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We are interested in the asymptotic behavior of the solutions of scaled reaction-diffusion equations
in bounded domains, associated with Neumann type boundary conditions, and more precisely in
cases when such behavior is described in terms of moving interfaces. A typical example is the case
of the Allen–Cahn equation associated with an oblique derivative boundary condition, where the
generation of a front moving by mean curvature with an angle boundary condition is shown. In order
to establish such results rigourously, we modify and adapt the “geometrical approach” introduced
by P. E. Souganidis and the first author for solving problems inRN : we provide a new definition of
weak solution for the global-in-time motion of fronts with curvature-dependent velocities and with
angle boundary conditions, which turns out to be equivalent to the level-set approach when there is
no fattening phenomenon. We use this definition to obtain the asymptotic behavior of the solutions
of a large class of reaction-diffusion equations, including the case of quasilinear ones and(x, t)-
dependent reaction terms, but also with any, possibly nonlinear, Neumann boundary conditions.
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Introduction

Front propagation phenomena can be observed in a lot of physical, chemical or biological situations:
flame propagation in combustion, phase transitions, evolution of populations or spreading of
diseases etc. From a mathematical point of view, they appear naturally in the study of asymptotic
limits of evolving systems, like reaction-diffusion equations or particle systems.

In the past fifteen years, a lot of work has been devoted to rigourously establish the connections
between reaction-diffusion equations or particle systems with the wavefronts they generate. In order
to do it, two kinds of difficulties had to be solved: the first key problem was to obtain a suitable
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“weak” definition for the evolutions of hypersurfaces with prescribed normal velocities, and in
particular with curvature-dependent velocities. Indeed, for the applications, the front propagations
have to be defined for all time but it is well known that, in general, smooth evolutions cannot exist
globally in time. The aim was both to define these motions past the development of singularities
but also to have a sufficiently flexible definition in order to be able to actually study the asymptotic
limits of reaction-diffusion equations or particle systems, which is the second difficulty.

Most of this work was done in the case of problems set in the whole spaceRN or in related
situations where no constraints were imposed on the motions. The aim of this paper is to consider
the case of reaction-diffusion equations set in bounded domains with Neumann type boundary
conditions which are associated to motions of fronts with angle boundary conditions on the
boundary. In order to do it, we are going to slightly modify and extend the “geometrical approach”
of P. E. Souganidis and the first author [6] to take into account this kind of problems.

In order to be more specific, we consider, as a model case, the example of the Allen–Cahn
equation associated to an oblique derivative boundary condition. The aim is to study the asymptotics
of the solutions of

uε,t −∆uε + ε−2f (uε) = 0 inO × (0,∞), (1)

whereO is a smooth bounded domain inRN , uε : O × [0,∞) → R is the solution and the
nonlinearityf is of the formf = W ′,W being a double-well potential. The so-calledAllen–Cahn
equationcorresponds to the choice

f (u) = 2u(u2
− 1) for u ∈ R. (2)

We consider (1) together with an oblique derivative boundary condition

∂uε

∂γ
= 0 on∂O × (0,∞), (3)

whereγ : ∂O × [0,∞) → RN is a Lipschitz continuous vector field such thatγ (x, t) · n(x) > 0
on∂O× [0,∞), n(x) being the unit exterior normal vector to∂O atx. Finally we impose an initial
data

uε(x,0) = g(x) onO × {0}, (4)

whereg ∈ C(O).
We recall that the Allen–Cahn equation was introduced in [1] to model the motion of the sharp

interface—the antiphase boundary—between regions of different phases of a material. InRN , the
formal analysis of Keller, Rubinstein and Sternberg [18] shows that the interface, i.e. the thin region
separating the subsets ofRN whereuε is converging to the stable equilibria of the equation, is
moving by mean curvature whenf is given by (2). A first rigourous, but partial, proof of this result
was proposed by Chen [7] (both inRN and in bounded open subsets ofRN with Neumann boundary
conditions) in the case when the motion by mean curvature is classical, i.e. the fronts are smooth
hypersurfaces evolving smoothly. This means in fact a small time result since it is well known that,
for the motion by mean curvature, singularities develop in finite time.

In order to rigourously prove and even formulate the result for all times, a suitable notion of
generalized motion by mean curvature is needed in order to define it past the development of
singularities. This question was solved in a rather general way by the “level-set approach”, first
introduced by Osher and Sethian [19] for numerical computations and then developed from a
theoretical point of view by Evans and Spruck [11] for the motion by mean curvature and by Chen,
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Giga and Goto [8] for more general, curvature-dependent motions. Then a different but related
approach using the properties of the (signed) distance to the front was introduced by Soner [20] and
further developed in Barles, Soner and Souganidis [5]; as we will see below, the distance function
to the moving front plays a key role in the study of the asymptotics of reaction-diffusion equations.
For a general review of these theories, their relationships as well as other related facts we refer to
Souganidis [21, 22].

Using the level-set approach and the properties of the distance function to the moving front, the
asymptotics of the Allen–Cahn equation was first proved rigorously and for all times in Evans, Soner
and Souganidis [10] and then by different methods in [5]. But the purely analytical methods of those
papers were not very flexible and therefore not easily extendable to more complicated reaction-
diffusion equations, for example equations with oscillating coefficients, and even less to general
nonlocal, fully nonlinear equations such as the ones appearing in the study of particle systems.
In particular they were not adapted to take into account front propagations in which the velocity
depends on the normal direction.

To solve this problem, a different approach, more geometrical, was introduced by Souganidis
and the first author in [6]. Based on a new definition of the generalized propagation of fronts inRN
which turns out to be equivalent to the level-set approach when there is no fattening phenomenon,
it leads to a simple and general method for establishing the asymptotic limit of a large class of
reaction-diffusion equations and particle systems. Roughly speaking, this method reduces the study
of such asymptotics to the cases when the evolving front is smooth and evolves smoothly, which
means, at the practical level, for small time.

Before describing the approach of [6] and our modification for problems with Neumann type
boundary conditions, we recall that the level-set approach for such problems was first considered
for the classical homogeneous Neumann boundary condition in Giga and Sato [15]. Extensions to
nonlinear Neumann boundary conditions were obtained in Barles [3] and in Ishii and Sato [16] under
different conditions on the regularity of the domain and on the boundary condition. A nonlinear
Neumann boundary condition is of the form

G(x, t,Du) = 0 on∂O × (0,∞), (5)

whereG : ∂O × (0,∞)× RN → R is a continuous function satisfying: for anyT > 0, there exists
a constantν(T ) > 0 such that, for allλ > 0, x ∈ ∂O, t ∈ [0, T ], p ∈ RN , one has

G(x, t, p + λn(x))−G(x, t, p) > ν(T )λ.

In addition to this property which is characteristic of the Neumann boundary condition, one has to
assume thatG is homogeneous of degree 1 inp, which is a geometrical condition, i.e. a condition
for the level-set approach to work.

The classical homogeneous Neumann or oblique derivative boundary conditions are examples
of boundary conditions satisfying these conditions but there are also nonlinear boundary conditions
like the following capillarity type boundary condition:

∂u

∂n
= θ(x, t)|Du| on ∂O × (0,∞), (6)

whereθ : ∂O × [0,∞) → R is, say, a locally Lipschitz continuous function such that|θ(x, t)| < 1
on ∂O × [0,∞).
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Of course, for degenerate and singular parabolic equations in the level-set approach, these
boundary conditions have to be considered in the viscosity sense; we refer to the user’s guide
of viscosity solutions of Crandall, Ishii and Lions [9] or to the book of Fleming and Soner [13]
for a presentation and discussion of boundary conditions in the viscosity solutions sense (see also
Barles [3]).

We recall that a global-in-time result on the asymptotics of the Allen–Cahn equation in bounded
domains with Neumann boundary conditions was obtained by Katsoulakis, Kossioris and Reitich
[17] under the assumption that the domain is convex.

Now we come back to the approach of [6]; it consists in first considering the evolution of open
subsets ofRN instead of hypersurfaces. From the point of view of applications, this idea is very
natural since the moving front is just an evolving interface separating regions where the system is
close to one of its equilibria and therefore it is even more natural to study the evolution of these
regions. This approach relies on the “monotonicity property” of the front propagations, also called
“avoidance principle” for the mean curvature motion. Roughly speaking, this monotonicity property
is expressed in the following way: if(Ω1

s )s∈(a,b), (Ω
2
s )s∈(a,b) are two families of open subsets

evolving with the same normal velocity and ifΩ1
t ⊂ Ω2

t for somet ∈ (a, b), then

Ω1
s ⊂ Ω2

s for anys ∈ [t, b).

This property can be seen for example as a consequence of the maximum principle for the level-
set pde, and the main remark in [6] is that it can be used as a definition for weak motions: roughly
speaking, one may say that a family(Ω2

s )s∈(a,b) has a generalized motion with normal velocity
greater thanVn if it satisfies the above monotonicity property when tested on a sufficiently large
class of families(Ω1

s )s∈(a,b) evolving with normal velocity less thanVn. A notion of generalized
motion with normal velocity less thanVn can be defined analogously, but because it is easier to
deal with families of “small open test subsets”, a passage to the complement turns out to be more
convenient. The key points used in [6] are then that (i) it is enough to test against families of smooth
open subsets evolving smoothly, (ii) this has to be done only on a small time interval and (iii) as
described above, one can use families whose normal velocities are smaller or greater than the normal
velocity considered, if we do it in a suitable way.

At this level of generality, these basic ideas apply more or less readily in our framework since the
level-set approach enjoys the same kind of monotonicity properties in the Neumann case as theRN
case. But we face several difficulties in concrete applications. First, in [6], the “open test subsets”
were taken of the form{x : φ(x, s) > 0} where the functionφ was either a strict subsolution
or supersolution of the level-set equation at least in a neighborhood of{x : φ(x, s) = 0}. Such
functionsφ were built fromφ(·,0) by using an Euler type scheme or a small time existence result for
smooth solutions of the level-set pde. In our case, because of the Neumann type boundary condition,
the use of the Euler scheme was impossible and not many existence results for smooth solutions
were available, at least to the best of our knowledge.

To overcome this difficulty, we modify the definition given in [6], and it is worth pointing out
that these modifications are a key step to solving the main problems we face with the additional
boundary condition. As in [6] we localize the monotonicity property by considering ballsB(x, r)

for x ∈ Ω but we drop the condition that the moving front{y : φ(y, s) = 0} has to be included in
B(x, r), a condition which was not very natural. To do that, we have to impose a condition on the
boundary of the ball and the monotonicity is expressed in the following way: if, for somet ∈ (a, b),

Ω1
t ∩ B(x, r) ⊂ Ω2

t ∩ B(x, r),
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AND if, for all t 6 s < b, we have

Ω1
s ∩ ∂B(x, r) ⊂ Ω2

s ∩ ∂B(x, r), (7)

then, for anyt 6 s < b,

Ω1
s ∩ B(x, r) ⊂ Ω2

s ∩ B(x, r).

The new condition (7) can be viewed as a Dirichlet type boundary condition.
But the main difference in comparison with the definition of [6] is the way in which we define

the family of “open test subsets”: as in [6], they are of the form{x : φ(x, s) > 0} but here we reduce
to the case where we already know thatφ is either a strict subsolution or strict supersolution of the
level-set equation satisfying also the Neumann boundary condition in a strict sense. This avoids
delicate constructions of such strict sub- or supersolutions and a consequence is that we do not need
any more to invoke “small time” arguments which were in fact related to these constructions. The
introduction of the above mentioned “Dirichlet type boundary condition” on the front allows us to
make this reduction.

With this new definition, we are able to provide new and rather general results on the asymptotics
of reaction-diffusion equations: we extend all the applications treated in [6] and [5], namely
semilinear and quasilinear type Allen–Cahn equations with a possible(x, t)-dependence in the
nonlinearityf , to the case when these equations are set in a bounded domain with Neumann type
boundary conditions. In particular, we show here that, in the case of (1)-(3)-(4), the interface still
moves by mean curvature but with an angle boundary condition on∂O.

Even the proofs of [6] extend almost readily, with however two important modifications: first,
in order to take into account the Dirichlet type boundary condition on∂B(x, r), we have to define
in a different way the family of open subsets(Ωs)s∈(a,b) about which we aim to prove that they
move with a certain normal velocity. In [6], these open subsets were, roughly speaking, the interiors
of the sets whereuε converges to the stable equilibria of the equation; here we have to define
them as the interiors of the sets where this convergence holds with ano(ετ ) rate of convergence
whereτ depends on the problem and is typically equal to 1 for curvature-dependent motions. The
second point concerns the proof of the so-called “propagation of the interface”: in [6], almost all the
asymptotic results were obtained by building sub- and supersolutions of reaction-diffusion equations
by using directly the test functionφ or, in more complicated cases, the (signed) distance to the
moving front{x : φ(x, s) = 0}. Here, because of the Neumann boundary condition, we have to use
the distance function systematically. However, it is worth pointing out that this distance function is
anRN -distance function associated to propagation inRN and not a distance relative toO; this will
of course simplify matters.

Finally we emphasize that there is not much difference between treating nonlinear Neumann
type boundary conditions, for example capillarity type boundary conditions like (6), and the case of
(linear) homogeneous Neumann or oblique derivative. This is another advantage of our approach.

The only examples of [6] we are not able to extend to our framework are the ones related to
reaction-diffusion equations with oscillating coefficients. The problem we face has nothing to do
with our approach but is deeper: in this case we are lacking the formal asymptotic behavior of the
solution that we use in a fundamental way for building sub- and supersolutions, and we do not
know how to build them. From our point of view, this is a very challenging open question which
does not concern only front propagation problems but also homogenization problems. Such kind of
difficulties arise, for example, in the homogenization of first-order Hamilton–Jacobi equations with
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Neumann boundary conditions, and also in some second-order elliptic or parabolic equations with
a suitable dependence onε.

The paper is organized as follows: Section 1 is devoted to the presentation of the new definition
for motions with angle boundary conditions and its connections with the level-set approach. Section
2 is devoted to the application of the new definition to the study of the asymptotics of reaction-
diffusion equations: we first present a general abstract method and then we apply it to the model
case of the Allen–Cahn equation with a nonlinear Neumann derivative boundary condition; finally
we present the extensions concerning the asymptotics of quasilinear reaction-diffusion equations
with x, t andε-dependentf ’s.

1. A new geometric definition and its connections with the level-set approach

The aim of this section is to develop a new approach to the weak geometric motion of hypersurfaces
in bounded domains with prescribed normal velocity and angle boundary condition and to show its
connections with the level-set approach.

We first briefly recall the basic ideas of the level-set approach. LetO ⊂ RN be a smooth
bounded open set, letF be a real-valued, locally bounded function onO × (0,∞)× RN × S(N),
which is continuous onO × (0,∞) × (RN \ {0}) × S(N), S(N) being the set of real symmetric
N×N matrices, and letG be a real-valued, continuous function on∂O×(0,∞)×RN . We consider
the following initial-value problem with a nonlinear Neumann boundary condition:

(i) ut + F(x, t,Du,D2u) = 0 inO × (0, T ),

(ii) G(x, t,Du) = 0 in ∂O × (0, T ),

(iii ) u(x,0) = u0(x) in O,

(8)

where, in (8)(ii), we have typically in mind the two cases (3) and (6).
For the level-set approach to work, we first need an existence and comparison result for (8). For

simplicity, we do not present here the technical assumptions which are used to prove such results
and refer instead to [3, 15, 16]. Among all those assumptions, we want to point out anyway the
following basic assumptions onF andG:

(A1) The functionF is a real-valued, locally bounded function onO × (0,∞) × RN × S(N),
continuous onO × (0,∞)× RN \ {0} × S(N) and satisfying theellipticity condition

F(x, t, p,X) 6 F(x, t, p, Y ) wheneverX > Y , (9)

for anyx ∈ O, t ∈ (0,∞), p ∈ RN \ {0} andX, Y ∈ S(N), where “> ” stands for the usual
partial ordering on symmetric matrices.

(A2) The functionG is uniformly continuous on∂O× (0,∞)× RN and for anyT > 0 there exists
a constantν(T ) > 0 such that, for allλ > 0, x ∈ ∂O, t ∈ [0, T ] andp ∈ RN ,

G(x, t, p + λn(x))−G(x, t, p) > ν(T )λ, (10)

wheren(x) is the unit exterior normal vector to∂O atx ∈ ∂O.

Assumption(A1) is a key hypothesis to use viscosity solutions,(A2) characterizes suitable nonlinear
Neumann boundary conditions.
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On the other hand, we need specific assumptions related to the geometric aspect of the problem;
they are the following:

(A3) For anyλ > 0, ν ∈ R andx ∈ O, t ∈ (0,∞), p ∈ RN \ {0},X ∈ S(N),

F(x, t, λp, λX + νp ⊗ p) = λF(x, t, p,X), (11)

wherep⊗p denotes the symmetric matrix defined by(p⊗p)ij = pipj for all 1 6 i, j 6 N.

(A4) For allλ > 0, x ∈ ∂O, t ∈ (0,∞) andp ∈ RN ,

G(x, t, λp) = λG(x, t, p). (12)

We just notice here that the main consequence of(A3) and(A4) is that if u is a solution of (8)
thenχ(u) is also a solution of (8) for any mapχ : R → R such thatχ ′ > 0 in R.

The whole set of assumptions which implies, on the one hand, existence and uniqueness of
a continuous solution of (8) for anyu0 ∈ C(O) and a comparison result between sub- and
supersolutions of (8), together with(A3) and(A4), will be referred to below as the “assumptions of
the level-set approach”.

The level-set approach for problems associated with Neumann type boundary conditions (see
e.g. [3, 15, 16]) can be described in a similar way to theRN case (see e.g. [8, 11]). LetE be the
collection of triplets(Γ,D+,D−) of mutually disjoint subsets ofO such thatΓ is closed,D± are
open andO = Γ ∪ D+

∪ D−. For any(Γ0,D
+

0 ,D
−

0 ) ∈ E , first chooseu0 ∈ C(O) (the space of
continuous functions defined onO) so that

D+

0 = {x ∈ O : u0(x) > 0}, D−

0 = {x ∈ O : u0(x) < 0}, Γ0 = {x ∈ O : u0(x) = 0},

By results of [3, 15, 16], for everyu0 ∈ C(O), there exists a unique viscosity solutionu of (8)
in C(O × [0,∞)). If, for all t > 0, we define(Γt ,D

+
t ,D

−
t ) ∈ E by

Γt = {x ∈ O : u(x, t) = 0}, D+
t = {x ∈ O : u(x, t) > 0}, D−

t = {x ∈ O : u(x, t) < 0},

then, because of(A3), (A4) and since a comparison result holds for (8), the collection
{(Γt ,D

+
t ,D

−
t )}t>0 is uniquely determined, independently of the choice ofu0, by the initial triplet

(Γ0,D
+

0 ,D
−

0 ).
The properties of the generalized level evolution have been the object of extensive study, at

least inRN . One of the most intriguing issues—rather important in the study of the asymptotics of
reaction-diffusion equations—is whether the so-calledfattening phenomenonoccurs, i.e. whether
the set

⋃
t>0Γt × {t} has an interior.

Following theRN -case, we say that theno-interior conditionholds for the set{u = 0} if

{(x, t) : u(x, t) = 0} = ∂{(x, t) : u(x, t) > 0} = ∂{(x, t) : u(x, t) < 0}. (13)

The question of whether (13) holds was discussed inRN in [5] (see also references therein):
conditions are given onΓ0 and the equation ensuring that (13) is satisfied as well as examples where
it fails. Two examples of fattening for the Neumann problem have been provided by G. Barles in [3]
and Y. Giga in [14].

The importance of the no-interior condition and its connection with more geometrical
approaches than the level-set approach are explained in the following result, proved inRN in [5],
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and which extends easily to the case of Neumann boundary conditions. In this result, ifA is a subset
of someRk, then1A denotes the indicator function ofA, i.e.,1A(x) = 1 if x ∈ A and1A(x) = 0 if
x ∈ Ac.

THEOREM 1.1 Under the assumptions of the level-set approach, the functions1D+
t ∪Γt

− 1D−
t

and 1D+
t

− 1D−
t ∪Γt

are respectively the maximal subsolution (and solution) and the minimal
supersolution (and solution) of(8) associated respectively with the initial datau0 = 1D+

0 ∪Γ0
− 1D−

0
andu0 = 1D+

0
− 1D−

0 ∪Γ0
. Moreover, ifΓ0 has an empty interior, then1D+

t
− 1D−

t
is the unique

discontinuous solution of(8) associated with the initial datau0 = 1D+

0
− 1D−

0
if and only if the

property(13) holds.

In fact the main consequence of this result is that if (13) holds, then the problem is well-posed in
the geometrical sense since the evolution of the indicator function (or equivalently of the underlying
sets) is uniquely determined.

Now we turn to the geometrical definition in the case of Neumann boundary conditions. To
simplify the presentation, we have to introduce some notations. IfA is a subset of someRk, we
denote by Int(A) the interior ofA, and if x ∈ A andr > 0, we setBA(x, r) := B(x, r) ∩ A (the
open ball in the topology ofA), BA(x, r) := B(x, r)∩A (the closed ball in the topology ofA) and
∂BA(x, r) := ∂B(x, r) ∩ A.

In what follows we denote by(Ωt )t∈(0,T ) a family of open subsets ofO and we setΓt = ∂Ωt .

Thesigned-distance functiond(x, t) from x to Γt is defined by

d(x, t) =

{
d(x, Γt ) if x ∈ Ωt ,

−d(x, Γt ) otherwise,

whered(x, Γt ) denotes the usual nonnegative distance fromx ∈ RN to Γt . If Γt is a smooth
hypersurface, thend is a smooth function in a neighborhood ofΓt , and forx ∈ Γt , n(x, t) =

−Dd(x, t) is the unit normal toΓt pointing away fromΩt .
Finally, we recall that for a locally bounded functionf : A → R, whereA is a subset of some

Rk, theupperandlower semicontinuous envelopesf ∗ andf∗ of f are given by

f ∗(y) = lim sup
z→y

f (z) and f∗(y) = lim inf
z→y

f (z).

Now we give the definition of generalized super- and subflow in bounded domains with a
prescribed normal velocity and angle boundary condition.

DEFINITION 1.1 A family (Ωt )t∈(0,T ) (resp.(Ft )t∈(0,T )) of open (resp. closed) subsets ofO is
called ageneralized superflow(resp.subflow) with normal velocity−F(x, t,Dd,D2d) and angle
conditionG(x, t,Dd) if, for any x0 ∈ O, t ∈ (0, T ), r > 0, h > 0 and for any smooth function
φ : O × [0, T ] → R such that

(i) ∂φ/∂t + F ∗(y, s,Dφ,D2φ) < 0 (resp.∂φ/∂t + F∗(y, s,Dφ,D
2φ) > 0) in BO(x0, r) ×

[t, t + h],
(ii) G(y, s,Dφ) < 0 (resp.G(y, s,Dφ) > 0 ) in ∂O ∩ B(x0, r)× [t, t + h],

(iii) for any s ∈ [t, t + h], {y ∈ BO(x0, r) : φ(y, s) = 0} 6= ∅ and

|Dφ(y, s)| 6= 0 on{(y, s) ∈ BO(x0, r)× [t, t + h] : φ(y, s) = 0},
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(iv) {y ∈ BO(x0, r) : φ(y, t) > 0} ⊂ Ωt (resp.{y ∈ BO(x0, r) : φ(y, t) 6 0} ⊂ Fct ),
(v) for all s ∈ [t, t + h],

{y ∈ ∂BO(x0, r) : φ(y, s) > 0} ⊂ Ωs

(resp.{y ∈ ∂BO(x0, r) : φ(y, s) 6 0} ⊂ Fcs ),

we have
{y ∈ BO(x0, r) : φ(y, t + h) > 0} ⊂ Ωt+h

(resp.{y ∈ BO(x0, r) : φ(y, t + h) < 0} ⊂ Fct+h).

A family (Ωt )t∈(0,T ) of open subsets ofO is called ageneralized flowwith normal velocity
−F(x, t,Dd,D2d) and angle boundary conditionG(x, t,Dd) if (Ωt )t∈(0,T ) is a superflow and
(Ω t )t∈(0,T ) is a subflow.

As mentioned in the introduction, the main difference compared to the definition of generalized
sub- and superflow introduced in [6] is that we use functionsφ already defined inO × [0, T ] and
which are either sub- or supersolutions of the equation and the boundary condition inBO(x0, r)×

[t, t + h]. On the contrary, in [6],φ was just a function ofx and the sub- or supersolution had to be
built from it. This construction justified the “small time” requirement in the definition of [6]. Hereh

is not supposed to be small. Finally we point out that the first part of condition (iii) is not restrictive
at all; it is just there to avoid meaningless situations.

The next theorem which gives the relationship between the notion of generalized sub- and
superflow and the level-set evolutions related to (8).

THEOREM 1.2 Suppose that the assumptions of the level-set approach hold.

(i) Let (Ωt )t∈(0,T ) be a family of open subsets ofO such that the setΩ :=
⋃
t∈(0,T )Ωt × {t}

is open inO × [0, T ]. Then(Ωt )t∈(0,T ) is a generalized superflow with normal velocity−F

and angle boundary conditionG if and only if the functionχ = 1Ω − 1Ωc is a viscosity
supersolution of (8)(i)–(ii).

(ii) Let (Ft )t∈(0,T ) be a family of closed subsets ofO such that the setF :=
⋃
t∈(0,T ) Ft × {t}

is closed inO × [0, T ]. Then(Ft )t∈(0,T ) is a generalized subflow with normal velocity−F

and angle boundary conditionG if and only if the functionχ = 1F − 1F c is a viscosity
subsolution of (8)(i)–(ii).

Proof. We only prove the result in the superflow–supersolution case, the other case being proved
similarly. The proof is strongly inspired by the corresponding one in [6]; we give it in detail for the
sake of completeness.

We first assume thatχ = 1Ω − 1Ωc is a supersolution of (8) and show that(Ωt )t∈(0,T ) is a
generalized superflow. To do that, we consider a smooth functionφ satisfying conditions (i)–(v) in
Definition 1.1.

We remark that, changingφ to ηφ for η > 0 small enough and using the fact thatF and
G satisfy respectively(A3) and (A4), we may assume without loss of generality thatφ 6 1 in
BO(x0, r)× [t, t + h].

We considerm := minBO (x0,r)×[t,t+h] (χ−φ). Sinceχ is lsc andφ is continuous, this minimum
is attained. But, sinceχ is a supersolution of (8)(i)–(ii) and sinceφ satisfies conditions (i) and (ii), it
cannot be attained inBO(x0, r)× (t, t + h], neither inO nor on∂O. Therefore it has to be attained
either on∂BO(x0, r) or at timet .
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Now we examine the consequences of (iv) and (v). For(x, s) ∈ (∂BO(x0, r) × [t, t + h]) ∪

(BO(x0, r)× {t}), we have either

• x ∈ Ωs , thenχ(x, s) = 1 and(χ − φ)(x, s) > 0 becauseφ 6 1 inBO(x0, r)× [t, t + h], or
• x /∈ Ωs , thenχ(x, s) = −1 and(χ − φ)(x, s) > −1 + δ with δ > 0 because (iv) and (v)

imply that for such pointsφ(x, s) 6 −δ. Notice that thisδ can be taken uniform ins.

We conclude thatm > −1 + δ and so ify /∈ Ωt+h, we have

χ(y, t + h)− φ(y, t + h) > −1 + δ,

which yieldsφ(y, t + h) 6 −δ becauseχ(y, t + h) = −1. Finally this means

{y ∈ BO(x0, r) : φ(y, t + h) > 0} ∩Ωc
t+h = ∅,

which implies the desired inclusion.
Conversely, we assume that(Ωt )t∈(0,T ) is a generalized superflow and we show thatχ is a

supersolution of (8). Let(x, t) ∈ O × (0, T ) be a strict local minimum point ofχ − φ where
φ ∈ C∞(O × [0, T ]). Changingφ to φ − φ(x, t) if necessary, we may assume thatφ(x, t) = 0.
We consider separately the cases(x, t) ∈ O × (0, T ) and(x, t) ∈ ∂O × (0, T ).

If (x, t) ∈ O × (0, T ), we have to show the inequality

∂φ

∂t
(x, t)+ F ∗(x, t,Dφ(x, t),D2φ(x, t)) > 0.

This is obvious if(x, t) is in the interior of either{χ = 1} or {χ = −1}. Indeed, in these two cases
χ is constant in a neighborhood of(x, t). Hence∂φ

∂t
(x, t) = 0, Dφ(x, t) = 0, D2φ(x, t) 6 0 and

the inequality follows since, by the local boundedness ofF and(A3), we haveF ∗(x, t,0,0) = 0.
Assume that(x, t) ∈ ∂{χ = 1} ∩ ∂{χ = −1}). The lower semicontinuity ofχ yieldsχ(x, t) =

−1. We suppose by contradiction that, for someα > 0,

∂φ

∂t
(x, t)+ F ∗(x, t,Dφ(x, t),D2φ(x, t)) < −α.

Sinceφ is smooth andF ∗ is usc, we can findr, h > 0 such thatB(x, r) ⊂ O and for all(y, s) ∈

B(x, r)× [t − h, t ],

∂φ

∂t
(y, s)+ F ∗(y, s,Dφ(y, s),D2φ(y, s)) < −α/2. (14)

Moreover, since(x, t) is a strict local minimum point ofχ−φ, by taking smallerr andh if necessary,
we can assume that also, for(y, s) ∈ BO(x, r)× [t − h, t ] and(y, s) 6= (x, t),

χ(x, t)− φ(x, t) = −1< χ(y, s)− φ(y, s). (15)

We first consider the case when|Dφ(x, t)| 6= 0. For 0 < δ � 1, we introduce the function
φδ(y, s) := φ(y, s) + δ(s − (t − h)). Sinceφ(x, t) = 0 andDφ(x, t) 6= 0, it is easy to see that if
h andδ are small enough then, for anyt − h 6 s 6 t , {y ∈ B(x, r) : φδ(y, s) = 0} 6= ∅. Moreover
choosing smallerr, h andδ, we may also assume that|Dφ(y, s)| 6= 0 inBO(x, r)× [t − h, t ].
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We observe that, forδ > 0 small enough, because of (15), we have both

φδ(y, s)− 1< χ(y, s) (16)

for all (y, s) ∈ (BO(x, r)× {t − h}) ∪ (∂BO(x, r)× [t − h, t ]) and

∂φδ

∂t
(y, s)+ F ∗(y, s,Dφδ(y, s),D

2φδ(y, s)) < −α/4 (17)

for all (y, s) ∈ BO(x, r)× [t − h, t ].
The inequality (16) implies that

{y ∈ BO(x, r) : φδ(y, t − h) > 0} ⊂ Ωt−h,

and for alls ∈ [t − h, t ],
{y ∈ ∂BO(x, r) : φδ(y, s) > 0} ⊂ Ωs .

By the definition of superflow, using the fact that condition (ii) is empty sinceB(x, r) ∩ ∂O = ∅,
this yields

{y ∈ O : φδ(y, t) > 0} ∩ B(x, r) ⊂ Ωt .

But, sinceφδ(x, t) = δh > 0, we deduce thatx ∈ Ωt , and this is a contradiction.
Now we turn to the case when|Dφ(x, t)| = 0. We can assume without loss of generality that

D2φ(x, t) = 0 as well (see e.g. [4]) and we have to show that∂φ
∂t
(x, t) > 0.

Suppose by contradiction thata := ∂φ
∂t
(x, t) < 0. Sinceφ(x, t) = 0, we have

φ(y, s) =
∂φ

∂t
(x, t)(s − t)+ o(|s − t |)+ o(|y − x|2) ass → t, |y − x| → 0.

Thus, for allε > 0, there existr, h > 0 such that

φ(y, s) >
a

2
(s − t)− ε|y − x|2 for all (y, s) ∈ BO(x, r)× [t − h, t ]

andBO(x, r) ∩ ∂O = ∅. We takeβ > 0 small enough such that

β + φ(y, s)− 1< χ(y, s)

for all (y, s) ∈ (BO(x, r)× {t − h}) ∪ (∂BO(x, r)× [t − h, t ]). By takingh smaller we may also
suppose thatβ > −(a/2)h.

Then we consider the functionψβ(y, s) = (a/2)(s − t) − ε|y − x|2 + β. SinceF ∗ is upper
semicontinuous andF ∗(y, s,0,0) = 0 for anyy ands, for smallε we have

a

2
+ F ∗(y, s,−2ε(y − x),−2εI) < 0 onBO(x, r)× [t − h, t ].

Examining the functionψβ and choosing perhaps smallerβ and h, one easily sees that{y ∈

B(x, r) : ψβ(y, s) = 0} 6= ∅ for any t − h 6 s 6 t . Moreover |Dψβ(y, s)| 6= 0 in
{(y, s) ∈ BO(x, r)× [t − h, t ] : ψβ(y, s) = 0} and

{y ∈ BO(x, r) : ψβ(y, t − h) > 0} ⊆ Ωt−h,
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and for alls ∈ [t − h, t ],
{y ∈ ∂BO(x, r) : ψβ(y, s) > 0} ⊆ Ωs .

Thus, since(Ωt )t is a generalized superflow, we have

{y ∈ BO(x, r) : ψβ(y, t) > 0} ⊂ Ωt .

But againψβ(x, t) = β > 0, and this meansx ∈ Ωt , which is a contradiction.
Now we examine the case(x, t) ∈ ∂O × (0, T ) and suppose by contradiction that

G(x, t,Dφ(x, t)) < 0 and
∂φ

∂t
(x, t)+ F ∗(x, t,Dφ(x, t),D2φ(x, t)) < 0.

We note that the first strict inequality implies thatDφ(x, t) 6= 0. Thus we can argue exactly as in
the first case above by defining the functionφδ. Indeed, we observe thatDφδ(x, t) = Dφ(x, t) and
we can chooser, h > 0 small enough such that

G(y, s,Dφδ(y, s)) < 0 in (∂O ∩ B(x, r))× [t − h, t ],

and
∂φδ

∂t
+ F ∗(y, s,Dφδ(y, s),D

2φδ(y, s)) < 0 inBO(x, r)× [t − h, t ].

Thus the proof is complete. �

2. Applications to the asymptotics of reaction-diffusion equations

2.1 The abstract method

In this section, we present an abstract method to study the asymptotics of solutions to
semilinear reaction-diffusion equations in bounded domains with Neumann boundary conditions.
We essentially follow the ideas of [6] but, because of the particularities of our definition and
especially (v) in Definition 1.1, we have to modify this abstract method slightly.

In the asymptotic problems we have in mind, we are given a family(uε)ε of bounded functions
onO × [0, T ], typically the solutions of reaction-diffusion equations with Neumann type boundary
conditions and with a small parameterε > 0. The aim is to show that there exists a generalized flow
(Ωt )t∈(0,T ] onO with a certain normal velocity and angle boundary on∂O such that, asε → 0,

uε(x, t) → b(x, t) if (x, t) ∈ Ω =

⋃
t∈(0,T )

Ωt × {t},

uε(x, t) → a(x, t) if (x, t) ∈ Ω
c
,

where, for all(x, t), a(x, t), b(x, t) ∈ R can be interpreted as local equilibria of this system.
Unfortunately, although the method we are going to use is very close in spirit to the one of [6],

we cannot present it in a framework as general as in [6]. This is due to the fact that our method relies
on more local arguments, which, on the other hand, can be seen as an advantage of it.

In order to be more specific and to present the main steps of the method, we first assume that
there exist sequences(aε)ε and(bε)ε of real-valued functions defined inO × [0, T ] such that

aε(x, t) 6 uε(x, t) 6 bε(x, t) in O × [0, T ],

andaε → a, bε → b uniformly inO × [0, T ] asε → 0.
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We recall the definition of half-relaxed limits in the theory of viscosity solutions: ifzε : O ×

[0, T ] → R is a sequence of functions, we set

lim sup∗ zε(x, t) := lim sup
(y,s)→(x,t)

ε→0

zε(y, s), lim inf∗ zε(x, t) := lim inf
(y,s)→(x,t)

ε→0

zε(y, s).

Our method consists in introducing, for some well chosenτ > 0, the sets

Ω1
= Int

{
(x, t) ∈ O × [0, T ] : lim inf ∗

[
uε − bε

ετ

]
(x, t) > 0

}
, (18)

Ω2
= Int

{
(x, t) ∈ O × [0, T ] : lim sup∗

[
uε − aε

ετ

]
(x, t) 6 0

}
. (19)

Then we are going to consider the families(Ω1
t )t and(Ω2

t )t defined by

Ω1
t = Ω1

∩ (O × {t}), (20)

Ω2
t = Ω2

∩ (O × {t}). (21)

For simplicity of notations, fori = 1,2, we identifyΩ i
t and(Ω i

t )
c with their projections inO.

It is worth noticing thatΩ1,Ω2 are defined as subsets ofO× (0, T ], they are open by definition
and disjoint. In particular, in view of Theorem 1.2, we remark that by construction the functions
χ = 1Ω1 − 1(Ω1)c andχ = 1(Ω2)c − 1Ω2 are respectively lower and upper semicontinuous on
O × (0, T ]; here, in fact,Ω1 has to be read as

⋃
t∈(0,T ] Ω

1
t × {t} andΩ2 as

⋃
t∈(0,T ] Ω

2
t × {t}.

We finally point out thatχ , χ can be extended by lower or upper semicontinuity toO × [0, T ], and
below we keep the same notations for these extensions.

We come back below to the role ofτ which will be clear (at least we hope so!) in the examples
we will treat, where we mainly use eitherτ = 1 or τ = 0.

Our method can be described in three steps.

1. Initialization: we have to determine the tracesΩ1
0 andΩ2

0 ofΩ1 andΩ2 for t = 0. A convenient
way to define these traces is through the functionsχ andχ :

Ω1
0 = {x ∈ O : χ(x,0) = 1}, Ω2

0 = {x ∈ O : χ(x,0) = −1}. (22)

2. Propagation: we have to show that(Ω1
t )t and((Ω2

t )
c)t are respectively super- and subflows with

normal velocity−F and angle conditionG.
3. Conclusion: we use the following result for the above(Ω1

t )t and ((Ω2
t )
c)t ; its proof is a

consequence of Theorems 1.1 and 1.2 and therefore we omit it.

COROLLARY 2.1 Assume that the assumptions of the level-set approach hold and that the above
families (Ω1

t )t and ((Ω2
t )
c)t are respectively super- and subflows with normal velocity−F and

angle boundary conditionG and suppose there exists(∂Ω1
0,Ω

+

0 ,Ω
−

0 ) ∈ E such thatΩ+

0 ⊆ Ω1
0

andΩ−

0 ⊆ Ω2
0 . Then if(Γt ,Ω

+
t ,Ω

−
t ) is the level-set evolution of(∂Ω1

0,Ω
+

0 ,Ω
−

0 ) we have:

(i) for all t ∈ [0, T ],

Ω+
t ⊂ Ω1

t ⊂ Ω+
t ∪ Γt , Ω−

t ⊂ Ω2
t ⊂ Ω−

t ∪ Γt ,
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(ii) if
⋃
t Γt × {t} satisfies the no-interior condition, then for allt ∈ [0, T ], we have

Ω+
t = Ω1

t , Ω−
t = Ω2

t .

We now comment on the first two steps of our method. It is first worth pointing out that compared
with [6], we have a different definition of the families(Ω1

t )t and(Ω2
t )t : in [6] they were defined IN

ANY CASE as
Ω1

= {x : lim inf∗ uε(x, t) = b(x, t)},

Ω2
= {x : lim sup∗ uε(x, t) = a(x, t)}.

We are led to introduce the parameterτ in the definition of the families(Ω1
t )t and(Ω2

t )t because of
condition (v) in Definition 1.1, and for example in the study of the asymptotics of the Allen–Cahn
equation when the normal velocity is mean curvature (see the next section), it will be natural to
work with τ = 1.

A technical consequence of our definition of the families(Ω1
t )t and (Ω2

t )t is that the
initialization of the front will be done only at timet = 0, whereas in [6] it has to be done at
any time. We also mention that this initialization procedure at timet = 0 consists in constructing
globally inO sub- and supersolutions of theuε-equation, but—and this will simplify matters—these
sub- and supersolutions will be associated with radially symmetric moving fronts.

The second step will consist, as in [6], in constructing suitable smooth sub- and supersolutions
to the Neumann problem satisfied byuε, but with two main differences: we build them only locally,
i.e. in ballsBO(x, r), wherex ∈ O, with Neumann boundary conditions onB(x, r)∩ ∂O if this set
is not empty and Dirichlet boundary conditions on∂BO(x, r). In contrast to [6], this construction
will NOT be local in time since it will be done in time intervals of the form [t, t + h] whereh is
not supposed to be small; moreover, and this is also a difference with [6], the comparison ofuε and
these sub- and supersolutions will be done onBO(x, r)× [t, t + h] and not inO × [t, t + h]. This
is the reason why we are not able to describe the method in the same abstract way as in [6].

2.2 The Allen–Cahn equation

This section is devoted to the study of the model case of the Allen–Cahn equation in a bounded
domain with a Neumann type boundary condition, which will also be the opportunity to give the
reader a more precise idea of how the abstract method works. More precisely we focus our attention
on the following initial boundary value problem:

uε,t −∆uε + ε−2f (uε) = 0 inO × (0,∞),

G(x, t,Duε) = 0 on∂O × (0,∞),

uε = g onO × {0},

(23)

whereg is a real-valued continuous function inO andG satisfies the assumptions of the level-set
approach and in particular(A2) and(A4). Concerning the reaction termf : R → R, throughout the
paper, we assume that

f ∈ C2(R) has exactly three zerosm− < m0 < m+,

f (s) > 0 in (m−, m0) andf (s) < 0 in (m0, m+),

f ′(m±) > 0, f ′′(m−) < 0 andf ′′(m+) > 0.

(24)
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We also assume that the equation admits, for eache ∈ SN−1, traveling wave solutions connecting
m− andm+, i.e., solutions of the form

u(x, t) = q(x · e − ct),

whereq : R → R is such thatq(±∞) = m±. Indeed, we assume that
there exists a unique pair(c, q) such that

cq̇ + q̈ = f (q) onR, q̇ > 0 onR, q(0) = m0,

q(s) → m±, exponentially fast, ass → ±∞.

(25)

The existence and properties of such pairs(c, q) are studied, for example, in Aronson and
Weinberger [2], to which we refer for details.

In the case where the wells of the potentialW : R → R, defined byW ′
= f , have the same

depth, i.e.,
W(m+)−W(m−) = 0, (26)

it follows thatc = 0 in (25) andq solves

q̈ = f (q) in R. (27)

In the case of linear, homogeneous Neumann boundary conditions, the asymptotics of (23) was
first studied by Chen [7] under the assumption that the resulting interface is smooth (i.e. essentially
for smooth initial interface and for small time) and by Katsoulakis, Kossioris and Reitich [17]
globally in time but for convex domainsO.

The front evolution associated with the asymptotics of (23) is a motion by mean curvature with
Neumann boundary conditions. The corresponding geometric pde is

ut − tr[(I − D̂u⊗ D̂u)D2u] = 0 inO × (0,∞),

G(x, t,Du) = 0 on∂O × (0,∞),

u = u0 onO × {0},

(28)

wherep̂ = p/|p| for p ∈ RN \ {0}.
The main result is

THEOREM 2.1 Assume thatG satisfies the assumptions of the level-set approach and that (24),
(25), (26) hold. Letuε be the solution of (23), whereg : O → [m−, m+] is a continuous function
such that the setΓ0 = {x : g(x) = m0} is a nonempty subset ofO. Then, asε → 0,

uε(x, t) →

m+ {u > 0},

locally uniformly in
m− {u < 0},

whereu is the unique viscosity solution of(28) with u0 = d0, the signed distance toΓ0, which is
positive in the set{g > m0} and negative in{g < m0}. If, in addition, the no-interior condition(13)
holds, then, asε → 0,

uε(x, t) →


m+ {u > 0},

locally uniformly in
m− {u > 0}

c
.
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Proof. We consider the families(Ω1
t )t and(Ω2

t )t of sets defined in Section 2.1 by (18), (19) with
bε, b ≡ m+, aε, a ≡ m− and withτ = 1, and letΩ1

0 ,Ω2
0 be defined by (22).

The proof of Theorem 2.1 follows the abstract method described in Section 2.1 and consists of
two main steps.

The first step (Proposition 2.1) consists in showing that{x ∈ O : g(x) > m0} ⊆ Ω1
0 and

{x ∈ O : g(x) < m0} ⊆ Ω2
0 . The second step (Proposition 2.2) is devoted to verifying that the

families(Ω1
t )t>0 and((Ω2

t )
c)t>0 are respectively a generalized superflow and subflow with normal

velocity −F(Dd,D2d) = −∆d and angle conditionG. Once these two steps are performed, the
conclusion follows easily from Corollary 2.1. 2

We will give the proof of the two steps described in the proof of Theorem 2.1; we will do that
only for theΩ1-case, theΩ2-case being obtained by similar arguments.

We first point out a key property ofG which is used in what follows to check the Neumann
boundary condition. To formulate it, we use the following notation: forp ∈ RN andx ∈ ∂O,
T (p) := p − (p · n(x))n(x), soT (p) represents the projection ofp on the tangent hyperplane to
∂O atx.

LEMMA 2.1 Assume that(A2) and(A4) hold and that, for somex ∈ ∂O, t ∈ (0, T ) andp̃ ∈ RN ,
we haveG(x, t, p̃) 6 0 (resp.G(x, t, p̃) > 0). Then there exists a constantK(T ) such that if
p · n(x) 6 −K(T )|T (p)|, then

G(x, t, p̃ + p) 6 0

(resp. ifp · n(x) > K(T )|T (p)|, thenG(x, t, p̃ + p) > 0.)

Before providing the very short proof of Lemma 2.1, we remark that, by(A4), G(x, t,0) ≡ 0
and therefore the above result applies top̃ = 0.

Proof of Lemma 2.1.We prove only the first inequality. We setλ := −p · n(x); we may assume it
to be positive. Sincep = T (p)− λn(x) by definition we have

G(x, t, p̃ + p) = G(x, t, p̃ + T (p)− λn(x)). (29)

By (A2) we have

G(x, t, p̃ + T (p)− λn(x)) 6 G(x, t, p̃ + T (p))− ν(T )λ. (30)

Since, by(A2), there is a modulus of continuitym of G in p (which is uniform with respect tox
andt), we see, by(A4), that

G(x, t, p̃ + T (p)) = λG(x, t, λ−1(p̃ + T (p)))
6 λ[G(x, t, λ−1p̃)+m(λ−1

|T (p)|)]
= G(x, t, p̃)+ λm(λ−1

|T (p)|)
6 λm(λ−1

|T (p)|). (31)

Combining (29), (30) and (31) we obtain

G(x, t, p̃ + p) 6 λ[m(λ−1
|T (p)|)− ν(T )].

To conclude, it suffices to show that the expression in square brackets is negative ifλ is large enough
compared toT (p), which is obviously the case sincem(r) → 0 asr ↓ 0+. 2
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Now we present the consecutive steps of the proof of Theorem 2.1.

STEP 1: Initialization. We have

PROPOSITION2.1 The set{x ∈ O : g(x) > m0} is contained inΩ1
0 .

Proof. Let x0 ∈ {x ∈ O : g(x) > m0}. We have to show thatx0 ∈ Ω1
0 . We only consider the case

x0 ∈ ∂O ∩ {g(x) > m0}, the casex0 ∈ O ∩ {g(x) > m0} being similar and even simpler.
Let r > 0 be such thatg(y) > m0 for all y ∈ BO(x0, r). By the smoothness ofO, if η > 0 is

small enough and if̄x := x0 − ηn(x0) thenB(x̄, η) ⊆ O andB(x̄, η) ∩ ∂O = {x0}. Consider the
function

φη(x) = η2
− |x − x̄|2. (32)

We observe thatDφη(x0) · n(x0) = −2η < 0.
Thus we can findR > η and δ̄ > 0 such thatB(x̄, R) ⊆ B(x0, r) and the functionφ(x) =

R2
− |x − x̄|2 satisfiesDφ(x) · n(x) < 0 on{x ∈ ∂O : |d(x)| < δ̄}, d(·) being the signed-distance

function to the set{x : φ(x) = 0}. By Lemma 2.1, choosingR close enough toη, we may also have
G(x, t,Dφ(x)) < 0 on{x ∈ ∂O : |d(x)| < δ̄} for, say, anyt 6 1.

By the choice ofR, there is 0< δ′ < 1
2(m+ −m0) ∧ δ̄ such that for all 0< δ < δ′ we have

uε(x,0) > (m0 + 2δ)1BO (x0,r)
+m−1(BO (x0,r))

c > (m0 + δ)1{φ>0} +m−1{φ60} in O.

We introduce the functionΦ : O × [0, T ] → R given by

Φ(x, t) = φ(x)− Ct, (33)

with C > 0 to be chosen later, and denote byd(·, t) the signed distance to the set{Φ(·, t) = 0}

which is defined so as to have the same sign asΦ in O × [0, T ]. Here

d(x, t) = [(R2
− Ct)+]1/2 − |x − x̄|.

Now we need the following two lemmas:

LEMMA 2.2 (Very small time initialization) Under the assumptions of Theorem 2.1, for anyβ > 0,
there are constantsτ > 0 andε̄ > 0 (depending onβ) such that, for all 0< ε 6 ε̄, we have

uε(x, tε) > (m+ − βε)1{d(x,0)>β} +m−1{d(x,0)<β} onO,

wheretε = τε2
|logε|.

LEMMA 2.3 (Propagation I: global version) There existh̄ > 0, β̄ > 0, depending only on the
functionφ defined in (32), such that ifβ 6 β̄(φ) andε 6 ε̄(β, φ), then there exists a subsolution
wε,β of (23) inO × (0, h̄) such that

wε,β(·,0) 6 (m+ − βε)1{d(x,0)>β} +m−1{d(x,0)<β} onO.

Moreover, if(x, t) ∈ BO(x0, r)× (0, h̄) satisfiesd(x, t) > 2β, then

lim inf∗

[
wε,β −m+

ε

]
(x, t) > −2β.
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We postpone the proof of Lemmas 2.2 and 2.3 and we continue with the proof of Proposition 2.1.
Lemma 2.3 yields a subsolutionwε,β of (23) such that

wε,β(·,0) 6 uε(·, tε) in O,

thus, by the maximum principle, we have

wε,β(x, s) 6 uε(x, s + tε) onO × [0, h̄].

It follows that if t ∈ (0, h̄), x ∈ BO(x0, r) andd(x, t) > 2β, then

lim inf∗ [
uε −m+

ε
](x, t) > −2β.

Sinceβ is arbitrary and does not depend onh̄, we have(x, t) ∈ Ω1
t × {t} if d(x, t) > 0 andt > 0.

According to the definition ofd, it follows that, for η̄, t̄ > 0 small enough,BO(x0, η̄) ⊂ {x :
d(x, t) > 0} for any 0< t < t̄ . This implies thatBO(x0, η̄) ⊂ Ω1

t for any 0< t < t̄ and therefore
x0 ∈ Ω1

0 . 2

Proof of Lemma 2.2.We follow (and slightly simplify) the proof of Chen [7].

1. We consider 0< δ < δ′. We are going to modify the functionf in two steps; we first introduce
a smooth cut-off functionζ1 ∈ C∞

0 (R) such that 06 ζ1 6 1 in R, ζ1(s) = 0 in (−∞, m0 − δ] ∪

[m0 + δ,∞) andζ1(s) = 1 in [m0, m0 + 3δ/4]. We set

f̃δ(s) = (1 − ζ1(s))f (s)+ ζ1(s)f (s − δ/2).

Using the assumptions onf , it is easy to see that, forδ small enough,f̃δ isC2 and has exactly three
zeros,m−, m0+δ/2, m+; moreoverf̃δ > f in R with f̃δ(s) = f (s) in (−∞, m0−δ]∪[m0+δ,∞).

2. Then we consider another cut-off functionζ2 ∈ C∞

0 (R) such that 06 ζ2 6 1 in R, ζ2(s) = 0 in
(−∞, m0] ∪ [m0 + δ,∞) andζ2(s) = 1 in [m0 + δ/4, m0 + 3δ/4]. Finally we consider

f̄δ(s) = (1 − ζ2(s))f̃δ(s)+ ζ2(s)
δ/2 +m0 − s

|logε|
.

We note that, again,̄fδ has exactly three zeros:m−, m0 + δ/2, m+, andf̄δ > f in R with

f̄δ(s) =
δ/2 +m0 − s

|logε|
on [m0 + δ/4, m0 + 3δ/4].

3. Standard arguments from the theory of ordinary differential equations and (24) yield the existence
of a unique solutionχ ∈ C2(R × [0,∞)) of

χ̇(ξ, s)+ f̄δ(χ(ξ, s)) = 0 in [0,∞) with χ(ξ,0) = ξ ∈ R, (34)

satisfying, in addition,
χξ (ξ, s) > 0 in R × [0,∞). (35)
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Moreover, one can prove that{
for all β > 0, there existsa(β, δ) > 0 such that

χ(ξ, s) > m+ − βε for s > a|logε| andξ > δ +m0,
(36)

and {
for everya > 0, there existsM(a) ∈ R such that, forε small enough,

(χξ (ξ, s))
−1

|χξξ (ξ, s)| 6 ε−1M(a) for 0< s 6 a|logε|.
(37)

It is worth mentioning that all our modifications off were done in order to have the above properties
for χ (cf. Chen [7]).

4. Letψ be a nondecreasing smooth function such thatψ ′ > 0 in R and

m− 6 ψ 6 m0 + 2δ in R, ψ(z) =

{
m− in {z < 0},

m0 + 2δ in {z > δ}.
(38)

It is clear that
ψ(d(x,0)) 6 (m0 + 2δ)1{d(x,0)>δ} +m−1{d(x,0)<δ} in O.

We definew̄ : O × [0,∞) → R by

w̄(x, t) = χ(ψ(d(x,0))− ε−1Kt, ε−2t).

Following the computations of [7] (see also [6]), one can show thatw̄ satisfies (23)(i)–(ii) inO ×

(0, aε2
|logε|). As far as the Neumann boundary condition is concerned, we observe that

Dw̄(x, t) = χξψ
′Dd(x,0).

But, by the definition ofψ , ψ ′
6= 0 only if 0< d(x,0) < δ. In this set by construction we have

Dd(x,0) · n(x) =
Dφ(x)

|Dφ(x)|
· n(x) < 0.

Thus sinceχξ > 0, ψ ′ > 0 we haveDw̄(x, t) · n(x) < 0 and soG(x, t,Dw̄) 6 0 by (A4) and
Lemma 2.1. Furthermore,

w̄(x,0) 6 (m0 + 2δ)1{d(x,0)>δ} +m−1{d(x,0)<δ} 6 uε(x,0) onO.

Thus the maximum principle yields

w̄(x, s) 6 uε(x, s) in O × [0, tε]. (39)

5. Evaluating (39) fort = aε2
|log(ε)| and forx such thatd(x,0) > δ yields

χ(m0 + 2δ −Kaε|logε|, a|logε|) 6 uε(x, aε
2
|logε|).

But since forε small enough

m0 + 2δ −Kaε|logε| > m0 + δ,



258 G. BARLES & F. DA LIO

it follows from (36) that
m+ − βε 6 uε(x, aε

2
|logε|).

This last inequality together with the fact thatm− 6 uε in O × (0, T ) finally gives

(m+ − βε)1{d(x,0)>δ} +m−1{d(x,0)<δ} 6 uε(·, aε
2
|logε|) in O.

The conclusion now follows by choosingβ < δ for τ = a. �

Proof of Lemma 2.3.We follow the proof of the propagation results in [6] and use the same notations
as in the proof of Lemma 2.2. We consider the smooth functionΦ given by (33) and we observe
that, forC > 0 large enough and for someα > 0, one has

∂Φ

∂t
(x, t)+ F ∗(x, t,DΦ,D2Φ) < −α in O × (0, T ).

On the other hand, we also have

G(x, t,DΦ(x, t)) < −α

on ∂O, in a neighborhood of{x : Φ(x, t) = 0} and for smallt .
Using the smoothness ofΦ and the fact that, for smallt , DΦ(x, t) 6= 0 if Φ(x, t) = 0, we

deduce that there existγ > 0 andh̄ > 0 small enough such thatd is smooth in the setQγ,h̄ =

{(x, t) : |d(x, t)| 6 γ, 0 6 t 6 h̄}, |DΦ| 6= 0 inQγ,h̄ andd satisfies

dt + F ∗(x, t,Dd,D2d) = dt −∆d 6 −
α

2|DΦ|
in Qγ,h̄. (40)

Recalling the properties ofΦ on ∂O, we also have

G(x, t,Dd) 6 −
α

2|DΦ|
on (∂O × [0, h̄]) ∩Qγ,h̄. (41)

We notice that also
|Dd| = 1 and D2dDd = 0 inQγ,h̄.

Next we consider a function of the form

vε(x, t) = q(ε−1(d(x, t)− 2β))− 2βε, (42)

whereq is the traveling wave given by (25). By analogous computations to the ones of [6], one can
see that ifβ is small enough thenvε satisfies, for some constantν(α, β) < 0,

vεt −∆vε + ε−2f (vε) 6 ε−1ν(α, β)+O(1) asε → 0,

for all (x, t) ∈ {|d(x, t)| 6 γ, 0 6 t 6 h̄}.

Moreover we observe that, by construction, for all(x, t) ∈ (∂O × [0, T ]) ∩ Qγ,h̄ we have
Dvε(x, t) = (q̇/ε)Dd(x, t) and thusG(x, t,Dvε(x, t)) = (q̇/ε)G(x, t,Dd(x, t)) 6 0 because of
(A4) and (41).
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Now we have to extend the subsolutionvε toO × [0, h̄]. We do this in two steps. The first step
is to define the function̄vε : {(x, t) ∈ O × [0, h̄] : d(x, t) 6 γ } → R by

v̄ε(x, t) =

{
sup(vε(x, t),m−) if d(x, t) > −γ ,

m− if d(x, t) 6 −γ .

By similar computations to those of Lemma 4.4 in [6] one proves thatv̄ε is a viscosity subsolution
of (23).

Then we choose a smooth functionψ : R → R such thatψ ′ 6 0 in R, ψ = 1 in (−∞, γ /2),
0 < ψ < 1 in (γ /2,3γ /4), ψ = 0 in (3γ /4,∞), and finally,ψ ′′ 6 0 in a neighborhood ofγ /2.
The functionwε,β : O × [0, h̄] → R defined by

wε,β(x, t) =

{
ψ(d(x, t))v̄ε(x, t)+ (1 − ψ(d(x, t)))(m+ − βε) if d(x, t) < γ ,

m+ − βε otherwise,

is a viscosity subsolution of (23) inO × [0, h̄] if ε andh̄ are sufficiently small. Moreover,

wε,β(·,0) 6 (m+ − βε)1{d(x,0)>β} +m−1{d(x,0)<β} in O.

We have to check the subsolution property only on the set{γ /2 < d(x, t) < 3γ /4}. In order to
simplify the notations, we drop the superscript “ε, β” on w as well as the superscript “ε” on v̄. We
have

wt −∆w + ε−2f (w) = ψ(v̄t −∆v̄)+ [ψ ′(dt −∆d)− ψ ′′](v̄ − (m+ − βε))

−2ψ ′Dd ·Dv + ε−2f (ψv̄ + (1 − ψ)(m+ − βε)) , (43)

where we have dropped the arguments of the functionψ for the sake of clarity.
Since we are arguing in the set{γ /2 < d(x, t) < 3γ /4}, using the asymptotic behavior ofq at

∞, we find that, for some constantc̃ > 0,

v̄(x, t) = m+ − exp(−(ε)−1c̃)− 2βε = m+ − 2βε + o(ε) asε → 0

and hence, forε small enough,

v̄(x, t)− (m+ − βε) = −βε + o(ε) 6 0. (44)

Sinceψ ′ 6 0 in R anddt −∆d < 0, we also have

ψ ′(dt −∆d)(v̄ − (m+ − βε)) 6 0.

But f is convex in a neighborhood ofm+. Therefore, ifε is sufficiently small,

f (w) 6 ψf (v̄)+ (1 − ψ)f (m+ − βε).

Substituting all this information in (43) yields

wt −∆w + ε−2f (w) 6 ψ
ν(β, α)

ε
− 2ψ ′Dd ·Dv

−ψ ′′(v̄ − (m+ − βε))+ (1 − ψ)ε−2f (m+ − βε). (45)
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By hypothesisψ ′′(s) 6 0 if s 6 γ /2+µ for someµ > 0, thus ford(x, t) 6 µ+γ /2, the right-hand
side of (45) is negative forε small enough since it is of the formO(1)+ ψν(β, α)/ε asε → 0.

If s > µ+ γ /2, then 1− ψ(s) > c(µ) > 0; hence,

wt −∆w + ε−2f (w) 6 O(1)+ c(µ)ε−2f (m+ − βε).

The right-hand side of this last inequality is negative forε small enough, sincef (m+) = 0 and
f ′(m+) > 0.

For the Neumann type boundary condition in the set{γ /2 < d(x, t) < 3γ /4} ∩ ∂O, we note
that, forε small enough,

Dw(x, t) = (ψ ′(v̄ −m+ + βε)+ ψq̇/ε)Dd.

Because of the properties ofψ , the fact thaṫq > 0 in R and (44), the quantityψ ′(v̄ −m+ + βε)+

ψq̇/ε is positive in the set{γ /2< d(x, t) < 3γ /4} ∩ ∂O and therefore

G(x, t,Dw) = (ψ ′(v̄ −m+ + βε)+ ψq̇/ε)G(x, t,Dd) 6 0,

hencew satisfies the Neumann boundary condition.
Finally, using the form of the functionw = wε,β we have built, it is clear that if(x, t) ∈

BO(x0, r)× (0, h̄) satisfiesd(x, t) > 2β, then

lim inf∗ [
wε,β −m+

ε
](x, t) > −2β.

Thus the proof of Lemma 2.3 is complete.

STEP 2: Propagation.Next we show that(Ω1
t )t is a generalized superflow:

PROPOSITION2.2 (Propagation II: local version) Letx0 ∈ O, t ∈ (0, T ), r > 0, h > 0 be such
thatt + h < T and letφ : O × [0, T ] → R be a smooth function such that, for someα > 0,

(i) ∂φ
∂t

+ F ∗(y, s,Dφ,D2φ) < −α onBO(x0, r)× [t, t + h],
(ii) G(y, s,Dφ) < −α on ∂O ∩ B(x0, r)× [t, t + h],

(iii) for any t 6 s 6 t + h, {y ∈ BO(x0, r) : φ(y, s) = 0} 6= ∅ and

|Dφ(y, s)| 6= 0 in {(y, s) ∈ BO(x0, r)× [t, t + h] : φ(y, s) = 0},

(iv) {y ∈ BO(x0, r) : φ(y, t) > 0} ⊂ Ωt ,
(v) for all s ∈ [t, t + h], {y ∈ ∂BO(x0, r) : φ(y, s) > 0} ⊂ Ωs .

Then, for allx ∈ BO(x0, r) such thatφ(x, t + h) > 0, we have

lim inf∗

[
uε −m+

ε

]
(y, s) > 0

for (y, s) in a small neighborhood of(x, t + h) and therefore(x, t + h) ∈ Ω1
t+h × {t + h}.



FRONT PROPAGATION PROBLEMS 261

Proof. The argument follows the proof of Lemma 2.3 with a key difference: forβ, ε small enough,
we are going to build a subsolutionωε,β of (23) only in the ballBO(x0, r) and not in the whole
domainO, condition (v) providing some kind of Dirichlet boundary condition on∂BO(x0, r).
Because of this similarity, we just sketch the proof.

Our aim is to build a subsolutionωε,β of (23) inBO(x0, r)× [t, t + h], satisfying

ωε,β(·, t) 6 (m+ − βε)1{d(·,t)>β} +m−1{d(·,t)<β} in BO(x0, r),

and for alls ∈ [t, t + h],

ωε,β(·, s) 6 (m+ − βε)1{d(·,s)>β} +m−1{d(·,s)<β} on ∂BO(x0, r),

where, for alls ∈ [t, t+h], d(·, s) is the signed distance to the set{φ(·, s) = 0} which has the same
sign asφ. Moreover we require that if(x, s) ∈ BO(x0, r)× [t, t + h] satisfiesd(x, s) > 2β, then

lim inf∗

[
ωε,β −m+

ε

]
(x, s) > −2β.

Because of the hypotheses onφ, there existsγ such thatd is smooth in the setQγ = {(x, s) ∈

BO(x0, r)× [t, t + h] : |d(x, s)| < γ }, |Dφ(x, s)| 6= 0 inQγ and

dt + F ∗(x, s,Dd,D2d) = dt −∆d 6 −
α

4|Dφ|
in Qγ , (46)

and
G(x, s,Dd) 6 −

α

4|Dφ|
on (∂O × [t, t + h]) ∩Qγ . (47)

We consider inQγ the functionvε of the form (42). By the arguments of Lemmas 3.2 and 4.2 in [6]
one shows thatvε satisfies (23) inQγ .

The next point consists in extending the subsolutionvε to the whole domainBO(x, r)×[t, t+h].
We do this as in the proof of Lemma 2.3 in a series of lemmas whose proofs are left to the reader.

LEMMA 2.4 Forε sufficiently small, the function̄vε defined on{(x, s) ∈ BO(x0, r)× [t, t + h] :
d(x, s) 6 γ } by

v̄ε(x, s) =

{
sup(vε(x, s),m−) in {(x, s) ∈ BO(x0, r)× [t, t + h] : d(x, s) > −γ },

m− in {(x, s) ∈ BO(x0, r)× [t, t + h] : d(x, s) 6 −γ },

is a viscosity subsolution of (23) in{(x, s) ∈ BO(x0, r)× [t, t + h] : d(x, s) < γ }. �

Next we consider the functionψ defined in the proof of Lemma 2.3.

LEMMA 2.5 The functionωε,β : BO(x0, r)× [t, t + h] → R defined by

ωε,β(x, s) =

{
ψ(d(x, s))v̄ε(x, s)+ (1 − ψ(d(x, s)))(m+ − βε) in {d(x, s) < γ },

m+ − βε elsewhere,

is a viscosity subsolution of (23) inBO(x0, r)× [t, t + h] if ε is small enough. Moreover,

ωε,β(·, t) 6 (m+ − βε)1{d(·,t)>β} +m−1{d(·,t)<β} in BO(x0, r),
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and for alls ∈ [t, t + h],

ωε,β(·, s) 6 (m+ − βε)1{d(·,s)>β} +m−1{d(·,s)<β} on ∂BO(x0, r).

Finally, for all (x, s) ∈ BO(x0, r)× [t, t + h] such thatd(x, s) > 2β, we have

lim inf∗

[
ωε,β −m+

ε

]
(x, s) > −2β. �

Now we conclude the proof of Proposition 2.2 by using the two lemmas. Consider the
subsolutionωε,β given by Lemma 2.5. It remains to check that, forε small enough,uε satisfies

uε(x, t) > (m+ − βε)1{d(x,t)>β} +m−1{d(x,t)<β} in BO(x0, r), (48)

and for alls ∈ [t, t + h],

uε(x, s) > (m+ − βε)1{d(x,s)>β} +m−1{d(x,s)<β} on ∂BO(x0, r). (49)

The inequalities (48) and (49) follow respectively from the fact that{y ∈ BO(x0, r) : φ(y, t) > 0}

⊂ Ωt , and from{y ∈ ∂BO(x0, r) : φ(y, s) > 0} ⊂ Ωs for all s ∈ [t, t + h] and the compactness of
these twoφ-sets.

Thus, by the maximum principle, forε small enough depending onβ andφ, we have

ωε,β 6 uε in BO(x0, r)× [t, t + h]. (50)

At this point, we remark that ifφ satisfies conditions (i)–(v) of Proposition 2.2 inBO(x0, r) ×

[t, t + h], it also satisfies them in a slightly larger time interval [t, t + h′], h′ > h. Therefore the
subsolutionωε,β can be built inBO(x0, r)× [t, t + h′] and the above inequality holds in this larger
domain.

We observe that because of the formωε,β , for all x ∈ BO(x0, r) such thatd(x, t + h) > 2β, we
have

lim inf∗

[
ωε,β −m+

ε

]
(x, t + h) > −2β.

Therefore for allx ∈ BO(x0, r) such thatd(x, t + h) > 2β, the inequality (50) yields

lim inf∗

[
uε −m+

ε

]
(x, t + h) > −2β.

Sinceβ is arbitrary, we have

{x ∈ BO(x0, r) : φ(x, t + h) > 0} ⊂ Ω1
t+h,

which is exactly the inclusion we wanted to prove. �

2.3 Extensions to nonlinear diffusions and(x, t)-dependent reaction terms

We start with the case of the nonlinear Allen–Cahn equation of the form

uε,t − tr(A(x, D̂uε)D
2uε)+ ε−2f (uε) = 0 inO × (0,∞), (51)
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where we recall that̂q := q/|q| for q ∈ RN\{0} and wheref is an Allen–Cahn type nonlinearity
satisfying the same assumptions as in the previous section andA is a function with values inSN
whose properties are listed below. This equation is associated with the following initial-boundary
conditions: {

G(x, t,Duε) = 0 on∂O × (0,∞),

uε = g onO × {0},
(52)

whereg is a continuous function onO.
Here the matrixA = (aij )ij ∈ C2(O × RN ,SN ) is such that

for all i, j, k ∈ {1, . . . , N}, aij , aij,xk , aij,pk are continuous onO × RN , (53) for eachR > 0 there existsCR > 0 such that for allp ∈ RN ,

A(·, p) ∈ W2,∞(O,SN ) and sup
|p|6R

‖A(·, p)‖W2,∞ 6 CR,
(54)

and, finally, there existsν > 0 such that for all(x, p, q) ∈ O × RN \ {0} × RN ,

A(x, p̂)q · q > ν|q|2. (55)

To state the result about the asymptotics of (51)–(52) we need to recall that, for everyu0 ∈

C(O), the initial value problem
ut + F(x,Du,D2u) = 0 inO × (0,∞),

G(x, t,Du) = 0 on∂O × (0,∞) ,

u = u0 onO × {0},

(56)

with

F(x, p,X) = − tr{A(x, p̂)X[I − (A(x, p̂)p · p)−1(Ap ⊗ p)]}

+ (2A(x, p̂)p · p)−1tr{A(x, p̂)p ⊗ [DxA(x, p̂)p · p

+ |p|
−1(X −Xp̂ ⊗ p̂)DpA(x, p̂)p · p]},

has a unique viscosity solutionu ∈ C(O × [0, T ]) for all T > 0. The proof of this fact, which is
true under suitable assumptions onG, can be found in [3].

THEOREM 2.2 Assume (24), (25), (53), (54), (55) and letuε be the solution of (51)–(52) with
g : RN → R such thatΓ0 = {x : g(x) = m0} is a nonempty subset ofRN . Then, asε → 0,

uε(x, t) →

m+ {u > 0},

locally uniformly in
m− {u < 0},

whereu is the unique viscosity solution of(56) with u0 = d0, the signed distance toΓ0 such that
d0 > 0 in {g > m0} andd0 < 0 in {g < m0}.

If, in addition, the no-interior condition(13) holds, then, asε → 0,

uε(x, t) →


m+ {u > 0},

locally uniformly in
m− {u > 0}

c
.
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Proof. The proof follows closely the one of Theorem 2.1 except for a minor additional argument
that we give below.

To prove the existence of subsolutionswε,β , we consider a smooth functionφ satisfying the
conditions of Definition 1.1 and we set, as in Section 1,

vε(x, s) = q(ε−1(d̃(x, s)− 2β))− βε,

where for alls > 0, d̃(·, s) is a differentsigned-distance functionto the set{φ(x, s) = 0} since it
solves

A
(
x, D̂d̃

)
Dd̃ ·Dd̃ = 1 (57)

in {(x, s) ∈ O × [t, t + h] : |φ(x, s)| 6 γ } with γ > 0 small enough. The functioñd is smooth in
this set ifγ is small enough as a consequence of the method of characteristics.

With this new distance function, all the computations of Section 2.2 extend easily to this more
complicated case. �

We now consider the more complicated case of(x, t)-dependent nonlinearities. More
specifically, we study the asymptotic behavior asε → 0 of the solutions of the equations

uε,t −∆uε + b(x) ·Duε + ε−2f ε(uε, x, t) = 0 inO × (0,∞) , (58)

and
uε,t − ε∆uε + b(x) ·Duε + ε−1f ε(uε, x, t) = 0 inO × (0,∞) , (59)

whereb : O → RN is a Lipschitz continuous vector field and the functionsu 7→ f ε(u, x, t) are
(x, t)-dependent “cubic-type” nonlinearities satisfying suitable assumptions. As in the Allen–Cahn
case, we consider the equations (58) and (59) together with (52).

The two model cases we have in mind are

f ε(u, x, t) = f (u)+ εθ(x, t) (60)

for (58) withf satisfying (24), and

f ε(u, x, t) = 2(u− µ(x, t))(u−m−)(u−m+)+ εθ(x, t) (61)

for (59), where, say,θ, µ ∈ W1,∞(O × [0,∞)) andµ takes values in(m−, m+).

In the general case, we assume that the functionsf ε depend continuously onε > 0, areC2-
functions ofu, x, C1-functions oft and that for sufficiently smallε > 0 there existhε−(x, t) <
hε0(x, t) < hε+(x, t) such that

f ε(hε−(x, t), x, t) = f ε(hε+(x, t), x, t) = f ε(hε0(x, t), x, t) = 0,

with, for anyx ∈ O andt > 0,

f ε(s, x, t) > 0 on(hε−(x, t), h
ε
0(x, t)), f ε(s, x, t) < 0 on(hε0(x, t), h

ε
+(x, t)),

and
f εu (u, x, t) > γ > 0 on(−∞, hε−(x, t)+ γ ] ∪ [hε+(x, t)− γ,∞), (62)

for someγ > 0 independent of(x, t, ε).
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Depending on whether we consider (58) or (59), we impose two different types of assumptions
on the derivatives of the functionsf ε, namely, we assume that, either forκ = 0 or 1, for any
compact subsetK of R × O × [0,∞), there exists a constantC(K) > 0 such that, forε small
enough and for all(r, x, t) ∈ K, 1 6 i, j 6 N ,

|Dtf
ε(r, x, t)|, |Dxif

ε(r, x, t)|, |Dxixj f
ε(r, x, t)|, |Dxirf

ε(r, x, t)| 6 C(K)εκ , (63)

and
|Drf

ε(r, x, t)|, |Drrf
ε(r, x, t)| 6 C(K). (64)

To simplify the notations and to make them agree with the Allen–Cahn case, we write
m±(x, t) := h0

±(x, t) andm0(x, t) := h0
0(x, t) for x ∈ O and t > 0. As a consequence of the

above assumptions onf ε, we have

hε±(x, t) → m±(x, t), hε0(x, t) → m0(x, t) asε → 0, (65)

uniformly on compact subsets ofO × [0,∞), where, in fact,m± andm0 do not depend onx andt
if κ = 1.

Since, for fixed(x, t, ε), the functionu 7→ f ε(u, t, x) satisfies the hypotheses of Aronson and
Weinberger [2] and Fife and McLeod [12], there exists a unique pair(qε(r, x, t), cε(x, t)) such that

qεrr(r, x, t)+ cε(r, x, t)qεr (r, x, t) = f ε(qε(r, x, t), x, t) (66)

and
lim
r±∞

qε(r, x, t) = hε±(x, t), qε(0, x, t) = hε0(x, t). (67)

In the particular case of (60) and (61), we have an explicit formula for(qε(r, x, t), cε(x, t)),
namely

qε(r, x, t) = hε−(x, t)+mε(x, t)[1 + exp(−mε(x, t)(r + rε(x, t)))]−1,

cε(x, t) = 2hε0(x, t)− hε+(x, t)− hε−(x, t),

wheremε(x, t) = hε+(x, t) − hε−(x, t) andrε(x, t) is such thatqε(0, x, t) = hε0(x, t). Depending
on whether we are in the case of (60) or (61), we have different behavior inε for the derivatives of
hε+(x, t), h

ε
−(x, t) andhε0(x, t) which can be obtained through the Implicit Function Theorem, and

this implies different properties of the derivatives ofqε andcε.
We continue by listing the technical assumptions onqε andcε that are used in the statement of

our results:
qε andcε depend smoothly onx andt , (68)

andqε satisfies, for allT > 0 andr ∈ R and uniformly w.r.t.ε and(x, t) ∈ O × [0, T ],

(i) qεr (r, x, t) > 0,
(ii) qε(r, x, t) → hε±(x, t) exponentially fast asr → ±∞,

(iii ) qεt ,∆xq
ε

= O(1), Dxqε = O(εκ), Dxq
ε
r = o(1) asε → 0.

(69)

Finally, if (63) holds withκ = 0, we assume

cε(x, t) → α(x, t), (70)
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while if it is satisfied withκ = 1, we require

− ε−1cε(x, t) → α(x, t), (71)

with all these limits locally uniform in(x, t).
To be concise, we denote by(H0) the above set of hypotheses withκ = 0, and by(H1) the one

with κ = 1.
Tedious but straightforward computations show that the functionsf ε given by (60) and the

associatedqε andcε satisfy(H1), while in the case of (61) they satisfy(H0).
We expect the limiting behavior ofuε in O × [0, T ] to be governed in the case of (58) by

ut − tr[(I − D̂u⊗ D̂u)D2u] + b(x) ·Du− α(x, t)|Du| = 0 (72)

with α(x, t) = limε→0 ε
−1cε(x, t) if (H1) holds, while in the case of (59) and if(H0) is satisfied,

this behavior is expected to be governed by

ut + b(x) ·Du− α(x, t)|Du| = 0 (73)

with α(x, t) = limε→0 c
ε(x, t).

Our main results justify these claims. The first one concerns (58).

THEOREM 2.3 Assume(A1)–(A4) and (H1). If uε is the solution of (58)-(52), where the
continuous functiong : O → R is such thatΓ0 = {x : g(x) = m0} is a nonempty subset ofO,
then, asε → 0,

uε(x, t) →

m+ {u > 0},

locally uniformly in
m− {u < 0},

whereu is the unique viscosity solution of
ut − tr[(I − D̂u⊗ D̂u)D2u] + b(x) ·Du− α(x, t)|Du| = 0 inO × (0,∞),

G(x, t,Du) = 0 on∂O × (0,∞),

u(x,0) = d0(x) onO × {0},

(74)

whered0 is the signed distance toΓ0 which is positive in{g > m0} and negative in{g < m0}. If, in
addition, the no-interior condition(13) holds, then, asε → 0,

uε(x, t) →


m+ {u > 0},

locally uniformly in
m− {u > 0}

c
.

For (59) we have

THEOREM 2.4 Assume(A1)–(A4) and (H0). Let uε be the solution of (59)-(52), where the
continuous functiong : O → R is such thatΓ0 = {x : g(x) = m0(x,0)} is a nonempty subset
of O. Then, asε → 0,

uε(x, t) →

m+ {u > 0},

locally uniformly in
m− {u < 0},
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whereu is the unique viscosity solution of
ut + b(x) ·Du− α(x, t)|Du| = 0 inO × (0,∞),

G(x, t,Du) = 0 on∂O × (0,∞),

u(x,0) = d0(x) onO × {0},

(75)

whered0 is the signed distance toΓ0 which is positive in{g > 0} and negative in{g < 0}. If, in
addition, the no-interior condition(13) holds, then, asε → 0,

uε(x, t) →


m+ {u > 0},

locally uniformly in
m− {u > 0}

c
.

The proofs of Theorems 2.3 and 2.4 follow exactly the same steps as in the proof of Theorem
2.1; we just point out the main changes which are necessary to prove the corresponding step 1
(initialization and global propagation) and step 2 (local propagation),

Proof of Theorem 2.3.We consider the families(Ω1
t )t and(Ω2

t )t of sets defined in Section 2.1 by
(18), (19) withbε ≡ hε+, aε ≡ hε−, b = m+, a = m− andτ = 1, andΩ1

0 ,Ω2
0 defined by (22).

In order to describe the main changes to the proof of Theorem 2.1 and to be as concise as
possible, we follow exactly the same steps and we use the same notations.

STEP 1: Initialization. We start with the proof of Proposition 2.1 whose statement remains
unchanged; to do that, we have to prove the analogues of Lemma 2.2 and 2.3 withm+ replaced
by hε+ andm− by hε− − βε.

We first consider thevery small time initialization.

1. As in the proof of Lemma 2.2, we have to modify the functionf ε, but now taking into account the
(x, t)-dependence. We proceed in the following way: because of the assumptions onf ε, there exists
a functionr 7→ fδ(r) such that, for everyT > 0, if ε is small enough,fδ(r) > f ε(r, x, t) + 2ε
for anyr ∈ R, x ∈ O andt ∈ [0, T ]. Moreoverfδ is a cubic-type nonlinearity satisfying (24) with
three zerosm− − δ,m0 + δ/2 andm+ − δ.

We modifyf ε in two steps, We first introduce a smooth cut-off functionζ1 ∈ C∞

0 (R) such that
0 6 ζ1 6 1 in R, ζ1(r) = 1 in (m0 − δ,m0 + δ) andζ1(r) = 0 for r 6 m0 − 2δ andr > m0 + 2δ.
We set,

f̃ εδ (r, x, t) = ζ1(r)fδ(r)+ (1 − ζ1(r))[f
ε(r, x, t)+ εβϕ(−Cβ−1δ̄(x))], (76)

where δ̄(·) denotes the distance function to∂O, ϕ is a C2-function which is constant outside a
(small) neighborhood of 0 and such that 16 ϕ 6 2, ϕ′(0) = 1; finally β,C are positive constants
which will be chosen later on, with at leastβ 6 1.

Using the assumptions onf ε, it is easy to see that, forδ small enough,f̃ εδ has the same regularity
properties asf ε and has exactly three zeros,hε−+O(βε),m0+δ/2,hε++O(βε); moreoverf̃ εδ > f ε

onR with f̃ εδ (r) = f ε(r, x, t)+ εβϕ(−Cβ−1δ̄(x)) if |r −m0| > 2δ. Two key properties off̃ εδ are:
f̃ εδ is independent ofx andt for |r −m0| 6 δ, and if we chooseC > 0 large enough, we have, for
all r ∈ R, x ∈ ∂O andt ∈ [0, T ],

Dx f̃
ε
δ (r, x, t) · n(x) > K(T )|T (Dx f̃ εδ (r, x, t))|, (77)
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whereK(T ) is the constant given by Lemma 2.1. Indeed, (77) is a consequence of the form of the
ϕ-term and of (63) which yieldsDxf ε = O(ε).

2. Then we consider another cut-off functionζ2 ∈ C∞

0 (R) such that 06 ζ2 6 1 in R, ζ2(s) = 0 in
(−∞, m0 + δ/4] ∪ [m0 + δ,∞) andζ2(s) = 1 in [m0 + δ/3, m0 + 2δ/3]. Finally we consider

f̄ εδ (r, x, t) = (1 − ζ2(s))f̃
ε
δ (r, x, t)+ ζ2(r)

δ/2 +m0 − s

|logε|
.

We note that, because again of the properties off ε, f̄ εδ has exactly three zeros:hε+ + O(βε),
m0 + δ/2,hε+ +O(βε); moreover, forε small enough,f̄ εδ > f ε + βε in R andf̄ εδ = f ε + εβϕ for
|r −m0| > 2δ. Since this modification of̃f εδ concerns only a neighborhood ofm0 (and because of
the form of this modification), its key properties are preserved; in particularf̄ εδ is independent ofx
andt for |r −m0| 6 δ and satisfies a condition analogous to (77).

3. We consider the solutionχ(ξ, ·, x, t) of the ode{
χ̇ + f̄ εδ (χ, x, t) = 0,

χ(ξ,0, x, t) = ξ ∈ R.
(78)

4. Tedious computations show that the first key properties ofχ remain true, namely

χξ (ξ, s, x, t) > 0 in R × [0,∞)×O × [0,∞),
for all β > 0, T > 0, there existsa(β, δ, T ) > 0 such that

χ(ξ, s, x, t) > hε+(x, t)− βε for s > a|logε| andξ > δ +m0

for all (x, t) ∈ O × [0, T ],

(79)


for everya, T > 0, there existsM(a, T ) ∈ R such that, forε small enough,

(χξ (ξ, s, x, t))
−1

|χξξ (ξ, s, x, t)| 6 ε−1M(a, T ) for 0< s 6 a|logε|,

for all (x, t) ∈ O × [0, T ].

(80)

5. A new point here concerns the behavior ofχ in x andt :

LEMMA 2.6 If δ is small enough, then for everya > 0 andT > 0, there existsM̃(a, T ) > 0 such
that, forε small enough and for 0< s 6 a|logε|, we have

|χt (ξ, s, x, t)|, |χxi (ξ, s, x, t)|, |χxixj (ξ, s, x, t)|, |χξxi (ξ, s, x, t)| 6 M̃(a, T )ε

for any 16 i, j 6 N . Moreover, for anyT > 0, if C > 0 is large enough, then for anyx ∈ ∂O,
s > 0, ξ ∈ R and 06 t 6 T we have

Dxχ(ξ, s, x, t) · n(x) 6 −K(T )|T (Dxχ(ξ, s, x, t))|.

Proof of Lemma 2.6.This proof uses in an essential way the modifications off ε made above. We
only prove the estimate forDxχ , the other estimates being proved in the same way.

We consider the ode satisfied byw := Dxχ obtained by differentiating (78) with respect tox,
namely

ẇ = −Dr f̄
ε
δ (χ, x, t)w −Dx f̄

ε
δ (χ, x, t). (81)
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By assumptionDx f̄ εδ (χ, x, t) = O(ε) asε → 0 but a prioriDr f̄ εδ is not always positive and this is
a difficulty in getting the right estimate.

To overcome it, we use two ingredients: first sincef̄ εδ depends onx andt only for |r−m0| > δ,
it is enough to consider initial dataξ for (78) such thatξ > m0 + δ or ξ 6 m0 − δ. We only consider
the first case, the second one being treated analogously.

If δ is small enough andε � δ, then for anyx ∈ O and t ∈ [0, T ], f̄ εδ 6 −cδ < 0 for
r ∈ [m0 + δ,m+ − δ] andDr f̄ εδ > γ /2 > 0 for r > m+ − δ. Therefore, there existssδ > 0,
independent ofx andt , such that ifξ > m0 + δ ands > sδ, thenχ(ξ, s, x, t) > m+ − δ. Using this
information in (81), and in particular the fact thatDr f̄ εδ (χ(ξ, s, x, t), x, t) > γ /2 > 0, one easily
obtains the desired estimate.

The boundary property forDxχ , though important, is a rather straightforward consequence of
(77): indeed, for any vectore such thate · n(x) = 0 and |e| = 1, we introduce the function
w := Dxχ · n(x) + K(T )Dxχ · e. By looking at the ode satisfied byw, namely (81) withDx f̄ εδ
replaced byDx f̄ εδ · n(x)+K(T )Dx f̄

ε
δ · e, and using (77), easy arguments show thatw 6 0 for any

r > 0, ξ ∈ R, x ∈ ∂O and 06 t 6 T . Since this is true for anye, the result follows.

6. The next step consists in introducing the functionvε : O × (0, aε2
|logε|) → R defined by

vε(x, t) = χ(ψ(d(x,0))−Kt/ε, t/ε2, x, t),

whered(x,0) is as in Lemma 2.2 andψ is the function defined by (38) withm− replaced by−‖g‖∞

andm0 kept unchanged. We are going to verify thatvε is a viscosity subsolution of (58)-(52).

7. As far as the Neumann boundary condition is concerned, we observe that

Dvε(x, t) = χξψ
′Dd +Dxχ.

By Lemma 2.6, we haveDxχ · n(x) 6 −K(T )|T (Dxχ)|, thus by applying Lemma 2.1 with̃p =

χξψ
′Dd andp = Dxχ , it is immediate that the boundary condition is satisfied.

8. Now we check thatvε satisfies the equation (58) inO × (0, aε2
|logε|). We have

vεt −∆vε + b(x) ·Dvε + ε−2f ε(v, x, t) = χt + ε−2χ̇ + b(x) ·Dxχ −∆xχ − 2Dxχξ

− χξ [ε
−1K + ψ ′

+ ψ ′′∆d + ψ ′2(χξ )
−1χξξ

+ b(x) · ψ ′Dd] + ε−2(f ε − f̄ εδ )+ ε−2f̄ εδ .

Given (80) and the fact that, by definition, the functionψ has compact support it is clear that forK
large enough the quantityε−1K + ψ ′

+ ψ ′′∆d + ψ ′2(χξ )
−1χξξ is positive.

As χ̇+f̄ εδ = 0, it remains to analyze the sign ofχt−∆xχ−2Dxχξ+b(x)·Dxχ+ε−2(f ε−f̄ εδ ).

To this end we observe thatf ε − f̄ εδ 6 −εβϕ. Thus since, by Lemma 2.6,χt , ∆xχ , 2Dxχξ are
O(ε) asε → 0 locally uniformly in(x, t) ∈ O × [0, T ], we have, forε small enough,

χt −∆xχ − 2Dxχξ + b(x) ·Dxχ + ε−2(f ε − f̄ εδ ) 6 0

and so (58) holds.
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9. We have by construction, on the one hand,

uε(x,0) > (m0 + 2δ)1{d(x,0)>δ} − ‖g‖∞1{d(x,0)<δ} onO,

and, on the other hand,

vε(x,0) = χ(ψ(d(x,0)),0,0, x) = ψ(d(x,0))

6 (m0 + 2δ)1{d(x,0)>δ} − ‖g‖∞1{d(x,0)<δ}.

Thus, the maximum principle implies that

vε(x, t) 6 uε(x, t) onO × [0, aε2
|logε|]. (82)

Evaluating (82) fortε = aε2
|logε| and forx such thatd(x,0) > δ we get

χ(m0 + 2δ −Kaε|lognε|, a|logε|, x, aε2
|logε|) 6 uε(x, tε).

But, since forε small enough,

m0 + 2δ −Kaε|logε| > m0 + δ,

it follows from (79) that

hε+(x, tε)+O(βε) 6 uε(x, tε) if d(x,0) > δ.

10. Finally, because of the properties off̄ εδ , we also haveχ(ξ, a|logε|, x, aε2
|logε|) > hε−(x, tε)+

O(βε) for any boundedξ if a is large and therefore

hε−(x, tε)+O(βε) 6 uε(x, tε) for anyx ∈ O.

This gives

[hε+(x, tε)+O(βε)]1{d(x,tε)>δ} + [hε−(x, tε)+O(βε)]1{d(x,tε)<δ} 6 uε(x, aε
2
|logε|) in O.

The conclusion follows by first choosing a smallerβ if necessary to replaceO(βε) by βε and then
by takingδ = β; the result holds forτ = a. �

Now we turn to thepropagation.The local and global propagation are proved in a similar way,
we only consider the global case.

If tε is as above, we construct, fort > tε, a subsolutionw of (58)-(52) such that

w(x, tε) 6 [hε+(x, tε)− βε]1{d(x,tε)>β} + [hε−(x, tε)− βε]1{d(x,tε)<β} in O.

To do that, we follow the argument of the proof of Lemma 2.3. We first consider a function of the
form

vε(x, t) = qε(ε−1(d(x, t)− 2β), x, t)− 2βεϕ(−Cβ−1δ̄(x)), (83)

whereqε is the solution of (66) and, as above,ϕ is a smooth function such that 16 ϕ 6 2,
ϕ′(0) = 1. We verify thatvε is a viscosity solution of (58)-(52) inQγ,h. As far as the boundary
condition (52) is concerned, we have

Dvε(x, t) = ε−1qεrDd +Dxq
ε
+ εCϕ′Dδ̄(x).
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We recall that by hypothesesDxqε = O(ε) asε → 0 and thatDδ̄(x) = −n(x), thus forC large
enoughDxqε · n(x) + εCϕ′Dδ̄ · n(x) 6 −K(T )|T (Dxqε · n(x) + εCϕ′Dδ̄)| and so, by using
Lemma 2.1, the boundary condition (52) is verified.

Moreover we have

vεt −∆vε + b(x) ·Dvε + ε−2f ε(vε, x, t) = ε−2Iε + ε−1II ε + III ε, (84)

where

Iε = qεrr + cε(x, t)qεr − f ε(qε, x, t),

II ε = qεr (dt −∆d + b(x) ·Dd + ε−1cε(x, t))− 2Dxq
ε
r ·Dd − 2βf εu (q

ε, x, t)ϕ,

III ε = 2εβ−1C2ϕ′′
− 2εCϕ′∆δ̄ + b(x) ·Dxq

ε
+ qεt −∆xq

ε
+O(1).

We observe that Iε = 0 and by the properties of the traveling wave we have IIIε = O(1). Thus, by
using the properties of the traveling wave andf εu (h

ε
±, x, t) > γ > 0 and the same arguments as in

the proof of Lemma 2.3, one can see that ifβ is small enough thenvε satisfies, for some constant
ν(α, β) < 0 (independent of(x, t)),

vεt −∆vε + ε−2f ε(vε, x, t) 6 ε−1ν(α, β)+O(1) asε → 0. (85)

Next we want to extend the subsolutionvε toO × [0, h] and we do it in two steps.
First we have

LEMMA 2.7 IfC > 0 is a large enough constant, then forε small enough, the functionsgε± defined
onO × [0,∞) by gε±(x, t) = hε±(x, t)− εβϕ(−Cβ

−1δ̄(x)) are viscosity subsolutions of (58)-(52).

We leave the proof of this claim to the reader since it follows rather easily from the properties
of f ε, hε+ andhε− and from the arguments we used above to prove thatvε is a subsolution of the
equation. We just point out that for the boundary condition (52) we have

Dxg
ε
± = Dxh

ε
±(x, t)+ Cεϕ′(0)Dδ̄.

Since, by the properties off ε (cf. (63)),Dxhε±(x, t) = O(ε) asε → 0, we haveDxgε± · n(x) <

−K(T )|T (Dxgε±)| for C large enough and thus the boundary condition is satisfied by applying
Lemma 2.1 withp̃ = 0 andp = Dxg

ε
±.

The next step is to define the functionv̄ε : {(x, t) ∈ O × [tε, tε + h] : d(x, t) 6 γ } → R by

v̄ε(x, t) =

{
sup(vε(x, t), gε−(x, t)) if d(x, t) > −γ ,

gε−(x, t) otherwise.

By similar computations to those of Lemma 4.2 in [6] and using Lemma 2.7, it is easy to prove that
v̄ε is a viscosity subsolution of (58)-(52).

Then we choose a smooth functionψ : R → R such thatψ ′ 6 0 in R, ψ = 1 in (−∞, γ /2),
0 < ψ < 1 in (γ /2,3γ /4), ψ = 0 in (3γ /4,∞), and finally,ψ ′′ 6 0 in a neighborhood ofγ /2.
The functionwε : O × [tε, tε + h] → R defined by

wε(x, t) =

{
ψ(d(x, t))v̄ε(x, t)+ (1 − ψ(d(x, t)))gε+(x, t) if d(x, t) < γ ,

gε+(x, t) otherwise,
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is a viscosity subsolution of (58)-(52) onO× [tε, tε +h] if ε andh are sufficiently small. Moreover

wε(·, tε) 6 (hε+(·, tε)− βε)1{d(x,tε)>β} + (hε−(·, tε)− βε)1{d(x,tε)<β} in O.

Now the conclusion follows from the maximum principle, which allows us to compareuε andwε,
and from the form of the functionwε. �

Proof of Theorem 2.4.We only give a very brief sketch of the proof since it is based on the same
arguments as the proof of Theorem 2.3 (or even simpler). The main change (and this will simplify
matters) is that, roughly speaking, the termβε is replaced everywhere byβ.

The main change in the proof (which explains why we work withβ instead ofβε) is that we
now consider the families(Ω1

t )t and(Ω2
t )t defined by (18), (19) withbε ≡ hε+, aε ≡ hε−, b = m+,

a = m− but with τ = 0, andΩ1
0 ,Ω2

0 defined by (22).
We reformulate the key result of thevery small time initializationto point out the main

differences:

LEMMA 2.8 Under the assumptions of Theorem 2.4, for anyβ > 0, there exists a constantτ > 0
such that iftε = τε, then, for all sufficiently smallε,

uε(x, tε) > (hε+(x, tε)− β)1{d(x,tε)>β} + (hε−(x, tε)− β)1{d(x,tε)<β} onO.

As mentioned above, in the(hε+(x, t)− β) and(hε−(x, t)− β) terms,β is now playing the role
played above byβε, and the dependence oftε onε leads to simplification in the proof: for example,
to prove Lemma 2.8, we do not need any more to modifyf ε in a complicated way and may work
with the ode

χ̇(ξ, s, x, t)+ f ε(χ(ξ, s, x, t), x, t)+ βϕ(−Cβ−1δ̄(x)) = 0. (86)

The point is that now the derivatives ofχ with respect toξ , x and t are bounded ifβ is fixed for
s 6 a(δ). On the other hand, the analogue of the functionψ defined by (38) depends now onx and
t and in order that the termψ(d(x, t), x, t) satisfies the Neumann boundary condition, we have to
define it in the following way:

ψ(z, x, t) := m0(x, t)+ δϕ(Cδ−1δ̄(x))+ ψ̃(z),

whereψ̃ : R → R is a smooth function such that−C 6 ψ̃ 6 δ in R, ψ̃(z) = −C in {z < 0}

and ψ̃(z) = δ on {z > δ}. By takingC > 0 large enough, the Neumann boundary condition is
satisfied sincem0(x, t) + δϕ(Cδ−1δ̄(x)) satisfies it, and we also have the key propertym0(x, t) +

δϕ(Cδ−1δ̄(x))− C 6 −‖g‖∞ in O × [0,∞).
For thepropagation, we argue in the same way but with avε of the form

vε(x, t) = qε(ε−1(d(x, t)− 2β))− 2βϕ(−Cβ−1δ̄(x)), (87)

andgε± are changed in an analogous way.
We leave the computations to the reader since they are simpler than those above. �
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MR 96j:3511

15. GIGA, Y. & SATO, M.-H. Neumann problem for singular degenerate parabolic equations.Differential
Integral Equations6 (1993), 1217–1230. Zbl 0806.35098 MR 94g:35129

16. ISHII, H. & SATO, M.-H. Nonlinear oblique derivative problems for singular degenerate parabolic
equations on a general domain. Preprint.

17. KATSOULAKIS, M. A., KOSSIORIS, G., & REITICH, F. Generalized motion by mean curvature with
Neumann conditions and the Allen–Cahn model for phase transitions.J. Geom. Anal.5 (1995), 255–279.
Zbl 0827.35003 MR 96f:35183

18. KELLER, J. B., RUBINSTEIN, J., & STERNBERG, P. Fast reaction, slow diffusion and curve shortening.
SIAM J. Appl. Math.49 (1989), 116–133. Zbl 0701.35012 MR 89m:35117

19. OSHER, S. & SETHIAN, J. A. Fronts propagating with curvature-dependent speed: algorithms based on
Hamilton–Jacobi formulations.J. Comput. Phys.79 (1988), 12–49. Zbl 0659.65132 MR 89h:80012

http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0407.9201&format=complete
http://www.ams.org/mathscinet-getitem?mr=80a%3A35013
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0924.35051&format=complete
http://www.ams.org/mathscinet-getitem?mr=2001c%3A35078
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0831.65138&format=complete
http://www.ams.org/mathscinet-getitem?mr=96c%3A65140
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0785.35049&format=complete
http://www.ams.org/mathscinet-getitem?mr=94c%3A35005 
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0904.35034&format=complete
http://www.ams.org/mathscinet-getitem?mr=99c%3A35106
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0765.35024&format=complete
http://www.ams.org/mathscinet-getitem?mr=92m%3A35129 
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0696.35087&format=complete
http://www.ams.org/mathscinet-getitem?mr=93a%3A35093
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0755.35015&format=complete
http://www.ams.org/mathscinet-getitem?mr=92j%3A35050
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0801.35045&format=complete
http://www.ams.org/mathscinet-getitem?mr=93g%3A35064
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0726.53029&format=complete
http://www.ams.org/mathscinet-getitem?mr=92h%3A35097
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0361.35035&format=complete
http://www.ams.org/mathscinet-getitem?mr=56%20%23862
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0773.60070&format=complete
http://www.ams.org/mathscinet-getitem?mr=94e%3A93004
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0840.35019&format=complete
http://www.ams.org/mathscinet-getitem?mr=96j%3A3511
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0806.35098&format=complete
http://www.ams.org/mathscinet-getitem?mr=94g%3A35129
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0827.35003&format=complete
http://www.ams.org/mathscinet-getitem?mr=96f%3A35183
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0701.35012&format=complete
http://www.ams.org/mathscinet-getitem?mr=89m%3A35117
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0659.65132&format=complete
http://www.ams.org/mathscinet-getitem?mr=89h%3A80012


274 G. BARLES & F. DA LIO

20. SONER, H. M. Motion of a set by the curvature of its boundary.J. Differential Equations101 (1993),
313–372. Zbl 0769.35070 MR 94b:58038

21. SOUGANIDIS, P. E. Front propagation: theory and applications.Viscosity Solutions and Applications
(Montecatini Terme, 1995), I. Capuzzo Dolcetta et al. (eds.), Lecture Notes in Math. 1660, Springer,
Berlin (1997), 186–242. Zbl 0882.35016 MR 98g:35010

22. SOUGANIDIS, P. E. Interface dynamics in phase transitions.Proceeding ICM 94, Birkhäuser, Basel
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