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We are interested in the asymptotic behavior of the solutions of scaled reaction-diffusion equations
in bounded domains, associated with Neumann type boundary conditions, and more precisely in
cases when such behavior is described in terms of moving interfaces. A typical example is the case
of the Allen—Cahn equation associated with an oblique derivative boundary condition, where the

generation of a front moving by mean curvature with an angle boundary condition is shown. In order

to establish such results rigourously, we modify and adapt the “geometrical approach” introduced

by P. E. Souganidis and the first author for solving probleni&’fh we provide a new definition of
weak solution for the global-in-time motion of fronts with curvature-dependent velocities and with

angle boundary conditions, which turns out to be equivalent to the level-set approach when there is
no fattening phenomenon. We use this definition to obtain the asymptotic behavior of the solutions

of a large class of reaction-diffusion equations, including the case of quasilinear onés, and
dependent reaction terms, but also with any, possibly nonlinear, Neumann boundary conditions.
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Introduction

Front propagation phenomena can be observed in a lot of physical, chemical or biological situations:
flame propagation in combustion, phase transitions, evolution of populations or spreading of
diseases etc. From a mathematical point of view, they appear naturally in the study of asymptotic

limits of evolving systems, like reaction-diffusion equations or particle systems.

In the past fifteen years, a lot of work has been devoted to rigourously establish the connections
between reaction-diffusion equations or particle systems with the wavefronts they generate. In order
to do it, two kinds of difficulties had to be solved: the first key problem was to obtain a suitable
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“weak” definition for the evolutions of hypersurfaces with prescribed normal velocities, and in
particular with curvature-dependent velocities. Indeed, for the applications, the front propagations
have to be defined for all time but it is well known that, in general, smooth evolutions cannot exist
globally in time. The aim was both to define these motions past the development of singularities
but also to have a sufficiently flexible definition in order to be able to actually study the asymptotic
limits of reaction-diffusion equations or particle systems, which is the second difficulty.

Most of this work was done in the case of problems set in the whole gp#cer in related
situations where no constraints were imposed on the motions. The aim of this paper is to consider
the case of reaction-diffusion equations set in bounded domains with Neumann type boundary
conditions which are associated to motions of fronts with angle boundary conditions on the
boundary. In order to do it, we are going to slightly modify and extend the “geometrical approach”
of P. E. Souganidis and the first author [6] to take into account this kind of problems.

In order to be more specific, we consider, as a model case, the example of the Allen—Cahn
equation associated to an oblique derivative boundary condition. The aim is to study the asymptotics
of the solutions of

Ues — Aig + £ 2f(ug) =0 in O x (0, 0), (1)

where O is a smooth bounded domain BV, u, : O x [0,00) — R is the solution and the
nonlinearity f is of the form f = W’, W being a double-well potential. The so-callatien—Cahn
equationcorresponds to the choice

fu)=2uw?—-1) foruecR. 2)
We consider{([L) together with an oblique derivative boundary condition

oug

ay

=0 0ndo x (0, 00), 3)

wherey : 90 x [0, c0) — RV is a Lipschitz continuous vector field such that, t) - n(x) > 0
onao x [0, 00), n(x) being the unit exterior normal vector & atx. Finally we impose an initial
data

ue(x,0) =g(x) ono x {0}, (4)

whereg € C(0).

We recall that the Allen—Cahn equation was introducedlin [1] to model the motion of the sharp
interface—the antiphase boundary—between regions of different phases of a maték).the
formal analysis of Keller, Rubinstein and Sternbérd [18] shows that the interface, i.e. the thin region
separating the subsets BfY whereu, is converging to the stable equilibria of the equation, is
moving by mean curvature whefis given by [(2). A first rigourous, but partial, proof of this result
was proposed by Chen [7] (bothIR1Y and in bounded open subsetsdf with Neumann boundary
conditions) in the case when the motion by mean curvature is classical, i.e. the fronts are smooth
hypersurfaces evolving smoothly. This means in fact a small time result since it is well known that,
for the motion by mean curvature, singularities develop in finite time.

In order to rigourously prove and even formulate the result for all times, a suitable notion of
generalized motion by mean curvature is needed in order to define it past the development of
singularities. This question was solved in a rather general way by the “level-set approach”, first
introduced by Osher and Sethign [19] for numerical computations and then developed from a
theoretical point of view by Evans and Spruckl[11] for the motion by mean curvature and by Chen,
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Giga and Gotol[[8] for more general, curvature-dependent motions. Then a different but related
approach using the properties of the (signed) distance to the front was introduced by Soner [20] and
further developed in Barles, Soner and Souganidis [5]; as we will see below, the distance function
to the moving front plays a key role in the study of the asymptotics of reaction-diffusion equations.
For a general review of these theories, their relationships as well as other related facts we refer to
Souganidis[[2/1, 22].

Using the level-set approach and the properties of the distance function to the moving front, the
asymptotics of the Allen—Cahn equation was first proved rigorously and for all times in Evans, Soner
and Souganidis [10] and then by different methodsin [5]. But the purely analytical methods of those
papers were not very flexible and therefore not easily extendable to more complicated reaction-
diffusion equations, for example equations with oscillating coefficients, and even less to general
nonlocal, fully nonlinear equations such as the ones appearing in the study of particle systems.
In particular they were not adapted to take into account front propagations in which the velocity
depends on the normal direction.

To solve this problem, a different approach, more geometrical, was introduced by Souganidis
and the first author in [6]. Based on a new definition of the generalized propagation of fr&ifs in
which turns out to be equivalent to the level-set approach when there is no fattening phenomenon,
it leads to a simple and general method for establishing the asymptotic limit of a large class of
reaction-diffusion equations and particle systems. Roughly speaking, this method reduces the study
of such asymptotics to the cases when the evolving front is smooth and evolves smoothly, which
means, at the practical level, for small time.

Before describing the approach of [6] and our modification for problems with Neumann type
boundary conditions, we recall that the level-set approach for such problems was first considered
for the classical homogeneous Neumann boundary condition in Giga and Sato [15]. Extensions to
nonlinear Neumann boundary conditions were obtained in Bailes [3] and in Ishii and Sato [16] under
different conditions on the regularity of the domain and on the boundary condition. A nonlinear
Neumann boundary condition is of the form

G(x,t,Du)=0 0ndo x (0, 0), (5)

whereG : 90 x (0, 00) x RY — R is a continuous function satisfying: for affy> 0, there exists
aconstant(T) > 0 such that, foralk > 0,x € 80,1 € [0, T], p € RY, one has

G(x,t,p+in(x)) —G(x,t, p) = v(T)\r.

In addition to this property which is characteristic of the Neumann boundary condition, one has to
assume that; is homogeneous of degree 1pnwhich is a geometrical condition, i.e. a condition
for the level-set approach to work.

The classical homogeneous Neumann or oblique derivative boundary conditions are examples
of boundary conditions satisfying these conditions but there are also nonlinear boundary conditions
like the following capillarity type boundary condition:

9
a—” —0(x,H|Du| oNJO x (0, 00), (6)
n

wheref : 00 x [0, co) — R is, say, a locally Lipschitz continuous function such tféak, 7)| < 1
onao x [0, o).



242 G. BARLES & F. DA LIO

Of course, for degenerate and singular parabolic equations in the level-set approach, these
boundary conditions have to be considered in the viscosity sense; we refer to the user’s guide
of viscosity solutions of Crandall, Ishii and Lions [9] or to the book of Fleming and Sénér [13]
for a presentation and discussion of boundary conditions in the viscosity solutions sense (see also
Barles [3]).

We recall that a global-in-time result on the asymptotics of the Allen—Cahn equation in bounded
domains with Neumann boundary conditions was obtained by Katsoulakis, Kossioris and Reitich
[17] under the assumption that the domain is convex.

Now we come back to the approach [of [6]; it consists in first considering the evolution of open
subsets oRY instead of hypersurfaces. From the point of view of applications, this idea is very
natural since the moving front is just an evolving interface separating regions where the system is
close to one of its equilibria and therefore it is even more natural to study the evolution of these
regions. This approach relies on the “monotonicity property” of the front propagations, also called
“avoidance principle” for the mean curvature motion. Roughly speaking, this monotonicity property
is expressed in the following way: 21w, (22)sc.p) are two families of open subsets
evolving with the same normal velocity ands#! ¢ 27 for somer € (a, b), then

Rlce? foranys e 1, b).

This property can be seen for example as a consequence of the maximum principle for the level-
set pde, and the main remark iinl [6] is that it can be used as a definition for weak motions: roughly
speaking, one may say that a fam'(l;?sz)se(a,b) has a generalized motion with normal velocity
greater tharV, if it satisfies the above monotonicity property when tested on a sufficiently large
class of families(Q})se(a,b) evolving with normal velocity less thaW,. A notion of generalized
motion with normal velocity less thaW, can be defined analogously, but because it is easier to
deal with families of “small open test subsets”, a passage to the complement turns out to be more
convenient. The key points used i [6] are then that (i) it is enough to test against families of smooth
open subsets evolving smoothly, (ii) this has to be done only on a small time interval and (iii) as
described above, one can use families whose normal velocities are smaller or greater than the normal
velocity considered, if we do it in a suitable way.

At this level of generality, these basic ideas apply more or less readily in our framework since the
level-set approach enjoys the same kind of monotonicity properties in the Neumann casi’s the
case. But we face several difficulties in concrete applications. First| in [6], the “open test subsets”
were taken of the formjx : ¢(x,s) > 0} where the functionp was either a strict subsolution
or supersolution of the level-set equation at least in a neighborho@d ofp (x, s) = 0}. Such
functionsg were built frome (-, 0) by using an Euler type scheme or a small time existence result for
smooth solutions of the level-set pde. In our case, because of the Neumann type boundary condition,
the use of the Euler scheme was impossible and not many existence results for smooth solutions
were available, at least to the best of our knowledge.

To overcome this difficulty, we modify the definition given [ [6], and it is worth pointing out
that these modifications are a key step to solving the main problems we face with the additional
boundary condition. As ir_[6] we localize the monotonicity property by considering Balsr)
for x € £2 but we drop the condition that the moving frdnt: ¢ (y, s) = 0} has to be included in
B(x, r), a condition which was not very natural. To do that, we have to impose a condition on the
boundary of the ball and the monotonicity is expressed in the following way: if, for same, b),

YN B(x,r) c 220 B(x, 1),
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AND if, forall r < s < b, we have
21N38B(x,r) C 22N 3B(x,r), 7)

then, forany <s < b,
QYN B(x,r) c 22N B, r).

The new condition[ (7) can be viewed as a Dirichlet type boundary condition.

But the main difference in comparison with the definition[df [6] is the way in which we define
the family of “open test subsets”: as i [6], they are of the f¢xm ¢ (x, s) > 0} but here we reduce
to the case where we already know thias either a strict subsolution or strict supersolution of the
level-set equation satisfying also the Neumann boundary condition in a strict sense. This avoids
delicate constructions of such strict sub- or supersolutions and a consequence is that we do not need
any more to invoke “small time” arguments which were in fact related to these constructions. The
introduction of the above mentioned “Dirichlet type boundary condition” on the front allows us to
make this reduction.

With this new definition, we are able to provide new and rather general results on the asymptotics
of reaction-diffusion equations: we extend all the applications treated]in [6][@nd [5], namely
semilinear and quasilinear type Allen—Cahn equations with a poseéiblg-dependence in the
nonlinearity f, to the case when these equations are set in a bounded domain with Neumann type
boundary conditions. In particular, we show here that, in the cadq df](1)}(3)-(4), the interface still
moves by mean curvature but with an angle boundary conditidhton

Even the proofs of [6] extend almost readily, with however two important modifications: first,
in order to take into account the Dirichlet type boundary conditior B, ), we have to define
in a different way the family of open subset®;)c,» about which we aim to prove that they
move with a certain normal velocity. 1n![6], these open subsets were, roughly speaking, the interiors
of the sets whera, converges to the stable equilibria of the equation; here we have to define
them as the interiors of the sets where this convergence holds witke&nrate of convergence
wheret depends on the problem and is typically equal to 1 for curvature-dependent motions. The
second point concerns the proof of the so-called “propagation of the interfacel’: in [6], almost all the
asymptotic results were obtained by building sub- and supersolutions of reaction-diffusion equations
by using directly the test functiog or, in more complicated cases, the (signed) distance to the
moving front{x : ¢ (x, s) = 0}. Here, because of the Neumann boundary condition, we have to use
the distance function systematically. However, it is worth pointing out that this distance function is
anR"-distance function associated to propagatioRfhand not a distance relative @; this will
of course simplify matters.

Finally we emphasize that there is not much difference between treating nonlinear Neumann
type boundary conditions, for example capillarity type boundary conditiongTjke (6), and the case of
(linear) homogeneous Neumann or oblique derivative. This is another advantage of our approach.

The only examples of [6] we are not able to extend to our framework are the ones related to
reaction-diffusion equations with oscillating coefficients. The problem we face has nothing to do
with our approach but is deeper: in this case we are lacking the formal asymptotic behavior of the
solution that we use in a fundamental way for building sub- and supersolutions, and we do not
know how to build them. From our point of view, this is a very challenging open question which
does not concern only front propagation problems but also homogenization problems. Such kind of
difficulties arise, for example, in the homogenization of first-order Hamilton—Jacobi equations with
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Neumann boundary conditions, and also in some second-order elliptic or parabolic equations with
a suitable dependence en

The paper is organized as follows: Section 1 is devoted to the presentation of the new definition
for motions with angle boundary conditions and its connections with the level-set approach. Section
2 is devoted to the application of the new definition to the study of the asymptotics of reaction-
diffusion equations: we first present a general abstract method and then we apply it to the model
case of the Allen—Cahn equation with a nonlinear Neumann derivative boundary condition; finally
we present the extensions concerning the asymptotics of quasilinear reaction-diffusion equations
with x, t ande-dependentf’s.

1. A new geometric definition and its connections with the level-set approach

The aim of this section is to develop a new approach to the weak geometric motion of hypersurfaces
in bounded domains with prescribed normal velocity and angle boundary condition and to show its
connections with the level-set approach.

We first briefly recall the basic ideas of the level-set approach.Q.et RY be a smooth
bounded open set, Iét be a real-valued, locally bounded function &nx (0, co) x RY x S(N),
which is continuous om0 x (0, o) x (RN \ {0}) x S(N), S(N) being the set of real symmetric
N x N matrices, and lef be a real-valued, continuous function®@ x (0, co) x RY. We consider
the following initial-value problem with a nonlinear Neumann boundary condition:

(i) u; + F(x,t, Du, D?u) =0 in0O x (0, T),
(i) G(x,t,Du) =0 iNdo x (0, T), (8)
(i) u(x,0) = ug(x) in 0,
where, in[(8)(ii), we have typically in mind the two casgp (3) and (6).
For the level-set approach to work, we first need an existence and comparison refiilt for (8). For
simplicity, we do not present here the technical assumptions which are used to prove such results

and refer instead to [B,15,16]. Among all those assumptions, we want to point out anyway the
following basic assumptions ofi andG:

(A1) The functionF is a real-valued, locally bounded function @h x (0, c0) x RY x S(N),
continuous or0 x (0, co) x RY \ {0} x S(N) and satisfying thellipticity condition
F(x,t,p,X) < F(x,t,p,Y) wheneverX >Y, (9)
foranyx € 0,1 € (0,00), p € RV \ {0} andX, Y € S(N), where “> ” stands for the usual
partial ordering on symmetric matrices.

(A2) The functionG is uniformly continuous 0 O x (0, co) x RN and for anyl’ > 0 there exists
a constant(T) > 0 such that, foralk > 0,x € 80,t € [0, T] and p € RV,

Gx,t,p+in(x)) — G(x,t, p) = v(T)A, (20)

wheren(x) is the unit exterior normal vector 0 atx € 0.

Assumption(Al) is a key hypothesis to use viscosity solutioi#&) characterizes suitable nonlinear
Neumann boundary conditions.
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On the other hand, we need specific assumptions related to the geometric aspect of the problem;
they are the following:

(A3) Foranyx > 0, ve Randx € 0,1 € (0,00), p € RV \ {0}, X € S(N),
F(x,t,A\p, A X +vp ® p) = AF(x,t, p, X), (11)

wherep ® p denotes the symmetric matrix defined@y® p);; = pip; forall 1 <i, j < N.
(A4)Forallx > 0,x € 30,1 € (0,00) andp € RV,

G(x,t,Ap) = AG(x,t, p). (12)

We just notice here that the main consequenc@\8j and(A4) is that if u is a solution of[(B)
theny (u) is also a solution o[d8) forany map: R — R such thaty’ > 0inR.

The whole set of assumptions which implies, on the one hand, existence and uniqueness of
a continuous solution oﬂS) for anyp € C(0) and a comparison result between sub- and
supersolutions of {8), together wi(A3) and(A4), will be referred to below as the “assumptions of
the level-set approach”.

The level-set approach for problems associated with Neumann type boundary conditions (see
e.g. [3[15,15]) can be described in a similar way to B case (see e.d.|[8.111]). Létbe the
collection of triplets(I", D, D~) of mutually disjoint subsets af such that™ is closed,D* are
openand0 = I' U DT U D~. For any(I'o, D§, Dy) € &, first choosesg € C(O) (the space of
continuous functions defined am) so that

Df ={x €0 up(x) >0}, Dy ={xe0:uplx) <0}, Ip={xe O :up(x)=0}

By results of [3, 15, 16], for everyo € C(0), there exists a unique viscosity solutiorof @
in C(0 x [0, 00)). If, for all t > 0, we defingI;, D;", D;") € £ by

I ={x€0:u(,r1) =0} Df:{xea:u(x,t)>0}, D;:{xea:u(x,t)<0},

then, because ofA3), (A4) and since a comparison result holds f@f (8), the collection
{(I3, D,*, D;)};>0 is uniquely determined, independently of the choica®fby the initial triplet
(I'n. D3, Dy).

The properties of the generalized level evolution have been the object of extensive study, at
least inR" . One of the most intriguing issues—rather important in the study of the asymptotics of
reaction-diffusion equations—is whether the so-cafltening phenomenooccurs, i.e. whether
the set J,_o 17 x {r} has an interior.

Following theR" -case, we say that the-interior conditionholds for the sefu = 0} if

{e,0) tulx,t) =0} =0{(x, 1) :u(x,t) > 0} = 0{(x,1) : u(x,t) <O} (13)

The question of Whethe3) holds was discusse®ihin [5] (see also references therein):
conditions are given ofip and the equation ensuring thiat(13) is satisfied as well as examples where
it fails. Two examples of fattening for the Neumann problem have been provided by G. Barles in [3]
and Y. Giga in[[14].

The importance of the no-interior condition and its connection with more geometrical
approaches than the level-set approach are explained in the following result, pra®&dnn3],
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and which extends easily to the case of Neumann boundary conditions. In this residtgisubset
of someR¥, then1 4, denotes the indicator function df, i.e.,14(x) = 1if x € A andl,(x) = 0 if
x € A°.

THEOREM1.1 Under the assumptions of the level-set approach, the functigng, — 1,
and1,+ — 1, are respectively the maximal subsolution (and solution) and the minimal

supersolutlon (and solution) @ associated respectively with the initial datp= 1 DIUTy -1 Dy
anduo = 1p+ — 1. Moreover, if [p has an empty interior, theny,+ — 1, is the unique
discontinuous solution oﬁ) associated with the initial datey = Ips —1p; if and only if the

property(I3 holds.

In fact the main consequence of this result is thatif (13) holds, then the problem is well-posed in
the geometrical sense since the evolution of the indicator function (or equivalently of the underlying
sets) is uniquely determined.

Now we turn to the geometrical definition in the case of Neumann boundary conditions. To
simplify the presentation, we have to introduce some notation.iff a subset of somBF, we
denote by IntA) the interior ofA, and ifx € A andr > 0, we setB4(x,r) ;= B(x,r) N A (the
open ball in the topology o), B 4(x, r) := B(x, r) N A (the closed ball in the topology of) and
dBas(x,r) :=0dB(x,r)NA.

In what follows we denote bys2;);<0,7) a family of open subsets @ and we sef’}; = 9£2;.
Thesigned-distance functiad(x, ¢) from x to I} is defined by

d(-xvl—‘t) ifxe.Q,,

dx,t) = .
x. ) {—d(x,l“,) otherwise,

whered(x, I';) denotes the usual nonnegative distance frore RY to I7. If I} is a smooth
hypersurface, thed is a smooth function in a neighborhood bf, and forx € I3, n(x,t) =
—Dd(x, t) is the unit normal td’; pointing away from¢2,.

Finally, we recall that for a locally bounded functigh: A — R, whereA is a subset of some
R¥, theupperandlower semicontinuous envelopg$ and f, of f are given by

f*(y) =limsupf(z) and fi(y) = Iigggff(z).

=Yy

Now we give the definition of generalized super- and subflow in bounded domains with a
prescribed normal velocity and angle boundary condition.

DEFINITION 1.1 A family (£2/):c0.7) (resp.(F:):e(0,1)) Of open (resp. closed) subsets @fis
called ageneralized superfloresp.subflow with normal velocity— F (x, t, Dd, D2d) and angle
conditionG (x, t, Dd) if, foranyxg € O,t € (0,T), r > 0,h > 0 and for any smooth function
¢ : O x [0, T] — R such that

(i) ag/dt + F*(y,s, Dp, D?p) < 0 (resp.d¢/dt + Fi(y,s, D¢, D?¢) > 0) in B5(xo, ) X
[z, 1+ h],
(i) G(y,s, Dp) < 0 (resp.G(y,s, Dp) > 0)indO N B(xg,r) x [t, 1+ h],
(i) forany s e [t,t + h], {y € Bg(xo,7) : ¢(y,s) =0} # @ and

|Dp(y,$)| #0  on{(y,s) € Bg(xo,r) x [t,1+h]: ¢(y,s) =0},
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(iv) {y € Bg(xo,7): ¢(y, 1) = 0} C 82 (resp.{y € Bg(xo.r) i ¢(y,1) < 0} C FY),
(v) foralls e[z, ¢ + A],

{y € 9Bg(xo,r) 1 ¢(y,s) =0} C £
(resp{y € 3Bg(x0, 1) 1 ¢(y,s) <0} C FY),

we have
{y € Bg(xo,r) : ¢(y, t +h) >0} C 24p

(resp.{y € Bg(xo,7) 1 ¢ (y,t +h) <0} C Fr).

A family ($2,);c0.7) Of open subsets o is called ageneralized flowvith normal velocity
—F(x,t,Dd, D?d) and angle boundary conditio@i(x, r, Dd) if (£21)ie0,1) is a superflow and
(£2/)ie(0,1) is a subflow.

As mentioned in the introduction, the main difference compared to the definition of generalized
sub- and superflow introduced in [6] is that we use functipradready defined ir0 x [0, T] and
which are either sub- or supersolutions of the equation and the boundary condiﬁ@;{fta, r) x
[z, t + h]. On the contrary, in[6]¢ was just a function of and the sub- or supersolution had to be
built from it. This construction justified the “small time” requirement in the definition bf [6]. Here
is not supposed to be small. Finally we point out that the first part of condition (iii) is not restrictive
at all; it is just there to avoid meaningless situations.

The next theorem which gives the relationship between the notion of generalized sub- and
superflow and the level-set evolutions related fo (8).

THEOREM 1.2 Suppose that the assumptions of the level-set approach hold.

(i) Let (£2)ie0,7) be a family of open subsets of such that the se@ = U,E(O’T) 2; x {1}
is open inO x [0, T]. Then($2,);c.1) is a generalized superflow with normal velocity
and angle boundary conditio@ if and only if the functiony = 1, — Lpc iS a viscosity
supersolution of (8)(i)—(ii).

(i) Let (Fr)reo,1) be a family of closed subsets of such that the sef := U,E(O,T)}', x {t}
is closed inO x [0, T]. Then (F)ie,1) IS a generalized subflow with normal velocityF
and angle boundary conditio@ if and only if the functiony = 1 — 1 is a viscosity
subsolution of[(B)(i)—(ii).

Proof. We only prove the result in the superflow—supersolution case, the other case being proved
similarly. The proof is strongly inspired by the corresponding ong&lin [6]; we give it in detail for the
sake of completeness.

We first assume that = 1, — 1oc iS a supersolution OUS) and show thae;);co,1) is a
generalized superflow. To do that, we consider a smooth fungtimtisfying conditions (i)—(v) in
Definition[1.1.

We remark that, changing to n¢ for n > 0 small enough and using the fact th@tand
G satisfy respectivelfA3) and (A4), we may assume without loss of generality thatl 1 in
Eg(xo, r) x [t,t + h].

We considem = mi”§5<xo,r)x[:,z+h] (x —¢). Sincey is Isc andp is continuous, this minimum
is attained. But, sincg is a supersolution of {8)(i)—(ii) and singesatisfies conditions (i) and (ii), it
cannot be attained iBo (xg, r) x (¢, t + k], neither inO nor ond O. Therefore it has to be attained
either ond B4 (xo, r) or at timer.
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Now we examine the consequences of (iv) and (v). &os) € (dBg(xo,7) x [t, ¢t + h]) U
(Bg(xo, ) x {t}), we have either

e x € 2, theny (x,s) = Land(x — ¢)(x, s) > 0 because < 1in Bg(xo, ) x [t, + h], or
e x ¢ 2, theny(x,s) = —1and(xy — ¢)(x,s) > —1+ § with § > 0 because (iv) and (v)
imply that for such pointg (x, s) < —3§. Notice that this$ can be taken uniform in.

We conclude that: > —1 + § and so ify ¢ £2,,,, we have
X, t+h)—¢(y,t+h) = -1+,
which yields¢ (y, t + h) < —38 because (y, t + h) = —1. Finally this means
{yv e Bo(xo, r) oy, t+h) >0NRL, =0,

which implies the desired inclusion.

Conversely, we assume th@®;);co,1) is a generalized superflow and we show thais a
supersolution 0f[]8). Letx,r) € O x (0, T) be a strict local minimum point of — ¢ where
¢ € C*®(0 x [0, T]). Changingg to ¢ — ¢ (x, 1) if necessary, we may assume thdi, 1) = 0.
We consider separately the casest) € O x (0, T) and(x,t) € 90 x (0, T).

If (x,t) € O x (0, T), we have to show the inequality

aa—‘f(x, 1)+ F*(x,t, D(x, 1), D’p(x,1)) >0

This is obvious if(x, t) is in the interior of e|the|{X = 1} or {x = —1}. Indeed, in these two cases
x is constant in a neighborhood 6f, 7). Hence +(x,1) =0, D¢(x,t) =0, D%p(x,t) < 0and
the inequality follows since, by the local boundednesEtaind(A3) we haveF*(x,t,0,0) = 0.

Assume thatx, ) € 3{x = 1} N d{x = —1}). The lower semicontinuity of yields x (x, ) =
—1. We suppose by contradiction that, for some- 0,

8¢ * 2
E)_I(x’ )+ F*(x,t, Dp(x,1), D°¢p(x,1)) < —a.

§ince¢> is smooth and”* is usc, we can find, » > 0 such thatB(x, ») ¢ O and for all(y, s) €
B(x,r) x [t — h, 1],

0
8—‘f<y, )+ F*(y.5. Do (3. 5), D2y, ) < —at/2. (14)

Moreover, sincéx, 1) is a strict local minimum point of —¢, by taking smaller andr if necessary,
we can assume that also, for, s) € B4 (x,r) x [t —h,t]and(y, s) # (x, 1),

X0 =@, 1) =—=1<x(y.5) =y, 5). (15)

We first consider the case whébe (x, t)| # 0. For 0 < § « 1, we introduce the function
ds(y,8) = P(y,s) +8(s — (t —h)). Sincep(x, 1) = 0andD¢ (x,t) # 0, it is easy to see that if
h ands are small enough then, forany- 2 < s <t,{y € B(x,r) : ¢s5(y,s) = 0} # . Moreover
choosing smaller, h ands, we may also assume thid¢ (v, s)| # 0in §5(x, r) x [t —h,t].
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We observe that, fof > 0 small enough, because pf[15), we have both

#s(y,s) —L< x(v,5) (16)
forall (y,s) € (Bz(x,r) x {t —h}) U (3B (x,r) x [t — h,t]) and
¢8 (y s) + F*(y, s, Dgs(y, 5), D?ps(y, s)) < —a/4 (17)

forall (y,s) € §5(x, r) x [t —h,t].
The inequality[(Ip) implies that
{y € Bg(x,r) i gs(y, 1 —h) >0} C 2,
and for alls € [t — &, 1],
{y € 9B5(x,r) : ¢s(y,5) =0} C £2.

By the definition of superflow, using the fact that condition (ii) is empty sii¢e, r) N 0 = @,
this yields _
{ye O :¢s(y,t) >0 NB(x,r) C $2.

But, sinceps(x, r) = 8h > 0, we deduce that € £2;, and this is a contradiction.
Now we turn to the case whee¢ (x, r)] = 0. We can assume without loss of generality that
D?¢(x,t) = 0 as well (see e.g.[4]) and we have to show t%%(tx t) > 0.

Suppose by contradiction that= 2 3 ¢ (x,1) < 0. Since¢ (x, t) = 0, we have
oy, s) = %(x,t)(s —0+o(s—t)+o(y—x|? ass—t, |y—x|—0.
Thus, for alle > 0, there exist, 4 > 0 such that
Dy, 5) > C—Zl(s —ty—ely—x[? forall (y,s) € By(x.r) x [t — h.1]

andﬁa(x, r)Nao = @. We takeg > 0 small enough such that

B+o(y,s)—1< x(y,s)

forall (y,s) € (Ea(x, r) x {t —h}) U (@Bg(x,r) x [t — h, t]). By takingh smaller we may also
suppose that > —(a/2)h.

Then we consider the functiofig(y, s) = (a/2)(s — 1) — €|y — x|2 + B. Since F* is upper
semicontinuous anél*(y, s, 0, 0) = 0 for anyy ands, for smalle we have

% + F*(y,5,—26(y —x), —2¢I) <0 onBg(x,r) x [t — h,1].

Examining the function/s and choosing perhaps smallgrand i, one easily sees thay <
B(x,r) : Yg(y,s) = 0} # @ foranyr —h < s < t. Moreover|Dyg(y,s)| # 0 in
{(v,s) € Bg(x,r) x [t —h,t]: ¥p(y,s) = 0} and

{y € Bglx,r) 1 yp(y, 1 —h) >0} € 2y,
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and for alls € [t — &, 1],
{y € 9B (x,r) : yp(y,s) = 0} € £2.

Thus, sincg£2,), is a generalized superflow, we have

{y € Bg(x,r) i yg(y, 1) > 0} C £2,.

But againyg(x, 1) = B > 0, and this means e £2;, which is a contradiction.
Now we examine the case, r) € 00 x (0, T) and suppose by contradiction that

d¢
at
We note that the first strict inequality implies that (x, ) # 0. Thus we can argue exactly as in

the first case above by defining the functigyn Indeed, we observe thétgs(x, t) = D¢ (x, t) and
we can choose /1 > 0 small enough such that

G(x,t,D¢p(x,1)) <0 and (x, 1)+ F*(x,t, Do (x,1), qub(x, 1)) < 0.

G(y,s, Dgs(y,s)) <0 in(@ONBx,r)) x[t—h,t],

and
ad e
% + F*(y,s, Dgs(y,s), D?s(y,5)) <0 inBglx,r) x [t —h,1].
Thus the proof is complete. O

2. Applications to the asymptotics of reaction-diffusion equations
2.1 The abstract method

In this section, we present an abstract method to study the asymptotics of solutions to
semilinear reaction-diffusion equations in bounded domains with Neumann boundary conditions.
We essentially follow the ideas of|[6] but, because of the particularities of our definition and
especially (v) in Definitiofi 1]1, we have to modify this abstract method slightly.

In the asymptotic problems we have in mind, we are given a family, of bounded functions
on O x [0, T], typically the solutions of reaction-diffusion equations with Neumann type boundary
conditions and with a small parameter 0. The aim is to show that there exists a generalized flow
(£2)1e(0,1] on O with a certain normal velocity and angle boundaryaam such that, as — 0,

upg(x, 1) = b(x,1) if (x,1) e 2= U Q20 x {1},
te(0,T)

ug(x, 1) = a(x, 1) if (x,1) € 2°,

where, for all(x, 1), a(x, t), b(x, t) € R can be interpreted as local equilibria of this system.
Unfortunately, although the method we are going to use is very close in spirit to the dne of [6],
we cannot present it in a framework as general dslin [6]. This is due to the fact that our method relies
on more local arguments, which, on the other hand, can be seen as an advantage of it.
In order to be more specific and to present the main steps of the method, we first assume that
there exist sequencés. ). and(b,), of real-valued functions defined it x [0, 7] such that

aE('xvt)guS('x?t)gbé‘(x’t) |n5x[0, T]a

anda, — a, b, — b uniformly in O x [0, T] ase — O.
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We recall the definition of half-relaxed limits in the theory of viscosity solutions; if O x
[0, T] — R s a sequence of functions, we set

limsup ze(x, 1) ;== limsup z.(y,s), liminf, zo(x, 1) ;== liminf z.(y,s).
(v,8)—= (x,1) (y,8)—>(x,1)
e—0 ¢—0

Our method consists in introducing, for some well chosen 0, the sets

ug — b

8‘[

t= Int{(x,t) € 0 x [0, T]: liminf, [ :|(x,t) 20}, (18)

Ug — dg

2% = Int{(x, 1) € 0 x [0, T]: limsup [ :|(x, 1 < o}. (19)

8'[
Then we are going to consider the famili@g}), and(£2?), defined by

Ql=2'n 0 x (1)), (20)
22 =02%n(0 x {1}). (21)

For simplicity of notations, for = 1, 2, we identifys2! and (2} )¢ with their projections in0.

It is worth noticing that2?, 222 are defined as subsets@fx (0, T, they are open by definition
and disjoint. In particular, in view of Theoregim 1.2, we remark that by construction the functions
X = 1g1 — Lge and) = L g2 — L2 are respectively lower and upper semicontinuous on
0 x (0, T]; here, in fact,2* has to be read ds),. o 7 2! x {1} and2? asU, .7 22 x {t}.
We finally point out thaty, ¥ can be extended by lower or upper semicontinuitgts [0, 7], and
below we keep the same notations for these extensions.

We come back below to the role efwhich will be clear (at least we hope so!) in the examples
we will treat, where we mainly use either= 1 ort = 0.

Our method can be described in three steps.

1. Initialization: we have to determine the traceg and<23 of 22! ands2? for r = 0. A convenient
way to define these traces is through the functigredy:

RB=(xec0:xx,00=1), Q5={xe0:7x 0=-1}. (22)

2. Propagation we have to show that2}), and((Q,z)”), are respectively super- and subflows with
normal velocity— F' and angle conditioi.

3. Conclusion we use the following result for the abov(e?tl), and ((912)"),; its proof is a
consequence of Theorefns|1.1 &nd 1.2 and therefore we omit it.

COROLLARY 2.1 Assume that the assumptions of the level-set approach hold and that the above
families (.Q,l), and ((9,2)"), are respectively super- and subflows with normal veloeity and

angle boundary conditio and suppose there exis(tas.Qé, Qar, 2,) € & such thatQar - Qé
and, < 23. Thenif (I3, 2,7, £27) is the level-set evolution a2}, 224", 25) we have:

(i) forallt € [0, T],

QFfcelceturn, @ ce*ce ur,
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(i) if U, I x {r} satisfies the no-interior condition, then for ak [0, T, we have
Qf=9l o =%

We now comment on the first two steps of our method. Itis first worth pointing out that compared
with [6], we have a different definition of the familiesz}), and(Qtz),: in [6] they were defined IN
ANY CASE as

QY= {x :liminf, uc(x, 1) = b(x, 1)},

22 = {x :limsup up(x, 1) = a(x, 1)}.

We are led to introduce the parametan the definition of the familieSQZl)f and(Qtz), because of
condition (v) in Definitior] 1.]L, and for example in the study of the asymptotics of the Allen—Cahn
equation when the normal velocity is mean curvature (see the next section), it will be natural to
work with t = 1.

A technical consequence of our definition of the familigg!), and (£2?), is that the
initialization of the front will be done only at time = 0, whereas in[[6] it has to be done at
any time. We also mention that this initialization procedure at time O consists in constructing
globally in O sub- and supersolutions of the-equation, but—and this will simplify matters—these
sub- and supersolutions will be associated with radially symmetric moving fronts.

The second step will consist, as in [6], in constructing suitable smooth sub- and supersolutions
to the Neumann problem satisfied fy, but with two main differences: we build them only locally,
i.e.in ballsﬁa(x, r), wherex € O, with Neumann boundary conditions @&1x, ) N 3 O if this set
is not empty and Dirichlet boundary conditions &8 (x, ). In contrast to([5], this construction
will NOT be local in time since it will be done in time intervals of the form{ + k] where# is
not supposed to be small; moreover, and this is also a difference with [6], the comparigosnof
these sub- and supersolutions will be doneﬁqﬂx, r) x [t,t +h]and notinO x [t, t + h]. This
is the reason why we are not able to describe the method in the same abstract way as in [6].

2.2 The Allen—Cahn equation

This section is devoted to the study of the model case of the Allen—Cahn equation in a bounded
domain with a Neumann type boundary condition, which will also be the opportunity to give the
reader a more precise idea of how the abstract method works. More precisely we focus our attention
on the following initial boundary value problem:

Ues — Aug + e 2f(ug) =0 N0 x (0, 00),
G(x,t,Du,) =0 onao x (0, o0), (23)
Ug = g 0n6 X {0}1

whereg is a real-valued continuous function @ and G satisfies the assumptions of the level-set
approach and in particul§A2) and(A4). Concerning the reaction terfh: R — R, throughout the
paper, we assume that

f € C2(R) has exactly three zeras_ < mo < m..,
f(s) >0in(m_,mpg) and f(s) < 0in (mo, m4), (24)
f'(ms) > 0, f"(m_) < 0andf”(my) > 0.
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We also assume that the equation admits, for eachsV—1, traveling wave solutions connecting
m_ andm, i.e., solutions of the form

u(x, 1) =qx-e—ct),
whereg : R — R is such thaty(+o00) = m4. Indeed, we assume that
there exists a unique pdir, ¢g) such that

cg+i=f(@onR, ¢>00nR, ¢(0)=mo, (25)
q(s) — m4, exponentially fast, as — +oo0.

The existence and properties of such pairsg) are studied, for example, in Aronson and
Weinbergerl[[2], to which we refer for details.

In the case where the wells of the potentidl: R — R, defined byW’ = f, have the same
depth, i.e.,

Wimy) — W(m_) =0, (26)
it follows thatc = 0 in (28) andy solves
§g=f@ inR (27)

In the case of linear, homogeneous Neumann boundary conditions, the asympt¢ti¢s of (23) was
first studied by Cheri[7] under the assumption that the resulting interface is smooth (i.e. essentially
for smooth initial interface and for small time) and by Katsoulakis, Kossioris and Reitich [17]
globally in time but for convex domaing.

The front evolution associated with the asymptoticg of (23) is a motion by mean curvature with
Neumann boundary conditions. The corresponding geometric pde is

u; —tr[(I — Du ® Du)D?u] =0 in O x (0, 00),
G(x,t, Du) =0 ond o x (0, 00), (28)
u=ug on O x {0},

wherep = p/|p| for p € RN \ {0}.
The main result is

THEOREM2.1 Assume thaG satisfies the assumptions of the level-set approach and tHat (24),
(29), (26) hold. Let. be the solution of (23), where: O — [m_, m ] is a continuous function
such that the sdfy = {x : g(x) = mo} is a nonempty subset @. Then, ag — 0,

my {u >0},
ug(x,t) — locally uniformly in
m_ {u < 0}7

whereu is the unique viscosity solution @28 with ug = do, the signed distance 6, which is
positive in the setg > mo} and negative ifg < mo}. If, in addition, the no-interior conditiofi3)
holds, then, as — 0,

my {u >0},
ug(x,t) — locally uniformly in .
m_ {u>0).
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Proof. We consider the familieg2?), and(52?), of sets defined in Secti¢n 2.1 Hy {1§), {19) with
be.b=my, a.,a =m_and witht = 1, and let2, £22 be defined by[ (32).

The proof of Theorerp 21 follows the abstract method described in Séction 2.1 and consists of
two main steps.

The first step (Propositi@.l) consists in showing thate O : g(x) > mg} C .Q(% and
{x € 0 : g(x) < mo} € £&. The second step (Propositipn [2.2) is devoted to verifying that the
families(SZ,l),>o and((Qtz)C)t>o are respectively a generalized superflow and subflow with normal
velocity —F(Dd, D?d) = —Ad and angle conditior;. Once these two steps are performed, the
conclusion follows easily from Corollafy 2.1. a

We will give the proof of the two steps described in the proof of Thedremn 2.1; we will do that
only for thes21-case, the22-case being obtained by similar arguments.

We first point out a key property af which is used in what follows to check the Neumann
boundary condition. To formulate it, we use the following notation: fjoe RY andx € 90,
T(p) = p—(p-nkx))n(x), so7 (p) represents the projection pfon the tangent hyperplane to
d0 atx.

LEMMA 2.1 Assume thatA2) and(A4) hold and that, for some € 90, ¢ € (0, T) andp € RY,
we haveG(x,t, p) < 0 (resp.G(x,t, p) > 0). Then there exists a constaki{7) such that if
p-n(x) < —K(T)|T(p)|, then

G(x,t,p+p) <0

(resp. ifp -n(x) > K(T)|7 (p)|, thenG(x,t, p+ p) > 0.)

Before providing the very short proof of Lemra[2.1, we remark tha(A#), G(x,7,0) = 0
and therefore the above result appliegte: 0.

Proof of Lemma@ 2]1We prove only the first inequality. We set= —p - n(x); we may assume it
to be positive. Sincg = 7 (p) — An(x) by definition we have

Gx,t,p+p)=Gx,t,p+7T(p) — rn(x)). (29)
By (A2) we have
Gx,t,p+T(p)—in(x)) < Gx,t, p+T(p)) —v(T)r. (30)

Since, by(A2), there is a modulus of continuity of G in p (which is uniform with respect te
andt), we see, by{A4), that

Gx, 1, p+T(p) = rG(x, t, A2 (p + T(p)))
MG, 1,27 p) +mOTHT (p)))]
= G(x,1, p) + YT (p)))
<am T (p))). (31)
Combining [29),[(3P) and (31) we obtain
Gx, 1, p+p) < AImOYNT(p)]) — v(D)].

To conclude, it suffices to show that the expression in square brackets is negats/iifge enough
compared t& (p), which is obviously the case sines(r) — 0 asr | 0. O
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Now we present the consecutive steps of the proof of Theprem 2.1.
STEP 1: Initialization. We have
PROPOSITION2.1 The sefx € O : g(x) > mo} is contained inQ&.

Proof. Let xg € {x € O : g(x) > mg}. We have to show thaty € Q&. We only consider the case
x0 € 00 N{g(x) > mop}, the caserg € O N {g(x) > mo} being similar and even simpler.

Letr > 0 be such thag(y) > mgforall y € EU()CO, r). By the smoothness @, if n > O is
small enough and if := xo — nn(xp) thenB(x,n) € O andB(x,n) N 0 = {xo}. Consider the
function

Py (x) =1 — |x — . (32)

We observe thaD¢, (xg) - n(xo) = —2n < 0.

Thus we can finR > n and§ > 0 such thatB(x, R) € B(xo, r) and the functionp(x) =
R? — |x — ¥|? satisfiesD¢ (x) - n(x) < 0on{x € 90 : |d(x)| < 8}, d(-) being the signed-distance
function to the setx : ¢ (x) = 0}. By Lemmg 2.1, choosing close enough tg, we may also have
G(x,t, Dg(x)) <0onf{x € 0 : |d(x)| < 8} for, say, any < 1.

By the choice ofR, there is 0< §’ < %(er — mg) A 8 such that for all 0< § < 8’ we have

ue(x, 0) > (mo+ 2015 (o ) +M-1G (1 e = (M0 +)Lig>0) +m_Tig<o N 0.

We introduce the functiod : O x [0, T] — R given by
D(x,t) =¢(x)— Ct, (33)

with C > 0 to be chosen later, and denote &y, t)_the signed distance to the da®(-,7) = 0}
which is defined so as to have the same sig@ as O x [0, T]. Here

dx, 1) =[(R> = Cty"1Y? — |x — x|.

Now we need the following two lemmas:

LEMMA 2.2 (Very small time initialization) Under the assumptions of Thedrem 2.1, fogany0,
there are constants> 0 ande > 0 (depending o) such that, for all O< ¢ < &, we have

ug(x,te) = (my — Be)Liax,002p) + m-Liax,00<py  ONO,

wherer, = t¢?|loge.

LEMMA 2.3 (Propagation I: global version) There extst> 0, 5 > 0, depending only on the
function¢ defined in ), such that § < B(¢) ande < &(B, ¢), then there exists a subsolution
we of (23) in 0 x (0, k) such that

w®P (-, 0) < my — Be)liu(x.0)>p) + M—Liar.00<py  ONO.

Moreover, if(x, t) € Bg(xo, r) x (0, h) satisfiesi(x, 1) > 28, then

g’ﬂ J—
liminf., [—w m*}(x, 1 > —28.
&
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We postpone the proof of Lemmfas.2 2.3 and we continue with the proof of Prodosition 2.1.
Lemmg 2.8 yields a subsolutiaof-# of (23) such that

w(-,0) Sus (1) inO,
thus, by the maximum principle, we have
wP(x,s) <ug(x,s+1) ono x [0, A].
It follows that if # € (0, 2), x € Bg(xo, ) andd(x, 1) > 28, then

. . Ug — M
liminf, [ +

I(x, 1) > —28.
£

Sinceg is arbitrary and does not depend bywe have(x, 1) € Qll x {t}if d(x,t) > 0and:r > O.
According to the definition o#/, it follows that, for;, z > 0 small enoughB4(xo,7) C {x :
d(x,t) > 0} forany 0< ¢ < 7. This implies thatB(xo, 7) C 2} forany 0< ¢ < 7 and therefore

1 O
xp € £25.

Proof of Lemmé 2]2We follow (and slightly simplify) the proof of Chen[7].

1. We consider < § < §’. We are going to modify the functiofi in two steps; we first introduce
a smooth cut-off functiog; € C3°(R) such that 0< ¢3 < 1inRR, ¢1(s) = 0in (—o0, mg — 8] U
[mo + 8, 00) andgy(s) = 1in [mo, mo + 38/4]. We set

f5() = (L= 51()) £ () + £1(5) f (s — 8/2).
Using the assumptions ofy it is easy to see that, férsmall enough/; is C2 and has exactly three
zerosyn_, mo+38/2, my; moreoverfs > finRwith f5(s) = f(s)in (—oo, mg—38]U[mo+3, 00).
2. Then we consider another cut-off functiphe C3°(R) such that 0< ¢2 < 1inR, ¢2(s) = 01in
(=00, mg] U [mog + 8§, 0c0) and¢a(s) = 1in [mo + 8/4, mo + 35/4]. Finally we consider
8/24+mg—s

F5(s) = (L= ¢2(s)) fs(s) + ¢2(s) Togel

We note that, againfs has exactly three zerosi_, mo + 8/2, m, andfs > f in R with

8/24+mg—s

5/4, 35/4].
ioge| on [mo + 8/4, mg + 35 /4]

fs(s) =

3. Standard arguments from the theory of ordinary differential equation§ and (24) yield the existence
of a unique solutiory € C%(R x [0, 00)) of

X(E,$)+ fs(x(&,5) =0 in[0,00) with x(&,0) =& e R, (34)

satisfying, in addition,
xe(€,5) >0 inR x [0, 0c0). (35)
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Moreover, one can prove that

for all 8 > 0, there exista (3, §) > 0 such that (36)
x(&,s) >my — Be fors > alloge| andé > § + mo,
and
for everya > 0, there exist?/(a) € R such that, foe small enough, (37)
(xe (€. ) Hxze (€. 9)] < e *M(a) for0 < s <allogel.

It is worth mentioning that all our modifications gfwere done in order to have the above properties
for x (cf. Chen[7]).

4. Letyr be a nondecreasing smooth function such that 0 in R and

) m_ in {z < 0},
m_ <¢¥ <mo+25 inR, w(z)z{mﬁzg in (2 > ) (38)

Itis clear that

Y(d(x,0) < (mo+ 20)Lig(x,0028) + M-Lax,00<sy i O.
We definew : O x [0, 0o) — R by
w(x, 1) = x(¥d(x,0) —e 1Kt 67%).

Following the computations of [7] (see al$o [6]), one can show dhaatisfies[(ZB)(i)—(ii) inO x
(0, ag?|loge]). As far as the Neumann boundary condition is concerned, we observe that

Dw(x, 1) = xg¥'Dd(x, 0).
But, by the definition of, ' # 0 only if 0 < d(x, 0) < é. In this set by construction we have

Dg(x)
D (x)]

Thus sincexe > 0, ¢’ > 0 we haveDw(x, 1) - n(x) < 0 and soG (x, r, Dw) < 0 by (A4) and
LemmdZ.1. Furthermore,

Dd(x,0)-n(x) = n(x) <0.

w(x,0) < (Mo + 28)L(gx,008) + M-L{ax,00<s) < ue(x,0)  0NnO.
Thus the maximum principle yields
w(x,s) <uglx,s) in0 x[0,z]. (39)
5. Evaluating) for = ac?|log(e)| and forx such that/(x, 0) > § yields
x (mo + 28 — Kag|loge|, alloge|) < ug(x, as?|loge]).
But since fore small enough

mo + 28 — Kaelloge| = mg + 4,
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it follows from (3§) that
my — Be < ug(x, ag?lloge|).

This last inequality together with the fact that. < u, in O x (0, T) finally gives
(m+ — BE)Lia(r,008) + M—Lia(x,0<s) < Uz (-, ag?llogel) in 0.

The conclusion now follows by choosimfy< § for r = a. d

Proof of Lemm 2]3We follow the proof of the propagation results(in [6] and use the same notations
as in the proof of Lemmia 2.2. We consider the smooth funcfiogiven by [33) and we observe
that, forC > 0 large enough and for somae> 0, one has

P .
E(x, 1)+ F*(x,t, D®, D*°®) < —a in O x (0, T).

On the other hand, we also have
G(x,t,D®P(x,1)) < —«

onao, in aneighborhood ofx : @ (x, ) = 0} and for smalk.
Using the smoothness @f and the fact that, for smatl, D@ (x,7) # 0if @(x,7) = 0, we
deduce that there exist > 0 and. > 0 small enough such thatis smooth in the seD, ; =

{((x,0) 1 |d(x, )| <y, 0<t < h}, |D®|#0in 0, andd satisfies

o .
d, + F*(x,t, Dd, D?d) = d, — Ad < ~3D3] in Q. ;. (40)

Recalling the properties @ onad O, we also have

G(x,t,Dd) < — on@o x[0,ADNQ, ;. (41)

21DP|

We notice that also
IDd|=1 and D*IDd=0 inQ,;.

Next we consider a function of the form
v (x, 1) = q(e 7 (d(x, 1) — 2B)) — 2e, (42)

whereg is the traveling wave given bj/ (25). By analogous computations to the orles of [6], one can
see that if8 is small enough thep® satisfies, for some constante, 8) < 0O,

vf — AV +e2f () < e tu(e, B) + O(1)  ase — 0,

forall (x, 1) € {|d(x, )| <y, 0< t < h}.

Moreover we observe that, by construction, for@l¢) € (00 x [0, T]) N 0, we have
Dvé(x,t) = (¢/e)Dd(x,t) and thusG(x, t, Dv®(x, 1)) = (¢/e)G(x,t, Dd(x,t)) < O because of
(A4) and [41).
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Now we have to extend the subg)lutimht_oﬁ x [0, h]. We do this in two steps. The first step
is to define the function® : {(x,7) € O x [0, h] : d(x,1) <y} — Rby

e | supvt(x, 1), mo) ifd(x,t) > —y,
v (x’t)_{m_ if d(x,1) < —y.

By similar computations to those of Lemma 4.4[ih [6] one provesiiha a viscosity subsolution

of (23).

Then we choose a smooth functign: R — R such thaty’ < 0inR, ¢ = 1in (—o0, y/2),
0<¥ <1in(y/2,3y/4), ¥ = 0in (3y/4, o), and finally,y»" < 0 in a neighborhood of /2.
The functionw®? : O x [0, 1] — R defined by

e p {w(d(x,t))ﬁs(x,t)Jr(l—W(d(x,t)))(m+—ﬂ8) ifd(x, 1) <y,
woP(x, 1) = .
my — Be otherwise,

is a viscosity subsolution 0@3) i@ x [0, h]if e andh are sufficiently small. Moreover,
whP (-, 0) < (4 — Be)lja(r,028) + M-Liax.0<py N O.

We have to check the subsolution property only on the{g¢® < d(x,t) < 3y/4}. In order to
simplify the notations, we drop the superscript 8” on w as well as the superscript™on v. We
have

wy — Aw + &2 f(w) = Y (5 — AD) + [¥'(d; — Ad) — "] (B — (my — Be))
—2y'Dd - Dv+ & 2f (Y1 + (L — ) (my — Be)), (43)

where we have dropped the arguments of the funatidor the sake of clarity.
Since we are arguing in the set/2 < d(x, 1) < 3y/4}, using the asymptotic behavior gfat
oo, we find that, for some constaft> 0,

D(x, 1) = my — exp(—(e) 1) — 2B = m4 — 2Be + o(s) ase — 0O

and hence, fog small enough,

v(x, 1) — (my — Be) = —Be + o(g) < 0. (44)
Sincey’ < 0inR andd; — Ad < 0, we also have

¥'(d; — Ad)( — (my — Be)) < 0.

But f is convex in a neighborhood ef.. Therefore, ife is sufficiently small,

fw) <yf@)+A—9)fimg — Be).
Substituting all this information irj (43) yields
v(B, )

&

—Y" (@ — (my — Be)) + (L — ¥)e 2 f(my — Be). (45)

w, — Aw + e 2 f(w) < ¥ —2y'Dd - Dv
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By hypothesis)”(s) < 0if s < y/2+u for someu > 0, thus ford (x, t) < u+y /2, the right-hand
side of [45%) is negative far small enough since it is of the for@ (1) + ¥ v (B, a) /e ase — O.
If s > u+7y/2,then 1— ¥ (s) > ¢(u) > 0; hence,

wy — Aw + e 2 f(w) < OD) + c(we 2 f(my — Be).

The right-hand side of this last inequality is negative dasmall enough, sincg¢ (m) = 0 and
fmy) > 0.

For the Neumann type boundary condition in the{se2 < d(x,t) < 3y/4} N 30, we note
that, fore small enough,

Dw(x,t) = (W' (0 — my + Be) + ¥/e)Dd.

Because of the properties ¢f, the fact that > 0in R and [44), the quantity’ (v — m + Be) +
Yq/e is positive inthe sety /2 < d(x,t) < 3y/4} N a0 and therefore

G(x,t, Dw) = (Y' (U —m4 + Be) + ¥4/¢)G(x,t, Dd) <0,

hencew satisfies the Neumann boundary condition.
Finally, using the form of the functiom = w®# we have built, it is clear that ifx, r) €
Bg(xo, 1) x (0, h) satisfiesd(x, t) > 28, then

€’ﬁ —
liminf, [2—— "% (x, 1) > —28.
&

Thus the proof of Lemmia 2.3 is complete.
STEP 2: Propagation.Next we show tha({ztl)t is a generalized superflow:

PROPOSITION2.2 (Propegation Il: local version) Leh € 0,1 € (0,T),r > 0,h > 0 be such
thatr + 2 < T and letg : O x [0, T] — R be a smooth function such that, for some- 0,

(I) % + F*()HS’ D¢7 D2¢) < —u OHEU(XO, r) X [t,t+h],
(i) G(y,s, Dp) < —a0ndO N B(xg,r) x [t,t+ h],
(i) forany t <s <t +h,{y € Bg(xo,r) : ¢(y,s) =0} # @ and

|Dp(y,$)| #0 in{(y,s) € Bg(xo,r) x [1,1+h]: d(y,s) =0},

(iv) {y € Bg(xo,r) i ¢(y,1) >0} C £,
(v) foralls e [t,t +h], {y € dBg(x0,7) - ¢(y,s) = 0} C £2.

Then, for allx € B (xo, r) such thatp(x, r + h) > 0, we have

e _
liminf,, [” m*](y, $)>0
&

for (y, s) in a small neighborhood dfc, t + k) and thereforéx, ¢t + h) € Q}HL x {t + h}.
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Proof. The argument follows the proof of Lemra.3 with a key differencepfar small enough,
we are going to build a subsolutiasf-# of ) only in the ballﬁa(xo, r) and not in the whole
domain O, condition (v) providing some kind of Dirichlet boundary condition OB (xo, ).
Because of this similarity, we just sketch the proof.

Our aim is to build a subsolution®# of ) in B (xo, 1) x [t, ¢ + h], satisfying

(,()5"3(~, 1) < (mgy — ,38)]1{[](.,;)>/3} +m_L.n<p) in Ea(xo, r),
and for alls € [¢, t + A],
P, s) < (my — B 5y=py + M- s5y<py ONIBxz(xo, 1),

where, for alls € [z, t + A], d(-, s) is the signeﬂdistance to the $61-, s) = 0} which has the same
sign asp. Moreover we require that ifx, s) € B5(xo0,7) x [t, t + h] satisfiesd(x, s) > 28, then

&B _
lim inf . [w}(“) > 2.

&

Because of the hypotheses ¢nthere exists/ such thatd is smooth in the seD, = {(x,s) €
Bg(xo,r) x [t,t +h]: |d(x,5)| <y}, [D$(x,5)| #0in Q, and

d; + F* Dd,DZd =d,—Ad < —— i s 46
t (X,S, ) t ”D | n Q}/ ( )
and

G(x,s,Dd)y < —— on@O x[t,t+h])NQ,. 47

We consider inQ,, the functionv® of the form ). By the arguments of Lemmas 3.2 and 4.2lin [6]
one shows that® satisfies[(23) inQ, .

The next point consists in extending the subsolutidto the whole domailﬁa(x, r)x[t, t+h].
We do this as in the proof of Lemma 2.3 in a series of lemmas whose proofs are left to the reader.

LEMMA 2.4 Fore sufficiently small, the function® defined on{(x, s) € EU(XO, r) x [t,t +h]:
d(x,s) <y} by
supvé(x,s),m_) in{(x,s) € §5(xo, r) x[t,t+h]:d(x,s) > —y},

°(x,s5) = ) _
{m_ in{(x,s) € Bg(xo,r) x [t,t +h]:d(x,s) < -y},

is a viscosity subsolution of (23) ifix, s) € Bg(xo,r) x [t.1 +h]: d(x,s) < y}. O
Next we consider the functiog defined in the proof of Lemnja 3.3.
LEMMA 2.5 The functiorw®# :Ea(xo, r) x [t,t + h] — R defined by

Y(d(x,$)v°(x,s) + (L= (d(x,s)(my — Be) in{d(x,s) <y},
my — Be elsewhere,

0P (x,5) = {

is a viscosity subsolution 3) iﬁa(xo, r) x [t,t + h]if ¢ is small enough. Moreover,

0P (1) < (my — B Liac.nyzpy + mM—Liac.n<py N Bg(xo, 1),
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and for alls € [¢, t + A],
P (. 8) < (my — BO)La.s)2p) + M-Lid.s)<p)  ONIBG(x0. 7).

Finally, for all (x, s) € Bg(xo,7) x [t,t + h] such thatd(x, s) > 28, we have
67/3 p—
liminf, [w](m) >_28. O
&

Now we conclude the proof of Propositign .2 by using the two lemmas. Consider the
subsolutiorw?®# given by Lemm5. It remains to check that, famall enoughy, satisfies

ugs(x,t) =2 (my — ,38)]1{‘1'()(’[)2}3} +m_Lgx,n<p) in Ea(xo, r), (48)
and for alls € [¢, t + A],
ug(x,8) 2 (my — B g 9)>py + m-Liax.5)<py  ON3Bgz(xo, r). (49)

The inequalities@S) an@Q) follow respectively from the fact {lyat Eﬁ(xo, r) ¢y, t) =0}
C £2;, and from{y € 0Bg(x0,7) : ¢(y,s) > 0} C £, forall s € [¢, r 4+ k] and the compactness of
these twap-sets.

Thus, by the maximum principle, farsmall enough depending ghand¢, we have

0P <u, in Ea(xo, r) x [t,t + h]. (50)

At this point, we remark that i satisfies conditions (i)~(v) of Propositipn P.2By;(xo. r) x
[¢,t + h], it also satisfies them in a slightly larger time interval:[+ #’], ' > h. Therefore the
subsolutionw®# can be built inB(xo, r) x [t,  + h'] and the above inequality holds in this larger
domain.

We observe that because of the faer?, for all x € Bg(xo, r) suchthatl(x, t +h) > 28, we
have

&8 _
liminf, [w}(x, t4+h) > —28.
I

Therefore for allk € B (xo, r) such thatd(x, t + h) > 28, the inequality[(5D) yields
lim inf, [M](x, t+h) > —28.
&

Sinceg is arbitrary, we have
{x € Bg(xo,r) i p(x,t +h) >0} C 2},

which is exactly the inclusion we wanted to prove. O

2.3 Extensions to nonlinear diffusions and, )-dependent reaction terms

We start with the case of the nonlinear Allen—Cahn equation of the form

Ue; — tr(A(x, Dug)D%us) + e 2 f(us) =0 in O x (0, 00), (51)
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where we recall thag := ¢/|q| for ¢ € RV\{0} and wheref is an Allen—Cahn type nonlinearity
satisfying the same assumptions as in the previous sectior ana function with values its"
whose properties are listed below. This equation is associated with the following initial-boundary
conditions:

G(x,t,Dus) =0 0ndoO x (0, 00),

_ (52)
Ue = g on O x {0},
whereg is a continuous function 05._
Here the matrixA = (a;;);; € C2(0 x RY, SV) is such that

foralli, j,k € {1,..., N}, a;j, aijx, aij, p, are continuous o® x R¥, (53)

for eachR > 0 there exist€; > 0 such that for alp € RV,
A, p) € W22(0,8V) and  sup||AC, p)llyz~ < Cr, (54)

IpI<R

and, finally, there exists > 0 such that for allx, p, ¢) € O x RN \ {0} x RY,
A(x, p)g-q = vigl. (55)
_To state the result about the asymptotics[of (§1)}(52) we need to recall that, forugvery
C(0), the initial value problem
uy + F(x, Du, D?4) =0 in O x (0, 00),
G(x,t,Du) =0 0ndo x (0, 00), (56)
u=ug ono x {0},

with

F(x,p,X) = —tr{A(x, p)X[I — (A(x, p)p - p) H(Ap ® p)])
+ QA(x, p)p - p) Mr{Ax, p)p @ [DrA(x, p)p - p
+1pI™HX — Xp ® p)DpA(x, p)p - pl},

has a unique viscosity solutiane C(0 x [0, T]) for all T > 0. The proof of this fact, which is
true under suitable assumptions@ncan be found in [3].

THEOREM 2.2 Assume[(24)[(25)[ (b3), (p4]. (55) and let be the solution of[(51)E(%2) with
g : RN — Rsuchthatlpy = {x : g(x) = mg} is a nonempty subset &". Then, ag — 0,

my {u >0},
ug(x,t) - locally uniformly in
m_ {u <0},

whereu is the unique viscosity solution @66 with ug = do, the signed distance tf such that
do > 0in{g > mg} anddp < 0in{g < mg}.
If, in addition, the no-interior conditiofd holds, then, as — 0,

my {u >0},
ug(x,t) — locally uniformly in .
m_ {u>0).
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Proof. The proof follows closely the one of Theorém]2.1 except for a minor additional argument
that we give below.

To prove the existence of subsolution$?, we consider a smooth functiah satisfying the
conditions of Definitioff TJ1 and we set, as in Section 1,

vE(x,5) = q(e " Hd(x, 5) — 2B)) — B,

where for alls > 0, d(-, s) is a differentsigned-distance functioto the set{¢ (x, s) = 0} since it
solves — ~
A(x,Dd)Dd - Dd = 1 (57)

in{(x,s) € O x[t,t+h]:|p(x,s)| < y}withy > 0small enough. The functiafis smooth in
this set ify is small enough as a consequence of the method of characteristics.

With this new distance function, all the computations of Segtioh 2.2 extend easily to this more
complicated case. O

We now consider the more complicated case (®f r)-dependent nonlinearities. More
specifically, we study the asymptotic behavioras- 0 of the solutions of the equations

et — Autg +b(x) - Dug 4+ 2f (e, x, 1) =0 N0 x (0,00), (58)
and
e — AU +b(x) - Dug + e 1 f (ue, x, 1) =0 N0 x (0,00), (59)

whereb : O — RY is a Lipschitz continuous vector field and the functians> f¢(u, x, t) are
(x, t)-dependent “cubic-type” nonlinearities satisfying suitable assumptions. As in the Allen—Cahn
case, we consider the equations| (58) andl (59) together|with (52).

The two model cases we have in mind are

fEu,x,t) = f(u)+e0(x,1) (60)
for (58) with f satisfying [24), and
fou, x, 1) =2(u — p(x, ) —m_)(u—my) +eb(x, 1) (61)

for ), where, say, u € W-(0 x [0, 00)) andu takes values itim_, m_.).

In the general case, we assume that the functjtfndepend continuously on > 0, areC?-
functions ofu, x, C1-functions ofr and that for sufficiently smat > 0 there exist:® (x,1) <
hg(x, 1) < hé (x,t) such that

FERE(x,0),x,0) = fE(hS (x, 1), x,1) = fo(hg(x,1),x,1) =0,
with, for anyx € O andr > 0,
fEG,x,0) >0 on(h® (x,1),hg(x, 1)),  fo(s,x,1) <0 on(hy(x, 1), hé (x, 1)),

and
filu,x, 1) >y >0 on(—oo, h® (x,1) + y]U[hS(x,1) — v, 00), (62)

for somey > 0 independent ofx, z, ¢).
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Depending on whether we consider](58)[or] (59), we impose two different types of assumptions
on the derivatives of the functiong®, namely, we assume that, either for= 0 or 1, for any
compact subsek of R x O x [0, 00), there exists a constagt(K) > 0 such that, for small
enough and for alir, x,1) € K, 1< i, j < N,

|Dy fE(r, x, DI, [ Dy £ (r, x, D], [ Dy £ (r, X, D), [ Dy f€(r, x, )] < C(K)E", (63)

and
ID, fE(r, x, ), IDyr f(r, x, )] < C(K). (64)

To simplify the notations and to make them agree with the Allen—Cahn case, we write
my(x,1) := h(x, 1) andmo(x, 1) 1= hJ(x, 1) for x € O andt > 0. As a consequence of the
above assumptions off, we have

hé (x,1) > my(x,1), hy(x,t) > mo(x,1) ase — 0, (65)

uniformly on compact subsets 6f x [0, co), where, in factins. andmg do not depend om andt
if € =1.

Since, for fixed(x, ¢, ¢), the functionu — f*(u, ¢, x) satisfies the hypotheses of Aronson and
Weinbergerl[2] and Fife and McLeod [12], there exists a unique(@ait, x, t), ¢ (x, t)) such that

qe (rox, 1) +c(r,x, 0)qE (r,x, 1) = fo(q°(r,x, 1), x, 1) (66)

and
lim ¢®(r,x,t) =h&(x, 1), ¢°(0,x,1) = hj(x,1). (67)
ro0

In the particular case of (§0) and (61), we have an explicit formuladétr, x, 1), ¢*(x, 1)),
namely
q°(r,x, 1) = he.(x, 1) +m® (x, DL+ exp(=m* (x, N (r +r° (x, )] 7,
cf(x,t) = th,(x, t) — hi(x, 1) —h: (x,0),

wherem® (x,t) = h (x,t) — h® (x,t) andr®(x, t) is such thay®(0, x, t) = hg(x, t). Depending
on whether we are in the case pf|(60)[or](61), we have different behavidiointhe derivatives of
hé (x, 1), h® (x, 1) andhg(x, t) which can be obtained through the Implicit Function Theorem, and
this implies different properties of the derivativesgdfandc®.
We continue by listing the technical assumptionszérandc® that are used in the statement of
our results:
¢° andc® depend smoothly om ands, (68)

andg? satisfies, for all" > 0 andr € R and uniformly w.r.te and(x, ) € O x [0, T],
(1) gi(r,x,1) >0,
(i) g°(r,x,t) = h% (x,t) exponentially fast as — +oo0, (69)
(i) g7, Axg® = O(1), Dyq® = O(£"), Dygqf = 0o(1) ase — 0.
Finally, if (63) holds withx = 0, we assume

cf(x,t) — a(x,t), (70)
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while if it is satisfied withe = 1, we require
— e (x, 1) > alx, 1), (71)

with all these limits locally uniform ir(x, ¢).

To be concise, we denote By 0) the above set of hypotheses with= 0, and by(H1) the one
with « = 1.

Tedious but straightforward computations show that the functighgiven by [60) and the
associated® andc® satisfy(H1), while in the case of (61) they satisfil0).

We expect the limiting behavior af, in O x [0, T] to be governed in the case ¢f {58) by

u; — tr[(I — Du ® Du)D?u] + b(x) - Du — a(x,1)|Du| = 0 (72)

with a(x, 1) = lim,_ o0&~ 1c?(x, 1) if (H1) holds, while in the case of (59) and(ifl0) is satisfied,
this behavior is expected to be governed by

u; +b(x)- Du—a(x,t)|Du| =0 (73)

with a(x, 1) = limg_ g cf(x, ).
Our main results justify these claims. The first one concérrs (58).

THEOREM 2.3 Assume(Al)«(A4) and (H1). If u. is the solution of [(5B)F(52), where the
continuous functiory : O — R is such thatip = {x : g(x) = mg} is a nonempty subset @,
then, az — 0,
my {u > 0},
ug(x,t) - locally uniformly in
m_ {u < 0},

whereu is the unique viscosity solution of

u; —tt[(I — Du ® Du)D?u] + b(x) - Du — a(x, )| Du| =0 in O x (0, 00),
G(x,t,Du) =0 ond o x (0, c0), (74)
u(x, 0) = do(x) on O x {0},

whered is the signed distance tg which is positive in{g > mg} and negative ifg < mo}. If, in
addition, the no-interior conditioL3 holds, then, as — 0,

my {u > 0},
ug(x,t) — locally uniformly in .
m_ {u>0}.

For (59) we have

THEOREM2.4 Assume(Al)—-(A4) and (HO). Let u. be the solution of[(59)-(52), where the
continuous functiorg : O — R s such thatlp = {x : g(x) = mo(x, 0)} is a nonempty subset
of 0. Then, ag — 0,

my {u >0},
ug(x,t) — locally uniformly in
m_ {u < 0},
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whereu is the unique viscosity solution of

ur +b(x)- Du —a(x,t)|Dul =0 inO x (0, 00),
G(x,t,Du)y=0 ond o x (0, 00), (75)
u(x, 0) = do(x) on O x {0},

wheredy is the signed distance & which is positive in{g > 0} and negative ifg < 0}. If, in
addition, the no-interior conditio3d holds, then, as — 0,

my {u >0},
ug(x, 1) — locally uniformly in ‘
m_ {u > O}C.

The proofs of Theorenjs 2.3 ahd .4 follow exactly the same steps as in the proof of Theorem
[2.3; we just point out the main changes which are necessary to prove the corresponding step 1
(initialization and global propagation) and step 2 (local propagation),

Proof of Theorerf 2|3We consider the familieg2}), and(522), of sets defined in Sectign 2.1 by
(18), [19) withb, = 1%, ac =h®,b=my,a =m_ andr = 1, ands2}, £22 defined by|(2P).

In order to describe the main changes to the proof of Thegrem 2.1 and to be as concise as
possible, we follow exactly the same steps and we use the same notations.

STEP 1: Initialization. We start with the proof of Proposition 2.1 whose statement remains
unchanged; to do that, we have to prove the analogues of Lémina 2[Z &nd 2:3 wittplaced
by hf, andm_ by h® — Be.

We first consider theery small time initialization

1. As in the proof of Lemmp 2] 2, we have to modify the functjtin but now taking into account the
(x, t)-dependence. We proceed in the following way: because of the assumptigfistbare exists
a functionr — f5(r) such that, for everyl’ > 0, if ¢ is small enoughfs(r) > fé(r, x,1) + 2¢
foranyr € R, x € O andr € [0, T]. Moreover f; is a cubic-type nonlinearity satisfyin@24) with
three zeros_ — 8, mog + §/2 andm 4 — §.

We modify £ in two steps, We first introduce a smooth cut-off functiare C3°(IR) such that
0<1<1inR,¢1(r) =1in(mg — 8, mg + &) and¢1(r) = 0 forr < mg — 28 andr > mqg + 24.
We set,

fE 0 x 0 = a0 f5(r) + L= ca ) x, 1) + eBp(—=CB ()], (76)

where$(-) denotes the distance function @, ¢ is a C2-function which is constant outside a
(small) neighborhood of 0 and such thakly < 2, ¢’(0) = 1; finally 8, C are positive constants
which will be chosen later on, with at legst< 1.

Using the assumptions off, it is easy to see that, férsmall enoughfaS has the same regularity
properties ag® and has exactly three zerds, + O (B¢), mo+5/2, h% 4+ O (Be), moreoverf; > f¢
onR with f£(r) = f&(r, x, 1) + eBe(—CB~L5(x)) if |r —mo| > 25. Two key properties of; are:
f§ is independent af andz for |r — mg| < 8, and if we choos€ > 0 large enough, we have, for
allr e R,x € 90 andr € [0, T],

Dy fE(r, x,1) -n(x) = K(T)|T(Dy f(r, x, 1)), 77)
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whereK (T) is the constant given by Lemrpa R.1. Indeéd] (77) is a consequence of the form of the
¢-term and of[(6B) which yield®, ¢ = O (e).

2. Then we consider another cut-off functiphe C3°(R) suchthat 0< ¢2 < 1inR, ¢2(s) = 01in
(=00, mg + §/4]1 U [mo + 8, 00) andga(s) = 1in [mo + 8/3, mo + 25/3]. Finally we consider
8/2+mg—s

Ji (1) = (L= Q@) fi e, 1) L) ==

We note that, because again of the propertieg af f6 has exactly three zero&: + O(Be),
mo+8/2, k% 4 O(Be), moreover, fore small enoughfy > f° 4 BeinR andfa f"f + eB¢ for
|[r — mo| > 28. Since this modification of5 concerns only a neighborhood =} (and because of
the form of this modification), its key properties are preserved; in partlgtgﬂas independent of
andr for |[r — mg| < & and satisfies a condition analogous[tq| (77).

3. We consider the solution(é, -, x, t) of the ode

{x+f§<x,x,t>=o, a8)

x(E&,0,x,1) =& e R.
4. Tedious computations show that the first key properties i@main true, namely

xe(€,s5,x,1) >0 inR x [0, 00) x 0 % [0, 00),
forall B > 0, T > 0, there exista(8, 8, T) > 0 such that
x(&, s,x,1) > hi (x,1) —Be fors > alloge| and& > 8 + mo (79)
forall (x,7) € O x [0, T1],
for everya, T > 0, there existd/ (a, T') € R such that, foe small enough,
(xe (€, 5, %, ) Yxee 6,5, x,0)| <e7IM(a,T) for0<s < allogel, (80)
forall (x,r) € O x [0, T].

5. A new point here concerns the behavioraoih x andz:

LEMMA 2.6 If§ is small enough, then for eveny> 0 andT > 0, there exist®/(a, T) > 0 such
that, fore small enough and for & s < «|loge|, we have

Xt (&, 8,2, D1 X (8,8, %, D | X (658, %, D, [ Xex (6,5, X, D] < M(a, T)e

forany 1< i, j < N. Moreover, for anyl' > 0, if C > 0 is large enough, then for anye 90,
s >0, e Rand 0< r < T we have

DXX(E’ s, X, t) : n(x) < _K(T)|T(DXX(EV s, X, t))'

Proof of Lemmé 2]6This proof uses in an essential way the modificationg‘ofmade above. We
only prove the estimate fdb, x, the other estimates being proved in the same way.
We consider the ode satisfied by:= D, x obtained by differentiating (78) with respectio
namely
W= —D,f5(x,x,)w — Dy f5 (x, x, ). (81)
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By assumptiorD, f;(x, x,t) = O(g) ase — 0 buta prioriD, f; is not always positive and this is
a difficulty in getting the right estimate.

To overcome it, we use two ingredients: first sirf?gedepends onr andz only for |[r —mg| > 8,
itis enough to consider initial dagafor (78) such thaf > mq+6 or§ < mg— 8. We only consider
the first case, the second one being treated analogously.

If 5 is small enough and < §, then for anyx € O andr € [0,T], ff < —cs < O for
re[mo+48,my —38landD,fS > y/2 > 0forr > m, — 8. Therefore, there exists > 0,
independent of andr, such thatif > mg+ 6 ands > ss, theny (&, s, x, t) > my — 8. Using this
information in ), and in particular the fact thE];f;(x(s, s,x,t),x,t) = y/2 > 0, one easily
obtains the desired estimate.

The boundary property fab, x, though important, is a rather straightforward consequence of
(77): indeed, for any vector such thate - n(x) = 0 andle|] = 1, we introduce the function
w = Dy -n(x) + K(T)Dy x - e. By looking at the ode satisfied hy, nhamely ) witthf(;e
replaced b)Dxf; -n(x) + K(T)Dxf§ -e,and using), easy arguments show that O for any
r>0,§ eR,x €90 and 0< ¢ < T. Since this is true for any, the result follows.

6. The next step consists in introducing the functién O x (0, as?|loge|) — R defined by
vE(x, 1) = x(Y(d(x,0) — Kt /e, 1/e% x, 1),

whered(x, 0) is as in Lemm@ 2]2 angi is the function defined by (38) with _ replaced by-|/g|l«
andmg kept unchanged. We are going to verify théts a viscosity subsolution df (58)-(52).

7. As far as the Neumann boundary condition is concerned, we observe that
Dv®(x,1) = xg¥'Dd + Dy x.

By Lemmd 2.6, we hav®, x - n(x) < —K(T)|7 (Dyx)|, thus by applying Lemma 2.1 with =
xe¥'Dd andp = D, x, itis immediate that the boundary condition is satisfied.

8. Now we check that® satisfies the equatio8)5 x (0, ag?|loge|). We have

v — Av® + b(x) - DV® + 872f€(v,x, 1) = x + 872)'( +b(x) - Dyx — Axx — 2Dy xe

— xele XK + 9 + " Ad + 9P () e
+b(x) - ' Dd] + e2(fF — )+ e 2 ff.

Given [80) and the fact that, by definition, the functigrhas compact support it is clear that #&r
large enough the quantity 2K + v/ + " Ad + v¥'%(xz) Ly is positive.

As x+ f£ = 0, itremains to analyze the sign pf— Ay x —2Dy x¢ +b(x)- Dy x +e~2(f* — f5).
To this end we observe that — ff < —epy. Thus since, by Lemmla 3.6y, Acx, 2D, xe are
O(¢e) ase — 0 locally uniformly in(x, r) € O x [0, T], we have, for: small enough,

Xt — Aux — 2Dy xe +b(x) - Dyx 4+ 72(f¢ — f£) <0

and so (58) holds.
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9. We have by construction, on the one hand,

ug(x,0) = (mo+ 20)114(x,00>8) — lgllooLia(x,00<sy ONO,
and, on the other hand,

v¥(x,0) = x(¥(d(x,0)),0,0,x) = y(d(x,0)
< (mo + 26)114(x,0028) — lgllooLu(x,0)<8}-

Thus, the maximum principle implies that
vi(x,1) <ug(x,1) onO x[0,ae?|logel]. (82)
Evaluating ) for, = as?|loge| and forx such that/(x, 0) > § we get
x(mo+ 28 — Kae|logne|, alloge|, x, as?|loge|) < ug(x, t,).
But, since fore small enough,
mo + 26 — Kaelloge| = mo + 4,

it follows from (79) that

he (x,te) + O(Be) Sug(x,t) ifd(x,0) >34,

10. Finally, because of the propertiesff, we also have (£, alloge], x, ag?llogel) = he (x, 1)+
O (Be) for any bounded if a is large and therefore

he (x,t) + O(Be) < ug(x,t,) foranyx e O.
This gives
(7% (x, 1) + OB Lia(r )31 + [ (x, 1) + OB Liar.r)<s) < ue(x, ag®llogel) in O.

The conclusion follows by first choosing a smalleif necessary to replac@ (8¢) by e and then
by takings = B; the result holds fot = a. O

Now we turn to thepropagation.The local and global propagation are proved in a similar way,
we only consider the global case.
If ¢, is as above, we construct, foe> 7., a subsolutionw of (58)-(52) such that

w(x, te) < [hG (x, 1) — Bellig,n=py + [hE(x, 1) — Belligriy<py N O.

To do that, we follow the argument of the proof of Lemma 2.3. We first consider a function of the
form

v (x, 1) = ¢ (e (d(x, 1) — 2B), x, 1) — 2Bep(—CB~ 3 (x)), (83)

whereg® is the solution of[(66) and, as abowg,is a smooth function such that & ¢ < 2,
¢’'(0) = 1. We verify thatv® is a viscosity solution 082) i, . As far as the boundary
condition [52) is concerned, we have

Dve(x,1) = ¢ Y¢ Dd + D,q° + £C¢' D5(x).
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We recall that by hypothesds,¢° = O(e) ase — 0 and thatD§(x) = —n(x), thus forC large
enoughD.¢® - n(x) + eC¢'DS - n(x) < —K(T)|T(Dxq® - n(x) + eC¢’DS)| and so, by using
Lemmg 2.1, the boundary conditign {52) is verified.

Moreover we have

V8 — AvE 4+ b(x) - DV 47250, x, 1) =& 2o 4+ e Ml + NIl (84)
where

Ig = qfr + Cg(xﬂ t)qf - fs(q£5 X, t)y
lle = g°(dy — Ad + b(x) - Dd + ¢ (x, 1)) — 2Dyq® - Dd — 2Bf£(q°, x, 1)g,
e = 2687 1C2%9" — 26C' AS + b(x) - Deq® +¢f — Acg® + O(D).

We observe that.|= 0 and by the properties of the traveling wave we haveHlO(1). Thus, by
using the properties of the traveling wave afjd%, x, ) > y > 0 and the same arguments as in
the proof of Lemma 2|3, one can see thag ifs small enough then® satisfies, for some constant
v(a, B) < 0 (independent ofx, 1)),

vE— AV 6725 (0%, x, 1) < e lu(a, B) + O(1) ase — 0. (85)

Next we want to extend the subsolutiohto O x [0, ] and we do it in two steps.
First we have

LEMMA 2.7 IfC > Ois alarge enough constant, thend@mall enough, the functiong. defined
on0 x [0, 00) by g (x, 1) = h.(x. 1) — eBp(—CP~15(x)) are viscosity subsolutions ¢f (58)-(52).

We leave the proof of this claim to the reader since it follows rather easily from the properties
of f¢, h% andh® and from the arguments we used above to proveitha a subsolution of the
equation. We just point out that for the boundary conditjor} (52) we have

Dyg‘. = Dyh’ (x, 1) + Ceg' (0) DS.

Since, by the properties gf* (cf. @)),thi(x, t) = O(e) ase — 0, we haveD, g - n(x) <
—K(T)|T(Dyg%)| for C large enough and thus the boundary condition is satisfied by applying
Lemma 2.1 withp = 0 andp = D, g5

The next step is to define the functioh: {(x,?) € O x [t;,t. + h]: d(x,t) <y} — Rby

supvé(x, 1), g% (x, 1) ifd(x, 1) > —y,

=&
v = {g‘g(x, ) otherwise.
By similar computations to those of Lemma 4.2[iih [6] and using Lefnma 2.7, it is easy to prove that
v¢ is a viscosity subsolution df (58)-(52).
Then we choose a smooth functign: R — R such thaty’ < 0inR, ¢ = 1in (—o0, y/2),
0<v¢v <1in(y/2,3y/4), ¥ = 0in (3y/4, 00), and finally,ss” < 0 in a neighborhood of /2.
The functionw?® : O x [t¢, t. + h] — R defined by

Y(d, )N (x, ) + L=y dx,0))g(x,t) ifdx, 1) <y,
g5 (x, 1) otherwise,

wi(x,t) = {
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is a viscosity subsolution df (58)-(52) @ x [z, 7. + h] if ¢ andh are sufficiently small. Moreover

W, 1) < (WL te) — B Lja(x,i)=p) + (W (o te) — B L(d(xe)<py N O.

Now the conclusion follows from the maximum principle, which allows us to compaandw?,
and from the form of the function?®. O

Proof of Theorer 2]4We only give a very brief sketch of the proof since it is based on the same
arguments as the proof of Theorgm|2.3 (or even simpler). The main change (and this will simplify
matters) is that, roughly speaking, the temis replaced everywhere kg

The main change in the proof (which explains why we work witinstead of¢) is that we
now consider the familieg2}), and($22), defined by|[(1B)[(19) witth, = £, a. = h®, b = my,
a =m_ butwitht = 0, ands2}, 22 defined by|(2).

We reformulate the key result of theery small time initializationto point out the main
differences:

LEMMA 2.8 Under the assumptions of Theorem 2.4, for Any 0, there exists a constant> 0
such that ift, = te, then, for all sufficiently smalf,

e (x, te) = (W' (x, te) — B)Lia(x,)>p) + (W% (x, 1) — B)La(x,r)<p)  ONO.

As mentioned above, in thé¢ (x, t) — B) and(h® (x, t) — B) terms,B is now playing the role
played above bye, and the dependence gpfon ¢ leads to simplification in the proof: for example,
to prove Lemm4 2|8, we do not need any more to modifyin a complicated way and may work
with the ode

XE s, x, 1)+ fE(E, s, x, 1), x, 1) + Bo(—CBY5(x)) = 0. (86)

The point is that now the derivatives gfwith respect tct, x andr are bounded if is fixed for

s < a(8). On the other hand, the analogue of the funcijodefined by[(3B) depends now srand

¢t and in order that the termd (d (x, t), x, t) satisfies the Neumann boundary condition, we have to
define it in the following way:

V(z, x, 1) i=mo(x, 1) + 8¢(CS18(x)) + ¥ (2),

wherey : R — R is a smooth function such thatC < ¥ < §inR, ¥ (z) = —C in {z < 0}
andy(z) = 8 on {z > §}. By takingC > 0 large enough, the Neumann boundary condition is
satisfied sinceng(x, 1) + s¢(C5~15(x)) satisfies it, and we also have the key propertyx, r) +
8¢(C5718(x)) — € < —liglloo in O x [0, 00).

For thepropagation we argue in the same way but withvaof the form

v (x, 1) = ¢ (e Hd(x, 1) — 2B)) — 2Bp(—CB5(x)), (87)

andgf are changed in an analogous way.
We leave the computations to the reader since they are simpler than those above. O
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