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Ambrosio and Soner [1] have shown that level-set methods can be used to characterize classical, and
define generalized, evolution by mean curvature of manifolds of arbitrary codimensigh We
investigate for what (other) normal velocities, and how, the level-set methods can be used to treat
motion of manifolds of arbitrary codimension by the given velocity. Two variants of the level-set
approach are studied. One uses the properties of the distance function to describe the motion. In the
other one, the moving manifolds are represented as a zero-level set of a solution to a parabolic
differential equation. Necessary conditions and sufficient conditions for these approaches to be
applicable are given. The motion of curvegiify, by a velocity that is parallel to the normal vector, is
studied in greater detail and the velocities to which the level-set methods apply are partially classified.
We also compare the level-set approach with the use of minimal barriers of De Giorgi, and show
that for many velocities the two approaches are essentially equivalent. That in turn provides new
information on applicability of barriers of De Giorgi.

1. Introduction

The focus of this paper is on the motion by normal velocity of manifolds of codimension greater
than one embedded IR". Such motions are encountered in models of superconductivity, medical
imaging and motion of vortex filaments in fluids. Our aim is to investigate which of the motions can

be treated via the level-set approach. In a sense, we investigate what motions can be described via a
single parabolic partial differential equation.

The inspiration for this investigation came from the work of Ambrosio and Saéner [1] on the
level-set approach. Following an idea by De Giorgi, they showed that evolution by the mean
curvature vector of manifolds of arbitrary codimensionRf can be characterized by level-set
methods. Geometrically, the idea is to describe the evolution of codimensioh > 1 manifolds
using the evolution of their tubular neighborhoods. To be more precisgiligto, 71 be a smooth
family of k-dimensional manifolds iR”, and letV; be a codimension 1 velocity equal to (minus) the
sum of thek smallest principal curvatures at a point on a hypersurface. Ambrosio and Soner proved
that the manifoldd evolve by the mean curvature vector if and only if the tubes of points of fixed
distances to I'; evolve with (outward normal) velocity less thaf, for all ¢ small enough. The
latter property is equivalent to the distance function being a viscosity supersolution of a parabolic
partial differential equation (the level-set equation that corresponds to the codimension 1 motion
by velocity V;). They also showed that manifold evolving by mean curvature is the zero-level
set of a nonnegative functiom, whose level sets (for positive levels) evolve by velodiy in
a generalized sense. In this casis the viscosity solution of the level-set equation that corresponds
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to velocity Vi. The important point is that the evolution of manifolds of arbitrary codimension by
the mean curvature vector can be recast in terms of the level-set approach to codimension 1 motion.
The motion (propagation, evolution, flow) of manifolds (fronts, interfaces) of codimension 1
has been studied extensively. Particularly the motion by (outward) normal velocities of the form
V(Dn, n), wheren is the unit outward normal vector andn its derivative, and the velocity
is continuous and nonincreasing in the argument. One of the main difficulties in treating these
motions is that the moving fronts can develop singularities and change topological type. This creates
the need to introduce a notion of a weak (generalized) motion, past the singularities. One successful
approach to that problem is the level-set approach, which was introduced by Osher and Sethian
in [16] for numerical purposes. Viscosity solutions of the level-set equations were first used by
Evans and Spruck [11] to define generalized front propagation for motion by mean curvature, and
simultaneously by Chen, Giga and Gato [8] to define generalized front propagation for a large class
of velocities. Ishii and Souganidis [14] have extended the level-set approach to all the veldgities,
described at the beginning of this paragraph.
Let us briefly recall the level-set approach. At each time the frijptis described as the zero-
level set of a functiom, while the interior of the fronts2;, is the set where is less than zero. When
the functionu is differentiable andDu| # 0 on the front then

Du 1 Du ® Du P —uy
n=——, Dn= - , V= .
|Du| | Du| |Du|? | Du|
For a symmetric matriX and a nonzero vectgr we define
1 A N A A
F(X, p) = |plV m(l—p@)p)X(I—p@p),p : (1.1)

wherep = p/|p|. The equalityV = —u,/|Du| then reads:, + F(D?u, Du) = 0 on ;. If we
require that all the level sets afpropagate by velocity’ then we get an equation on the whole
space. That motivates the following definition.

We say that the family(£2;, 77)}:¢[0,7] is the generalized evolution by velocityif 2, = {x :
u(x,t) < 0yand?; = {x : u(x,t) = 0}, whereu is the unique viscosity solution of the level-set
equation

u; + F(Dzu, Du) =0,

1.2)
u(x,0) = ug(x).
Here ug is any uniformly continuous function, negative {2y, zero on7p, and positive on the
complement of2g U To.

Another, similar way to define generalized motion is by using the properties of the signed
distance function to the front. This approach was developed by Sorier [17], and further investigated
by Barles, Soner and Souganidisl(in [3], and Ishii and Souganidis in [14]DL b the set enclosed
by the front at time, andI; = 8 O, the front. The signed distance function is defined by

. |—distx, I7) if x € O,
dx(x, 1) = {dist(x, I}) otherwise



MOTION OF MANIFOLDS 419

The family {(O;, I)} is said to be the generalized evolution by velodityf

NEND | F(02(ds 70, Dids 7 0) <0
d(d+ v 0) ) (1.3)
T + F(D“(d+ v 0), D(d+ v 0)) > 0,

in the viscosity sense. HeteA b = min{a, b} anda v b = maxXa, b}.

These two approaches are in large part equivalent; the difference being in how they represent
the evolution when it is not unique, for example, the evolution by the mean curvature of the union
of two coordinate axes iRR?. In such cases, there is more than one front propagating by the given
velocity in the sense of the definition via the distance function, while there is just one generalized
evolution that comes from the level-set equation, since it has a unique solution. HoweverXthe set
is no longer the boundary a®,; it itself has a nonzero measure. This phenomenon is called front
fattening. The precise relationship between two approaches is the following:$2etY;)}; be the
generalized evolution of the front by velocity using the former definition. Thef($2;, 2,)}; is
the minimal (in the sense of the set inclusion of the front interiors){ant($2; U T3), 3(2, UT;))};
the maximal generalized evolution (starting fr@éfg, 7p)) in the sense of the latter definition.

The results of Ambrosio and Soner can now be restated as follows7 et the function that
by the equatior{ (I]1) corresponds to the velogity A smooth family ofk-dimensional manifolds,

I, in R" evolves by the mean curvature vector if and only if the distance functidh satisfies

d, + F(D?d, Dd) > 0

in the viscosity sense. Also, manifold$ move by the mean curvature vector if and onlyjf =

{x : u(x,1) = 0} whereu is the viscosity solution of the level-set equatipn1.2). In this case the
initial condition, ug, is any uniformly continuous function equal to 0 @3 and positive on the
complement offp. Both of these characterizations can then be used to define generalized evolution
by mean curvature vector. Note, however, that there are important differences in the way the level-set
equation is used to describe codimension 1 and codimension greater than 1 motions. In particular,
for codimension 1 motions, a generic level set is a hypersurface evolving with the given velocity,
while only the zero-level set evolves with the given codimension greater than 1 velocity. Also, no
set is enclosed by a moving manifold of codimension greater than 1, and there is no geometric
comparison principle that the moving manifolds satisfy directly.

Our objective is to study if characterizations similar to the ones described above can be obtained
for general codimensiom — k velocities. We say that a codimension 1 veloditygives a distance
representation to a codimensian— k velocity v if for every smooth family ofk-dimensional
manifolds inR”, {I}}:c[o,7], the following holds: The manifold$; evolve by velocityv if and
only if the distance function té; satisfies

d, + F(D?d, Dd) >0

in the viscosity sense. Hefeis again given by (1]1). In a similar fashion, we say that a codimension

1 velocity V surrounds a codimensian— k velocity v if manifolds moving with velocityy can be
characterized as the zero-level set of the solution of the level-set eqUiatipn (1.2). Our main goal is to
find out what codimension — k velocitiesv have a distance representation (or can be surrounded),
as well as how to find the “best” codimension 1 velodityhat gives a distance representatiom to
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The paper is organized as follows: In Section 2 we review the level-set approach to motion
of manifolds of codimension 1. In addition, we show that for any smooth codimension 1 velocity,
V (Dn, n), nonincreasing in th®n argument, and any compact closed smooth hypersurface without
boundary, there exists a unique short time classical evolution by velcltySection 3 we establish
some properties of the distance function in a tubular neighborhood of a codimansiomanifold
I" embedded iR”. In particular, we comput®d and D?d nearr".

In Section 4 we begin investigating the motion by codimension greater than 1 velocities. We
define notions we use (distance representation, surrounding etc.), establish relationships among
them, and find some sufficient conditions and a necessary condition that the veloctiesV
have to satisfy, in order foV to give a distance representationdcand for V to surroundv.

The techniques we use here are inspired by the work of Ambrosio and Soner on motion by mean
curvature vector. Our approach is, however, more direct and hence yields simpler proofs.

Completely classifying which velocities have a distance representation appears to be a difficult
task, as even the special case of motion of curveR"irhas a rich structure. We investigate the
motion of curves iR” in Section 5. For motion of curves by a velocity that is parallel to the normal
vector we are able to find conditions that are very close to being both necessary and sufficient for
a velocity V to give a distance representatiomtoWe then discuss when a given velocithas a
distance representation, and find (the “best”) velotitthat gives the distance representation. After
that, we partially classify the velocities that have a distance representation. In particular we prove
that the only velocities of the fornf (k) (wherek is the curvature and the normal vector) that
have a distance representation are constant multiples of the curvature vector={i.€kn). For
the velocities of the forny (k, 7 )i (wheret is the tangent vector) the results are more intriguing.
Under a technical condition, we show that velocities of that form have a distance representation if
fk, 1) = g(7)k, whereg is a nonnegative even function whose set of zeroes satisfies an interesting,
geometric condition related to convexity (§~1). Let us just mention that, for example, the
velocity with g(r) = 1 — |¢ - 7|2, whereé is an arbitrary unit vector, has a distance representation,
while the velocity withg(7) = |é - | does not.

In Section 6 we turn our attention to the barriers of De Giorgi, which offer an abstract way to
define generalized evolution by a given velocity. For motion of fronts of codimension 1 this approach
was developed by De Giorgi, Bellettini, Novaga and Paolini (see [5] and references therein). They
proved that the barriers give the same information about the front as the level-set approach. De
Giorgi conjectured that for the motion by mean curvature vector in any codimension the level-
set approach and the barriers approach are essentially equivalent as well. A part of the conjecture
was proven by Ambrosio and Soner fin [1], while the complete conjecture was proven by Bellettini
and Novaga in [6]. The main topic of Section 6 is comparing the level-set approach and the barriers
approach. We concentrate on the motion of curvéR'irand prove that for a large class of velocities
the two approaches are equivalent. We also show that for many velocities for which the level-set
approach is not applicable, neither is the barriers approach. At the end we offer a simple proof of
De Giorgi’s conjecture.

2. Motion of manifolds of codimension 1

In this section we recall the level-set approach to motion (propagation, evolution, flow) of manifolds
(fronts, interfaces) of codimension 1 Ri'. The normal velocities that we consider have the form
V(Dn, n), wheren is the outward normal vector to the front, aba its derivative. We furthermore
require thatV is nonincreasing in th®n argument. To consider evolution (flow) of a manifold by
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a given velocity we first define the classical notion of evolution (flow, propagation) by given normal
velocity:

DEFINITION 2.1 Let Y be a compact, connected, — 1-dimensional,C? manifold without
boundary and lety € C%(r x [0, T], R") be an embedding for every fixed € [0, T]. Let
7 =¥ (Y x {t}) and let2, be the bounded componentRf\7Y;. We say tha{(£2;, 7})}i¢[0, 1] IS
theclassical evolution( flow) of (£2g, 7o) by velocityV if

%(x, t)-n=V(Dn,n),

wherer is the outward normal vector t; aty (x, t).
We say thaf(£2;, 73)}s¢[0, 7] is aclassical subflowiresp.superflovy by velocityV if the equality
in the condition above is replaced ky(resp.>).

However, the classical motion of a front often exists for only a short time, since the front can
develop singularities. We use the viscosity solutions of level-set equations for the given motion
to define generalized front propagation. More precisely, we use the definition of viscosity solutions
introduced by Ishii and Souganidis [n]14] that allows us to consider velocities with arbitrary growth
of the curvature tensor.

DEFINITION 2.2 Let§2g be a bounded open set aigl= 92 be the front at time = 0. Letug be

a uniformly continuous function such they = {x € R" : ug(x) = 0} and$2p = {x : uo(x) < 0}.
We say tha{(£2;, 17)}:<[0,7 is thegeneralized evolution of2g, 7o) by velocityV for ¢ € [0, T) if

T; = {x :u(x,t) =0}and$2; ;= {x : u(x, t) < 0}, whereu is the viscosity solution (as defined in
[14]) of the level-set equation:

u + F(D?u, Du)y=0 onR" x (0, T),

(2.1)
u(x,0) = ug(x) forall x € R".

with F given by [1.1).

Since the exact definition of viscosity solutions[inl[14] is rather technical, we refer the reader to the
Appendix for details. It is, however, important to keep in mind that solutions_of [14] are the same
as the standard viscosity solutions of level-set equations (see, for example, [8])FV&D) =
F,(0,0) = 0. HereF* (resp.F) is the upper (resp. lower) semicontinuous envelopE.dghii and
Souganidis have shown that the equatjon|(2.1) has a unique uniformly continuous viscosity solution
(foranyT e (0, oo]) and that the definition above does not depend on the choice of the fungtion

2.1 Properties of generalized evolution

We now list some important properties of generalized evolution and viscosity solutions, that were
either (in this generality) proven if_[14] or have simple proofs. In all these properties (where
relevant){(£2;, 1) }:eo,7] iS assumed to be a generalized evolution by a veldcity

(P1) Invariance under nondecreasing transformatior® in other words, invariance under
relabeling of level sets. Let be a nondecreasing function.udfis a viscosity supersolution
(resp. subsolution) of (2.1) then so ggu). (resp.p(u)*). If p is continuous and: is a
uniformly continuous solution of (21), them() is a continuous solution, with initial data
p(uo)-
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(P2) Comparison of viscosity solutionslf « is an (upper semicontinuous) subsolution[of](2.1),
v a (lower semicontinuous) supersolution[of {2.1), atd0) < v(-, 0) thenu(-, 1) < v(-, 1)
for all times? > 0.

(P3) Comparison of evolving fronts.Let {(£2/,1/)}/c0,r] be a generalized evolution by
velocity V. If 20 € £2) thens2; € 2/ andY; € 2/ U T/ forallt > 0.

(P4) Comparison of evolutions with different velocitied.et V» be a velocity such that, > V,
and{(£2/, 7/)}:[0,1] the generalized evolution @2o, 7o) by velocity V>. Then$2, < £2;
andY; C 2, U7/ forallz € [0, T].

(P5) Agreement with classical evolution If 7; are C? manifolds for allz e [0, T] then
{(82:, Y1) }iepo, 1] IS a classical evolution by velocity .

(P6) Agreement with classical evolution ILet {(£2/, 7})}:c[o,7] be a classical evolution afy by
velocity V. ThenY, = 71, forall r € [0, T].

(P7) Comparison with sub- and superflowket {(£2/, 77)}/¢[0,7] be a (classical) superflow (or
subflow) by velocityV. If 20 U Yo C £2] (resp.£25 U T C £20) then$2, U T; C £2; (resp.
2T/ c 2)forallr [0, T].

2.2 Short time existence of classical evolutions

In addition to generalized evolution, we need the short time existence of classical evolutions by
smooth velocitiesV (Dn, n) that are nonincreasing in thBn argument. There are, of course, a
number of results on short time existence of classical evolutions. Giga and Goto have shown in
[12] that if the velocityV is strictly decreasing (in a uniform way) in then argument and the

initial manifold is smooth, then there exists a short time smooth evolution. Here we show that the
classical evolutions (recall that we require them to be ardy exist for short time even whet

is only nonincreasing in th®» argument. The main tool that we use are the results by Lions and
Souganidis in[[15]. The following lemma is a corollary of Theorem V.1 from their paper.

LEMMA 2.3 LetG : Symn) x R — R be a smooth, degenerate elliptic function such that
Gllcack xrny is bounded for every compact s&t C Sym(n). Letug € C8(R™) with luoll e
finite. Then there exists a tintg > 0 such that the Cauchy problem

u; + G(D%u, Du) =0 onR" x (0, 1),
u(x,0) = ug(x) forall x € R",

has aC? solution.
We are now ready to prove the short time existence of classical evolutions:

THEOREM2.4 Let V(Dn,n) be a smooth codimension 1 velocity (nonincreasing in fhe
argument). Let2y be a bounded open set afifd = 92¢ a C® manifold in R”. Then for some
timerp > 0 there exists a unique classical evoluti¢i®?;, 77)}:<[0,1,), by velocity V.

Proof. LetV, 209, andYp be as above and léh(x) := d+(x, 1p) (negative inf2p). We can assume
that 0 € £2o. Let M := diam$2g. There exists € (0, 1) such thatdp is a C® function on the set
where|dg| < 4o. Letn1 € C*(R, [—1, 1]) be a nonincreasing function such thats) = —20 if

s < —20,n1(s) = s if |s] < o, andni(s) = 20 if s > 20. Letnz € C*°([0, 00), [0, 1]) be such

thatna(s) = 1 fors € [1/2,2] andnz(s) = O fors € [0, 1/4] U [4, o0). Letnz € C*(R, [0, 1])



MOTION OF MANIFOLDS 423

be a nonincreasing function such thats) = 1if s < 3M andns(s) = 0if s > 3M + 1. Fora
symmetric matrixX and vectorp we define

G(X, p) = n2lpDF (X, p).
Note thatG is smooth and degenerate elliptic. Consider the Cauchy problem

u; + G(D?u, Du) = 0,
u(x, 0) = n1(do(x))na(|x]).

By Lemmd 2.8 this equation hag’# solution,u, for some timeg > 0. Let$2, := {x : u(x, 1) < 0}
and7; := 9£2,. By makingzy smaller if necessary we can assume that diamx 2M for every

t € [0, 10), and if[u(x)| < o/2 andx < 2M then |Du|(x,t) € (1/2, 2). It is then easy to check
that {(£2;, T7)}:e[0,10) iS @ classical evolution by velocity. Let us show tha{(£2;, 77)}sef0,1) IS @
unigue classical evolution for timee [0, #p). Assume that there exists another classical evolution
{(£2{, T))}se[0.1y) for some timer; > 0. Then there exists a time and a pointx’ € 7, such
thatu(x’,t’) # 0. Assume thaki(x’,7) < 0. Leta = %(—a Vv u(x’,t")). Note that the level
sets{u(-, ) = a} move with velocityV in the classical sense. Therefore, by compariggh,cC
{u(-,t") > a}, which is in contradiction with the fact thatx’, #) < a. The case/(x’,t') > 0O is
analogous. O

3. Geometric preliminaries

Let I" be a compact-dimensional C2 manifold without boundary, embeddedit. By 7. I" we
denote the tangent spacelfaat x, and byN, I' its orthogonal complement (iR"). To describe the
local geometry of” we use the shape operat®f : N, I" x T,I" — T, I", defined by

SpI"(v) == =T (Vyp), (3.1)

where p is a local extension op € N, I" such thatp(y) is orthogonal toI” wheny € I', and

ITy is the orthogonal projection t6. If the manifold being considered is known from the context,
we write S instead ofSI". Note thatS contains the same information as the second fundamental
form B, since

Sp(x) -y = B(x,y) - p.

For a pointx in R” letd(x) be its distance froni™. By I" 4+ a we denote the set of points "'
whose distance t&' is less tham. Sincel” is aC2 submanifold ofR” it has a tubular neighborhood
(see, for examplel [13]). Therefore there exists> 0 such that for every pointin I + o1, there
exists a unique point off closest tox. Let us denote it byr - (x).

LEMMA 3.1 There exists > 0 such that for alkg € I" , every unit vectop € N,,I" and every
v € Ty, I" the following holds:

1. D?%d(xo + tp) is a nonincreasing function of(with values in the set of symmetric matrices)
fort € (0,0) and
2. lim,_ g+ D?d(xg+ tp)v = —Spv.
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Proof. We can assume that = 0, ToI" = spafies, ..., e}, andp = e,, where pq, ..., ¢,] are
the coordinate unit vectors R". Set

o = min{o1, 1/(1+ max|[Syll : x € I, w € N, T, |w| = 1})}.

Let 4 be the orthogonal projection froifi to To!". When restricted to a neighborhood of O it is a

bijection (onto a neighborhood;, of 0 in TpI™). Let ¢ be the inverse of the restriction. Then

V(X1 ooy X)) = (X1 oo X0 YN, X)L e XE)).

Let [n1,...,n,—¢] be an orthonormal frame aN I" for points iny (V) such thatf1, ..., n,—x] =
[ex+1,...,ex] atx = 0. Let us extend it td/, := n;l(w(V)) by settingn; (x) := n; (7 (x)) for
i=1...,n—k.
We now introduce new coordinates &p. Lety : Vo> — R” be defined by
n—k
QX1 ooy Xy 11y oo ty—k) =Y (X1, .., X)) + th nj(X1, ..., Xk).
j=1

Note thaty is a differentiable bijection betweery andg(V>). Let us computeDg (¢~ 1(tp)). We
have

d on,_ 0 on,_
Dw:[_htm_ _‘M[—}

0x1 axy T Oxg 0x
| Tk —1Sp 0
e 0] o

Note that the choice af ensures that the matrix— ¢S, is invertible. We now compute

tny + - - -+ fng

Ddo¢ =
24 +1f
1 ony, on,_x n1 Np—k—1
D(Dd o ) (¢~ L(tp)) = S, ,0
0x1 0xy t t
-5, 0 0
=10 %In—k—l 0
0 0 Oux1
Using (3.2), we now obtain
S, 0 0 »
- Iy —tS 0
D?d(ip) = D(Dd o g) o™ ip)= | 0 L1 O [( S ]
| 0 0 0 nk
[ =S, (I —tS,) 7t 0 0
= 0 k-1 Of. (3.3)
i 0 0 0
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Note that the matrixi (r) := D?d(tp) satisfies the matrix Riccati equation

ﬁ — A2

dt '
ThereforeD?d(tp) is nonincreasing for € (0, o). Since(/ —tSp)_l approaches the identity matrix
ast approaches 0, the second claim of the lemma follows ffonj (3.3) as well. (|

REMARKS. 1. Claim 2 of the lemma proves the conjecture that Ambrosio and Soner made on page
707 of [1].
2. The matrixD2d(tp) has the form[(3]3) under the assumption thgf' = spariey, . . ., e}

andp = e,. Ingeneral, fox € I" andp € N, I', let[r1, ..., #%] be an orthonormal basis @f. I"
and fy+1, ..., t;] an orthonormal basis ¥, I", wherer, = p. Let R be the matrix {y, ..., #,].
Then
—S, (I — 1S, 1 0 0
D?d(tp) = R 0 ko1 OfRTL (3.4)
0 0 0

HereS, is the matrix of the shape operator i,[. . ., #] coordinates.
The following lemma is partly a corollary of the previous one.

LEMMA 3.2 Lety € C2(I" x [0, T], RY) be an embedding for every fixece [0, T]. Let I} :=
(I x {t}) andd(x, t) := dist(x, I;). Then

o= 1/max2||S,ll :x € I 1 €[0.T], p € Ny Ir. Ipl =1

is a positive number and the functiet(x, ¢) is twice differentiable on the set = {(x,1) €
R" x [0, T] : d(x,1) € (0, 0)}. Furthermore, if for anyz, t) € A we denote byI(z, ¢) the closest
point toz on I3, then

0 = —p Lyt
5 @0 =—p W60 @ D)0, (35)

wherep ;= (z — [ (z,1))/|z — [ (z, t)|.

Proof. The proof of the first part of the lemma is elementary, so we only prove the second part. Fix
(z,1) € A. Lety := IT(z, 1) andX (s) := ¥ (-, s) "1(I1(z, 5)). Note that/T andX are differentiable
functions. Also note thal(z, t) = |z — I1(z, t)|. We compute:

z—1II(z,t) dIl
-G o >

-2 (X, 1)
- p'd[\” )

ad( £ =
8t Z? -

0
——p (Dx/f(xm, X' () + 8—f<xm, r))

.
=—p- 5 (X©.0

sincep € N,I; andDy X'(r) € T\ I;. O
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4. Motion of manifolds of codimension greater than 1

We consider the motion of manifolds of codimension k > 1 with normal velocityw that depends
on the tangent space to the manifdld,and the second order properties of the manifold described
by the shape operatdr.

DEFINITION 4.1 LetI" be ak-dimensionalC? manifold without boundary, lety € C?(I" x
[0, T], R") be an embedding for every fixede [0, T], and letl; := ¥ (I" x {¢t}). We say that
the manifolds; move(evolvg with normal velocitw (ST;, T I;), wherev(ST;, T I7) is orthogonal
to I3, ifforall x € I andr € [0, T1,

oy
TNy I (E(X, l)> =v(S1;, I,13).

Hererny, r, is the orthogonal projection @t" onto the normal space G aty = v (x, ).
Here are some examples of velocities as above,
1. Motion by & times) mean curvature vector:

n—k
v(S. T) =) _(traceS,,)n;.,
i=1
where p1, ..., n,_] is an arbitrary orthonormal basis fo¥, the orthogonal complement
of T. For the proof that the formula above is {imes) the mean curvature vector see, for
example, do Carmo’s bookI[7].
2. Anisotropic motion by mean curvature

n—k
v(S, T) = Z(trace{A(T)Sni))n,-.

i=1
If K = 1 then the manifolds are curves and the velocity can be writterixad"), wherex is
the curvature vector anfl the tangent line.
vk, T) = |k|% fora > —1.
vk, T) = f(T)k, where f is a positive function.
vk, T) = || f(T), wheref is a vector-valued function such thAtT) is orthogonal taT".

ok w

4.1 Barriers, distance representation, and surrounding

We first investigate the relationship between the codimensienk motion by velocityv and
the codimension 1 motion by velocity. Unless otherwise specified, we always assume that the
codimensiom — k velocity v is smooth and that the codimension 1 velodityis continuous and
nonincreasing in thén argument. We denote codimensien- k velocities by small letters, and
codimension 1 velocities by capital letters. Therefore we call them both just velocities, as it is clear
what the codimension is.

Recall that to the velocity we always associate a functighby

1
F(X. p) = |p|v(m<1—ﬁ@ﬁ)X(l—mm,ﬁ). @.1)

Let us define the properties that we investigate.
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DEFINITION 4.2 Letv andV be velocities (as above). We say tlvats abarrier for v if for every
(generalized) evolutiof($2;, 17)}:e0,7] by velocity V, and every classical evolutidd? }; <o, 7] by
velocity v, the following implication holds: Iy C 20U To thenTl; C 2, U T, forallt € [0, T].

DErFINITION 4.3 Letv and V be velocities. We say thdl gives adistance representatioto
v if for every compact connectekdimensional manifold without boundary;, and everyys <
C%(I"' x [0, T], RN) that is an embedding for every fixece [0, T], the following two conditions
are equivalent for; := ¢ (I" x {¢}):

(@) The manifoldd; move (in the classical sense) with velocitjor r € (0, T); that is, for all
te Tyandallx € I',

Iy
TNy T, (E(x, t)) =v(SI;, T,17).

Herey = v (x, 1).
(b) d; + F(D?d,Dd) >00nA = {(z,1) i t € [0,T], d(z,t) € (0,0)} for somes > 0. Here
d(x,t) =dist(x, I}).

DEFINITION 4.4 LetV andv be velocities. We say that surroundsv if for every compact,
connected-dimensional manifold without boundar¥,, and everyy € C3(I" x [0, T], RY) that
is an embedding for every fixade [0, T'], the following equivalence holds far, := ¥ (I" x {t}):

The manifoldsl; evolve by velocityv if and only if I = {x : u(x, t) = 0}, whereu is the unique
viscosity solution of the equation

u; + F(D?u, Du) = 0,
u(x,0) = ug(x).

Hereug is a nonnegative uniformly continuous function that is equal to zerbgoaind positive on
the complement ofp.

We now list some general properties of these notions, and state the relations between them. But
first we recall a useful lemma. For motion by mean curvature it follows from Lemma 3.11 and step 7
of the proof of Theorem 3.9 in [1]. For general motions the definition of viscosity solution by Ishii
and Souganidis [14] needs to be used. The required modifications are straightforward.

LEMMA 4.5 LetV be a velocity,” a compactC? manifold without boundary, angt € C2(I" x
[0, T], R™) an embedding for every fixede [0, T]. Let I} := ¥ (I, t). Letd(x, t) := dist(x, I}).
If for someo > 0,

d,+ F(D?d,Dd) >0 onA:={(x,t):d(x,1) € (0,0),te (0T}
then

d, + F(D?d,Dd) >0 onR" x (0, T) in the viscosity sense.

LEMMA 4.6 If the velocityV gives a distance representationvtdhenV is a barrier forv.

Proof. Assume thal’ gives a distance representationvtd et {I}};¢[o0,7] be a classical evolution
by velocityv and{(£2;, 17)}:¢[0,7] @ generalized evolution by velocity, such thatly C £2¢ U o.
Letd(x,t) :=dist(x, I;). SinceV gives a distance representationvtdor somes > 0 we have

di(x,t) + F(D%d(x,1), Dd(x,t)) >0 if0<d(x,?) <o,
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forall 7 € [0, T]. Lemm&[ 4.5 implies thad, + F(D?d, Dd) > 0 onR" x [0, T] in the viscosity
sense.

By definition of generalized (codimension 1) evolutiofs,U 1; = {x : u(x, t) < 0}, whereu
is the viscosity solution of the equation

u; + F(D?u, Du) = 0,
u(x, 0) = dist. (x, 70),

where dist is the signed distance tip, negative inf2g. Sinceu < d attr = 0, the comparison
principle implies thatt < d for all ¢ € [0, T]. Therefore

Ii={x:dx,t) =0 C{x:ulx,1t) <0 =02,U7T;. (]

The next lemma shows that surrounding implies giving a distance representation. The question
when giving distance representation implies surrounding is open.

LEMMA 4.7 Letv be such that for every compact, connectedimensionalC? manifold without
boundary embedded iR” there exists a short tim€? evolution by velocityv. If the velocity V
surrounds, then it gives a distance representation to

REMARK. One of the reasons that we need to assume the short time existence is that surrounding
and distance representation were both defined in a general way, without imposing any requirements
on the existence of a classical evolution by veloeitplthough short time evolution exists for many
velocitiesv, it clearly does not exist for all smooth velocities. For a veloeitipr which there are

few manifolds that can evolve by it the equivalences in the definitions of surrounding and distance
representation might not carry much information on relationship betweandv. Our interest is

clearly in the velocities by which many manifolds can evolve. Appropriate assumptions on short
time existence are also needed in several other results, but the one that we need in this lemma is the
strongest.

Proof. Assume thaV surrounds. Let I'; be as in the definition of distance representation.

((@)= (b)) Assume that the manifold§ move with velocityv. SinceV surroundsy, I'; =
{x :u(x,1) = 0}, whereu is the viscosity solution of (2}1) with initial data(x, 0) = dist(x, Ip).
Letd(x, t) ;= dist(x, I}).

Let ¢ be an admissible (test) function such that ¢ has a minimum atxo, 7p). Let x1 be a
point on Iy, such thatd (xo, o) = |xo — x1|. Consider the functio®(x, 1) := ¢(x + xo — x1, 1).
Thend — ¢ has a minimum atx1, 79). We can assume that(x1, 1o) = 0 and thatp < 1. Consider
the functionH (d), whereH is defined byH (x) = 1if x > 0 andH (x) = 0 if x < 0. Note that
H(d) — ¢ has a minimum atx1, f0). SinceH (d) = H(u) = H (u), by property (P1) the function
H (d) is a supersolution of (2.1). Therefore

@1 (x1, 10) + F(D%@(x1, 10), D@(x1, 10))
@ (x1, t0)

VoV

0 if Dg(x1,10) # O,
0 if DP(x1,10) =0,

Consequentlyy, (xo, fo) + F(D?@(xo, t0), De(x0, t0)) = 0 if De(xo, t0) # 0, andy; (xo, to) > O if
Dy(xo, o) = 0. Therefored is a viscosity supersolution df (2.1). By Lemma]3.2, there exists 0
such that is twice differentiable on the set where<0d < o. Therefore (b) holds, since viscosity
supersolutions that are differentiable, are classical supersolutions.
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((b)= (a)) Assume that
d, + F(D%d,Dd) >0 when0O<d <o

for somes > 0. By Lemmale_él_T}S we know that is a viscosity supersolution on the whole space.
Let {17 }re[0,ma0 D€ theC? evolution of I by velocityv, where [Q fmay) is the maximal interval
on which theC? evolution exists (note that it has to be open on the right).
For u as above, by definition of surroundifg : u(x,t) = O} = I} for ¢t € [0, fmax. By
the comparison principlé(x, t) > u(x, 1) for all x € R andt € [0, T]. Thereforel; C I for
t € [0, T] N0, tmax). Sincel; is both open and closed ifi, and [} is connected, we conclude that
I,=1T1,fort e [0, T]1 N[O, tmax- To finish the proof we need thagax > T. But if fmax < 7 then
by defining[,.,, = I, We can extend th€? evolution beyond [Dfmax), which is impossibled

LEMMA 4.8 Velocity V is a barrier for velocityv if and only if for every classical evolution
{I7}ie[0,1] DY velocityv, there exister > 0 such that

dy(x,1) + F(D?%d(x,1), Dd(x,1)) >0 whend(x,?) € (0,0),

whered (x, t) ;= dist(x, I}).

Proof. Assume thatV is a barrier forv. Let {I7},¢[0,7] be a classical evolution by velocity.
Assume that the conclusion of the lemma does not hold. Thes fs in Lemmd 32, there exist
to € (0, T) andxg such that O< d(xg, #g) < o and

—2¢ 1= d, (x0, 10) + F(D?d(x0, to), Dd(x0, tg)) < O.

Lety e I, be such thabxo — y| = d(xo, I},) and letp := xo — y.

Fors e (0,1] let 2y = {x 1 dx, Iy < sd(xo, [p)} and Y, = 9%2;. Denote by
{2}, ") }ieo, 1) the generalized evolution ¢f2;, 7,7) by velocity V.

Let 7, be the translation (iR") by vectorx. Let I}’ := 7,(x,—y)(I}). Note that{I}*};c[0,7] is an
evolution by velocityv for all s € (0, 1]. Also note thatl;; C £2; U T;;. To obtain a contradiction
it is enough to show that for sorser € (10, T1, I} ¢ 2] U Y}

Consider a2 functionW on1;, such that for alk € 7;,, V(D?d(x, to), Dd(x, 19)) < W (x) <
V(D?%d(x, t9), Dd(x, tg)) +&. LetW : Ty, x [t0, to + 8] — R” be given by (x, 1) 1= x + W (x)z.
SinceY;, is compact, there exists > 0 such that¥ (-, ¢) is an embedding for all € [z, 10 + 4],
and the manifolds’; := ¥ (T, t) (along with the open set®, they enclose) form a superflow by
velocity V. Therefore by comparison, for alle (0, 1) andr € [fo, o + 8], 27 U Y] C Q,UT,.
From the definition oC and [3.%) it now follows that

v(S]"1

e Teo T - p = (ST, TyIp) - p > V(D?d(x0). p) + &.

In other words, the velocity df‘,l at (xo, fo) in the direction of vectop (which is the normal vector
to Yto atxo) is greater than the normal velocity @f at (xo, 70). Therefore there existse (1o, T)
such thatl’}\(£2, U T;) # @. Hence fors close enough to 1[°\(£2, U T;) # @. But sinceV is a
barrier forv, I’ C 25 U T} C £2, U 7,. Contradiction.
To show the other implication, I1€17 };<[0,7] be a classical flow by velocity for which for some
o >0,
dy(x,t) + F(D?d(x,t), Dd(x,t)) >0 whend(x, 1) € (0,0).

From this point on the argument is identical to the one in Lefnma 4.6. O
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The following observation follows from the definitions, the properties of viscosity solutions and
the previous lemma.

LEMMA 4.9 If Vy is a barrier forv and V> is a barrier for (resp. gives a distance representation
to, surroundsy thenV = min{Vy, Vo} is a barrier for (resp. gives a distance representation to,
surroundsy.

We now turn our attention to discussing necessary and sufficient conditions for velotity
give a distance representationto

Conditions(<) and(%). LetT be ak-dimensional plane iR”, N its orthogonal complement, and
p aunitvectorinN. Let [z, ..., ] be an orthonormal basis @fand 1, . . ., t,] an orthonormal
basis ofN such that, = p.LetS : N xT — T be abilinear mapping. B§, we denote the matrix
of S(p, -) written in the basist|, . .., #]. Let R be the matrix{s, ..., t,].

We say that conditiorxf) is satisfied if for allT, S, R, p as above,

. . 1
lim V(R dlag<—Sp(1k — S Sk, O)R—l, p) > (S, T) - p.
s—0t S

We say that conditions) holds if for all T, S, R, p as above,
. . 1
hrr(;+ V(R dlag<—Sp(Ik —s8,)7Y Shg-a, O)Rl, p) =vu(S,T)-p.
s—> S

Here diagA;, ..., A,,) is a quasidiagonal matrix with matricds, ..., A,, along the diagonal.

THEOREM4.10 If for velocitiesV andv condition €) holds thenV is a barrier for. If condition
(%) holds thenV gives a distance representatiornito

Proof. Assume that fon and V' condition ) holds. Let{I7};c[0,7] be a classical evolution by
velocitl& Leto, A, X(r) andIT be as in Lemmp 3|2. Lete A,y := I1(z,1),s = |z — y|, and
p =z —y.From ) it follows that

ad 9
S e ="r %(X(t),t) =—p-v(SI:, TyI1) (4.2)

sincel; evolve by velocityv. Therefore, using the fact tha&t is degenerate elliptic and condition
(©), we obtain

di(z,1) + F(D?d(z, 1), Dd(z, 1))

; 1
=di(z, 1) + F (R dlag(_sp(lk — sS,,)‘l, R O>R—1, p)

: . 1
> di(z, 0+ lim F (R d|ag<—s,,(1k —58,)7Y Sk, O)Rl, p)
§—> S
=—p- (ST, T,I[)) + p - (ST}, Ty I}) = 0. 4.3)

Lemmd 4.8 then implies that is a barrier for.

Let us now assume that conditios{ holds.

(@)= (b)) Assume that the condition (a) of the definition of distance representation holds.
Since condition %) implies ) the calculation above shows that (b) holds.
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((b) = (a)) Assume that (b) holds. Lete I" andt € (O, T) be arbitrary. Lety := ¢ (x, t).
To show (a) it is enough to show that for everys N, 17,

3
8—1f(x,t)-p =v(SI;, T, 1) - p. (4.4)

So letp € N, I; be arbitrary. Fr05) we havk(z,t) = —p - %(x, t). Foralls € (0,0), by
the assumption that (b) holds, we have

0
—p- S_‘i’(x, 1) 4+ F(D?%d(y + sp), p) > 0.

We have compute®?d in ). By using that and taking the limit as— O we obtain
d . . 1
—p- —w(x, )+ lim F<R dlag<—Sp(Ik — 587 Sk, O>R‘1, p) >0,
ot s—0t s
which by assumption¥) implies
a
D <%(x’ 1) +v(SIi, Tyl"z)) > 0.

Sincep was an arbitrary normal vector, the previous claim holds for veefias well:

—p- <88—1tp(x, 1)+ v(ST7, TyFt)) >0.

Therefore[(44) holds. O
EXAMPLE 1. This theorem can be applied to the motion by mean curvature vector:

n—k
v(S, T) =) _(traceS,,)n;.
i=1

Here 1, ..., n,—¢] is an arbitrary orthonormal basis 8f. Let V be minus the sum of thesmallest
principal curvatures. To be more precise let us defineSym(n) x R"\{0} — R. ForX € Sym(n)
andp € R"\{0} let A1 < --- < A,—1 be the eigenvalues af — p ® p)X(I — p ® p) that
correspond to eigenvectors orthogonaptd_et F (X, p) := —(A1 + - - - + Ax). Note that condition
(%) is satisfied:

: : 1
lim V(R dlag(—Sp(Ik —58,)7Y Sk, O>R1, p)
s—0t s
= lim trace(s, (I - s8,)71) = traceS, = v(S, T) - p.
Naed

Therefore the conclusion of the lemma applies. This distance representation of mean curvature
motion was first obtained by Ambrosio and Soneér [1, Theorem 3.8]. Note that the used is not
the only velocity that satisfies conditiosk{ for the mean curvature velocity. For example

~ Yhp—1 if Apo1 > 1,
FX,p)=—Q1+--+ 1)+ {1/ " othr:ar\}vise
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gives another velocity that satisfieg). However, note thak > F. We show later (for the evolution
of curves) thatV is the smallest velocity that satisfieg), and furthermore that it is the smallest
velocity that gives a distance representation.to

ExAMPLE 2. Further examples of velocities that satist¢)(can be obtained from the previous
example by making a linear transformation of the space and expressing the normal component of
the velocity in the new variables. Let us just illustrate that in the case of the motion of cuiRés in

Let P be a nondegeneratex n matrix. Let

UP(K, t) = m K,

wherek is the curvature vector anda unit tangent vector, and létp(Dn, n) be the greatest
eigenvalue of the matrix

PT PT PT PT
A= — [_M Pl DnP I_M
|PTl? |PTnP?

that corresponds to an eigenvector orthogonalPto:. It is not difficult (using the fact that
Vp(Dn,n) =max{Ax -x : |x| =1, x - PTn = 0}) to check that/p andvp satisfy condition %).

We have shown that conditiosk() is sufficient for conditions (a) and (b) to be equivalent. As can
be seen in Section 5 it is not a necessary condition. In this generality we cannot say what condition
is both sufficient and necessary. Nevertheless, some improvements to conglijicar( be made.
For example, it is enough to require that

. . 1
lim Vv (R dlag<—Sp(Ik - sSp)_l, —I—k—1, 0)R‘1, p) =v(S,T) -p (4.5)
s—0t K
only for all p € {p1,..., pu—k, —p1, ..., —pu—ik} Where |p1, ..., p.—x] IS an arbitrary ortho-

normal basis oV. The proof that this is a sufficient condition as well is essentially the same as the
one given for f).

LEMMA 4.11 Letv be a velocity by which every smooth, connected, and comipdanensional
manifold without boundary embedded Rt has a short time classical evolution.Wifis a barrier
for v then condition {) holds.

Proof. Assume otherwise. Then there ex®t S and p for which condition ¢) does not hold.
Hence there existg) > 0 such that for alk € (0, sg),

1
\% (R diag(—S,,(Ik — SSP)_l, —I i1, O) R_l, p) <v(S,T)-p.
S

Let I'p be a smooth, connected, and compadimensional manifold embedded RI' such that
0 € Iy andT is the tangent plane thy at 0, andS the shape operator at 0. LEt be the classical
short time evolution of g by velocityv. Lets € (0, so). By using [3.5) and computing as {n (4.1)
we get

di(sp,0) + V(Dzd(sp, 0,p) <—p-vlS, T)+p-v(S,T)=0.

But then, by Lemmf 4]8/ is not a barrier fow. Contradiction. O
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COROLLARY 4.12 Letv be a velocity that satisfies the assumptions of the previous lemma. For
velocity V to give a distance representationutd is necessary that conditiokb] holds.

At the end of this section we present a sufficient condition for a velo¥itio surround a
velocity v.

Condition (a). We say that velocityy satisfies condition &) if for every M > 0 there exists
K > 0 such that for alk x k matricesS such that|S|| < M and all orthogonal matriceR =
[l1,...,1,—1, p] the following holds for O< 5" < s < 1/K:

1
4 (R diag<—5(1k -7 Sk, O)Rl, P)

1
-V <R diag(—S(Ik ) By O)R—l, p) < O(s') + Ks.
S

LEMMA 4.13 If velocitiesV andv satisfy condition ) andV satisfies &) thenV surrounds.

The proof of this lemma is a straightforward generalization of the proof of Corollary 3.9 in [1].
Let us also remark that velocitidép and vp given in Example 2 satisfy the conditions of this
lemma, and henc&p surroundp.

5. Motion of curves along the normal vector

We now turn our attention to the motion of curvesiify, the case that we can more fully investigate.
In this case the tangent space is one-dimensional and therefore the shape operator has a very simple
form.

In general, for a one-dimensional subspate of R”, its orthogonal complemenyt, and a
bilinear mappingS : N x T — T there exists a vectar € N such thatS(a, b) = (« - a)b for all
a € N,b € T. For a point on a curve, and the shape operétaris the curvature vector. Therefore
the velocities that we are considering can be written as a function of the tangentispackthe
curvature vectok.

We devote most of this section to studying velocities that have the direction of the normal vector,
but let us begin with a proposition that gives a necessary condition for a general velocity to have a
distance representation.

PrOPOSITIONS.1 Letwv(x, T) be a velocity by which every circle can evolve for a short time.
If it has a distance representation then the component«fT’) orthogonal tac is bounded, and
furthermore, there exists a consta@hsuch thafv(«, T)| < C|k| when|k| > 1.

Proof. Let V be a velocity that gives a distance representation fdote that condition<) then
holds (see the proof of Lemria 4]11). Frogy) (t follows that for p a unit vector orthogonal te,

VO, p) =Zv,T)-p.
For a vector: denote by the set of unit vectors orthogonal to Then

M = sup V(, p) >supsupv(k,T) - p.

pesn-1 k., T pext

To prove the second claim we only need to bound the componentxofl’) in the direction
of k. Givenk such thatjx| > 1 andT, letn := k. Choosep such thatn - p = 1/|«|, let
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R =1[l,...,1,—1, p] be an orthogonal matrix such th&it= sparil/1}, and lets = 1/2. Then ¢)
yields
vk, T)-n

V(Rdiag—2,2,...,2,00R™L, p) > v(k,T) - p > o M.
K
while choosingp so that—n - p = 1/|«| yields
T) -
—v (Rdiag2/3.2.....2.0 ™%, p) < —v.T) - p < —U(K] I) S,
K

SettingC := maxM +|V(Rdiag—-2,2,...,2,0R™%, p)| +|V(Rdiag3.2,...,2,.0R™L, p)| :
pes™ 1 R1=RT Re,= p}completes the proof. O

The velocities that have the direction of the unit normal vector can be described by a scalar
function that we now introduce. Far> 0 and mutually orthogonal vectorsand: let

v(k,n,t) ;= v(kn, sparft}) - n.

Note thatv(k, n, t) is even in the variable, and that sinc&«, T') is smooth, so i®(k, n, t). Also
note that continuity ob(x, T) at« = 0 implies thatv(0, -) = 0 and hence(k, -,-) = 0. Let us
now loosen the requirements ik, n, t) a bit. From now on, we only require thatk, n, r) is
continuous on its domain and smooth for- 0. Also, from now on, when we say velocitywe
have in mind velocityw (k, n, t) along the normal vector.

For velocitiesV that we are considering, we assume that

1
14 (R diag<o, Zl_o, o) R p> =0 (5.1)
R

forall s > 0, all unit vectorsp, and all orthogonal matrice® for which Rp = ¢,,. Let us show that
this condition is not restrictive, in the following sense: For a given velacityr which every circle
has a short time evolution, in Lemrha 5.2 we build a velogitythat is a barrier fow and satisfies
condition [5.1). For every velocity that gives a distance representation fo.emmg 4. tells us
that min(V, V'} also gives a distance representation t&o, if v has a distance representation then
there exists a velocity that satisfigs {5.1) and givesdistance representation.

LEMMA 5.2 Letu(k,n,t) be a velocity that has a distance representation and by which every
circle has a short time classical evolution. Thelmas a barriet/’ such that

1
%4 <R diag <o, iy 0) R, p> =0
S

for all s > 0, all unit vectorsp, and all orthogonal matrice® such thatrRe, = p.

The proof of this lemma relies on Theor¢m|5.4 and constructions of Defifiitipn 5.9, so the reader
may wish to postpone reading the proof.

Proof. Sincev has a distance representation, by Thedrerh 5.4 it is nonnegative and nondecreasing
in k. By Propositioff 5]1 there existd > 0 such that ik > 1 thenCk > v(k, n, 1). Letvy(k) :=
maxv(k,n,t) . |n| = |t| =1, n-t = 0}. Let vy := Uvy, whereU is defined in Definitiog.

Note thatvs is continuous. Let

0 if k; > O0foralli,

/ H -1 .
Vi(Rdiagks. ... kn-1. OR™", p) := {vz(— min{ky, ..., k,_1}) otherwise.
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Letk > 0, letn, ¢, andp be unit vectors such that- r = 0, and letR be an orthogonal matrix such
thatRe, = p. Let us check if condition<) holds. Ifn - p > 0 then for alls > 0 small enough

. —kn-p 1 1 kn - p
v’ Rdiag| ————,~I1,_1,0) R *,p| = e S
( g(l—skn-p P ) p) vz(l—skn-p

> "P k) zvknnn-p. (5.2)
l—skn-p

If n- p <0ands > 0is small enough then
—kn - 1
V' | R diag #, -I1,_1,0 RL pl=0=vk,n, t)n-p.
1—skn-p s
By Theorenj 4.10, we now conclude thatis a barrier for. O

5.1 Necessary and sufficient conditions for distance representation

Let us introduce the following notation: For a vectotet x™ := {y € §"1 : x .y > 0} and
x~ = (—x)T. Recall thatc* is the set of unit vectors orthogonaltoFor given velocityV, k > 0
and mutually orthogonal unit vectorsand: let

V(R diag(— 52— 11, 5, )R, p)

v[V]k,n,t):= inf lim ,
pettnnt s—0F n-p
~ V(Rdiag— 22— 11, 5, R, p) ©3
v[V]tk,n,t) ;= sup lim P ,
pertnn—s—>0% n-p

whereR is an orthogonal matrix such th&e; = r andRe,, = p.

Condition(%%). We say that velocities andV satisfy condition %) if for all k¥ > 0, and all
mutually orthogonal vectons andz, v(k, n, t) is nonnegative and

v[V]k,n,t) =v[V]k,n,t) =vk,n,t).

REMARK. We are about to show that this condition is sufficient, and close to being necessary, for
a velocity V to give a distance representation to a veloeitiNonetheless, it can still be weakened

a bit (and still remain sufficient). Requiring thatk, n, ) is nonnegative and tha{V](k, n, t) >
v(k,n,t) andy[V](k, n,t) < v(k, n, t) is necessary. But instead of equality it is enough to require
that for everykg > 0, and mutually orthogonal vectorg andzg, there exists a neighborhodd

of (ko, no, 7o) such that either for allk, n, ) € U such that # 1, or for all (k,n,t) € U such

thatn # no, [V](k,n,t) < vk, n,t) andv[V](k, n,t) > v(k, n,t). Or better yet, it is enough to
require the following: For every smooth curpe: (—a,a) — $"~! such thatp’(0) # 0, zero is

an accumulation point of the sgt: (|0'(s)|, ;7(?) p(s)) € W}. HereW is the set ofk, n, 1) for

which o[ V](k, n, 1) < v(k,n,t) andv[V](k, n, 1) > v(k,n,t). Theorenj 5.3 would remain true if

the weakened condition was used. Heuristics is that, knowing the velocity on a dense set of points on
aC? evolving curve determines the velocity at every point. These small improvements of condition
(%) are somewhat cumbersome, so we chose to#sk)instead, and occasionally comment on
possible improvements.
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THEOREM5.3 Letv be a velocity andV a velocity that satisfies conditiof (.1). If condition
(¥ %) holds thenV gives a distance representationito

Proof. ((@)= (b)) The proof is the same as in Theorem 4.10 since condigiox ) implies ).
()= (a)) We begin as in the proof of Theorém 4.10. Assume that claim (b) holds. &€
andr € (0, T) be arbitrary. Lety := v (x, ) and letp € N,I; be arbitrary. From@]5) we have

di(z,t) =—p- %(x, t). For alls € (0, o), by the assumption that (b) holds, we have
Y 2
—p~¥(x,t)+F(D d(y +sp), p) = 0. (5.4)

Consider first the vectorg orthogonal ton. In ) we computed thaD?d(y + sp) =
R diag(0, %In_z, 0)R~! for an appropriate orthogonal matriX. From condition ) it follows

that F(D2d(y + sp), p) = 0 and so—p - %—‘f(x, t) > 0. Since the same holds jf is replaced by
—p we conclude that

ad
p- a—‘f(x, t)=0 forallp e N,I; suchthak - p =0.

If k¥ = 0 this completes the proof, sine€0, T) = 0. So we can assume thiat= 0. We know by
now thatnN%(x, t) = vn for some real numbar. From ) it now follows that for alp € N, I3,

—Up-n+ F(Dzd(y +sp), p) = 0.
Using (3.4), dividing by: - p and taking the infimum and the limit yields

. kn- —
e V(R diag(— 1=175=. $1,-2, OR ™, p) =
pettnnt s—0F n-p -

Assumption ) impliesv(k, n, t) > v. On the other hand, dividing byn - p and repeating the
procedure yields-v(k, n, t) > —7v. ThereforenN%(x, t) =vn =vk,n,t)n. a

We are now about to prove thakfk) is, in a sense, almost a necessary conditionfdio
give a distance representation #o This time we require that every circle can evolve for short
time. More precisely, we require that for every cirgle: [0, 1] — R” there existsT > 0 and
¥ e C4([0,1] x [0, T], R") that is aC? embedding for every € [0, T] such thaty (-, 0) = y,
and such that the curveds = ¥ ([0, 1], ) move with velocityv in the classical sense. Under that
assumption the following theorem gives almost the converse of Théorgém 5.3.

THEOREMb5.4 Letv be a velocity by which every circle iR” can evolve for some time, arid
be a velocity. IfV gives a distance representationitthen

1° 9[V] = v > o[V].

2° v is a nonnegative function, nondecreasing.in

3 Foralle > 0, kp > O, all mutually orthogonal unit vectorsg, ro, and every open
neighborhood/ of (kg, no, fo) there existgk, 7, 7) € U N (R x sparino, fo}) such that

o[V]k, 7, 1) < vk, 7, 1) +¢
and there existé, n, t) € U N (RT x sparng, to}) such that

Q[V](k’ n, L) 2 U(]S, n, E) — E.
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COROLLARY 5.5 Letv be a velocity by which every circle iR” can evolve for short time. Lét
be a velocity that satisfies conditign (5.1) such th{at] andv[V] are continuous functions. Then
V gives a distance representatiorvtd and only if condition g ) holds.

Proof of Theorem 5.4. Let v be a velocity for which every circle has a short time evolution #nd
a velocity that gives a distance representation.to

Claim I°.  From the proof of Lemmp 4.11 we see that conditiof (jolds. By combining<€) and
the definitions o[ V] andv[ V] one obtains

vik,n,t)n-p

v[V]ltk,n,t) > inf ————— =v(k,n,1),
pettnnt n-p
k,n,t)n -
v[V](k,n,t) < sup vk.n.On-p =v(k,n,t).
pettnn- n-p

Claim2. Assumev(k, n, t) is not a nondecreasing function/afThen there exists an open $ét
such that for allk, n, r) € U, g—,';(k, n,t) < 0. Therefore, since[V] is nondecreasing with respect
tok andv[V] > v, there exists an open subgétof U ande > 0 such that[V] > v+ e onU".

For (ko, no, o) € U’, by assumption on the velocities considered, there exists a gircle
[-L, L] — R", parameterized by arc length, such tp&t0) = 7o andy”(0) = kono, and there
existsy € C2([—L, L] x [0, T1], R"), the motion of the curves for some timeTy. Let I} :=
Y ([—L, L] x {t}). We now construct a perturbation ¢fsuch that condition (b) of the definition of
distance representation holds, while condition (a) fails.

Since the evolution of a planar curve by a velocity that has the direction of the curvature
vector remains in the same plane, we can assume that the imagdie$ in R? x {0}. Since
in the argument that follows all the vectors lie in that plane, we only write their first two
coordinates. In a neighborhood ¢, 0) one can represent the motion as the graph @?a
function f : [-3C1, 3C1] x [0, To)] — R for someC1 > 0 andT» < Ti. We can assume that
f(0,0) =0, f¢(0,0) = 0. The curvature and the normal vectortoat (x, f(x)) are

o el po CheD
A+ %2 J1+ 2
Near (ko, (0, 1), (1, 0)), for normal vectors in the plane, the functiotk, n, ) can be written as
a function of onlyk andn1, whereny is the first component oif. More precisely let(k, n1) =
v(k, (n1, \/1 —n3), (\/1 — n2, —ny)). Sincef represents the motion by velocity

~ |fxx| _fx
ft:\/1+fxzv<(1+f)?)3/2,m). (5.5)

By assumption orv there exist$; > 0 such that if(k, n1) € B((kg, 0), §1) then g—,f(k, ny) <0
andv[V](k, 7, f) > v(k,n1) + &, whereri = (n1,n2) is a unit vector withnp > 0, andr is a
unit vector orthogonal ta. By making C1 and 7> smaller if necessary we can assume that on
[-3C1,3C1] x [0, T2],

fex > ko/2, |fx] <1, (k,n1) € B((ko, 0),81/2) and xf, > 0if |x| € [C1, 3C1]. (5.6)
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By rescaling
Jnew(x, 1) 1f(C 1) Unew(k, n1) Lo(t
) = ) ) v ) = v\ =,
newlX C1 1X ne ni C1 C1 ni
we can also assume th@f = 1 andf,, < 1on[-3, 3] x [0, T3].

To construct the perturbation we use an even cut-off funafienC>° (R) that has the following
propertiesn(x) = 1 forx € [-1,1], n(x) = 0if |x| > 2 andxn’(x) < 0 onR. Furthermore
Inllc2 < 10 and lim._, - n”(x)/(—n'(x)) = oo. Letc := 4(maxg((k,,1),s,) (|17 + |DD])). Consider
now the perturbation (with; > 0 to be determined)

g(x, 1) 1= f(x. 1)+ e1in (1j:ct>' (5.7)

Then

X 1
= fx + ety :
8¢ = Jx +eain <l+ct>l—|—ct

~ fite X eatr X cx
S =TI 1 W\ 1T¥ e A+ ct)?’
8xx _ fex + (1—T-lctl)2 n”(l-i)fct)
2\3/2 —
d+ 8x) / (l + fx2 + 16—':; U’(ﬁ)(zfx + fTﬂan/(lict)))
By continuity, using[(5J6) we can now choasgee (0, 1) so that for all(x, 1) € [-3, 3] x [0, T3],

32"

8xx —8x
<(1+ 2 it gz> € Bk, 0 5. (58)
X

v( 8xx —8x )-I-S - 8t (5.9)
(1+8d¥%" 1+ 42 V1+g2

Using the fact that lim_, - n”(x)/(—7n'(x)) = oo we now choos&, € (0, 1/2) small enough so
that if x /(1 + ct) € [2 — 282, 2] then

gxx > fxx
(1+g2)%2 7 (14 2%

It follows that forz e [0, T3], where T3 := min{8>/c, T2}, the inequality [(5.7]0) holds for all
x € [-3, -2+ 2] U[2 — 82, 3]. Note that for = 0 andx € [—2 + §2, 2 — 82],

~ 8xx —8x
—J1+ 2v< , )>0. 5.11
8t 8x 1+ 83)3/2 A1 e2 g)% ( )

By continuity there existd, € (0, 73) such that the above holds for alle [0, T4]. For x €
[—3, =2+ 682] U[2 — 62, 3], using [5.ID) we get

/ - 8xx —8x
¢ SNA+D7 i g2
~ Srx —8x c
>g - 1+f2v< b -
CVETR A+ Y 1 g2) 4

(5.10)

\/1+ fxz—\/1+g§

’
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which by subtracting (5]5) and using the definitiorca$

s

- 1+ct) (1+cr)? 4 J1+¢ J1+f2
C

_§|fx_gx|

> eqtc

, X
- x T &x Z 0.
n (1+ct)‘ clfx — &l
Combining this with[(5.B) we get the following bounds on the normal velocity of the graph of

f)( 8xx —8x ) te> 8t S f)( 8xx —8x > (5.12)
A+ 292 [Tt Tire . \@r e [Ire

Lety : [—L, L] x [0, T4] — R" be the perturbation af in which the part of: given by the graph
of flj—a.3) is replaced by the graph @f Let I} := ([~ L, L] x {t}). The normal velocity of the
curvesl; is equal tow outside of the region given by the graphgofin the region given by the graph
of g the curvature and tangent line are py [5.8) in the region wiigrgé > v + ¢. That, in addition
to (5.12), after a calculation like the one in the proof of Thedrem|4.10, yields for somegsmall

di(z,t) + F(D%d(z,1), Dd(z,1)) >0 if 0 <d(z,1) <&, t € [0, Tu].

Hered(z, 1) = dist(z, I}). But from ) it follows that the evolution df; is not with velocityv;
thereforeV does not give a distance representation.to

If there is a point at which is negative, thew is not nondecreasing ik, sincev(O, -, -) = 0.
But we have just shown thatmust be nondecreasing in

Claim 3. Assume that claim 3does not hold. There are two subcases with analogous proofs.
Assume that there exigt > 0, kg > 0, and mutually orthogonal unit vectorg andz and a
neighborhood/ of (kg, no, to) such that for allk, n, t) € U N (RT x sparino, fo}),

v[V]k,n,t) > vk,n,t)+e.

Subcase (i) There existsk, n,t) € U such thatg—,'i(k, n, t) > 0. Without loss of generality, we can
assume that® (ko, no, to) > e1 > 0 and that}? > e1/2 onU. Lety : [-L, L] - R" be acircle,
parameterized by arc length, such tha(0) = 1o andy”(0) = kono. Let n(k, n, r) be a smooth,
nonnegative function supportedifi € U suchthaty;, < s1/4. Letd = v+n. Note thatb is smooth
and nondecreasing inand that if we choos®’ small enough then[V](k, n, 1) > v(k,n,t) +¢&/2

for (k,n,t) € U N (RT x spanno, to}). By Lemm there exié,lf,},e[o,m, evolution ofy with
velocity ¢ for some time7y > 0. Again, by a calculation like the one ip (#.1), one shows that
condition (b) is satisfied fo{rf}}te[o,rl], although the curve does not move with veloaity

Subcase (i) Assume tha%(k, n,t) = O forall (k, n,t) € U. Then the construction of the proof
of claim 2 yields the desired result. O

5.2 Finding a distance representation for given veloaity

The task is now to find for what velocitiesk, n, r) there exists a codimension 1 velocity that gives
them a distance representation. So far we have shown th, ifi, ) has a distance representation,
and all circles have a short time evolution fythen
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e v(0,n, 1) = 0,v is nonnegative and nondecreasingin
e There exists a constagtsuch thaw(k, n,r) < Ck fork > 1.

Let us call velocities that satisfy these two conditioasimissible Note that ifv is admissible then
given a circle, if we think ofv as a velocity in the plane of the circle, it satisfies the conditions of
Theorenj 2.4. Thus every circle has a short time evolution by velocity

Recall that if V gives a distance representationutdhen V is also a barrier. If there exists a
minimal barrier for velocityv, then, in the light of Lemmp 49, it would be the best candidate for
giving a distance representation. For a velodityo be a barrier (for velocity) it is necessary that
for every point on an arbitrary smooth hypersurfatahe velocityV is greater than the projections
on the outward normal vector of the velocities of all the curves, contained in the interior of
that touch?" at the given point. Hope that this condition is sufficient forto give a distance
representation to motivates the following definition.

Given a nonnegative velocity, let us define a candidate for the minimal barrier. lebe
a symmetric matrix, ang» a unit vector. Then the matris/ — p ® p)X(I — p ® p) can be
written in the formR diag(ky, . .., k,—1, )R, wherek, ..., k,_1, 0 are the eigenvalues and
R =[l,...,1,—1, p]is an orthogonal matrix. We then define:

o Ifk; >0foralli =1,...,n—1then

—K
VIvl(X, p): sup n~pv< ,n,t).
nep- n-p

tenlﬁpl
K >k

o If k; < O for somei then

—K
VIvl(X, p):= sup n-pv( nt>
n-p

nept
tenlﬁpl
k<K <0

wherek :=1T(I = p@ p)X(I —p® p)t = Y1t kil; - )2

Note thatV[v] is a lower semicontinuous function with valuesinoco, oo]. Also note thatV[v]
is nonincreasing in the first argument and satisfies the condjtion (5.1). Let us also point out that if
is nondecreasing ik then it is enough to tak& = k (provided thak < 0 in the second equation).

LEMMA 5.6 LetV be avelocity and let(k, , t) be a nonnegative velocity such that every smooth
curve in every two-dimensional planelRf has a short time classical evolution by veloaityThe
following statements are equivalent:

1. V is a barrier for.
2. V> V[l
3. Condition ¢) holds.

Note that if v(k,n, t) is a velocity nondecreasing ik, then the required short time classical
evolutions exist by Lemnia 2.4.

Proof. (1= 2) As explained before the definition &fv], this implication is very intuitive. Let
V be a barrier fon. Assume thaV 2 V[v]. Since the two cases that can occur are similar we only
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consider the first one. So we assume that there are nurhblensi = 1, ..., n — 1, an orthogonal
matrix R = [l1, ..., l,—1, p], unit vectorsn andt such that: - p < 0,7-n =0,7-p =0, and
K >k =Y""ki(; - 1)? such that
. —K
V(Rdiagky, ..., kn-1,O0R™:, p) <n-pv ( .n, t) . (5.13)

Let 7p be a smooth compact hypersurface such thatly, p is the outward normal vector 1y at
0 andS = Rdiagks, ..., k,—1, 0)R~1 is the matrix of the shape operator at 0. lgte a smooth

curve in the plane spém, r} such that near Gy is the intersection of the plane sgan:} and 7p.
Note that the tangent vector @ at 0 is¢t and that the curvature gf at O isﬁ t-St = ﬁ.
Therefore there exists a curyee C*°([0, L], R") in the same plane, and inside the cupgesuch
thaty (0) = 0 and with tangent and curvaturek at 0.

Let M = 2maX.ery 1S, (x) . By convolving V with a smooth cut-off function with small
support, and adding a small constant, it is easy to construct a furiétiorC (Sym(n) x $"~1, R)

that is smooth, degenerate elliptic and if the norm of the first entry is less\higmenV > V, and

- . —K
V(R diagks, ..., ky,—1, O)R_l, D) <n-pv< ,n,t) .
n-p

By Lemma 2.4 there exists a classical short time evolutjas,, 7,)};, of Yo by velocity V. Let
{($2:, T1)}; be the generalized evolution &% by velocity V. Then, since/ > V on Ty, for at least
a short timef2, C £2,. By assumption there exists a short time classical evolufiby},, of the
curvey. SinceV is a barrier for, I C £2;. Thereforel; C £2;. But then

~ . —K
V(R diagky, ..., kn-1,OR™ L, p)=n-pu ( .n, t) .
n-p

Contradiction.
(2= 3) Assume thaV > V[v]. Sincek = 1 condition £) now becomes

. . —kp - 1
lim v (Rdiag( —L2- " 21, 5,0)R"L, p) = vk, n, 0 - p,
s—>0t l—skp-n s
whereR = [t, 12, ..., 1,1, p]. Let us consider the cage p < 0. SinceV > V[v],

. . —kp-n 1 1
lim V| Rdiag{ ———, -1,_2,0) R,
s—>0F < g(l—skp-n s 2 ) p)

. s —k
> lim sup n-pv|——n,t]),
s—0t nep- .
fentnpt

wherek = 1:f%l.n (t-H?+ (1~ (t-H?), and the above is

k
z limn-pv|—,n,t)=vk,nt)n-p.
s—>0+n P <1—skp-n " > (k,m, )n - p

The caser - p > 0 is analogous.
(3= 1) This implication was proven in Theorgm 410. O
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LEMMA 5.7 Letv be an admissible velocity. ifdepends only ok or if v(k, n, t)/ k is a uniformly
continuous function fok > 1 thenV[v] is continuous.

The proof of this lemma is straightforward, but somewhat lengthy, so we omit it. The conditions for
continuity of V[v] given in the lemma are not optimal, but as the next examples show, the condition
given cannot be significantly improved in general.

EXAMPLES. 1. Letn € C*(R) be a nonincreasing function such thgk) = 1 if x < —1 and
n(x) = 0if x > 0. Letv be a velocity inR? given by
v(k,n) = kn(kes - n).

Then V[v](diag1, 1, 0), e3) = —1, while V[v](Rdiag(1, 1,0)R~2, p) = 0 for p nearesz (but
p # e3) and R an orthogonal matrix close tb such thatRes = p. So V[v] is discontinuous at
(diag(1, 1, 0), e3).

2. Letv(k,t) = kn(k ez -t). ThenV[v] is discontinuous atdiag(—1, —1, 0), e3).

THEOREM5.8 Letv be an admissible velocity.

1° If V[v] is continuous anad = o[V [v]], that is,

. . n-p —k .
v(k,n,t) = inf lim sup v =—.,n,1 (5.14)
pettnnt s—>0t  jept n-p \n-p
featnpt
k<0
andv = v[V[v]], that is,
. . n-p —k .
v(k,n,t) = sup lim _inf_ vl =—.n,t (5.15)
petton- s—0t  nep n-p n-p
featnpt
wherek = —1_";’,;5[7 (t- D)%+ %(1 — (r - 1)?), thenV[v] gives a distance representationito

2° Regardless of whethéf[v] is continuous, if there exigl, 19, no, ¢ > 0, and a neighborhood
U of (ko, no, tp) such that either

o[V[v]] >v+e onUN R x sparing, to}) or
v[V[v]] <v—¢ onUN R x sparing, fo}),

then there is no velocity that gives a distance representation to
Note that for any nonnegativg v[V[v]] = v > v[V[v]].

Proof. 1° SinceV[v] satisfies condition+# %), by Theorenj 5]3V[v] gives a distance represent-
ation tow.

2° Assume that there is a velocity that gives a distance representation tdhenV is a barrier
for v, and therefore by Lemnja $.&, > V[v]. Thereforev[V] > v[V[v]] and v[V] < v[V[v]].
Hence, eithed[V] > v+e onUN (R x spanno, to}) orv[V] < v—e onUN(R™ x sparino, to}).
Theorenj 5.4 now implies that does not give a distance representation.tGontradiction. [
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5.3 Classification of velocities that have a distance representation

The obvious question is what velocitiesatisfy the conditions of the theorem. We present a partial
answer to that question. But let us first introduce some useful objects.

DEFINITION 5.9 Letf : [0, 00) — [0, o0) be a continuous function such thAt0) = 0 and for
which there exist€ such thatifx > 1 thenf(x) < Cx. Forx € [0, o) let
Lf(x):=x inf &, Lf(x):=x inf @, Uf(x):=x sup &,

ae0,x) o ae(x,00) o ae(x,00) o
and for functionsf for which f(x) < Cx forall x > 0 let

Uf(x):=x sup M.
ae(0,x) ¢

We now list some properties of the mappinigsL, U andU. Their proofs are elementary.
LEMMA 5.10 Letf be afunction as in the definition above.

1. The functiond. f, L f, U f andU f are continuous.

2.LF<f,Lf<fUf>fandUf > f.

3. The functionsL f (x)/x and U f(x)/x are nonincreasing (far > 0), while the functions
L f(x)/x andU f(x)/x are nondecreasing.

4. The statements thétf = f andU f = f are both equivalent to the statement tiigt)/x
is a nonincreasing function. Likewise, the statements that= f andL f = f are both
equivalent to the statement thatx)/x is a nondecreasing function.

5 LUf=UfandULf = Lf (forall £ inthe domain ofL).

THEOREM5.11 Velocityv(k) has a distance representation if and only(#) = Ck for some
nonnegative constaut.

Proof. Assume that (k) has a distance representation. Singe isotropic every circle has a short
time classical evolution. Therefoiehas to be admissible. In particular there exiSis> 0 such
thatv(k) < C1k for k > 1. Let us compute:

v[V[v]l(k,n,t) = inf lim sup
pettnnt s—0t  jept

feiitnpt

k<0

. . 7 kn- 1
= inf lim supn pv<~n P )
pettont s—>0 jept N P n-p l—skn-p

ii-p kn-p ([ -1)? 1—(7-1)2
v _
n-p \n-p@—skn-p) sn-p

. . k
= inf lim sup k8 v(a)
B<€(0,1) s—0t “e(l—kfkﬂvoo) o (1—skB)

. k — —
= inf sup —v(a) = LUv(k) = Uv(k).
£eO.D) gekp,00) &

In a similar fashion one computes thgt/[v]] (k, n, 1) = Luv(k). Note thatV[v] is a continuous
function, by Lemm@5]7. Since, by Lemina §.2DV [v]] and v[ V[v]] are continuous, fop to have a
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distance representation it is necessary @#fv]] = v = v[V[v]]. ThereforeLv(k) = v = Uv(k).
Lemma[5.ID now implies thai(k)/k is both nondecreasing and nonincreasing ifTherefore
v(k) = Ck for someC.

On the other hand, if(k) = Ck then the above computations yiaifiV[v]] = v = v[V[v]].
Since V[v] is continuous, Theoretn §.8 implies thathas a distance representation. We should
remark that a distance representatidi( in fact) for v(k) = Ck was obtained first by Ambrosio
and Soner[1]. |

To describe which velocities(k, t) have a distance representation, we introduce a couple of
notions. Forx € $" 1 letdualx) := {y € "1 :x.y =0}. Forasetd C §" 1 let dualA) :=
U, ea dualx) andS(A) == {x € s"~1: duakx) € duakA)}. Note thatd € S(A) and if A € B
thenS(A) € S(B). Also note that ifA is symmetric with respect to the origin and (or) closed, then
so are dudld) andS(A).

Here are some examples that illustrate what the mappidges. IfA is countable the (A) =
A. If Ais acircle of radius 1 the§(A) = §" 1. Fore € " 1anda € (0,1),if A ={x € s"1:
|x - el = a}thenS(A) = {x € " L :|x-¢e| > a},andifA = {x € §* 1 : |x-e|l > a} then

S(A) = A. Noting thatS(A) = "~ \Uyggduam) duaky) also offers some insight.

On $2 the mappings is closely related to taking the convex envelope. A subset of a manifold
is said to beconvexif it contains all the shortest geodesics connecting any two of its points. For
A C S? denote byC(A) its Convex envelope. Let be again an arbitrary unit vectod, a subset
of $2Net, andA := A U —A. Let us prove that ifA is pathwise connected and closed then

S(A) =C(A)UC(-A). ) i

We first show that (A) € S(A) (= S(A)). Leta, b € A and letc be on the shortest geodesic
(arc of a circle) between them. It is enough to show that @wat dualA). So letx e duakc).

We can assume that ¢ duala) U dual(b) Sincec € duakx), the pOIntSa andb are in different
components 015’2\ dualx). SinceA is connected there exisis € A N duakx). Thereforex €
duaky) c duakA).

To show the equality it suffices to show th&tA) N et C C(A). Assume that € S(A) Ne™
Note thatS(A) = {x € 2 : (Vy € dualx)) sparix, y} N A # #}. We can also assume that? A
Let H = {y e duakx) : (3a € A) a € sparix, y} anda - y > 0}. SinceA is closed and ¢ A, H is
closed, and since € S(A), H U —H = dualx). Therefore there exisisc H N —H. Hence there
exista, b € A Nsparx, h} suchthatz - h > 0 andb - h < 0. Sincea, b, andx are all ine™, the
above implies that lies on the shortest geodesic connectirandb, and hence i€ (A).

One should note however that evendif ¢ $2 is symmetric with respect to the origin and
closed,S(A) is not always the union of the convex envelopes of its components. To illustrate that,
consider spherical coordinates §h(we take latitude inf- /2, 7 /2] and longitude in [027)). Let
A be the union of the geodesics connecting8, 0) to (r/4, 2rt/3), (7 /8, 2 /3) to (7 /4, 47 /3),
and(r/8, 4 /3) to (;r/4, 0). Then the north polez/2, 0), is in S(A), but not in the union of the
convex envelopes of the componentsdofwhich is equal tad).

THEOREMb.12 Letv(k, t) be an admissible velocity such thak, ¢)/k is uniformly continuous
for k > 1. If velocity v has a distance representation theh, ) = kf (¢) for some even function
f e €®(8"1[0, 00)) such that the seS({r : f(r) = O)\{r : f(z) = O} has empty interior.
On the other hand ib(k,r) = kf(¢) for some smooth nonnegative even functiérsuch that
S{t: f@) =0}) = {r: f(¢t) = 0} thenv has a distance representation, and it is giverv by].

Before we prove the theorem, let us present some examples:
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=

For any every € C*°(5"1, (0, 00)), v(k, t) = kf (t) has a distance representation.
The velocityv(k, ) := k(1 — (e1 - 1)2) has a distance representation. Hare- {1, —e1}.

n

3. The velocityv(k, 1) := k(e1 - t)? does not have a distance representation. For this velocity

A = dualer), while S(4) = s 1.
4. Letv(k,t) = kn(e1 - t), wheren € C*(R) is any even, nonnegative function such that

n(0) > 0,n(1) = 0, and ifb is the smallest positive zero gf thenn(y) = O forall y > b.

Note thatS(A) = A = {r € "1 : |e1 - t| > b}, sov has a distance representation.

REMARK. The condition given in the theorem can be improved a bit, using the remark given

before Theorern 53. For exampleifk, 1) = kf (t) for some even smooth functiofi such that
S{r: f(@®) = 0h\{r : f(¢r) = 0} is nonempty, but finite, then still has a distance representation.

Proof. Letv(k, t) be an admissible velocity such thai, )/ k is uniformly continuous fok > 1.
Assume that has a distance representation. Let us compute

kn - p(i - 1)? 1—(7-1)? :
ii-p(l—skn- p) si-p )

S[V[]lk,n, 1) = inf lim  sup ﬁ'%(
p n-p

ettnnt s—0t  jept
featnpt
k<0
To do this let us show first that for fixed unit vectorsp, r such thatp -t = 0,n -r = 0, and
n-p>0,

~ z 2 z 2
im sup n pv(~ kn-p(-t) _l ~(t 1) ,f>
s—>0t  jept n-p \n-pd—skn-p) Sn - p
fentnpt
k<0 n kn
= sup pv(~ p,t). (5.16)
pept - D n-p

That LHS > RHS follows, by takingg = ¢, from monotonicity ofv. To show that LHS< RHS
choose a sequeneg™\, 0 and sequences of mutually orthogonal unit vecfoasmds; such that

fz,-~pv< kn-p@i-0®  1—(f-0? ;_>
ii-p(l—sikn-p)  sii-p )

LHS = Iim

i—»oon-p

Sincev is even in the variable, we can assume that > 0 for all i. Note that(7; - 7)2 — 1 and
hencef; — t asi — oo. That combined with uniform continuity af(k, ¢)/ k yields

R kn - -
LHS < lim 2P (= np 7
i—oo n-p n-pQ—sikn- p)

R kn-p .
= lim uv( " p,ti)gRHS

i—~oo n-p 7

fij - p

Therefore

v[V[U]] (k, n, t) = |nf Sup ﬁ i pv(kn : P’ [)

pettont jeprn-p \ NP

. k — _
= inf sup —v(a,t) = LUv(k,t) = Uv(k,t).
Be(0,1) ae(kB,00)
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Note that uniform continuity ob)(k, r)/k for k > 1 implies thatUv(k, t) is continuous. Since
v[V[v]] is continuous, Theorein 5.8 implies that= v[V[v]].
Sincev = Uv the functionu(k, ¢)/k is nonincreasing it for every fixeds. That enables us to
definew () := limy_ o« v(k, t)/ k. Uniform continuity ofv(k, )/ k implies thatw is continuous.
LetA = {r € "1 : w(r) = 0}. We now compute[V[v]] (k, n, 1):

ﬁ~pv< kn-p (- 1)? +1—(f~t)2 )

v[V[v]lk,n,t) = sup lim _inf 7 p (Lt skin pD S pl

pEtJ-ﬁn*SHO+ ~n~Ef’~ n-p
ten—Np

For fixedk,n,t andp suchthat: -t =0, p -t = 0 andn - p < 0 there are two distinct cases:

Case (i) Assume thap € duakA). Then there existq p) orthogonal tgp such thatw (7 (p)) = 0.
Hence

. . - kn-p(i-1)? 1—(7-1)? .
lim _inf n pv(~ nop(t-D) ~( ) )
s—0t  fi€ep n-p \n-p@Q+skin-p|) sin - p|
fentnpt
. . i - kin - p| (F(p) - 1)? 1—(i(p)-1)?2 .
< lim i n p|v<~|n pl((p)-1) n (~(p) )J(p))
s—>0t iei(pytnp= In - p| \ |7 - pl(L+ sk|n - p|) sin - pl

< lim lim
s—>0t a0+ |1 - p|

=0.

o kln-plF(p)-n2 1—(@{(p)-H2\1 -
”(( Atskln-p) s )5,,(,)))

Case (i) Assume thatp ¢ duakA), which is equivalent to dugb) N A = @. Let m(p) =
min{w(x) : x € duakp)}. Note thatm(p) > O, sincew is continuous, dudp) compact, and
dualp) N A = @. We claim that

. . i - kn - p(f-1)? 1— (-2 . . i - kin -

lim  inf " pv(~ nopl-1) + ~( ),>= inf i p|v< |~n pl,t)~

s—»0t #ep” n-p \n-pQ+skin-pl) sin - p| iettnp= [n - p| In - pl
fealtnpt

We argue as when provinfy (5.3). That LHSRHS is established by taking= . To show that
LHS > RHS we consider sequencsgs\, 0, i;, andf; such thati; - p < 0,7; -, =0,f; - p =0,
and

LHS = lim

i—»oo n-p

ﬁ,--pv< kn-pGi-0? 1= (@i-n? f,)
i - p(1+sikln - p|) silii - pl T

We can assume that- 7; > 0 for all i. Note thatm(p) > 0, andv(k, t)/k nonincreasing irk,
imply that for allx in duakp), v(k, x)/k > m(p) for all k > 0. Thereforg1 — (7; - t)?)/s; must be
bounded. Consequently,— r asi — oo. The remainder of the argument is as{in [5.3).

We now also split finding[V[v]] (k, n, t) into two cases:

Case 2. Assume that € S(A). Then all unit vectorg orthogonal ta are in dua{A). Therefore
case (i) implies that[V[v]] (k, n,t) = 0.
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Case 2. Assume that ¢ S(A), which is equivalent to assuming that du&l\ duakr) # @. Let
P :=duakA)\ duakr). Cases (i) and (ii) combined now yield

W[V[v]](k,n,t) = sup inf |’7'P|U<k|n-p| t)

~ b
peEPNn~™ iertnp= In - pl In - pl

. k
= sup inf —v(a, t)
pePMn— ae(kln-p|,00) &

. k —
< sup inf —v(a,r) = Lv(k,1).
pePNn~ ae(k,00) 0

In both cases[V[v]] (k,n, 1) < Lv(k, 1) < v(k, t). Note thatLv(k, ) is continuous. Therefore, if
v were greater thaiv for some(k, 1), thenv would be greater thao[V[v]] + ¢, for somes > 0,
in a neighborhood ofk, n, t), wheren is any unit vector orthogonal to But that would contradict
Theoreni 5.B.

Thereforev = Lv. Since we already know that= Uv, we conclude, as in Theorll, that
v is linear ink for every fixed:. That is, there exists a nonnegative functipisuch thatw(k, 1) =
kf (t). Sincev is smooth,f must be smooth too.

Note thatA = {¢ : f(z) = 0}. Cases 1and 2 now imply that

0 ift € S(A),

y[V[vll(k, 1) = {kf(t) otherwise.

Assume thatS(A)\ A has nonempty interior. Lep be in the interior. Then in a neighborhood of
(1, 10), v is strictly greater than O, while[ V[v]] is equal to 0. Theorein 5.8 then implies thadoes
not have a distance representation, which contradicts the assumption we made. Tk&utfore
must have empty interior.

If, on the other handy(k, t) = kf (¢) for some smooth nonnegative even functipisuch that
S{t : f(t) = 0}) = {r : f(r) = 0}, then the calculations above show th@V[v]] = v and
v[V[v]] = v. Hence, by Theorein 5.8/[v] gives a distance representationto O

To computeV[v] for the velocities of the formu(k,7) = kf(¢) one can use the definition
of V[v] that now becomes: for real numbets i = 1,...,n — 1, and an orthogonal matrix
R = [lls LR ] ll’l—lv p]a

n—1
V[v](Rdiagks, . ... ky—1. O R~ p) := max—f (1) Y ki(li - 1)>.
tept P

For many velocities of the form(k, t) = kf (¢) for which V[v] gives a distance representation

to v, itis an open problem to determine whethgw] surroundsv.

PROPOSITION5.13 Letv be a velocity of the formv(k,n) = kf(n) where f € C®(s" 1,
[0, 00)). Thenv has a distance representation if and only i a constant.

Proof. Using the techniques of the previous two theorems one shows that
v[V[v]](k,n) = inf supkf ),
pent iiept

v[V[v]l(k,n) = sup inf kf (7).

pen—EP™
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Assume that has a distance representation. Note THi&f v]] andv[ V[v]] are continuous. Theorem
[5.8 then implies thab = v[V[v]] = v[V[v]]. Let m be the global minimum of, andn,, a point
for which f (n,,) = m, and letM be the global maximum of, andnj, a point where it is reached.

Assume thaff is not a constant. Then there existssuch thain < f(ng) < M. There are two
cases: lff (—ng) > m, then

v(l, ny) > inf+ min{ f (no), f(—no)} > m,
penm

which contradicta(1, n,,) = m. On the other hand, if (—ng) < M then

v(L,ny) < sup max{f(no), f(—no)} < M.

PEN Yy,

Contradiction. Thereforg must be a constant.
If fis aconstant, thenhas a distance representation by Thedrem|5.11. O

6. Some remarks on barriers of De Giorgi

Barriers were introduced by De Giori[10] as an abstract way to define weak (generalized) evolution
for a wide range of velocities. The notion of barrier that we have used in the previous sections is
not the same, but is very much related to the barriers that we are now about to study. Following
Bellettini and Novaga [5] (and references therein), let us introduce the barriers of De Giorgi and
related objects. LeF be a family of mappings from closed intervals, with nonnegative endpoints,
into subsets oR”. In the applications, given a smooth codimensienk > 1 velocityv, we denote

by F, the set of all classical evolutions. Given a lower semicontinuous codimension 1 velfocity
we denote byF,; the set of all classical evolutions by veloci#ywith their interiors, or to be more
precise, if{(£2;, 1) }s¢[a,b] IS an evolution (flow) by velocity’, then the mapping+— £2,U7; isin

F; . By ]—"§ and.F; we denote respectively the set of all smooth subflows and the set of all smooth

strict subflows (meaning that in Definiti.l the equality is replacedal/,by n < V(Dn,n)).
A mapping¢ : [0,00) — P(R") is called abarrier for F if for all f : [a,b] — PR") with
f € F the conditionf (a) € ¢(a) implies f(s) € ¢(s) for all s € [a, b]. We denote the set of all
barriers for givernF by B(F). For E a subset oR", we define theminimal barrier by

M(E, F)0) :=")i¢() € B(F) 1 E < $(0)}. (6.1)

We also define theegularized minimal barrieby
M E, F)(t) = | M(E + p. F)(). (6.2)

p>0

For a barriekp we definex ¢ (x, 1) := 1 — Ly (x) and
o) :=J [) @&-eo.
£>0s5e(0Vv(t—e),t+¢)

where for a set the setA — ¢ := {x € R" : dist(x, R"\A) > ¢}. Note thatp(r) < ¢ () for all 7.
We claim that

XP)* = x¢. (6.3)
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To prove that claim it is enough to show thaty)* = 0 exactly wheny¢ = 0. By the definition
of upper semicontinuous envelofg¢)*(x, t) = 0 iff there exists ar > 0 such thaty¢ = 0 on
OV (t —e), 1 +¢) x B(x, ¢). Thatis equivalent to saying thate () ¢ oy —e).r1e) (P (s) — ¢) for
somee > 0, which is equivalent tqy ¢(x, 1) = 0. A consequence of this claim is thatr) is open
for all ¢.
For a setA and vector: denote byr, (A) the translation ofA by x. The following lemma seems
to state the obvious; however, due to the fact that we have no estimates on the interval of existence
of short time evolutions by the given velocity, its proof is not trivial.

LEMMA 6.1 LetV(Dn,n) be a smooth codimension 1 velocity that may not be nondecreasing
in the Dn argument, but for which for every smooth compact hypersurface without boundary
embedded iR" there exists a short time classical evolution. iebe an open barrier iB(F;)).
Theng is in B(Fy).

Proof. Let {(£2;, Y1) }se[q,5) D€ @ smooth strict subflow by velocity such that2, U T, C ¢(a).
Letd(¢) := dist(£2,U 73, ¢ (¢)). Note thatd(a) > 0. Therefore it suffices to prove thétr) > d(a)
for all ¢ € [a, b]. Note that if{(£2;, 77)}; were a classical evolution then it is an easy consequence
of translation invariance of the evolution th&t) is nondecreasing.

LetA :={t € (a,b]: d() < d(a)}. Our goal is to show that is empty. Assume itis not. Then
we can consides := inf A. There are two cases:

Case 2. Assume thaty ¢ A, thatis,d(tp) > d(a). By assumptions ol there existg > 0 and
a classical evolutioni(£2;, ff,)}te[to,,ﬁg] of (§24, 13, for ¢ € [to, to + €). By makinge smaller if
necessary, sina@2;, 1;) is a strict subflow, we hav®, UY, c 2,UT, for € [to, to+¢). Therefore
d(r) > dist(2, U 17, 3¢ (1)) > d(tg) > d(a) fort € (1o, 1o + €). Therefore fo, to + ) N A = 0,
which implies thatg # inf A. Contradiction.

Case 2. Assume thaip € A. Thend(tg) < d(a). SinceT;, is compact and¢ (ro) is closed, there
existxg € 13, andyo € 3¢ (t9) such thaid(fg) = dist(xo, yo). Since{($2;, 77)}; is a continuous
evolution andd(t) > d(a) for all ¢ € [a, tp), there exist$ > 0 such thatB(yg, §) C ¢(¢) for all
t € (to — 8, 10). Let Ty be the sphere of radiug3 centered ato. By assumption oV there exists
e1 > 0 such that there exists a classical evoluticf;, 7;)}:0.¢) Of To by velocity V. By making
¢ smaller if necessary we can assume that for all[0, ¢), 2,U7T, C B(yo, 5/2). Let

U:= U{fy(f?a/z UTe2) : Iyl <8/2).

Note thatU is nothing else than the union of all classical evolutions at tigraf spheres centered

at yo + y of radiusé/3 beginning at timeg — ¢/2. Since all these spheres are at time- /2 in

¢ (to — €/2), we havell C ¢ (tg). But yg € U, which contradicts the fact thay € d¢ (70).
ThereforeA must be empty. O

Note that one can use this proof to show th&t) is a nondecreasing function. Also recall
that it was proven in Proposition 5.2 ofl [5] that¥(Dn, n) is a lower semicontinuous velocity
nonincreasing iMDn and¢ € B(Fy) thenx ¢ is a viscosity subsolution of the level-set equation
(that corresponds t8). The proof in[5] is carried out for equations for which the standard viscosity
solutions are applicable. The extension of this result (and of several others that we will quote) to a
larger class of equations, using the viscosity solutions of Ishii and Souganidis, is straightforward.
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LEMMA 6.2 Letv(k, n, t) be a velocity by which every circle can evolve for a short time &ral
codimension 1 velocity. 1§ is a barrier forF, (or ) then¢(0) is equal to the interior o$(0),
andg¢ is a barrier forF, (resp.fy).

Proof. This lemma follows from translation invariance of the evolutions by velocitiard V. Let
xo be a point in the interior o (0). There exists a circlép such thatg € Iy C ¢(0). There exists
8 > Osuch thaUyeB(O’ZS) 1,(Ip) is a subset of the interior @f(0). Let {I7};¢[0,5) be the evolution
of the circle by velocity for some timeb > 0. Letd(r) := dist(xo, I;). Note thatd is continuous
andd(0) = 0. Therefore there exists> 0 such that for all < ¢, d(t) < §. We can assume that
e < 8. Then

Bixo,e)x[0,e)c | )  wUnxic | sm <.

y€B(0,25), t€[0,¢) t€l0,¢)

Thereforexg € ¢(0). This implies that the interior o (0) is a subset o6 (0). But since¢(0) is
open and a subset ¢f0) we conclude thap(0) = int ¢ (0). N N

To prove the second claim Ien},e[aﬁ be a classical evolution by velocity. Assume that
I, € ¢(a),s € (a,b], and letxg € Iy. It is enough to show that for some> 0, B(xg, €) x
(s—es+¢) C UIE(S,&HS) ¢ (s) x {t}. The construction is very similar to the one above, so we
omit it.

The claim forV was proven in Proposition 4.1 of|[5]. It can also be proven analogously to the
proof above. O

6.1 Comparing minimal barriers for and V[v]

LEMMA 6.3 Letv(k, n, t) be a nonnegative velocity. Then for a boundedset
M*(E, Fy) (1) € M*(E, Fi, (@),

Proof. For fixedp > 0 let¢(r) ;== M(E + p, J—"f[v])(t). Note thaty (1) is open andp (r) = ¢(7).
It is enough to show thag(r) is a barrier forF,. Let now {I7};¢[,5] b€ a classical evolution by
velocity v such thatl, C ¢(a). Lets € (a, b]. Sincerl, is closed whilep (a) is open, there exists
8 > Osuchthatly, + 25 C ¢(a). By Lemm4 3. there exists > 0 such that/(x, s) := dist(x, I})
is aC? function onA = {(x,1) : d(x,1) € (0,0)}. We can assume thab 2< o. Note that the
function V[v] (although possibly not continuous) satisfies conditiof. (The calculation[(4]1) then
shows that

d; + V[v](D?d, Dd) >0 onA.

Let2, =TIy +6 = {d(-,s) < 8} and Ty := 082, = {d(-,s) = &}. Letdy(-, s) be the signed
distance tary. Note thatd. = d — §, therefore for alk € [a, b],

ad

3_:: + V[v](D%dy, Ddy) =0 on7,.
Consequentlyy; is a classical subflow by velocity[v]. Since¢ is an open barrier fo¥ [v], for
s € (a, bl we have2, U Yy C ¢(s). Thereforely C ¢ (s). O

The following corollary gives a criterion for wheAM™ (I, ‘§[v])(t) does not capture the
evolution by velocityv:
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COROLLARY 6.4 Letuv(k, n, t) be a nonnegative velocity by which every circle can evolve for a
short time. Ifv is not nonincreasing ik or there exisko, 7o, ng, € > 0, and a neighborhootl of

(ko, no, to) such that eithet[V[v]] > v + e onU N (R* x sparinog, to}), or v[V[v]] < v — & on

U N (R x spanng, fp}), then there exists a tim& > 0, a smooth curvdy, and its short time
classical evolutiorf I };c[o,7] such that for alt € (0, T],

I & M (o, Fyp@).

Proof. Letv be a velocity that satisfies the assumptions. i§ not nondecreasing inthen let/
be the circley from case 2 of the proof of Theore 4, whefé = V[v]. Let I; ands be from
the same case. It was shown that for sdme O,

di(z, 1) + V[v](D?d(z, 1), Dd(z,1)) >0 ifd(z,t) € (0,5) andz € [0, T],

whered(z, ) := dist(z, I}). Note thatl; ¢ M* (I, Fyw) ). The proof is analogous to showing
thatl'y C ¢(s) in the previous lemma.

If v is nondecreasing ik then lety and I} be as in case°3of the proof of Theore4. The
rest of the argument is the same as above.

In both cases the fact that C M*(Ip, Fy[.))(t) follows from the lemma above. O

The following theorem proves a generalization of De Giorgi's conjecturé[ ] is continuous
we show that the minimal barrier faris the same as the minimal barrier féfv], which is the
same as the zero-level set of the solution of the level-set equation. A consequencée/ithat
continuous and if there is no velocity that surroundsvhich is the same as saying thHafv] does
not surroundv) then the barriers do not capture the motion either. That is, there are curves whose
classical evolution by the given velocity is a proper subset of either of the regularized minimal
barriers.

THEOREM6.5 Letv be an admissible velocity anfd a bounded set. I¥[v] is continuous then
M (E, (@) = MA(E, Fo) (@) = {x - u(x,1) = 0},
whereu is the unique viscosity solution of the level-set equation

u; + F(D?u, Du) = 0,
u(x,0) = dist(x, E).

Proof. The equalityM*(E, .7:‘§[v])(t) = {x : u(x, r) = 0} follows from Corollary 6.1 of([5].

Lemm implies that it is enough to prove thet*(E, ]—"f[v])(t) C M*(E, F,) (). Since
E + p is openfor every > 0, it is enough to show thaté is a barrier forF, theng(¢) is a barrier

for ]-‘V<U . Since sublevel sets of subsolutions of the level-set equation are barriers (see Theorem 3.2
in [6], gor example), it suffices to show thatp(¢) is a viscosity subsolution of the level-set equation.
Note that, since is admissible, by definition of’ there exist€ > 0 such thaw(k, n, r) < Ck if

k > landV[v](X, p) < C(|| X|| +1). ThereforeF, (0, 0) = F*(0, 0) = 0. Lety be an admissible

test function such that¢ — ¥ has a maximum afxo, 70). There are four cases:

Case 2. If x¢(xo,10) = O then (sincex ¢ is upper semicontinuous)¢ = 0 in a neighborhood
of (xo, tp). ThereforeD s (xq, to) = 0, andy; (xo, o) = 0.
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Case 2. Assume thaj¢(xo, to) = 1, xo € d¢(tg), and Dy (xo, tp) # 0. The key observation is
the following: Sincep is a barrier forF, and evolution of a planar curve with velocityremains in
the same plane we find that for an arbitrary plahep is a barrier for. ol the set of motions by
velocity v in the planeP.

That is, we claim thap == ¢ N P € B(F;,)- This requires a proof sincg, contains only
evolutions of curves, whilé’-‘jp contains evolutions of curves together with their interiors. The
constructions required are simple and so we leave the proof to the reader. [emima 6.1 now implies
thato € B(}‘ljp). Therefore Theorem 5.1 inl[5] shows thato)* is a subsolution of the level-set

equation corresponding to evolution of curves in the pl&rgy velocity v:
w; + Fo(D?>w, Dw)=0  on P x [0, o).

Before we say what, is, for a given symmetric matriX such thatify 1 P thenXy = 0, and a
nonzero vectog € P, we denote by the eigenvalue 0%(1 —g®4¢)X (I —g®q) that corresponds

to an eigenvector iP orthogonal tag. ThenF, (X, g) = —|gq| sign(A)v(|A|, —Sign(L)g, 1), where

f is a unit vector in the plan® orthogonal tag. The functionF, has this (unusually complicated)
form, because was defined as the velocity along the normal vector to the curve, while when
applying the level-set approach (in the plahg the outward normal velocity is needed.

Note that we know thago = (x0)*. Letp = Dw/(xo\,to).
Subcase (i) Assume that all eigenvalues ﬁ;m(l — p ® p)D%Y(x0, 10)(I — p @ p) that
correspond to eigenvectors orthogonaptare nonnegative. Denote the eigenvaluegby. ., k,_1
and letn be a unit vector such that- p < 0. Lett be a unit vector orthogonal to bothand p,
and letk be as beforef := Z;’;ll ki(l; - )%, where fori = 1,...,n — 1,; is a unit eigenvector
corresponding td;. Let P := sparn, t}, and leto be as above. Letp be the restriction of/ to
P. Note that(xg, r9) € do(p) and

Dyrp(x0, to) = DY (xo, t0) - nn = | Dy (xo, to)|p - nn,

k
A(D?Yp(x0, 10), DYp(x0, 10)) = ——.
|n - pl

Sincey g is a subsolution of the level-set equation,

¥ (x0, 10) + Fy(D*Yp (x0, 10), D¥p (x0, 10)) < O,

k
Y (x0, to) + | DY (x0, t0)|p -nv (—n p,n, t) <0
Therefore ~
—k
¥ (x0, f0) + | DY (x0, f0)|  Sup n'PU( ,n,t) <0
nep- n-p
tEnLﬁpL

Hence, by definition o¥/[v],

(I — p® p)D>Y (xo0,t0)(I — p ® p) p)
| Dy (x0, 10)| ’
¥ (x0, 10) + F(D*y (x0, 10), DY (x0, 10) < O.

V1 (x0, t0) + | DV (x0, t0) | V[U]( <0,



MOTION OF MANIFOLDS 453

Subcase (i) Assume that there exists a negative eigenvalué ofp ® p) D%y (xo, 1) (I — pQ p).
Let p be as above. Let be a unit vector such that- p > 0, andr and P as above. Ifz andr were
such thatt < 0 (note that there exist suehandr) then sincey o is a subsolution of the level-set

equation i
k
¥ (x0, f0) + | DY (x0, f0)|p - 1 v( 5 p,n, t) <0.
Therefore _
—k
Y (xo, to) + | DY (x0, t0)|  SUp n'PU( ,n,t> <0.
nep- n-p
rentnpt
k<0
Hence

¥ (x0, 10) + | DY (x0, 10)| F (D (x0, 10), p) < O.

Case 3. Assume thab(g(xo, to) = 1 andxg ¢ ¢ (to). Then Dy (xo, 1o) = 0. We can assume

thaty (xo, 10) = 0. Sincey is admissible D2y (xo, o) = O. Suppose that, (xg, fo) > 0. Consider
(x, t) such that < 7 and|x — xg|%2 < 4(C + 1)|r — 1g]. Then

Y(x, 1) = ¥ (xo, to)(t — to) + o(]t — tol).

Therefore there exists> 0, small, such that if € (19— 8, 79) and|x — xg|2 < 4(C +1)|t — 10| then
¥ (x,1) < 0, which implies thaty¢(x, 1) = 0. Lety be a circle of radius/2(C + 1)3, centered
at xo, in an arbitrary planep, in R”. Since on the circlelx — xo|2 = 2(C + 1)8, y is in the set
¢(to — 8). Let{I7}re[ry—s.15) D€ the evolution of by C times the curvature, an@, the open sef;
encloses. Note thdt, is the circle of radius/s centered akp. As in case 2, pNPe B(]:,jP).
Therefore, SiNC§($2;, I7)}re[r—s.10] IS @ strict subflow by velocity|p, £2,,UT3, C ¢(t0). Therefore
X0 € ¢(tp). Contradiction. Thereforé, (xg, tp) < 0.

Case 4. Assume thatxq_s(xo, t0) = 1,x0 € 99(to), and Dy (xg, fo) = 0. The argument is
analogous to the one in casg 3 O

If velocity v is not admissibleV [v] can be infinite, which prevents us from proving the statement
of the previous theorem for such velocities. Instead we prove the following:

PROPOSITIONG6.6 Letv(k, n,t) be a nonnegative velocity such that for every smooth curve
contained in a 2-dimensional planeli there exists a short time classical evolution by velogity
andV be a (continuous) velocity such thit< V[v]. Then, for a bounded sét,

M*(E, F5) € M*(E, Fy).

ReEMARK. Recall that by Lemn@.SM*(E, Fv) € M*(E, ‘§[v]). It is not known whether for
the velocities aboveM* (E, F,) = M*(E, ‘§[v]) if V[v]is not continuous.

Proof. The proof of this proposition is analogous to the proof of (the appropriate statement in)
Theorenj 6.5. However, since we have no information on growthasfy more, there are some new
difficulties. Let¢ andy be as in the proof of the theorem (with[v] replaced byV). Proofs of
cases 1and 2 are analogous to the ones in the theorem. Let us consider:
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Case 3. Assume thatxg(xo, to) = 1l andxg ¢ 99 (10). Then Dyr(xp,t0) = 0. Let M €
C*°(]0, 00)) be such thaM’ > 0 andM (k) > maxv(k, n, 1) : k € [0,k], Inl=1t|=1, n-t =0}.

Let rog
._ S . 2
() = /O e 0= a0,

Using Lemmdllz we can assume thiate A.(F) and (xo, fo) = 0. Therefore for some ¢
+(F) andw € C*([0, 00), [0, 00)) such that lim_,g+ w(r)/r = 0, »’(0) = 0 and§ > 0, and for
all (x, 1) € B((xo, t9), 8),

[ (x, 1) — ¥ (x0, 10)(t — f0)| < f(|lx — x0]) + w (|t — 10]).
Leta := v (x0, tp) > 0. Considel(x, #) such that (Jx — xg|) < 3|t — 79| andt < #9. Then

Y(x, 1) <alt —10) + f(Ilx — xol) + @ (|t — to])
< —alt — ol + t(]x — xol)? + o(t — 10)
< —alt — o] + o(t — 19).

Therefore there existy > 0 such thatif € (r9—381, 10) andr (Jx —xo|) < 3|t —1p| theny (x, 1) < O,
which implies thaf(x, 7) € ¢(7). Let P be a 2-dimensional plane containing andy be the circle

centered atg with radiust ~1(251). Consider the motion by velocityin the planeP. As in Theorem
, one shows that N P € B(F;,). Fort € [to — 81, to+81) let I, be the circle in the same plane

asy, centered ato, with radiusr (1) := t~1(1g — r + 81). Note that-/ (1) = M( ) Therefore
the outward normal velocity of; is by definition of M less than—v. Hencerl; |s a strlct subflow
by velocityv|p.

Smceqb NP e B(}'< ), [y U 82 C o), wheres?, is the interior of the circld}. Therefore
X0 € ¢(1). Contrad|ct|0n Therefor&,(xo, 10) < 0.

Proof of case 2is analogous to the proof of case 3 O

In Theorenj 6.5 we have shown that for admissible velocities barriers are essentially equivalent
to surrounding. The proposition above can be used to show that minimal barriers do not capture the
motion by many of the velocities that are not admissible. Let us just illustrate how that can be
done on an example:

EXAMPLE. Letv(k,n,t) =k* witha > 1. Then

- 1 —( min _k)* if k; > 0foralli,
V[vl(Rdiagky, ..., k,—1,0)R™ ", p) = i=1..n-1 .
00 otherwise.

Let I'p be any circle of radius 1 ifR". Let I'; be the evolution of the circle by constant velocity
v 1= 2 fortimer < T := 3(1—27Y/%). Let

—( 1min 1ki)"‘ if k; > 0 foralli,

. -1 . i=1,..., n—
V(Rdiagky, ... kn-1, OR™, p) := —4(  min 1kl-) otherwise.
¥

Note thatV < V[v]. We claim thatl; C M*(Ip, F,)(t). Since{l}}:eo,7] is not the evolution
of Iy with velocity v this shows that the minimal barrier contains more than just the evolution of
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I'o by velocity v. To prove the claim, by Propositin 6.6, it is enough to show that for@any 0
small enough,/; € Mo+ p, ]—“f)(t). To see this, it is enough to show thatife B(J—'§) and
Io+p C ¢0) thenl; Cc ¢@r) forallt € (O, T).

So leto be asin Lemm@ 3|2 € (0, 0), 20 := I+ p/2, andYp = 320. Let{(£2;, T1)}refo, 7]
be the generalized evolution @2q, 7o) by velocity V. By Theorem 5.1 in[5]x ¢ is a supersolution
of the level-set equation, and hence by comparisan, 7; c ¢(z) for all ¢. So it suffices to show
thatl; € §2, forr € (0, T). Letd(z, t) be the distance fromto I;. Lett € [0, T), andz such
that0< s :=d(z,17) < o. Letx be the point onT; closest taz, p = Z — x, andn the unit normal
vector tol; atx. Note that at time, I3} is a circle of radius 1- 2r with curvaturek = 1/(1 — 2¢).

Then [3.5) implies

(kn - pD® it _
T@rskn-phe PSP
di(z, 1) + F(D?d(z, 1), Dd(z, ) = =2n-p+ 1 o7 )
P —ra— otherwise
1—skn-p

> 0.

By comparison, as in Lemnja 4.6, this inequality implies that §2, for ¢ € [0, T'). Therefore
I, C M*(To, F)(@).

6.2 Simple proof of the original De Giorgi's conjecture

The arguments above have dealt only with the motion of curves along the normal vector. To show
that the techniques we used can be extended to higher dimensions let us now prove the De Giorgi's
conjecture regarding the motion/efdimensional manifolds iR” by mean curvature. As mentioned

in the introduction, the conjecture was originally proven by Bellettini and Novaga in [6].

PROPOSITIONG.7 Letu(S, T) be ( times) the mean curvature vector aidDn, n) be (minus)
the sum of thé& smallest eigenvalues @in that correspond to eigenvectors that are orthogonal to
Then, for a bounded sét,

MA(E, F)) (1) = M*(E, F)(6) = {x s u(x. 1) = 0},
whereu is the unique viscosity solution of the level-set equation:

u; + F(Dzu, Du) =0,
u(x,0) = disty(x, E).

Proof. As before the second equality follows from Corollary 6.1[ih [5].

To prove M*(E, F,)(t) € M*(E, ]—“§)(z), recall thatw andV satisfy condition {). The proof
is then analogous to the proof of Lemma]6.3.

Let us now prove the opposite inclusioM*(E, J—‘§)(r) C M*(E, Fy)(@). Asin Theore5
it is enough to prove that i (¢) is a barrier forF, then x¢(z) is a viscosity subsolution of the
level-set equatiom; + F(D?u, Du) = 0. Note thatF, (0, 0) = F*(0,0) = 0. Lety be a smooth
test function such thaty — ¥ has a maximum atxo, f9). Cases 4, 3°, and £ are the same as in
the theorem. So let us consider

Case 2. Assume thaf¢(xo, 10) = 1, x0 € d¢(t0), and Dy (xo, 7o) # 0. Observe that if &-
dimensional manifold is contained inka+ 1-dimensional planeP, then its evolution by mean
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curvature remains in the same plane. As in the proof of The 6.5 one shows thap N
P e B(]—",jp). Let p = Dmto) andij, ..., A be thek smallest eigenvalues @¢f — p ®
) D%y (x0, 10)(I — p® p) with eigenvectors orthogonal ja Let!s, . . ., I, be a set of corresponding
unit eigenvectors and let := sparil, ..., Ik, p}. Sincep € B(F3 ), (x0)* is by Theorem 5.1 of

vlp e
[5] a subsolution of the level-set equation of the motion by mean curvatute in —trace/ —Dw®

Dw)D?*w(I-Dw®Dw) = 0. Recalltha o = (x0)* andyo— | p has a maximum atc, 79). We
also haveDvrp (xo, 10) = D/ (xo, fo) and tracel — p® p) D?yrp (xo, 10)(I — p®p) = A1++ -+ k.
Sincey g is a subsolution,

0 0
0> %(Xo, t0) — tracel — p ® p) D?yrp (x0, t0)(I — p ® p) = a—‘f —Out4a). O

7. Appendix
Consider the level-set equation

ur + F(D?u,Du) =0 inR" x [0, T). (7.1)
The functionsF that we consider have the following properties:

(F1) F € C(Sym(n) x (R"\{0})).
(F2) F isdegenerate ellipticthat is, for all symmetric matrice¥ andY and all nonzero vectors,

if X<Y then F(X,p)>F(,p).
(F3) F isgeometrigthatis, for allh > 0, u € R, all symmetric matriceX, and nonzero vectors,
FOX +up ® p, \p) = LF(X, p).

To define a viscosity solution for the level-set equation in this generality, we follow Ishii and
Souganidis. Given a functiof that satisfies (F1)—-(F3) we |€i(F) be the set of all functions
g € C?([0, 0), [0, 00)) such thatg(0) = ¢g’(0) = g”(0) = 0,g"(r) > 0if r > 0, and
g'(pD
[Pl

im g'(p))
p—0 |pl
It was shown in[[14] tha§ (F) # @.
We say that a functiop € C%(R” x (0, T)) is admissibleif for all points (xo, 7o) such that
Do(xo, tg) = 0, there exists a constabhit- 0 and functiong € G(F) andw € C([0, c0), [0, 00))
satisfying lim._,g+ w(r)/r = 0 such that, for al(x, ) in B((xo, t0), 8),

F(, p) = lim F(—1,p)=0.
p—0

lp(x, 1) — (x0, t0) — @1 (x0, 10) (t — t0)| < g(|x — xo|) + @ (|t — 10]).
Let A(F) be the set of all admissible functions.

DEFINITION 7.1 An upper semicontinuous functian: R* x (0, T) — [—o0, 00) iS aviscosity
subsolutiorof the equatiol) if for alp € C2(R" x (0, T)) and all points(x, ¢) such thau — ¢
has a local maximum &k, 7):

o If Do(x, 1) # 0theng; (x, 1) + F(D?p(x, 1), Dp(x, 1)) < 0.

o If Dp(x,t) = 0andy € A(F) theng;(x, ) <O0.

Viscosity supersolutions are defined analogously.
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The following modification of the definition has been used in the section on barriers of De
Giorgi. Given a functior: € C2(Rt, RT) we defineG.(F) to be the functions ig(F) that are less
than or equal t@. Note thatG. (F) # @. We defineA.(F) in the obvious way.

Following ideas from Proposition 2.2 in|[2] and Proposition 1.3in [14] we prove:

LEMMA 7.2 Letu : R" x (0, T) — [—o00, c0) be an upper semicontinuous function. kaio be
a viscosity subsolution of the equati?.l) it is sufficient that fopa#l C2(R” x (0, T)) and all
points(x, #) such that: — ¢ has a local maximum &, ¢):

o If Do(x, 1) # Otheng, (x, 1) + F(D?p(x, 1), Dp(x, 1)) < 0.
o lf Dp(x,t) =0andyp € A.(F) theng,(x,t) < 0.
An analogous claim holds for viscosity supersolutions.
Proof. Let u be an upper semicontinuous function that satisfies the condition above. To show
thatu is a viscosity subsolution of (7.1) it is enough to prove that for a funafioa A(F) and
a point (xg, o) such thatu — ¢ has a local maximum atxg, fo) and D¢(xg, tg) = 0 we have

¢ (x0, 10) < 0. So letp and(xg, fg) be as described. Singeis admissible there exigt € G(F), w
with lim,_, g+ w(r)/r = 0, ands > 0 such that, for al(x, ¢) in B((xo, to), 8),

lp(x, 1) — @(x0. 10) — @1 (x0, 20)(t — 10)| < f(|x — x0l) + @ (|7 — 10]).

Without loss of generality we can assume thae C1(R), w(0) = 0, w is even, ando(r) > O if

r > 0. Lety(x,t) := ¢ (x0, 10)(& — t0) + f(Jx — x0l) + w(t — t9). Note thaty — @ has a local
maximum at(xg, 7g). By perturbingf andw if necessary, we can assume that the maximum is strict.
Letg € G.(F). Fore > 0, consider the function

we(x,y, 1) i=ulx, 1) —@(y, 1) — g(lx —yl)/e.

Since(xg, o) is a strict local maximum af — @ there exists a sequence of local maxi(a y., t.)
of w, such thatc, — xo, y. — xo, . — to, andw, — u(xg, o) ase — 0. We need to consider
two cases:

Case . Assume thaDo(y,, t,) = 0 for somes. Thenx, = y, = xg andz, = ro. Letyr(x, t) :=
@(x0, 1)+ g(]x —xp|)/e. Note thatu — ¢ has a local maximum &k, 70) andys € A.(F). Therefore
by assumptiony, (xg, to) = 0. Buti, (xg, t0) = ¢ (x0, to).
Case 2. Assume thaDg(y,,t,) # 0 foralle. Let

Ye(x, 1) '=@(x — (xe — ), 1) + g(|xe — yel)/e.
Note thatu — . has a local maximum dt,, ¢.) and

8 & — / &
We 1) =By (ver 1), D¥eler 1) = f/(Ipeh L2
ot | pel
D2y (o 1) :f,,(|pg|)< Pe o Pe )+ f'(UpeD) <[_ Pe o Pe )
|Ps| |ps| |Ps| |Ps| |ps|

wherep, := y. — xo. Therefore

f (|P£|)I’ f/(|Pa|) Pe ) <0
| Pel | Pel

Taking the limit as= — 0, and using the geometricity &f and the fact thay € G(F), we obtain
@1 (x0, 10) < 0. O

@(ys, fe) + w/(ts — 1) + F<
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