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A coupled level set projection method applied to ink jet simulation

JIUN-DER YU†

Epson Research and Development, Inc.,
3145 Porter Drive, Suite 104, Palo Alto, CA 94304, USA

SHINRI SAKAI ‡

Seiko Epson Corporation, TP Development Department,
80 Harashinden, Hirooka, Shiojiri-shi, Nagano-ken, 399-0785, Japan

AND

J. A. SETHIAN§

Department of Mathematics, University of California at Berkeley,
Berkeley, CA 94720, USA

[Received 18 October 2002 and in revised form 7 May 2003]

A finite difference level set projection method on rectangular grid is developed for piezoelectric
ink jet simulation. The model is based on the Navier–Stokes equations for incompressible two-
phase flows in the presence of surface tension and density jump across the interface separating
ink and air, coupled to an electric circuit model which describes the driving mechanism behind the
process, and a macroscopic contact model which describes the air-ink-wall dynamics. We simulate
the axisymmetric flow using a combination of second-order projection methods to solve the fluid
equations and level set methods to track the air/ink interface. The numerical method can be used to
analyze the motion of the interface, breakoff and formation of satellites, and effect of nozzle geometry
on droplet size and motion. We focus on close comparison of our numerical ink jet simulation with
experimental data.

1. Introduction

The goal of this work is to develop a numerical simulation tool for fluid flow phenomena associated
with ink jet printers. The underlying algorithms should be able to accurately capture two-phase flow
through an axisymmetric nozzle, handle complicated topological change of ink droplets, conserve
mass to a good approximation, and couple to external models which simulate the ink cartridge,
supply channel, pressure chamber, and piezoelectric actuator.

In Figure 1, we show the typical structure of an ink jet nozzle; the actual geometry is
axisymmetric and is not drawn to scale. Ink is stored in a bath reservoir (cartridge), and driven
through the nozzle in response to a pressure jump at the lower boundary. The dynamics of
incompressible flow through the nozzle, coupled to surface tension effects along the ink-air interface
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and boundary conditions along the wall, act to determine the shape of the interface as it moves. A
negative pressure at the lower boundary induces a backflow which causes a bubble to pinch off,
separate, and move through the domain.

 

Ink 

Air Meniscus 

FIG. 1. The cross section view of an ink jet nozzle.

The model is based on the Navier–Stokes equations for two-phase immiscible incompressible
flows in the presence of surface tension and density jump across the interface separating ink and air,
coupled to an electric circuit model which describes the driving mechanism behind the process,
and a macroscopic slipping contact line model which describes the air-ink-wall dynamics. The
fluid interface between the air and the ink is treated as an infinitely thin immiscible boundary,
separating regions of differing but constant densities and viscosities. The flow is axisymmetric, and
for boundary conditions on solid walls we assume that both the normal and tangential components
of the fluid velocity vanish; this is amended through a contact model which describes the motion of
the triple point which describes the air-fluid-wall interaction. We simulate axisymmetric flow using
a combination of second-order projection methods to solve the fluid equations and level set methods
to track the air/ink boundary. The model is used to analyze the motion of the boundary, breakoff and
formation of satellites, and the effect of nozzle geometry on ink ejection size and motion.

Several different numerical simulations of this process have been performed in recent years;
see, for example, Aleinovet al. [1] and Souet al. [20]. There are many numerical techniques to
solve the Navier–Stokes equations, including finite difference techniques, finite element techniques,
and spectral techniques, as well as methods to track the fluid interface, including marker particle
techniques and volume-of-fluid techniques. We employ second-order finite difference projection
methods to solve the fluid flow equations and level set methods to capture the motion of the fluid
interface.

Projection methods for incompressible Navier–Stokes equations were originally developed by
Chorin [9]. They work by first solving the Navier–Stokes equations to predict the intermediate
velocity fields and then projecting the velocity onto the space of divergence-free fields to enforce
the incompressibility condition. This method was improved by Bell, Colella, and Glaz [4] in the
late 1980’s with the use of a second-order Godunov-type scheme for the nonlinear convection term.
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The implementation of the projection step was then made easier through the introduction of a finite-
element approximate projection by Almgrenet al. [3]. The extension of these methods to two-fluid
problems adds extra complexity to the “projection” algorithm in several ways. First, the region
occupied by any one of the two fluids keeps changing. Second, surface tension at the interface
contributes an extra term in the governing equations. Third, since the density and viscosity are not
constant, the viscosity term is no longer a product of the Laplacian of the velocity and the viscosity.

Level set methods, introduced in Osher and Sethian [13], rely in part on the theory of curve
and surface evolution given in Sethian [16, 17] and on the link between front propagation and
hyperbolic conservation laws discussed in Sethian [18]. They recast interface motion as a time-
dependent Eulerian initial value partial differential equation, and rely on viscosity solutions to the
appropriate differential equations to update the position of the front, using an interface velocity that
is derived from the relevant physics both on and off the interface.

For details about projection methods and their coupling to level set methods, see Almgrenet al.
[3, 2], Bell et al. [4], Bell and Marcus [5], Chang et al. [7], Chorin [9], Puckettet al. [14], Sussman
and Smereka [22], Sussmanet al. [23, 21], and Zhu and Sethian [26].

In this paper, we carefully examine the effects of various contact models and equivalent
circuit driving models on the computed results, and closely compare our results with experimental
data. We provide relevant equations of motion, details of the underlying algorithm, and detailed
numerical tests of robustness and accuracy, followed by simulations of the ink jet process with
comparison to experiment. The paper is meant to provide a clear description of the underlying
equations, algorithms and programming details. There is considerable previous work on second-
order projection methods coupled to level set methods for fluid flow, and we refer the interested
readers to these works; they have served as a foundation for some of what is discussed in this paper.

2. Level set formulation

2.1 Equations of motion

Both of the fluids are governed by the incompressible Navier–Stokes equations, i.e.

ρi
Dui

Dt
= −∇pi +∇ · (2µiD) , ∇ · ui = 0, i = 1,2. (2.1)

In the above equations,

D = 1
2[∇u+ (∇u)T ], u = ue1+ ve2, (2.2)

are the rate of deformation tensor and the fluid velocity, respectively,D
Dt
=

∂
∂t
+ (u · ∇) is the

Lagrangian time derivative,p the pressure,ρ the density, andµ the dynamic viscosity. The subscript
i = 1,2 is used to denote the variable or constant in fluid #1 (ink) or fluid #2 (air). The boundary
conditions at the interface of the two phases are the continuity of the velocity and the jump condition

(2µ1D − 2µ2D) · n = (p1− p2+ σκ)n, (2.3)

wheren is the unit normal to the interface drawn from fluid #2 to fluid #1 andκ is the curvature of
the interface. Because the size of typical ink jet print heads is small, the gravity term is not important
and is omitted. We note that the inclusion of a gravity term does not change any part of the numerical
scheme described in the next section.
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We use the level set method to trace the interface (see Osher and Sethian [13]). The interface is
the zero level of the level set functionφ,

φ(x, y, t)

< 0 if (x, y) ∈ fluid #2(air),
= 0 if (x, y) ∈ interface,
> 0 if (x, y) ∈ fluid #1(ink).

(2.4)

Here, the level set functionφ is initialized as the signed distance to the interface. The unit normal
on the interface can be expressed in terms ofφ:

n =
∇φ

|∇φ|

∣∣∣∣
φ=0

, κ = ∇ ·

(
∇φ

|∇φ|

)∣∣∣∣
φ=0

. (2.5)

Let

u =

{
u1, φ > 0,
u2, φ < 0.

(2.6)

The governing equations for the two-phase flow and the boundary condition at the interface can be
re-written as

∇ · u = 0, (2.7)

ρ(φ)
Du

Dt
= −∇p +∇ · (2µ(φ)D)− σκ(φ)δ(φ)∇φ, (2.8)

whereδ is the Dirac delta function. We note that the Navier–Stokes equations for two-phase flows
(2.8) have been written in similar form and used by Unverdi and Tryggvason [24]. The fact that
the surface tension can be written as a body force concentrated at the interface has been used by
Unverdi and Tryggvason as well as others. The form (2.8) is due to Changet al. [7].

To make the governing equations dimensionless, we choose the following definitions:

x = Lx′, y = Ly′, u = Uu′, t =
L

U
t ′,

p = ρ1U
2p′, ρ = ρ1ρ

′, µ = µ1µ
′,

(2.9)

where the primed quantities are dimensionless andL,U, ρ1, µ1 are respectively the characteristic
length, characteristic velocity, density of fluid #1, and dynamic viscosity of fluid #1.

Substituting the above into equations (2.7) and (2.8), and dropping the primes, we have

∇ · u = 0, (2.10)

Du

Dt
= −

1

ρ(φ)
∇p +

1

ρ(φ)Re
∇ · (2µ(φ)D)−

1

ρ(φ)We
κ(φ)δ(φ)∇φ, (2.11)

where the density ratio, viscosity ratio, Reynolds number, and Weber number are defined by

ρ(φ) =

{
1 if φ > 0,
ρ2/ρ1 if φ < 0,

µ(φ) =

{
1 if φ > 0,
µ2/µ1 if φ < 0,

Re=
ρ1UL

µ1
,

We=
ρ1U

2L

σ
.

(2.12)



INK JET SIMULATION 463

Since the interface moves with the fluid, the evolution of the level set is governed by

∂φ

∂t
+ u · ∇φ = 0. (2.13)

We choose this form because the interface moves advectively.
Since equations (2.5), (2.10), and (2.11) are expressed in terms of the vector notation, they

assume the same form in Cartesian coordinates and axisymmetric coordinates. In axisymmetric
coordinates(r, z), the curvature can be expanded as

κ(φ) = ∇ ·

(
∇φ

|∇φ|

)
=
φrrφ

2
z − 2φrzφrφz + φzzφ2

r + φr(φ
2
r + φ

2
z )/r

(φ2
r + φ

2
z )

3/2
, (2.14)

where the subscriptsr andz denote the partial derivatives, i.e.

φr ≡
∂φ

∂r
, φz ≡

∂φ

∂z
, φrz ≡

∂2φ

∂r∂z
, and so on. (2.15)

By including appropriate definitions of the derivatives, the viscosity term becomes

∇ · [2µ(φ)D] =

{
1

r

∂

∂r

(
2µ(φ)r

∂u

∂r

)
− 2µ(φ)

u

r2
+
∂

∂z

[
µ(φ)

(
∂v

∂r
+
∂u

∂z

)]}
er

+

{
1

r

∂

∂r

[
µ(φ)r

(
∂v

∂r
+
∂u

∂z

)]
+
∂

∂z

(
2µ(φ)

∂v

∂z

)}
ez. (2.16)

2.2 Boundary conditions

On solid walls, we assume that both the normal and tangential components of the velocity vanish
(this must be amended at the triple point, which we discuss below). At both inflow and outflow, our
formulation allows us to specify either velocity or pressure boundary conditions. Time-dependent
inflow conditions are provided by an equivalent circuit model which mimics the charge-driven
mechanism which forces ink from the bath into the nozzle.

2.3 Contact models

At the triple point, where air and ink meet at the solid wall, several choices are available for the
boundary conditions.

• We can choose to enforce the no-slip condition. In this case, the triple point will remain fixed,
since the fluid does not move tangential to the walls, and produce a very long fluid bubble
which remains attached to the wall.
• We can choose to enforce some sort of condition which restricts the critical angle that

is allowed, this means that the triple point will move. To do so without connecting this
movement to the fluid velocity violates conservation of mass.
• A third option is to relax the no-slip condition in the neighborhood of the triple point once the

critical angle is exceeded; the idea here is to allow the local flow at the triple point to quickly
accelerate whenever the critical angle is exceeded (see, for example, Bertozzi [6]).
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FIG. 2. An ink-air interface and the contact point.

In this paper, we adopted the following slipping contact line model. Consider the air-liquid
interface and the contact line shown in Fig. 2. We first define the contact angleθ as the angle
made by the air-liquid interface and the solid, measured from the side of the liquid by approaching
the contact line (i.e. the triple point) as close as possible. The advancing critical contact angleθa
and receding critical contact angleθr are the maximum and minimum contact angles for the triple
point to stay. In most situationsθr < θa . But the receding critical angle may be very close or even
equal to the advancing critical angle. Actual values ofθa andθr depend on both the fluids and the
solid surface. The velocityvB is the tangential velocity of the air-liquid interface at pointB, which
is located on the interface and isξC from the contact point. For Epson’s dye-based ink and print
head nozzle wall,θa andθr are about 70◦ and 20◦. We usedξC = 0.5 µm in all the numerical
computations presented in this work.

We use the following criteria to decide whether to let the triple point move:

• The triple point is allowed to move toward the air side ifθ > θa andvB > 0.
• The triple point is allowed to move toward the liquid side ifθ 6 θr andvB < 0.
• The triple point should not move otherwise.

We note that according to this model, the triple point is not allowed to move toward the ink (air)
side if θ > θa (θ < θr ).

If the triple point is not allowed to move, the boundary condition at the solid wall is the no-slip
condition. If the triple point is allowed to move, the no-slip condition in a close vicinity of the triple
point is switched to the free slip condition. In this work, we chose to set two cells at each side of the
contact point to free slip should the triple point be allowed to move. For example, the cells containing
A, C, andD are given the free slip boundary condition while the cell containingE is given the
no-slip condition (since most part of its solid wall is more than two cells from the contact point).

We note that, applying the above contact model, the slipping velocity of the contact point is
always decided by the flow instead of by anything artificial.

2.4 Equivalent circuit

In a piezo ink jet print head, the formation of the ink droplet is controlled by a piece of piezoelectric
PZT (lead zirconate titanate) actuator. Driven by the input voltage, the PZT pushes and then pulls
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the ink. To numerically simulate an ink jet, one needs to prescribe a velocity or pressure at the inflow
to the nozzle. However, only the input voltage to the PZT is known.

An equivalent circuit model can be used to model the problem. The ink flow rate and pressure
are first taken as dependent variables. Each component of the ink jet print head, such as the
nozzle, pressure chamber, vibration plate, PZT actuator, and ink cartridge, is expressed in terms
of the compliance and acoustic resistance. These acoustics elements are finally transferred to their
equivalent inductance, capacitance, and electric resistance to form an equivalent circuit. By solving
the equivalent circuit and the flow equations in turn, one simulates a real ink jet.

The particular equivalent circuit we use is not described here; readers are referred to Sakai [15]
for an introduction to print head structures and equivalent circuits. A typical driving voltage pattern
and a typical inflow pressure are as shown in Figures 3 and 4. The driving voltage is such that the
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FIG. 3. A typical ink jet driving voltage (one cycle).
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FIG. 4. A typical inflow pressure (one cycle).
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ink is first pulled back, pushed and fired, and then pulled back to get ready for the next ejection. The
inflow pressure shown in Figure 4 reflects the reaction of a typical nozzle-ink channel-PZT-cartridge
system to the applied voltage. The pressure pattern contains several high frequency signals. The
biggest one is basically the fundamental natural frequency of the system, which is five to six times
higher than the driving voltage frequency in this case. The small oscillations are probably related to
the natural frequencies of the components in the system.

3. Numerical algorithms on rectangular grids

In the paper, the superscriptn (or n+ 1) denotes the time step, i.e.

un = u(t = n∆t) (3.1)

and so on. Given quantitiesun, pn, φn, the purpose is to obtainun+1, pn+1, φn+1 which satisfy the
condition of incompressibility (2.10). The explicit algorithm we describe will be first-order accurate
in time and second-order accurate in space.

3.1 Temporal discretization

The boundary condition on the nozzle wall stems from the proposed contact model. The inflow
pressure attn+1 is given by the equivalent circuit.

3.1.1 Level set update. The level set is updated by

φn+1
= φn −∆t [u · ∇φ]n+1/2 . (3.2)

The time-centered advection term[u · ∇φ]n+1/2 is evaluated using an explicit predictor-corrector
scheme that requires only the available data attn; more detail is given in Section 3.2. Onceφn+1 is
obtained, we computeφn+1/2 by using the update rule

φn+1/2
=

1
2(φ

n
+ φn+1). (3.3)

3.1.2 Explicit algorithm for Navier–Stokes equations.In Puckettet al. [14] and Sussmanet al.
[21], the temporal discretization is explicit for the advection term and semi-implicit for the viscosity
term. In our work, an explicit temporal discretization is applied to the viscosity term to limit the
compute time spent on the inversion of the viscosity term: this explicit temporal discretization is
given by

un+1
− un

∆t
+ [(u · ∇)u]n+1/2

= −
1

ρ(φn+1/2)
∇pn+1

+
1

ρ(φn+1/2)Re
∇ · [2µ(φn+1/2)Dn]

−
1

ρ(φn+1/2)We
[κ(φ)δ(φ)∇φ]n+1/2. (3.4)

If we define

u∗ = un +∆t

{
−[(u · ∇)u]n+1/2

+
1

ρ(φn+1/2)Re
∇ · [2µ(φn+1/2)Dn]

−
1

ρ(φn+1/2)We
[κ(φ)δ(φ)∇φ]n+1/2

}
, (3.5)
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the time-discretized Navier–Stokes equations can be written as

un+1
= u∗ −

∆t

ρ(φn+1/2)
∇pn+1. (3.6)

We apply a second-order explicit Godunov scheme for the advection term and the central difference
for the viscosity term in (3.1.2). They will be explained later. It is clear that the determination ofu∗

needs only values at time stepn.

3.1.3 Projection forun+1. To satisfy the incompressibility condition for time stepn + 1, we
apply the divergence operator on both sides of (3.6). Since∇ · un+1

= 0, we have

∇ · u∗ = ∇ ·

(
∆t

ρ(φn+1/2)
∇pn+1

)
. (3.7)

The projection equation (3.7) is elliptic. It reduces to a Poisson equation if the density ratio
ρ(φn+1/2) is a constant. After the pressurepn+1 is solved from equation (3.7), the velocity field
un+1 can be obtained by (3.6).

To simplify the implementation for arbitrary geometries, we use a finite element projection of
the form ∫

Ω

u∗ · ∇ψ dx =

∫
Ω

∆t

ρ(φn+1/2)
∇pn+1

· ∇ψ dx+

∫
Γ1

ψuBC · n dS, (3.8)

whereψ is the finite element weighting function,Γ1 denotes all the boundary with inflow or outflow,
anduBC is the given boundary velocity. It is easy to see by the divergence theorem that the implied
boundary condition atΓ1 is

∆t

ρ(φn+1/2)

∂pn+1

∂n
= (u∗ − uBC) · n. (3.9)

The use of the finite element projection (3.8) in an otherwise finite difference scheme was first
proposed by Almgrenet al. [3], where the finite element projection was called an “approximate
projection.” This idea was then applied to variable density flows by Puckettet al. [14]. The choice
of the weighting function, as well as the approximation for the pressure and velocity, is flexible. In
our implementation, the weighting function and the pressure are chosen to be piecewise bilinear,
and the velocity be piecewise constant.

3.1.4 Re-initialization of the level set.To correctly capture the interface and accurately calculate
the surface tension, the level set function should remain a signed distance function to the interface
as the calculation unfolds. However, if we update the level set by (2.10), it will not remain as such.
Instead, we periodically stop the simulation and recreate a new level set functionφ which is the
signed distance function, i.e.|∇φ| = 1, without changing the zero level set of the original level set
function. Details about re-initialization times and criteria can be found in Sethian [19].

The need to do so in level set calculations was first recognized by Chopp [8]. Re-initialization
was an integral part of the level set fluid calculations in Sussmanet al. [23]. A direct and simple
method for re-initialization is to first find the interface (the zero level set) using a standard contour
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plotting algorithm and then recalculate the signed distance from each cell to the interface. Another
simple re-initialization choice is to solve the crossing time problem

φt ′ + F |∇φ| = 0, (3.10)

whereF is a given normal velocity. We note that we have usedt ′ in the equation to emphasize that it
is a pseudo time variable and the equation is solved solely for the purpose of re-initialization. With
F = 1, we flow the interface forwards and backwards in time and calculate the timet ′ at which
the level set function changes sign for each cell. The crossing times (both positive and negative) are
equal to the signed distances.

We have tried both of the two simple methods in our code and do not notice any differences in
simulation results. Readers are referred to Sethian [19] for an introduction to other re-initialization
techniques.

3.2 Approximation of the advection term

The algorithm for the advection terms is based on the unsplit Godunov method introduced by
Colella [11].

(a) (b)
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FIG. 5. Location of variables: (a) discrete velocity field, pressure and level set; (b) intermediate velocity field and level set.

Referring to Figures 5(a) and 5(b), the velocity componentsuni,j and the level set function values
φni,j are located at cell centers, and the pressurepni,j is located at grid points. The time-centered edge

velocities and level set function values (also called the “predictors”), such asu
n+1/2
i+1/2,j , φ

n+1/2
i+1/2,j , and

so on, are located at the middle point of each edge. To evaluate the advection terms, we use

[(u · ∇)u]n+1/2
i,j =

u
n+1/2
i+1/2,j + u

n+1/2
i−1/2,j

2

u
n+1/2
i+1/2,j − u

n+1/2
i−1/2,j

∆r

+
v
n+1/2
i,j+1/2+ v

n+1/2
i,j−1/2

2

u
n+1/2
i,j+1/2− u

n+1/2
i,j−1/2

∆z
, (3.11)
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[(u · ∇) φ]n+1/2
i,j =

u
n+1/2
i+1/2,j + u

n+1/2
i−1/2,j

2

φ
n+1/2
i+1/2,j − φ

n+1/2
i−1/2,j

∆r

+
v
n+1/2
i,j+1/2+ v

n+1/2
i,j−1/2

2

φ
n+1/2
i,j+1/2− φ

n+1/2
i,j−1/2

∆z
. (3.12)

In the above equations, the edge velocities and edge level sets are obtained by using a Taylor
expansion in space and time. The time derivativesunt and φnt are given by the Navier–Stokes
equations and the level set convection equation. We extrapolate from both sides of the edge and
then apply the Godunov type upwinding to decide which extrapolation to use. Here we explain
in detail how to obtainun+1/2

i+1/2,j ; the other time-centered edge values may be derived in a similar
manner.

To begin, extrapolate from the left:

u
n+1/2,L
i+1/2,j = uni,j +

∆r

2
unr,i,j +

∆t

2
unt,i,j

= uni,j +
1

2
(∆r −∆tuni,j )u

n
r,i,j −

∆t

2
(v̂uz)i,j +

∆t

2
F n
i,j , (3.13)

where

F n
i,j =

{
−

1

ρ(φ)
∇p +

1

ρ(φ)Re
∇ · (2µ(φ)D)−

1

ρ(φ)We
κ(φ)δ(φ)∇φ

}n
i,j

. (3.14)

We then extrapolate from the right:

u
n+1/2,R
i+1/2,j = uni+1,j −

∆r

2
unr,i+1,j +

∆t

2
unt,i+1,j

= uni+1,j −
1

2
(∆r +∆tuni+1,j )u

n
r,i+1,j −

∆t

2
(v̂uz)i+1,j +

∆t

2
F n
i+1,j . (3.15)

We use the monotonicity-limited central difference scheme (Colella [10]) for the evaluation of the
normal slopes, which isunr,i,j in this case. The limiting is done on each component of the velocity
at tn separately. The transverse derivative term(v̂uz)i,j is evaluated by first extrapolatingu to the
transverse faces from the cell center, using normal derivatives only, and then applying the Godunov
type upwinding. The detail will be given later in Subsections 3.2.1 and 3.2.2.

The next step is the Godunov upwinding. We chooseu
n+1/2,L
i+1/2,j or u

n+1/2,R
i+1/2,j according to

u
n+1/2
i+1/2,j =


u
n+1/2,L
i+1/2,j if un+1/2,L

i+1/2,j > 0 and un+1/2,L
i+1/2,j + u

n+1/2,R
i+1/2,j > 0,

u
n+1/2,R
i+1/2,j if un+1/2,R

i+1/2,j < 0 and un+1/2,L
i+1/2,j + u

n+1/2,R
i+1/2,j < 0,

0 otherwise,

(3.16)

v
n+1/2
i+1/2,j (or φn+1/2

i+1/2,j ) =



v
n+1/2,L
i+1/2,j (or φn+1/2,L

i+1/2,j ) if un+1/2
i+1/2,j > 0,

v
n+1/2,R
i+1/2,j (or φn+1/2,R

i+1/2,j ) if un+1/2
i+1/2,j < 0,

v
n+1/2,L
i+1/2,j + v

n+1/2,R
i+1/2,j

2
(or

φ
n+1/2,L
i+1/2,j + φ

n+1/2,R
i+1/2,j

2
) if un+1/2

i+1/2,j = 0.

(3.17)
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These intermediate edge velocities are, in general, not divergence-free. We need to use an
intermediate marker-and-cell (MAC) projection to make all the normal edge velocities divergence-
free. Supposeq is a function which is smooth enough andue the edge velocities obtained as in
(3.13)–(3.17). We want

ue −
1

ρ(φn)
∇q (3.18)

to be divergence-free. By taking the divergence of (3.18), we have

∇ ·

(
1

ρ(φn)
∇q

)
= ∇ · ue. (3.19)

Since we apply the MAC projection for edge velocities, we letq be cell-centered. Multiplying (3.19)
by r for axisymmetric coordinates, we have

∂

∂r

(
r

ρ(φ)

∂q

∂r

)
+
∂

∂z

(
r

ρ(φ)

∂q

∂z

)
=

∂

∂r
(rue)+

∂

∂z
(rve), (3.20)

where we have omitted the superscriptn for the level set. Hence, the discretized equation is given by

1

∆r2

[
ri+1/2,j

(ρ(φ))i+1/2,j
(qi+1,j − qi,j )−

ri−1/2,j

(ρ(φ))i−1/2,j
(qi,j − qi−1,j )

]

+
ri,j

∆z2

[
1

(ρ(φ))i,j+1/2
(qi,j+1− qi,j )−

1

(ρ(φ))i,j−1/2
(qi,j − qi,j−1)

]

=
ri+1/2,ju

n+1/2
i+1/2,j − ri−1/2,ju

n+1/2
i−1/2,j

∆r
+
ri,j (v

n+1/2
i,j+1/2− v

n+1/2
i,j−1/2)

∆z
. (3.21)

The boundary condition for the intermediate projection should be compatible with the physical
boundary conditions. On solid walls,u ·n = 0, which is already used in the construction of the edge
velocityue; thus, we have a homogeneous Neumann boundary condition onq, namely∂q/∂n = 0.
At the inflow or outflow, if a velocity is prescribed, it is again a homogeneous Neumann boundary
condition onq, since the given velocity attn+1/2 has been included in obtainingue. If a pressure is
given, the corresponding condition onq is

q =
∆t

2
pboundary, (3.22)

where the factor 2 in the denominator appears because the edge velocity is time-centered.
After qi,j is solved, we replace all the normal edge velocities by

u
n+1/2
i+1/2,j ← u

n+1/2
i+1/2,j −

1

(ρ(φ))i+1/2,j

qi+1,j − qi,j

∆r
,

v
n+1/2
i,j+1/2← v

n+1/2
i,j+1/2−

1

(ρ(φ))i,j+1/2

qi,j+1− qi,j

∆z
.

(3.23)
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3.2.1 Evaluation of the normal derivatives.The normal derivatives in (3.13) and (3.15) are
evaluated using the fourth-order monotonicity-limited central difference scheme by Colella [10]. For
uniform rectangular grid, we show how to calculateur,i,j . We begin with the following difference
operator definitions:

Dcr (u)i,j = (ui+1,j − ui−1,j )/2,

D+r (u)i,j = (ui+1,j − ui,j ),

D−r (u)i,j = (ui,j − ui−1,j ).

(3.24)

These operators are then used to define the limiting slope

δlim(u)i,j =

{
min(2|D−r (u)i,j |,2|D

+
r (u)i,j |) if (D−r (u)i,j )(D

+
r (u)i,j ) > 0,

0 otherwise,
(3.25)

and the second-order limited slope

δf (u)i,j = min(|Dcr (u)i,j |, δlim(u)i,j )× sign(Dcr (u)i,j ). (3.26)

The fourth-order limited slope is given by

δ4
r (u)i,j = min

(∣∣∣∣4Dcr (u)i,j
3

−
δf (u)i+1,j + δf (u)i−1,j

6

∣∣∣∣, δlim(u)i,j)× sign(Dcr (u)i,j ), (3.27)

and the fourth-order monotonicity-limited normal derivative is simply

ur,i,j = δ
4
r (u)i,j/∆r. (3.28)

3.2.2 Evaluation of the tangential derivatives.In Taylor’s extrapolations (3.13) and (3.15),
the normal derivatives are computed using the monotonicity-limited central difference scheme.
However, to ensure stability, the tangential derivative should be computed using some sort of upwind
schemes. Here we illustrate one possible approach, namely

(v̂uz)i,j =
v̂adv
i,j+1/2+ v̂

adv
i,j−1/2

2

ûi,j+1/2− ûi,j−1/2

∆z
. (3.29)

In the above equation,̂ui,j+1/2 andv̂adv
i,j+1/2 are again derived from Taylor’s extrapolation from the

top and bottom of the edge. Neglecting pressure, viscosity, and surface tension terms as well as the
tangential derivatives, this yields

ûBi,j+1/2 = uni,j +
1
2(∆z−∆tv

n
i,j )u

n
z,i,j ,

ûTi,j+1/2 = uni,j+1−
1
2(∆z+∆tv

n
i,j+1)u

n
z,i,j+1.

(3.30)

The derivatives at the right hand side are again computed using the monotonicity-limited central
difference described in Subsection 3.2.1.

All that remains is to perform the upwind evaluation to obtainûni,j+1/2 andv̂adv
i,j+1/2:

v̂adv
i,j+1/2 =


v̂Bi,j+1/2 if v̂Bi,j+1/2 > 0 and v̂Bi,j+1/2+ v̂

T
i,j+1/2 > 0,

v̂Ti,j+1/2 if v̂Ti,j+1/2 < 0 and v̂Bi,j+1/2+ v̂
T
i,j+1/2 < 0,

0 otherwise,

(3.31)
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ûi,j+1/2 =


ûBi,j+1/2 if v̂adv

i,j+1/2 > 0,

ûTi,j+1/2 if v̂adv
i,j+1/2 < 0,

(ûBi,j+1/2+ ûTi,j+1/2)/2 if v̂adv
i,j+1/2 = 0.

(3.32)

3.3 Thickness of the interface

Because of the numerical difficulty caused by the Dirac delta function and by the sharp change of
ρ andν across the free surface, the Heaviside and Dirac delta functions are replaced by smoothed
functions. The Heaviside function (see Sussmanet al. [23]) is redefined as

H(φ) =


0 if φ < −ε,

1

2

[
1+

φ

ε
+

1

π
sin(πφ/ε)

]
if |φ| 6 ε,

1 if φ > ε.

(3.33)

Accordingly, the smoothed delta function is

δ(φ) =
dH(φ)

dφ
. (3.34)

It is clear that the thickness of the interface is 2ε if the level set is a distance function.
In our numerical calculation, the parameterε is chosen to be related to the mesh size

ε =
α

2
(∆r +∆z), (3.35)

whereα = 2 in this work. The thickness of the interface reduces as we refine the mesh. Nonetheless,
for any numerically practical choices, the interface will necessarily have some smearing.

3.4 Constraint on time step

Since our time integration scheme is 2nd-order explicit for the convection term and 1st-order explicit
for viscosity, the constraint on time step∆t is determined by the CFL condition, surface tension,
viscosity, and total acceleration (Sussmanet al. [21]), as in

∆t < min
i,j

[
∆r

u
,
∆z

v
,

√
We

ρ1+ ρ2

8π
h3/2,

Re

2

ρn

µn

(
1

∆r2
+

1

∆z2

)−1

,

√
2h

|F |

]
, (3.36)

whereh = min(∆r,∆z) andF is defined in (3.14).

3.5 Formulation of FEM projection

We let u∗ be piecewise constant whilepn+1 and ψ be piecewise bilinear. For the term∫
Ω

∆t

ρ(φn+1/2)
∇pn+1

· ∇ψ dx, we show how to derive the integral related to the weighting function
ψi,j . As shown in Figure 6(a), the contribution to theψi,j -related integral comes from the cell with
corner pointsA1, A2, A3, A4 because the weighting functionψi,j has the valuêψi,j at node(i, j)
and vanishes at all other nodes.
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FIG. 6. Location of variables: (a) velocityu∗, pressurepn+1
i,j

, and shape fcn.ψi,j ; (b) velocityu∗, pressure, and shape fcn.

The contribution fromA1 is∫
A1

(
1

ρ(φ)
∇pn+1

)
· ∇ψi,j dx =

∫
A1

(
1

ρi,j
∇pn+1

)
· ∇ψi,j dx

=
2π

ρi,j (∆r∆z)2

∫ 0

z=−∆z

∫ 0

r=−∆r

∇[pn+1
i,j (r +∆r)(z+∆z)− p

n+1
i−1,j r(z+∆z)

−pn+1
i,j−1(r +∆r)z+ p

n+1
i−1,j−1rz] · ∇[ψ̂i,j (r +∆r)(z+∆z)](ri,j + r)dr dz

=
2π

3ρi,j
ψ̂i,j

[
pn+1
i,j

(
∆z

∆r
Q1ri,j −

∆z

2
Q3

)
− pn+1

i−1,j

(
∆z

∆r
ri,j −

∆z

2

)
Q4

−pn+1
i,j−1

(
∆r

∆z
Q5ri,j +

∆z

4
Q2

)
− pn+1

i−1,j−1

(
∆z

2∆r
ri,j −

∆z

4

)
Q1

]
, (3.37)

whereri,j is the radius at the center of cell(i, j) and

Q1 = 1+
∆r2

∆z2
, Q2 = 1−

∆r2

∆z2
,

Q3 = 1+
∆r2

2∆z2
, Q4 = 1−

∆r2

2∆z2
,

Q5 = 1−
∆z2

2∆r2
.

(3.38)

Similarly, one can obtain the contribution to theψi,j -related integral fromA2, A3, andA4.
For the term

∫
Ω

u∗ · ∇ψ dx, we show all the contribution from the pointA1, which includes the
ψi,j , ψi,j−1, ψi−1,j−1, andψi−1,j -related quantities:∫

A1

u∗ · ∇ψ dx =
2π

∆r∆z

∫ 0

z=−∆z

∫ 0

r=−∆r

{ψ̂i,j∇[(r +∆r)(z+∆z)] − ψ̂i,j−1∇[(r +∆r)z]

−ψ̂i−1,j∇[r(z+∆z)] + ψ̂i−1,j−1∇(rz)} · u
∗

i,j (ri,j + r)dr dz
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= π

{
ψ̂i,j

[
(∆rv∗i,j +∆zu

∗

i,j )ri,j −
∆r

2

(
∆zu∗i,j +

2∆r

3
v∗i,j

)]
− ψ̂i,j−1

[
(∆rv∗i,j −∆zu

∗

i,j )ri,j +
∆r

2

(
∆zu∗i,j −

2∆r

3
v∗i,j

)]
+ ψ̂i−1,j

[
(∆rv∗i,j −∆zu

∗

i,j )ri,j +
∆r

2

(
∆zu∗i,j −

4∆r

3
v∗i,j

)]
− ψ̂i−1,j−1

[
(∆rv∗i,j +∆zu

∗

i,j )ri,j −
∆r

2

(
∆zu∗i,j +

4∆r

3
v∗i,j

)]}
. (3.39)

For the boundary integral
∫
Γ1
ψuBC · n dS, we show the formula for the case thatΓ1 is a

horizontal line at the bottom of the solution domain (see Figure 6(b)). We also assume thatuBC is
given at the middle point of each cell edge and is piecewise constant. The integral for the bottom
edge of the cell(i,1) is thus given by∫

bottom of(i,1)
ψuBC · n dS =

∫ 0

−∆r

2π

∆r
[ψ̂i,0(r +∆r)− ψ̂i−1,0r](−v

BC
i )(ri,0+ r)dr

= −π∆r

[
ψ̂i,0

(
ri,0−

∆r

3

)
+ ψ̂i−1,0

(
ri,0−

2∆r

3

)]
vBCi . (3.40)

4. Numerical results

4.1 Convergence study

For a convergence check of our code for ink jet simulation, we considered a typical nozzle as in
Figure 1. The diameter is 26 microns at the opening and 65 microns at the bottom. The length of
the nozzle opening part, where the diameter is 26 microns, is 20.8 microns. The slant part is 59.8
microns and the bottom part is 7.8 microns.

The inflow pressure is given by an equivalent circuit which simulates the effect of the ink
cartridge, supply channel, vibration plate, PZT actuator, applied voltage, and the ink inside the
channel and cartridge. We assumed that the input voltage is given by Figure 3. The corresponding
inflow pressure is as shown in Figure 4. The outflow pressure at the top of the solution domain is
set to zero.

The solution domain was chosen to be{(r, z) | 0 6 r 6 39µm, 0 6 z 6 312µm}. Since the
slant part of the nozzle wall is not parallel to the coordinate axes, we applied the “method of obstacle
cells” (see Griebelet al. [12]) in discretizing the nozzle geometry using homogeneous rectangular
cells. As a result the nozzle wall has a staircase pattern (see Fig. 7). A better approximation would
result from using a body-fitted quadrilateral mesh. In [25], the projection method is extended to
an arbitrary general quadrilateral mesh. Those results indicate that the difference between using a
staircase representation vs. a body-fitted mesh, while important for small-scale boundary effects, is
not significant in terms of computing the pinch-off time, bubble velocity, and satellite formation.

The contact angle was assumed to be 90◦ all the time and the initial meniscus is assumed to be
flat and 2.6 microns lower than the nozzle opening.

For the purpose of normalization, we chose the nozzle opening diameter (26 microns) to be
the length scale and 6 m/sec to be the velocity scale. The normalized solution domain is hence
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FIG. 7. The rectangular mesh.

{(r, z) | 0 6 r 6 1.5, 0 6 z 6 12}. Since the density, viscosity, and surface tension of ink are
approximately

ρ1 = 1070 Kg/m3, µ1 = 3.34× 10−3 Kg/m · sec, σ = 0.032 Kg/sec2, (4.1)

we have the following nondimensional parameters:

Re= 50., We= 31.3. (4.2)

The density and viscosity of air are

ρ2 = 1.225 Kg/m3, µ2 = 1.77625× 10−3 Kg/m · sec. (4.3)

To check the convergence of our code, we list in Tables 1, 2, and 3 the time of droplet pinch off,
droplet head velocity, and droplet volume obtained from our code using various meshes.

It is seen that the 25×200 mesh does not conserve mass well. This is because the widest part of
the ink droplet is only 7 to 8 cells wide. On such coarse meshes, level set methods incur substantial
mass loss. While remedies have been proposed, they typically maintain global mass conservation
but suffer from local mass loss. The most effective remedy is a careful attention to re-initialization
issues, higher order schemes, and sufficient grid resolutions.

TABLE 1
The time to pinch off from various meshes

Mesh number 25× 200 50× 400 75× 600 100× 800
Time to pinch off 8.0944 8.1808 8.1755 8.1738



476 J.-D. YU , S. SAKAI & J . A . SETHIAN

TABLE 2
Droplet head velocities from various meshes

Mesh number 25× 200 50× 400 75× 600 100× 800
t = 3.20 1.494 1.411 1.471 1.496
t = 4.48 1.245 1.188 1.219 1.246
t = 5.76 1.047 1.012 1.065 1.093
t = 6.72 0.972 0.932 0.990 1.023

TABLE 3
Droplet volumes from various meshes

Mesh number 25× 200 50× 400 75× 600 100× 800
t = 8.64 0.5768 0.7318 0.7408 0.7440
t = 8.96 0.5659 0.7279 0.7389 0.7429
t = 9.28 0.5548 0.7236 0.7369 0.7417
t = 9.60 0.5416 0.7189 0.7347 0.7405
t = 9.96 0.5281 0.7140 0.7325 0.7396

4.2 Effect of contact model

Our results indicate that the choice of contact model has an effect on the results. For the first droplet,
the dependence on the particular contact model is not that significant. We simulated the continuous
droplet ejection by repeating the voltage pattern in Fig. 3 at a frequency of 14.4 KHz. Results with

t=31.42µs t=44.42µs t=57.42µs t=86.67µs t=99.67µs t=112.67µs

FIG. 8. The continuous droplet ejection with the use of the contact model.
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t=31.42µs t=44.42µs t=57.42µs t=86.67µs t=99.67µs t=112.67µs

FIG. 9. A close up view at the triple point (with the contact model).

t=31.42µs t=44.42µs t=57.42µs t=86.67µs t=99.67µs t=112.67µs

FIG. 10. The continuous droplet ejection by assuming that the contact angle is always 90◦.

the contact model and results assuming a constant contact angle of 90◦ are plotted in Figs. 8 and 10.
Close up views at the triple point are shown in Figs. 9 and 11.

We see from Figs. 8 and 9 that the center of the meniscus retreats deep into the nozzle when the
first droplet pinches off att = 31.42µs. The ink droplet continues moving upward and breaks into
one major droplet and one or more satellites. At the same time, the capillary force of the meniscus
pulls the ink in the nozzle upward so that the ink flows from the cartridge into the nozzle. The menis-
cus returns to the nozzle opening and recovers to almost a straight line before the nozzle is ready
for the next ejection (t = 57.42µs). Thus the second droplet as shown in Fig. 8 is slightly bigger
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t=31.42µs t=44.42µs t=57.42µs t=86.67µs t=99.67µs t=112.67µs

FIG. 11. A close up view at the triple point (contact angle= 90◦).

than the first one. This transient phenomenon is consistent with our experimental observation. If the
simulation is continued, the third, fourth, and later droplets are basically as big as the second droplet.

If the contact angle is assumed to be 90◦ all the time, as is the case in Fig. 10, the capillary
force is not big enough at the pinch off (slightly later thant = 31.42µs) of the first droplet. Hence
the nozzle is not correctly refilled before the start of the second ejection. Subsequent droplets are
smaller than the initial droplet, which is contrary to experimental observations.

4.3 Experimental verification

An experimental result is plotted in Fig. 13. The nozzle used in the experiment is 25 microns in
diameter at the opening and 49.5 microns at the bottom. The length of the nozzle opening part,
where the diameter is 25 microns, is 25 microns. The slant part is 55 microns long and the bottom
part is 7.5 microns. The nozzle is not shown in Fig. 13 but the position of nozzle exit is at the upper
edge of each of the six images. The density, viscosity, and surface tension of Epson’s dye-based ink
are

ρ1 = 1070 Kg/m3, µ1 = 3.7× 10−3 Kg/m · sec, σ = 0.032 Kg/sec2. (4.4)

The dynamic voltage used in the experiment is plotted in Fig. 12, where the peak voltages are
±10.96 volts. Simulation results are shown in Fig. 14.

The average droplet size obtained from the experiment is 12.928 pico liters. Simulation of this
ink jet using a 64×672 grid predicts 11.659 pico liters. Fig. 13 shows that the ink droplet leaves the
nozzle at a time between 30µs and 35µs. Since the pinch off from the meniscus usually happens
somewhere inside the nozzle, we cannot see it in the experiment. Our simulation predicts that the
pinch off occurs att = 30.80µs and that the droplet tail leaves the nozzle att = 31.50µs, in good
agreement with experiments.
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FIG. 12. The driving voltage used in experiment.
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FIG. 13. Shape of the ink droplet att = 25,30,35,40,45,50µs.
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FIG. 14. Ejection of an ink droplet from simulation.
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4.4 Effect of parameters

The effects of some design parameters can be seen using the simulation code. Here we only illustrate
two of them. The relation between the ink droplet volume and the peak voltage is plotted in Fig. 15.
Although the two-phase flow problem is highly nonlinear, the curve in Fig. 15 is essentially linear.
The droplet velocity increases and the “time to droplet pinch off” becomes longer as the peak voltage
increases. As a result, the ejected droplet gets longer and, due to the capillary instability, tends to
develop into more satellites. Hence increasing the driving voltage is not a solution for bigger ink
droplets. The magnitude of surface tension coefficient does not influence the droplet size as much
as the peak voltage, but it affects the time of pinch off. Plotted in Fig. 16 is the relation between
pinch off time and surface tension coefficient, showing that a larger surface tension causes earlier
pinch off.
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FIG. 15. The relation between the droplet volume and the peak value of the driving voltage.
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FIG. 16. The relation between the time of pinch off and the surface tension.
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5. Summary

We have developed an axisymmetric second-order coupled level set projection method with
contact model to model flow in an ink jet printhead, performed numerical simulations to check
internal consistency, and compared results with experimental data. In the future, we plan a closer
examination of wall forces, thin structures and temperature terms.
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