructed from the
knowledge of the flows and their fibers for a dense subset of the values of the parameter.

LEMMA 4.1 Letχ, χ ′
∈ PS(Ω) be two non-spread irrigation patterns such that, for everyt in

a dense subsetD ⊂ R+, Ft (χ) = Ft (χ
′) andχV = χ ′

V on [0, t ] for every V ∈ Ft (χ). Then
σχ = σχ ′ a.e.

Proof. We can assumeD to be a countable set. Fors ∈ D, let

V (s) = {p ∈ Ω | σχ (p) < s < σχ ′(p) andχ ′
p is not constant on [σχ (p), s]}.

Then, modulo a negligible set,{p ∈ Ω | σχ (p) < σχ ′(p)} =
⋃

s∈D V (s). We claim that|V (s)| = 0
for everys ∈ D. Indeed, fors ∈ D fixed, and everyp ∈ V (s), if χ ′ is non-spread, thenp belongs
to a negligible setNs or to aχ ′-flow V ∈ Fs(χ

′), as stated in Proposition 1.5. ThenV is also a
χ -flow andχV = χ ′

V on [0, s], so χp = χ ′
p on [0, s], in contradiction to the definition ofV (s).

So V (s) ⊂ Ns and therefore|V (s)| = 0. Thus|
⋃

s V (s)| = 0 and so, ifχ ′ is non-spread, then
σχ ′ 6 σχ almost everywhere. If bothχ andχ ′ are non-spread then, by the last inequality, we get
σχ = σχ ′ . 2

PROPOSITION4.1 Letχ, χ ′
∈ PS(Ω) be two non-spread irrigation patterns such that, for every

t in a dense subsetD ⊂ R+, Ft (χ) = Ft (χ
′) andχV = χ ′

V on [0, t ] for everyV ∈ Ft (χ). Then
χ = χ ′ a.e.

Proof. For a.e.p ∈ Ω, by applying Proposition 1.5 and Lemma 4.1, we find that for everyt ∈ D

with t < σχ (p) = σχ ′(p) there existsV ∈ Ft (χ) = Ft (χ
′) such thatp ∈ V andχ(p, t) =

χ ′(p, t). By passing to the limit, the previous equality still holds fort = σχ (p) = σχ ′(p), and by
definition, it also holds fort > σχ (p) = σχ ′(p). Thus,χ = χ ′ a.e. 2

For everyt ∈ R+ let Ft be a set of subsets ofΩ, determined modulo a negligible set, and for
everyV ∈ Ft let f t

V be a Lipschitz continuous function, with a Lipschitz constant less than or
equal to one, from [0, t ] to RN and such thatf t

V (0) = S. We introduce the followingcompatibility
conditions:

(P1) For everyt in a dense subsetD ⊂ R+, Ft is a set of disjoint non-negligible measurable sets
Vi andf t

Vi
6= f t

Vj
for i 6= j .

(P2) If t1 < t2, then for everyV ∈ Ft2 there existsW ∈ Ft1 such thatV ⊂ W andf
t2
V is an

extension off t1
W .

Given anyV ∈ Ft , we can by (P1), (P2) define the associated evolution(Vs) for s 6 t and the
dispersionDI (Vs) on anyI ⊂ [0, t ] formally as in Definition 1.8, by only taking into account the
valuest ∈ D (see Remark 1.3).

(P3) LetV ∈ Ft and let(Vs) be the associated evolution fors ∈ I ⊂ [0, t ]. If |DI (Vs)| 6= 0, then
f s

Vs
6= const onI .

(P4) LetV ∈ Ft and let(Vs) be the associated evolution fors ∈ I ⊂ [0, t ]. ThenV =
⋂

s<t Vs .
(P5) If V ∈ Ft is a non-breaking set then the mappingf s

V is not constant on [0, s] for somes in
its survival intervalI .
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We remark that, givenχ ∈ PS(Ω), if for every t , Ft = Ft (χ) andf t
V = χV |[0,t ]

for every
V ∈ Ft (χ), then the compatibility conditions (P1)–(P5) are satisfied (see Remark 1.3). Conversely,
if (P2) holds, we introduce the following notion ofreconstructed irrigation patternby arguing as
follows.

For everyt ∈ D, let Ft =
⋃

V ∈Ft
V . By (P2), the set-valued functionFt is decreasing under

inclusion with respect tot . We can define the function

σ(p) := sup{t ∈ R+ | p ∈ Ft }

and for everyt < σ(p) we defineχp to be the fiber of the pointp in [0, t ] equal to the fiberf t
V

of V ∈ Ft such thatp ∈ V . Thanks to (P2),χp is then coherently defined on [0, σ (p)], and by
a constant extension on [σ(p), ∞[, on all of R+. The required Lipschitz continuity of the fibers
is easily verified. By varyingp in Ω we get a set of fibersχ which we shall call areconstructed
irrigation pattern.

THEOREM 4.1 Assume that the compatibility conditions (P1)–(P5) hold. Then there is a unique
non-spread reconstructed irrigation patternχ ∈ PS(Ω) such that for everyt ∈ R+,Ft = Ft (χ) and
χV = f t

V on [0, t ] for everyV ∈ Ft (χ).

Proof. Let χ be the reconstructed irrigation pattern andV ∈ Ft . We have to prove thatV ∈ Ft (χ).
Since the points ofV have the same fiber on [0, t ], V is contained in aχ -vessel att . We claim that
V is aχ -vessel. Indeed, letp ∈ V andq 6∈ V and letVs be the evolution ofV on [0, t ]. We show
that, modulo a negligible set,q 6∈ [p]t . Let a = sup{s ∈ D | q ∈ Vs}. By (P4), sinceq 6∈ Vt , we
havea < t andq ∈ Va . Let I = [a, t ]. If q 6∈ DI (Vs), then there existsa < s 6 t andW ∈ Fs ,
W 6= Vs such thatq ∈ W . Then by (P1),χp = f s

Vs
6= f s

W = χq on [0, s] ⊂ [0, t ]; so q 6∈ [p]t .
Assumeq ∈ DI (Vs). Thenσ(q) = a. If |DI (Vs)| 6= 0, then by (P3),χp = f t

V is not constant by
construction on [a, t ] = [σ(q), t ] and again we haveq 6∈ [p]t . Thus the possible exceptions are the
pointsq such thatq ∈ DI (Vs) and|DI (Vs)| = 0, whereI is defined as above depending onq. Now,
let A = {a ∈ R+ | |Da| = 0} for I = [a, t ] andDa = DI (Vs). ThenD =

⋃
a∈A Da is negligible

and contains [p]t \ V . It remains to show thatV is not an absorbedχ -vessel. We argue as follows.
If there existss > t such that there areV1, V2 ∈ Fs with V1 6= V2 andV1, V2 ⊂ V , thenf s

V1
6= f s

V2
on [t, s] and so at least one ofV1, V2 is a non-negligible subset ofV made of pointsq such that
χq is not constant. OtherwiseV has a unique evolutionVs on its survival intervalI and by (P5) we
can find a suitables ∈ I , s > t , such thatf s

Vs
is not constant on [t, s] and soVs is a non-negligible

subset ofV consisting of non-absorbed points. Section 6 shows the lower semicontinuity of the cost
functional under pointwise convergence.

Finally, we notice that since any other vessel has an empty intersection withFt , it turns out to be
an absorbed set, and by Theorem 1.1, we can conclude thatχ is a non-spread irrigation pattern.2

5. Irrigation pattern equivalence

A natural outcome of the results obtained in the previous section is the choice to consider two
irrigation patternsequivalentif their flows have the same measures and the same fibers. More
precisely, we make the following definition.

DEFINITION 5.1 LetΩ, Ω ′ be two probability spaces. We shall say that two irrigation patterns
χ ∈ PS(Ω) andχ ′

∈ PS(Ω ′) areequivalentif, for every t in a dense subsetD ⊂ R+, there exists
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a measure preserving bijectionΨ t : Ft (χ) → Ft (χ
′) such that for everyV ∈ Ft (χ), χV = χ ′

Ψ t (V )
on [0, t ].

Now we show that the equality of the measures of the flows, required in the previous definition,
implies further interesting properties of equivalent irrigation patterns.

PROPOSITION5.1 Letχ, χ ′
∈ PS(Ω) be two equivalent irrigation patterns. Lett1 < t2, V1 ∈

Ft1(χ) andV2 ∈ Ft2(χ). If V2 ⊂ V1 thenΨ t2(V2) ⊂ Ψ t1(V1).

Proof. SinceV2 ⊂ V1, it follows thatχV2 = χV1 on [0, t1] and soχΨ t2(V2)
= χΨ t1(V1)

on [0, t1],
which in turn implies the assertion. 2

LEMMA 5.1 Letχ, χ ′ be two equivalent irrigation patterns and lett1 < t2. Then for everyV ∈

Ft1(χ),
|V \ Ft2(χ)| = |Ψ t1(V ) \ Ft2(χ

′)|. (5.2)

Proof. We notice that for everyW ∈ Ft2(χ) we have eitherW ⊂ V or W ∩ V = ∅, soV \ Ft2(χ)

can be obtained by subtracting fromV its (disjoint) subsets inFt2(χ). So, by Definition 5.1 and
Proposition 5.1, we can deduce the assertion. 2

LEMMA 5.2 Letχ, χ ′ be two equivalent irrigation patterns. Then for everyt in a countable dense
subsetD ⊂ R+ and for everyV ∈ Ft (χ) with Ψ t (V ) ∈ Ft (χ

′), we have

|At (χ) ∩ V | = |At (χ
′) ∩ Ψ t (V )|, (5.3)

|Mt (χ) ∩ V | = |Mt (χ
′) ∩ Ψ t (V )|. (5.4)

Proof. We fix t > 0, V ∈ Ft (χ), ε > 0 and defineVε as the set of points ofV which are absorbed,
i.e. lost by the total flowFt (χ) in the interval [t, t + ε]. That is,

Vε = V \ Ft+ε(χ).

By Lemma 5.1 we know that|Vε| = |(Ψ t (V ))ε|. Let t ′ > t . Then there exists at most one subset
Z(t ′) ⊂ V with Z(t ′) ∈ Ft ′(χ) such thatχZ(t ′) is constant on [t, t ′]. It is easy to verify that if
there exists such a subsetZ(t ′) ⊂ V , thenΨ t ′(Z(t ′)) ⊂ Ψ t (V ) and it satisfies the corresponding
condition, that is,χ ′

Ψ t ′ (Z(t ′))
is constant on [t, t ′]. Furthermore, we have

|Z(t ′)| = |Ψ t ′(Z(t ′))|. (5.5)

A point p ∈ V is absorbed if and only ifp ∈ Z(t ′) for everyt ′ > t or if, for ε arbitrarily small,
there existst ′ ∈ D, t ′ > t , such thatp ∈ Z(t ′) ⊂ V andp is lost by the total flow in the interval
[t ′, t ′ + ε]. Thus

At (χ) ∩ V =

⋂
t ′∈D, t ′>t

Z(t ′) ∪

⋂
n∈N

⋃
t ′=t+k/2n, k∈N

(Z(t ′))1/n. (5.6)

By passing to the measures in (5.6) and by using (5.5), we deduce (5.3). To prove (5.4) we notice
thatMt (χ) ∩ V = V \ (At (χ) ∩ V ) and so, by Definition 5.1 and (5.3), we obtain (5.4). 2

THEOREM 5.1 Letχ, χ ′
∈ PS(Ω) be two equivalent irrigation patterns. ThenI (χ) = I (χ ′) and

µχ = µχ ′ .
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Proof. The equalityI (χ) = I (χ ′) easily follows from Definition 5.1 and Lemma 5.2. To prove that
µχ = µχ ′ , we proceed as follows. Letn ∈ N, ε = 1/n, and lett = n. We fix a dense setD ⊂ R+

as in Definition 5.1 and consider anε-approximationχε
n on [0, n] of p 7→ χ(p, n), following

Definition 1.11. We denote byµn the image measure induced byχε
n . Analogously, we consider the

correspondingε-approximation on [0, n] of p 7→ χ ′(p, n) and the corresponding image measure
µ′

n. For all i, for V ∈ Fti (χ) and forB ⊂ RN , let FB
ti

(χ) = {V ∈ Fti (χ) | χV (ti) ∈ B}, the
flow arriving in B at timeti . Then, for every Borel setB ⊂ RN , we can computeµn(B) from the
equality

µn(B) =

∑
ti∈D

∑
V ∈FB

ti
(χ)

|V \ Fti+1(χ)|,

andµ′
n(B) from the analogous formula

µ′
n(B) =

∑
ti∈D

∑
V ∈FB

ti
(χ)

|Ψ ti (V ) \ Fti+1(χ
′)|.

By applying Lemma 5.1 we obtainµn = µ′
n. Finally, by applying Lemma 3.1, we haveµn ⇀ µχ

andµ′
n ⇀ µχ ′ asn → ∞. So we finally getµχ = µχ ′ . 2

6. Semicontinuity properties

Givenχ ∈ PS(Ω) andt ∈ R+, we denote byχMt (χ) the characteristic function ofMt (χ), that is,

χMt (χ)(p, t) =

{
1 if σχ (p) > t,

0 otherwise.

LEMMA 6.1 If χn → χ , then for a.e.(p, t) ∈ Ω × R+,

χMt (χ)(p, t) 6 lim inf
n→∞

χMt (χn)(p, t).

Proof. We fix (p, t) ∈ Ω × R+ and suppose that lim infn→∞ χMt (χn)(p, t) = 0. This means that
χMt (χn)(p, t) = 0 for infinitely many values ofn and then for such valuesχn(p, s) is constant for
all s > t . Sinceχn(p, s) → χp(s) pointwise ins for a.e.p, we see thatχp(s) is constant for all
s > t . Thusσχ (p) 6 t andχMt (χ)(p, t) = 0. 2

LEMMA 6.2 If χn → χ , then for a.e.(p, t) ∈ Ω × R+,

ϕχ (p, t) 6 lim inf
n→∞

ϕχn(p, t).

Proof. We fix (p, t) ∈ Ω ×R+ and for every integern we denote byVn theχn-vessel containingp.
Let V =

⋂
n

⋃
k>n Vk. We claim thatp 't q for a.e.q ∈ V . Indeed, ifq ∈ V thenq ∈ Vn for

infinitely manyn and soχn(p, s) = χn(q, s) for everys ∈ [0, t ]. We know that, modulo a negligible
set,(χn)q → χq and this impliesχq(s) = χp(s) for everys ∈ [0, t ], which meansp 't q. Thus,
each element ofV is in theχ -vessel containingp so that|V | 6 |[p]t |. On the other hand,

|V | = lim
n→∞

∣∣∣ ⋃
k>n

Vk

∣∣∣ > lim sup
n→∞

|Vn|. (6.7)
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Therefore

ϕχ (p, t) 6 |[p]t |
α−1 6 |V |

α−1

6 (lim sup
n→∞

|Vn|)
α−1

= lim inf
n→∞

|Vn|
α−1

= lim inf
n→∞

ϕχn(p, t). 2 (6.8)

THEOREM 6.1 If χn → χ , then
I (χ) 6 lim inf

n→∞
I (χn).

Proof. By applying the previous two lemmas and the Fatou Lemma, we easily get

I (χ) =

∫
R+

∫
Ω

(χMt (χ)ϕχ )(p, t) 6
∫

R+

∫
Ω

lim inf
n→∞

(χMt (χn)ϕχn)(p, t)

6 lim inf
n→∞

∫
R+

∫
Ω

(χMt (χn)ϕχn)(p, t) = lim inf
n→∞

I (χn). 2

7. Obstruction to compactness and histograms

In general, the class of irrigation patterns defined onΩ does not enjoy any compactness property.
There are trivial examples of sequences of irrigation patterns, even with bounded cost, which have
no convergent subsequence. Indeed, for everyn ∈ N we divideΩ = [0, 1] into 2n increasingly
numbered subintervals and we denote byΩn

1 the union of all odd-numbered intervals and byΩn
2

the union of the even-numbered ones. GivenS = 0, we fixP ∈ RN such that|P − 0| 6 1 and for
everyt ∈ R+ we consider the sequence of irrigation patterns a.e. given by

χn(p, t) =

{
0 if p ∈ Ωn

1 ,

min(t, 1)P if p ∈ Ωn
2 ,

for k = 0, 1, . . . , 2n − 1. For everyn ∈ N we haveI (χn) = 2−α but compactness fails. Therefore
we are forced to check compactness in restricted classes of irrigation patterns. In all that follows,
Ω = [0, 1] is endowed with the Lebesgue measure, and with theσ -algebra of Lebesgue measurable
sets. As we shall prove in Lemma 9.1, there is no loss of generality in this assumption. We shall
always be able to replace any probability space [0, 1] with no atoms by [0, 1].

DEFINITION 7.1 We shall say that the irrigation patternχ : [0, 1] × R+ → RN is ahistogramif
for everyt ∈ R+ all V ∈ Ft (χ) are intervals, modulo a negligible set.

REMARK 7.1 We observe that the condition for an irrigation patternχ : [0, 1] × R+ → RN

to be a histogram can be tested on a dense subsetD ⊂ R+. This is a simple consequence of the
compatibility condition (P4).

The main result in this section relies on the following statement which we shall prove at the end,
after some lemmas.

THEOREM 7.1 Letχ ∈ PS(Ω). Then there exists a histogram patternχ ′ equivalent toχ .

DEFINITION 7.2 Let χ ∈ PS(Ω) and for a fixedt ∈ R+ let V1, V2 ∈ Ft (χ). We define the
separation timeρsepbetweenV1 andV2 as follows:

ρsep(V1, V2) := sup{s ∈ R+, s 6 t | ∃V ∈ Fs(χ) : V1, V2 ⊂ V }.
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REMARK 7.2 GivenV1, V2, V3 ∈ Ft (χ), we have

ρsep(V1, V2) > min(ρsep(V1, V3), ρsep(V2, V3)).

DEFINITION 7.3 LetG ⊂ Ft (χ) be any subset. We shall say that a total order4 in G is coherent
with ρsep if the following condition is satisfied:ρsep(V1, V2) 6 min(ρsep(V1, X), ρsep(V2, X)) for
anyV1, X, V2 ∈ G with V1 4 X 4 V2. (Note that by Remark 7.2 the inequality can be replaced
by equality.) We shall say thatG endowed with the relation4 coherent withρsep is a coherently
ordered set.

LEMMA 7.1 LetG ⊂ Ft (χ) be a coherently ordered set. Then4 can be coherently extended to all
of Ft (χ).

Proof. Let V ∈ Ft (χ) \ G. We show that4 can be extended toG ∪ {V }. Let f : G → R. We
shall say thatf is aconcave likefunction if f (Y ) > min(f (X), f (Z)) for anyX, Y,Z ∈ G with
X 4 Y 4 Z. Now, letX ∈ G. We define the functionf : X 7→ ρsep(X, V ) and we notice that since
4 is coherent,f is a concave like function. As a consequence, we see that for everyX ∈ G either
of the following two statements holds true:

(a)∀Y ∈ G such thatY 4 X: f (X) > f (Y ), or
(b) ∀Y ∈ G such thatX 4 Y : f (X) > f (Y ).

Therefore, if we set

G1 = {X ∈ G | ∀Y ∈ G, Y 4 X : f (X) > f (Y )},

G2 = {X ∈ G | ∀Y ∈ G, X 4 Y : f (X) > f (Y )},

thenG = G1 ∪ G2. We claim that ifX ∈ G1 andY 4 X, thenY ∈ G1; we shall say thatG1 has the
left segment property.

TakeZ 4 Y ; thenZ 4 Y 4 X so thatf (Z) 6 f (X) andf (Y ) > min(f (X), f (Z)) = f (Z).
Analogously, ifX ∈ G2 andX 4 Y thenY ∈ G2; we shall say thatG2 has theright segment

property. Now we extend4 to G ∪ {V } by settingX 4 V for everyX ∈ G1 andV 4 X for every
X ∈ G \ G1 ⊂ G2. The left segment property ofG1 makes such an extension an order. We have to
show that such an extension preserves the coherence withρsep. To this end, we fix any three sets
V1, V2, X to be tested as in Definition 7.3. Of course, we only have to take care of the case in which
one of them isV , since4 is already supposed to be coherent onG. The caseV = V1 is an obvious
consequence of the fact thatX ∈ G2 and of the definition ofG2. Analogously, the caseV = V2 is
trivial by the definition ofG1. WhenV = X, suppose by contradiction that, fori = 1 or i = 2,
ρsep(V1, V2) > f (Vi), sof (V1) = f (V2). We have by constructionV1 ∈ G1 andV2 6∈ G1. Let
W ∈ G be such thatV1 4 W 4 V2. Since4 is coherent inG we haveρsep(W, V1) > ρsep(V1, V2)

and soρsep(W, V1) > f (V1). This inequality obviously impliesf (W) = f (V1) and sof takes the
same value on every order interval betweenV1 andV2. Therefore, sinceV1 ∈ G1 and4 is a total
order, we getV2 ∈ G1 and this is a contradiction.

Finally, we can conclude that since the property remains true step by step by joining one set at a
time and it is of finite type, it holds true for the wholeFt (χ). 2

DEFINITION 7.4 Givent1, t2 ∈ R+, t1 < t2, letFti (χ) be coherently ordered by4ti for i = 1, 2.
We shall say that4t1 and4t2 arecompatibleif for any V1, W1 ∈ Ft1(χ) andV2, W2 ∈ Ft2(χ) such
thatV2 ⊂ V1 andW2 ⊂ W1, if V2 4t2 W2 thenV1 4t1 W1. In such a case we shall say thatFti (χ),
for i = 1, 2, arecoherently ordered and compatible.
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The following property is a straightforward consequence of the last definition.

LEMMA 7.2 Lett1 < t2 < t3 and letFti (χ) be coherently ordered by4ti for i = 1, 2, 3. If Ft1(χ)

is compatible withFt2(χ) andFt2(χ) is compatible withFt3(χ), thenFt1(χ) is compatible with
Ft3(χ).

LEMMA 7.3 LetT ⊂ R+ be a finite set of values and letFs(χ) be coherently ordered by4s and
compatible fors ∈ T . Given anyt ∈ R+ there exists a coherent order4t which is compatible with
every4s for s ∈ T .

Proof. Let s = max{ρ ∈ T | ρ < t} and τ = min{ρ ∈ T | ρ > t}. Given W ∈ Fs(χ),
we setFt (W) = {V ∈ Ft (χ) | V ⊂ W }. By varyingW , we get different sets of sets each one
collecting theχ -flows att which are contained in the sameχ -flow W at the times. Let G(W) =

{V ∈ Ft (W) | ∃X ∈ Fτ (χ) : X ⊂ V }. If V1, V2 ∈ G(W) andX1, X2 ∈ Fτ (χ) satisfyX1 ⊂ V1,
X2 ⊂ V2, we defineV1 4t V2 if X1 4τ X2, that is, we define inG(W) the coherent order inherited
fromFτ (χ).

We show that4t does not depend on the choice ofX1, X2. Indeed, letX1 4τ X2 andY2 4τ Y1,
with Xi, Yi ⊂ Vi for i = 1, 2. Since4τ is a total ordering, we haveX2 4τ Y1 or Y1 4τ X2. If
X2 4τ Y1 thenX1 4τ X2 4τ Y1, ρsep(X1, Y1) > t andρsep(X1, X2) < t contradicts the coherence
of 4τ . Otherwise, a similar argument leads to a contradiction fromY2 4τ Y1 4τ X2. Notice that4t

is coherent withρsepsince for everyV1, V2 ∈ G(W) we haveρsep(V1, V2) = ρsep(X1, X2), where
X1 andX2 are contained respectively inV1 andV2 at timeτ . Thus everyG(W) is endowed with
the order4t inherited from4τ and by Lemma 7.1 we can extend4t to a total ordering on all of
Ft (W).

If V1 ∈ Ft (W1) andV2 ∈ Ft (W2) andW1 4s W2, we setV1 4t V2. The reader can easily check
that4t is coherent and compatible with4τ and4s . Then, by Lemma 7.2,4t is compatible with
4ρ for everyρ ∈ T . 2

LEMMA 7.4 There exists a dense subsetD ⊂ R+ and for everyt ∈ D a coherent ordering4t

such that all the sets ofFt (χ) are coherently ordered and compatible.

Proof. Let D ⊂ R+ be any countable dense set. By applying Lemma 7.3 we can proceed step by
step, defining4t by adding one value at a time. 2

Given two intervalsI1, I2 ⊂ R+, we shall writeI1 6 I2 if x 6 y for every x ∈ I1 and
everyy ∈ I2. Let D ⊂ R+ be a subset and letFt (χ) be coherently ordered for everyt ∈ D. Let
I t

= (IV )V ∈Ft (χ) be a family of open disjoint intervals of [0, 1] such that|IV | = |V | and ifV ≺t W

thenIV 6 IW . We shall refer toI t as anordered family of intervals. Let I1
= (I1

V )V ∈Ft (χ) and
I2

= (I2
V )V ∈Ft (χ) be two ordered families of intervals. We shall writeI1 4 I2 whenever for every

V ∈ Ft (χ) the middle point ofI1
V is less than or equal to the middle point ofI2

V .

DEFINITION 7.5 Lett1, t2 ∈ R+, t1 < t2, and letI t1 = (I
t1
V )V ∈Ft1(χ) andI t2 = (I

t2
V )V ∈Ft2(χ) be

two ordered families of intervals. We shall say thatI t1 andI t2 arecompatibleif I
t2
V2

⊂ I
t1
V1

for any
V1 ∈ Ft1(χ) andV2 ∈ Ft2(χ) such thatV2 ⊂ V1.

Let D ⊂ R+ be a given subset and letFt (χ) be coherently ordered by4t and compatible
for t ∈ D. If I t are compatible ordered families of intervals for allt ∈ D, then we shall refer to
ID := (I t )t∈D as acompatible grid. Let ID = (I t )t∈D andJD = (J t )t∈D be two compatible grids.
We shall writeID 4 JD if I t 4 J t for everyt ∈ D.
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LEMMA 7.5 LetT ⊂ R+ be any finite subset and letFt (χ) be coherently ordered by4t and
compatible fort ∈ T . Then there exists a compatible gridIT such thatIT 4 JT for any other
compatible gridJT .

Proof. Let ti , i = 1, . . . , n, be the elements ofT listed in increasing order. We start withI t1 which,
being an ordered family of intervals, consists of subintervals of [0, 1] having a total measure less
than one; we place consecutively such intervals starting from zero. Thus the intervals ofI t1 turn out
to be arranged in [0, 1] to the left as much as possible. Now we pass toI t2 and we put the intervals
Ij ∈ I t2 which are contained in the same intervalI ∈ I t1 consecutively and on the left ofI . We can
easily iterate this procedure step by step for all values ofT . 2

LEMMA 7.6 LetD ⊂ R+ be a countable subset. Then there exists a compatible gridID.

Proof. Let D =
⋃

n Tn, with Tn ⊂ Tn+1 for everyn ∈ N. For everyn, we take a compatible grid
ITn

as in Lemma 7.5. We observe that the restriction ofITn+1 to Tn is a compatible grid. So, by the
minimality property ofITn

, we can compare the corresponding intervals ofITn+1 and ITn
and the

first ones turn out to be at most shifted to the right side of [0, 1]. Thus, for fixedt ∈ D, we have
t ∈ Tn for everyn greater than somen and the ordered family of intervalsI t has the intervals at
most shifted to the right. We can pass to the limit asn → ∞ and thanks to the boundedness of [0, 1]
we get a limit gridID = (I t )t∈D. Now, for everyt ∈ D, I t is an ordered family of intervals and
all I t are compatible and soID is a compatible grid. 2

Proof of Theorem 7.1.Let ID = (I t )t∈D as given by Lemma 7.6 and for everyt ∈ D setFt = I t .
Fix t ∈ D. To everyI t

V ∈ I t we associatef t
V = χV |[0,t ]

and we easily verify that the compatibility
conditions (P1)–(P5) are satisfied. Thus for everyt ∈ D the intervalsI t

V are the flows of an irrigation
patternχ ′ which is a histogram equivalent toχ . 2

8. Compactness properties

The main result of this section relies on the following compactness theorem which we shall prove
after some preliminary lemmas.

THEOREM 8.1 Let(χn)n∈N be a sequence of histograms withI (χn) bounded. Then there exists a
subsequence(χkn)k∈N converging to an irrigation patternχ .

In the following we shall often need to pass to a subsequence of a given one, so to keep the
notation as simple as possible, we will not use further subscripts, but we will relabel the sequence
every time. Therefore,(χn)n∈N will denote at each step a relabelled suitable subsequence for which
all previously proved lemmas simultaneously hold.

The following statement is an easy variant of the Arzelà–Ascoli Theorem.

LEMMA 8.1 Let (χn)n∈N be a sequence of histograms withI (χn) bounded. Then the sequence
admits a converging subsequence(χkn)n∈N such that(χkn)p → χp for everyp ∈ Q ∩ [0, 1].

LEMMA 8.2 Let (χn)n∈N be a sequence of histograms withI (χn) bounded. Then, upon passing
to a subsequence, we can find a countable dense subsetD ⊂ R+ such that(cχn(t))n∈N is bounded
onD.

Proof. Indeed, ∫
R+

lim inf
n→∞

cχn(t) 6 lim inf
n→∞

∫
R+

cχn(t) = lim inf
n→∞

I (χn) < ∞
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and so lim infn→∞ cχn(t) < ∞ for a.e. t , which in turn implies that for a.e.t ∈ R+, cχn(t)

has a bounded subsequence. Then, by a diagonal selection argument we get a bounded sequence
(cχn(t))n∈N for t in a countable dense subsetD ⊂ R+. 2

We fix D as in Lemma 8.2. Lett ∈ D andk ∈ N be fixed and for every indexn let

Fk
t (χn) = {V ∈ Ft (χn) | |V | > 1/k}.

We take a subsequence of(χn)n∈N in such a way that every sequence(Vn)n∈N of flows selected
from Fk

t (χn) converges to some intervalV contained in [0, 1] asn → ∞ (there are finitely many
such intervals). By Lemma 8.1 we haveχVn → f t

V on [0, t ] with f t
V = χp for everyp ∈ Q∩ V̊ . By

a diagonal selection we pass to a subsequence for which the previous convergence is true for every
integerk and for everyt ∈ D. We denote byL(t) the union of the open limit intervals determined
for a givent ∈ D.

LEMMA 8.3 With the above notation we also have, for everyt ∈ D,

lim
n→∞

|Mt (χn) \ L(t)| = 0.

Proof. Fix k ∈ N and, for every integern, let Lk
n(t) =

⋃
V ∈Fk

t (χn) V . Since each of these flows

converges to a limit interval contained inL(t), we have|Lk
n(t) \ L(t)| → 0 asn → ∞. Moreover,

ϕχn(p, ·) > k1−α for a.e.p ∈ Mt (χn) \Lk
n(t). Therefore,|Mt (χn) \Lk

n(t)| 6 kα−1cχn(t), and since
cχn(t) is bounded fort ∈ D, by takingk arbitrarily large, we reach the conclusion. 2

LEMMA 8.4 Upon replacing(χn)n∈N by a suitable subsequence, for everyt ∈ D there exists a
negligible setN(t) such that ⋂

n

⋃
k>n

Mt (χk) ⊂ L(t) ∪ N(t).

Proof. Indeed,1Mt (χn)\L(t) → 0 in L1([0, 1]) by Lemma 8.3, so we can take a subsequence
converging to zero off a negligible setN(t). Then for everyp 6∈ L(t)∪N(t) we have1Mt (χn)(p) = 0
for n large enough. Through a diagonal selection we can get a suitableχn which simultaneously
satisfies the property for everyt ∈ D. 2

Proof of Theorem 8.1.For everyt ∈ D let Ft be the set of limit open intervals to which all the
non-vanishingχn-flows converge, letL(t) =

⋃
V ∈Ft

V , σ(p) = sup{t ∈ R+ | p ∈ L(t)} and for
V ∈ Ft let f t

V be the relevant limit fiber. Since the setFt and the fibersf t
V satisfy the compatibility

condition (P2), as is easy to verify, we can define the reconstructed irrigation patternχ . We have to
prove thatχn → χ for a.e.p ∈ [0, 1]. To this end, letN =

⋃
t∈D N(t), obtained in Lemma 8.4,

and fix p ∈ [0, 1] \ N . Let t ∈ D with t < σ(p). Thenp is an inner point for one of the limit
intervalsV ∈ Ft and so there existsε > 0 such that [p − ε, p + ε] ⊂ V and, for a suitably large
n ∈ N, [p − ε, p + ε] ⊂ Vn with Vn ∈ Ft (χn) andVn → V . Let q ∈ Q ∩ [p − ε, p + ε]. Then for
every integern, (χn)p = (χn)q , we know that(χn)q = (χn)Vn and(χn)Vn → f t

V = χp on [0, t ],
thus(χn)p → χp on [0, σ (p)]. If t > σ(p), then sincep 6∈ N(t) ∪ L(t), by Lemma 8.4 forn large
enough,p 6∈ Mt (χn). Therefore(χn)p is constant on [t, ∞[. Thus the uniform distance between
(χn)p and the constant functionχn(p, σ (p)) is less than or equal to|t − σ(p)|, which can be taken
arbitrarily small on [σ(p), ∞[ by the Lipschitz continuity ofχn. Then(χn)p uniformly converges
to χ(p, σ (p)) = χp on [σ(p), ∞[. Finally, χ is an irrigation pattern since it is a set of fibers and it
is the pointwise limit of a sequence of irrigation patterns. 2
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9. Minimization problems on irrigation patterns

The compactness properties in the previous section, the possibility of taking minimizing sequences
among the histograms guaranteed by the results in Section 8, the semicontinuity properties in
Section 6 and the weak continuity of the irrigation measureµχ established in Section 3, enable
us to easily find a solution of the minimization problem

minχ∈PS (Ω)E(χ), (9.9)

for Ω = [0, 1], in whichE(χ) is a functional of the type

E(χ) = I (χ) + J (µχ ), (9.10)

whereJ : M+(RN ) → R is a weakly lower semicontinuous functional defined on the space
M+(RN ) of positive finite Radon measures inRN , provided we are able to find any irrigation
patternχ ∈ PS(Ω) such thatI (χ) < ∞ andJ (µχ ) < ∞. This last condition is not a completely
trivial requirement and we refer the reader to [29], [5], [6] for more information on this point.

By the results of Section 8, we can say that the minimum irrigation pattern can be taken
as a histogram. More generally, the minimization problem (9.9) can be solved for a generalµ-
measurable setΩ whereµ is a measure with no atom. This immediately follows by the next simple
lemma which shows how a non-atomic measure can be transported to yield the Lebesgue measure.

LEMMA 9.1 LetΩ be a measurable set equipped with a probability measureµ with no atom. Then
there exists a measurable mappingT : Ω → [0, 1] such thatT #µ(B) = |B| for every Borel set
B ⊂ [0, 1], whereT #µ is the image measure induced byT .

Proof. By the Lyapunov theorem, the no-atom condition permits us to split any measurable subset
of theΩ into two parts with equal measure. We define recursively a sequence(Tn)n∈N of mappings
Tn : Ω → [0, 1]. We setT0 = 0 and, givenTn, we divide its level sets in two parts of equal measure;
then we defineTn+1 by adding toTn the quantity 2−n only on one of such parts. ThenTn#µ turns out
to be the sum of 2n equally spaced Dirac masses in [0, 1]. By monotonicityTn uniformly converges
to a functionT . By Lemma 3.1,T #µ is the weak limit of the sequence(Tn#µ)n∈N and so it is the
Lebesgue measure. 2

For any fixedΩ as above, we setm(Ω) = infχ∈PS (Ω) E(χ). The previous results allow us to
state that, givenχ ∈ PS([0, 1]) and any setΩ, χ(T (p), t) defines an equivalent irrigation pattern
belonging toPS(Ω), and this in turn allows us to deduce that

m(Ω) 6 m([0, 1]).

Now, thanks to the compactness results mentioned at the beginning of this section, we can find a
histogramχ ′ such thatE(χ ′) 6 m(Ω) and thus we obtain

m(Ω) = m([0, 1]),

som(Ω) does not depend on the particular choice ofΩ. Finally, by Lemma 9.1 we can exhibit a
minimum irrigation pattern on every setΩ.

A case of particular interest is given by

J (µχ ) =

{
0 if µχ = µ,

∞ otherwise,
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for a givenµ ∈ M1(RN ), which leads to the minimization problem with boundary condition
µχ = µ.

More generally, we can consider systems of finitely (or even countably) many irrigation patterns
χ1, . . . , χn by minimizing functionals of the type

E(χ1, . . . , χn) =

n∑
i=1

I (χi) + J1(µχ1, . . . , µχn) + J2(S1, . . . , Sn), (9.11)

where S1, . . . , Sn ∈ RN are the source points respectively ofχ1, . . . , χn and J2 is a lower
semicontinuous function. Among those problems we point out two cases of special interest in which
n = 2 and which can be included in a more general class oftransmission problems:

(TP1) Porous systems like those involving lungs and bronchial trees could be modelled in this
setting. Here

J1(µχ1, µχ2) = J0(µχ1) + J̃ (µχ1, µχ2),

where

J̃ (µχ1, µχ2) =

{
0 if µχ1 = µχ2,

∞ otherwise.

(TP2) Systems involving two networks with a common source like source-mouth in the case of
rivers, or root-foliage in the case of trees can be cast in this formulation. Here

J2(S1, S2) = J0(S1) + J (S1, S2),

where

J (S1, S2) =

{
0 if S1 = S2,

∞ otherwise.

Now a clarification concerning the structural condition (C2) fixing the sourceS of a set of
fibers is in order. The elimination of (C2) would introduce the need of further conditions to test
the measurability ofχ and would not lead to any substantial advantage, since the cost of an
irrigation pattern with many sources is an additive function. In this perspective, the last systems
can be considered with any arbitrary number of irrigation patterns by adding a boundary condition
involving all the sources. We can pictorially explain this point by saying that, thanks to the additivity
property, the tree model can be employed for a forest. Such a model can be interpreted as atransport
path (see [29]). We refer the reader to the works [16], [15], [21], [11], [9] and to the surveys [1],
[8], [24] for an account of the broad subject ofoptimal transport problems.

9.1 The Eulerian and Lagrangian approaches

It is now time to compare the results presented in this paper with the Eulerian treatment given by
Qinglan Xia. He starts with finite atomic measuresa andb and defines a “path” froma to b as a flow
on a finite embedded graph whose vertices either have at least one arriving edge and one departing
edge, or belong toa or b. He denotes bye the (straight) edges of the graph, byw(e) the flow inside,
and byEe a unit vector oriented bye. He writes [e] = H1

|e
Ee for the vector measure obtained as the

product of the Hausdorff measure restricted toe and of the vectorEe. Then the embedded path from
a to b can be written as the vector measure

G =

∑
e

w(e)[[e]] .
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With this simple formalism, the Kirchhoff law can be expressed in a synthetic way as

div(G) = a − b.

LettingGΛ be the set of all such paths between atomic measuresa andb in a compact and convex
subset ofRn, Xia defines onGΛ the cost functional

Mα(G) =

∑
e

w(e)α length(e).

Then he proceeds to define transport paths connecting two Radon measuresµ+ andµ− with equal
total mass. He says that a vector measureT is a transport pathbetweenµ+ andµ− if there are
sequences of atomic measuresai and bi , and pathsGi connectingai to bi such thatai and bi

converge weakly toµ+ andµ− andGi → T weakly in the sense of vector measures. This implies
div(T ) = µ+

− µ− in the distribution sense. The energy of any such path is defined by relaxation
as

Mα(T ) := inf lim inf
i→∞

Mα(Gi),

where the infimum is taken over the set of all possible approximating graph sequencesai, bi, Gi

of T .
Xia’s existence theorem states the existence of an optimal transport path between any two Radon

measuresµ+ andµ− with the same mass, provided 1− 1/m 6 α 6 1. Another topic addressed in
Section 7 of his paper is the existence of a “transport plan” associated with each path. This roughly
says which point ofµ+ goes to which point ofµ−.

It is quite desirable to establish an equivalence between the Lagrangian approach (applied
here) and the Eulerian one. None of them has the final desirable form and they are therefore
complementary. The Eulerian form is a bit abstract since it does not yield the expected description of
the solution as a countable graph. The Lagrangian presentation instead does not immediately yield
the elegant embedded solution as a vector measure. Let us just give hints of how this equivalence can
be proved. Given an Eulerian solutionT with µ+ a Dirac mass, we know that it can be assigned a
sequence of approximating finite graphsGi without loops, that is, trees. With such finite graphs, we
can easily associate patternsχi by parameterizing the tree from root to leaves by arc length. Then,
by our compactness result (Theorem 8.1) and the lower semicontinuity result on pattern energies, it
is easily deduced that there exists a limit Lagrangian solutionχ from the Eulerian one, and whose
energy is lower than or equal to the energy ofT .

Conversely, consider a Lagrangian optimal solutionχ , which we can always parameterize by
length. Using its filtration structure, we can approximateχ by a sequence of finite treesGi with the
root as a source and whose leaves give an atomic measurebi . By monotone convergence, the energy
of theGi tends to the energy ofχ and by the result of Section 3,bi tends to the irrigation measure
of χ . In addition,Gi , viewed as a vector measure, tends to an Eulerian pathT . By Xia’s relaxed
definition of energy, we deduce that the Eulerian energy ofT is lower than or equal to the energy of
χ . Thus both energies are equal and both formulations are equivalent.

Our results are slightly more restrictive in that we imposeµ+
= δS , a Dirac mass. Also, we do

not specify when a feasible solution is attainable. The measure structure on the set of paths (fibers)
seems, however, to be a valuable tool. Thanks to the integration tools on the filtration they provide,
it can be easily proved that trees irrigating sets with positive Lebesgue measure are incompatible
with Poiseuille law [4]. In other terms, infinite irrigation trees seem to be impossible from the fluid
mechanics viewpoint.
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Index of main notations in order of appearance

• χ : Ω × R+ → RN : set of fibers
• χ(p, t) ∈ RN : position of pointp ∈ Ω at timet

• t 7→ χ(p, t): fiber ofp
• [p]t : equivalence class ofp under the equivalencep 't q if χp(s) = χq(s) for all s ∈ [0, t ]
• χ -vessel: class of equivalence at timet under't

• Vt (χ) := Ω/'t : set ofχ -vessels at timet
• σχ (p) := inf{t ∈ R+ | χp(s) is constant on [t, ∞[}: absorption (stopping) time ofp
• p is absorbed at timet if σχ (p) 6 t

• absorbedχ -vessel at timet : if σχ (p) 6 t for a.e.p ∈ Ω

• At (χ): set of absorbed points at timet
• χ -flow: non-absorbedχ -vessel (has positive measure inΩ)
• Ft (χ): set ofχ -flows at timet
• Ft (χ): union of allχ -flows at timet
• χ -flow evolution:Vt such thatVt ∈ Ft (χ) for all t andVt decreasing under inclusion
• DI (Vt ): dispersion of aχ -flow evolution on an intervalI ; set of points which leave theχ -flow

without going into anotherχ -flow W 6= Vt

• Mt (χ) = χ(Ω, t) \ At (χ): non-absorbed fibers at timet
• St (χ) = Mt (χ) \ Ft (χ): spread flow, i.e. set of non-absorbed fibers which do not belong to a

χ -flow
• non-spread set of fibers: if|St (χ)| = 0 for everyt
• irrigation pattern: set of fibersχ which is measurable
• PS(Ω): set of all irrigation patterns, i.e. of all measurable sets of fibers
• cχ (t): cost functional at timet
• I (χ) cost functional of the irrigation pattern
• χn → χ : convergence almost everywhere of irrigation patterns
• iχ (p) = χ(p, σχ (p)): irrigation function
• µχ (A) = |i−1

χ (A)|: irrigation measure induced byχ
• histogram: irrigation patternχ : [0, 1] × R+ → RN such that allχ -flows V ∈ Ft (χ) are

intervals
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