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Rigorous lubrication approximation
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We rigorously carry out a lubrication approximation for a liquid thin film which spreads on a solid,
driven by surface tension. We consider a two-dimensional Darcy liquid as simple model case. Of
particular interest to us is the codimension-two free boundary, i.e. the triple junctions where solid,
liquid and vapor meet. In the considered regime of complete wetting, the contact angle vanishes
throughout the evolution. We show in particular that this contact-angle condition is preserved in the
lubrication approximation.
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1. Introduction

Liquid films are characterized by a separation of length scales: the (evolving) region occupied by
the liquid is thin and gently sloping. The lubrication approximation capitalizes on this separation of
scales to substantially reduce the complexity of the appropriate bulk fluid model, thus allowing for
a more efficient study of the free surface (see [14] for a review on the subject). We are in particular
interested in a viscous liquid film which (slowly) spreads on a solid under the driving force of
surface tension. This is the case in the so-called regime of “complete wetting”, where the solid-air
surface tension equals the sum of solid-liquid and liquid-air surface tensions.

In this paper, we give a rigorous justification of the lubrication approximation in the simplest
possible case: a surface-tension drivearcy flow of a thin film. Also, we only treat théwo-
dimensionalcase. This set-up is relevant for the Hele—Shaw cell. Of particular interest to us is
the “codimension-two boundary”, i.e. the boundary of the set wetted by the liquid film. In our two-
dimensional setting, it is formed by the triple junction where liquid, solid and vapor meet. The
static or equilibrium contact angle is determined by Young's law[(ci. [10]). In the complete wetting
regime, the equilibrium contact angle is zero. For a Darcy flow, the equilibrium contact angle is
preserved throughout the evolution. To our knowledge, this is the first rigorous justification of a
lubrication approximation in the presence of a codimension-two boundary. The delicate part is the
passage to the limit in the zero contact-angle condition at the triple junction. We hope that our
technique may apply to more general situations such as the surface-tension driven Stokes flow with,
say, the Navier slip condition.

1.1 The Darcy flow in half space

In this section, we introduce the two-dimensional Darcy flow which is our starting point. This model,
which is motivated by the flow in a Hele—Shaw cell, is already non-dimensionalized. It describes the
evolution of a region2(¢) in the upper half plang(x, y) : y > 0}, and we think of2 (z) as touching

the fixed boundanf(x, y) : y = 0}. To specify the evolution means to specify how the normal
velocity V (¢) of the free boundarg2(¢) N {y > 0} depends on its shape. Letv, and« denote
respectively the unit tangent, outer unit normal and the curvatude2gf), with the understanding

that the pair(z, v) has positive orientationqv = —d, ¢ (cf. Fig.[]). V() is taken with respect to

the outer normab. The first set of assumptions says that the free bounglgrg) N {y > 0} of

FiG.1. The Darcy flow in half space in complete wetting regime.
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the domains2 (¢) filled by the liquid is advected by a divergence-free velocity field) with slip
boundary condition at the wetted $&® (r) N {y = 0}:

V. ou@®)=0 inf@),
(%) -u@)=0 ona@)ni{y=0} (1.1)
v-u@t)=V ond2@t)N{y > 0}.

These are the “kinetic conditions”. The second set of assumptions, the “dynamic conditions”, is
more interesting: The velocity is the negative gradient of a pregsyen the domain filled by the

liquid (this is Darcy’s law), the pressure balances surface tension, as given by the curvature, at the
free boundany2(¢) N {y > 0}, and the free boundary is tangential to the fixed boundary at the
triple junctionsa (952 (¢) N {y > 0}) (this is Young’s law or the zero contact-angle condition):

u(t) =—=Vp(t) ing(),
Kk = p(t) ona2() N{y > 0}, (1.2)
@) -r=1 atd(@2@) N {y > 0}).

1.2 Mass and energy

There are two fundamental quantities associated with a generic d@enais area and the length
of 32 N {y > 0} minus the length 062 N {y = 0},

M(2) = L3(£2),
E(2) =H@2n{y>0)—H@2N{y=0}.

The first quantity is proportional to the mass of the liquid fillifag In the complete wetting regime
under consideration, the second quantity is (up to an additive constant) the total interfacial energy of
the configuratiorf2. We now investigate the behavior of these quantities under the above dynamics.
The kinetic conditiong (1]1) by themselves imply tiVtis conserved,

EM(Q(z)) =/ V(1) =/ V-u(t) =0, (1.3)

dt 92(HN{y>0} Q@)

and thatE evolves according to

d
g E@) :/ t-Du(t)t—/ @) - Du() (5)
1 9R2(1)N{y>0} 02(t)N{y=0}

— l .
zf KV(I)—/ L (2)’ V(). (1.4)
02(1)N{y>0} 3(d82(1)N{y>0}) +(pr

From the calculatior] (I}4) we see that the first variation of the engrgja generic domai2 (of
which we do not assume the contact-angle conditiopirj (1.2)) is given by

y ; Q)
(dEo, V) =f Kv_/ Q@ (1.5)
a22n{y>0} 3(32n{y>0)) 1+(p)T

for all kinetically admissiblel’, where we callV: 32 N {y > 0} — R kinetically admissiblef
fmn{y>0} V = 0. This shows that the contact-angle condition is indeed an equilibrium condition.
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Therefore, it is a “natural” (Neumann) boundary condition rather than an “essential” (Dirichlet)
boundary condition. This will be important later on. The dynamic conditipn$ (1.2) (and the kinetic
conditions[(I.]l) again) ensure thatdoes not increase:

%E(Q(r)) €302 / pV(D)
32("N[y>0)
L= f V(@) - ut)
(1)
=2 _ / u(n)2. (1.6)
20)

In fact, the evolution can be written as a gradient flowEofsee [11]).

From this analysis we infer the following interpretation of the evolution> £2(¢): The last
dynamic condition states th&(¢) relaxes instantaneously at the triple junctiongs2 (¢1)N{y > 0})
to balance both contributions 1 (i.e. the three surface energies). On the other hand, the first two
dynamic conditions ensure that, away fron®2(r) N {y > 0}), £2(¢) evolves to reduce the first
part of E (i.e. the liquid-air surface energy). Hence the evolution can be seen as the limiting case of
the combination of a slow and a fast relaxation.

1.3 The thin-film regime

Let X andY denote the typical horizontal, respectively vertical length scafe @j. The lubrication
approximation is based on the separation of scales

Y
= — 1 1.7
€=+ < (1.7)
We now heuristically infer the typical time scaf on whicht — £(¢) changes. Since? is
advected by the velocity (cf. the last equation iff (1].1)), we have for its horizontal and vertical
components
X Y
1 0
”'(o)”f’ “'(1)”7-
In view of Darcy’s law (cf. the first condition ifj (11.2)), this implies

a X d Y
N (1.8)
ax T dy T
Because of (1]7), the vertical pressure gradient is thus much smaller than the horizontal one, so that
p is essentially a function of alone. Hence we may infer from the first part[of {1.8) that

X2
p — (mean ofp) ~ - (1.9)

In view of the balance of pressure and surface tension (cf. the second condifiorj in (1.2)), this yields

for the curvature )

X
k — (mean ofk) ~ T (2.10)
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On the other hand], (1.7) implies thascales as

Y
K~ <7 (1.11)
But in view of Young's law (cf. the last condition ifi (1.2)), the mean of the curvature vanishes so
that we obtain from equating (1J10) afd (1.11):

X4
= (1.12)

We now encod€ (1] 7) with the help of quantities which can be controlled in terms ofirtftiit
value. According td (1]3), the mas$ is one of such quantities; as we shall see in Sefjon 3, another
such quantity is the second momenof the domain2:

1 2, 2
0(2) = E(x +y9).
2
In terms of scaling, we expect

M(2)~ XY, 0(R) €D y3y

Hence weadefineX andY th ougn
M(Q()) =1 3 Q(Q()) =1 (1 13)
XY ’ X°Y ’ .

that is,

1/2 3\ 1/2 5\ 1/2
Kim (LY (MY et
M ($20) 0(£20) M ($20)

and the somewhat vague conditipn {1.7) is replaced by

_ M(0)?
T 0(0)

In the lubrication approximatiors? is described in terms of its rescaled height function

<L (1.15)

(TH) ={(X2,Y9) :0< 9 < h(i, ). (1.16)

Not surprisingly,|(1.15) is insufficient to ensure ta(7'7) is even close to a subgraph. We need an
additional condition. Notice that if (1.16) holded, we would have

X 1 [ oh , .\ )
Xparin-2 [ (e (Bhio) -1)w

00 1 A R 2 h
- [ _(3_’}@, )e)> de provided "~ o), (117)
oo 2\ 0X ax

This suggests that the condition

%E(.Q(T?)) =0() ine (1.18)
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is enough to ensure th&x(T7) is at least close to a subgraph:
QTH ~{(XZ,Y9):0< 9 < h(i, ). (1.19)

We shall make this rigorous in Sectioh 4. According to|(18)2 (1)) is non-increasing; hence it is
sufficient to require[(1.18) only initially. In view of (1.]14), this translates into the condition

0(£20)3E(£20)?
M (£20)7

This is the additional condition defining the thin-film regime.

In view of (1.17), (1.IB) is a version of the standard assumption in lubrication theory that the
film be gently sloped. Notice tha{uﬂw) amounts only toaseragebound on the slopéh/az,
which is at the origin of technical difficulties in our rigorous treatment. But this average bound is
probably the only “honest” bound—in the sense that it is the only one preserved by the evolution,
because it is encoded in an energy bound. In particular, the property of being a subgraph is not
preserved.

—0() ine. (1.20)

1.4 The thin-film equation

We give a brief heuristic derivation of the thin-film equation, which also guides some of the rigorous
treatment. Observe that (T]19) in particular implies

oo
G5~ [ g (X2 Y9 65,
so that the kinetic conditionf (3.1) turn to leading order into

10h | 10 ., 1

whereu is the vertical average of the velocity. Recall that the anisotropy of the pressure gradient
(cf. (1.8)) in the regime[ (1]7) implies that to leading orderis a function oft alone. Therefore,
Darcy’s law (cf. [1.2)) can be vertically averaged:

19
-} = _Xa_? (1.22)

On the other hand, we infer frofh (1]19) in the regine](1.7) that to leading order

Y 9%
O X29x%
Hence the balance of pressure and surface tensiof (df. (1.2)) yields

Y 9%h
=== 1.23
P="X2552 (1.23)
Combining [1.2]1) [(1.92) witH (1.23) and usifg (1.12), we obtain
oh 9 (~0%h .
—+ —|h—=)=0 in{h>0} 1.24
ot + 8x< 8x3> n{h > 0} ( )
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We observe that this limit process is a singular limit. Indeed, consider the codimension-one free-
boundary problem fob$2(r) N {y > 0} in (L.A)-{1.2). Linearization around a flat interface yields
a third-order parabolic (and therefore non-local) operator. On the other hand, the thin-film equation
) is a local fourth-order parabolic evolution for the height funclioh £). The limit process is
well-understood on the level of careful asymptotic expansions (¢f. [1, 14]).

The above heuristic argument, and the more careful asymptotic expansions, do not address the
fate of the codimension-two boundadya2 N {y > 0}) and the contact-angle condition at these
triple junctions. The main merit of our rigorous result is that it also tré&ts> 0}. In short, our
result can be formulated as follows:

Assume we are in the thin-film regime in the sens@.df)and (1.2Q) Then
QTH ~ (X3, Y5):0<§ < h(@. D),

whereh (i, £) > Ois a solution of

ah 9 [~93% .
—A+—A<h | ):o in{h > 0},
ot ax \ ax3 (1.25)
.~ dh .33 .
h=—=h— =0 onad{h > 0}.
X ax3

Notice that ) can indeed be read as a free-boundary problea{/for- 0}: On the “free
domain”U := {h > 0} in space-time}; satisfies a fourth-order parabolic equation. Three boundary
conditions are imposed o/ N {t > 0}: the trivial “defining condition”z = 0, the zero contact-
angle conditiord//d3 = 0, and the zero mass-flux conditi@®a3//353 = 0. This would be one
condition too much on a fixed domain, b/ evolves with a spatial speed given b¥: /343, as

can be read off from the first equation jn (1].25).

The main difficulty in the proof is the passage to the limit in the zero contact-angle condition.
The other two conditions at the free boundary are more robust: the defining conitio is
well-controlled by a priori estimates, whereas the zero flux is well-encoded in an appropriate weak
formulation. The main idea is to treat the contact-angle condition as a natural (Neumann) boundary
condition rather than an essential (Dirichlet) boundary condition. From the point of view of physics,
this is obvious since the contact-angle condition is a static equilibrium condition, as shgwr in (1.5).
The fact that this static equilibrium condition also holds throughout the evolution is natural from the
gradient flow perspective as explained by the authois in [11]: The time discretization of the gradient
flow, which comes in the form of a sequence of variational problems, clearly shows that the contact
angle is an outcome of (instantaneous) energy relaxation at the triple point rather than a constraint
on the space of shapésOn this time-discrete level, the passage to the limit in the angle condition
has been carried out in [11].

The second technical difficulty comes from the lack of control of the “topologyf2df) or
{fz(f, ) > 0}. It is indeed conjectured that the number of connected components may increase
through the formation of a “pinching” singularityl[2]. Our weak notion of solutionfor ([L.25) is valid
throughout a singularity formation. But the lack of topology control only permits a weak control of
therelative pressurep, as already alluded to ifi (1.9). Indeed, we only controlghedientof the
pressure on the evolving and possibly pinching donsa(n).
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2. The main result
2.1 Rigorous statement of result
In this subsection, we give the precise formulation of our result. We first clarify the notion of

solutions. In short, we require all regularity ¢, but little regularity oM (7, %). Throughout the
paper,

£2(1) is a smooth global solution ¢IL.7)-[T.2)such that the boundary o
2°) =20 U{y <0} 2.1
is a connected and continuously differentiable curve for gl 0.

In addition to regularity and compatibility with the complete wetting regiine] (2.1) in particular rules
out that a connected component®fr) has empty intersection witty = 0}: In other words,[(2]1)
forbids the detachment of liquid droplets from the film.

REMARK 2.1 In the absence of a codimension-two boundary (i.e. assuming that the initial wetted
regiona 2o N {y =0} coincides with{y = 0}), Escher and Simonetiti[9] established local existence
and uniqueness of classical solutions in any space dimension (cf. also Prokert [16]). The two-
dimensional case for subgraphs had been first considered by Duchon and Robert [8]. Global
existence of smooth solution for the evolution in all®f (i.e. assuming tha@s2g N {y = 0} is

empty) has been proved by Constantin and Pugh [7] prowidaglis nearly circular. Of course, we

do expect to have at least short-time existence of classical solutiofs for[(1.]1)—(1.2) (provided initial
data are such that no waiting-time phenomenon occurs). But to the best of our knowledge such a
result is not available, and would actually be an interesting subject of research.

We now introduce the notion of weak solution fpr (1.25).
DEFINITION 1 A function/(7, £) > O is called asolutionof -) if:

(i) 7 € C([0, 00) x Rg) N L®((0, 00); Hl(R 0);

(i) 9%h/02% € L2 ({h > 0}) andh23%h/9%% € L?({h > O));
(i) 92h/9x2 € L3((0, 00) x R;);
(iv) forall ¢ € C2°((0, c0) x Ry),

% a; 3%c  ~0hd%Cc) . ..
/f > dit df = f/ {<8x>w+h£a£3}dxdt. (2.2)

REMARK 2.2 Definition[] is a weak formulation for problein (1] 25). Indeed, two integrations by
parts of the right hand side ¢f (2.2) (using (iii) to control the boundary terms) yield

00 37
/ f ha—gdxdt+// BAZB_gdxd =0 (2.3)
{h>0} 0x3 0%

forall ¢ € C°((0, 00) x Ry). Furthermore, (ii) and (iii) imply that

: 83h Lp 2
lim =3 (#,2)=0 and h(,-)ecCch Ry, B=<= (2.4)
2= 0{h(i,)>0) "oz 3

for almost every, so that the free boundary conditionsigk > O} are encoded.
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The thin-film equation in its many variants has been extensively studied in the recent years.
Existence of solutions fof (1.25) in one space dimension was provedin [6, 3] in bounded domains,
and in [5] in unbounded domains (we refer[tal[13] for the higher-dimensional case and for an up-
to-date list of references). A by-product of our approach (cf. Theptem 2) is to provide an alternative
proof of existence of solutions for (1]25), which unlike previous results does not make use of so-
called “entropy estimates”. As a consequence, the regularity which can be ascertained from (iii) is
slightly weaker than that of the solutions obtained in [6, 3] (for thgse] (2.4) holds true fg any;

B = 1is sharp). This potentially could make a difference since no uniqueness result is yet available.

We are now ready to formulate our main result:
THEOREM1 For all§ > 0, there exists aa(§) > 0 with the following property: 1f2(¢) is a
solution of the Darcy flow in the sense pf (2.1) in the thin-film regime in the sense of
0(20°E(@0)?* 1 . M(20)°
M(20)7 T8 0(£20)

then there exists a solution(?, £) of the thin-film equation in the sense of DefinitiEh 1 which is
close tof2(¢) in the sense of

< €(9), (2.5)

A A . A~ ~oA ~ R l
Qi | CHXEYN 0 <F <h@, D+ o ig<iec ) (2.6)
D{(Xx,Yy):0< ¥y <h(t,x)— 6§} 8
Here,X, Y andT are defined i4). Furthermorvejs non-trivial in the sense that
x
/ h(f,2)dt =1 forall7 > 0. 2.7
—00

2.2 Plan of the proof

We rescale[(1]1)F(T.2) measuribgth horizontal and vertical lengths in units &f, and time in
units of 7', with X and7 defined by[(T.14):

A a o T A oA v
ue(taX,)’) = ?”(TI,XX»X)’),

An v T A oA v
pe(t, x,y) = ﬁP(Tf»XX, Xy),

() =X, 9) e Ry x Ry 1 (XX, Xy) € 2(T1))}.
Then, withe defined by[(1.1F), we have for the rescaled initial configurati@as

Q(£20e) =€, (2.9)
1
E(%200) = 3 E(S20). (2.10)

and£2.(f) evolves according to
Veouct) =0 inQe(),
(°) -ucd® =0 ond.(HN{y=0} (2.11)
voue(f) =V ondR(f) N{y > 0},
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ue(f) = =Vpe(@) inQ.(@),
%x =pe(®  ondR«HN{y >0}, (2.12)
G -r=1 atd(92:(H) N {¥ > 0}).

The vertical length scal¥ is introduced by measuring vertical slicesf(f) in its units:
o X [
he(t,X) = ?/o Xe )&, ¥)dy

1 [ N e e
CED 2 [ &) (2.13)

€

Since the area is conserved (£f. {1.3)), we have

/ he(f, %) di = 1.

X

We argue by contradiction, assuming that for a certais- 0 and anye > O there exists a
solution £2(r) of the Darcy flow such thaf (2.5) holds ar{d (2.6) is false for any solution of the
thin-film equation. The second assumptio 2.5) yields the existence of a sequencg.)} o

of solutions of [(2.1]1)+(2.312) such that (.8)—(2.10) hold true. In addition, the first assumption in
(2.5) guarantees that

%E(SZOG) is bounded foe | 0. (2.14)
€

Theorenj L is now a simple consequence of the following two results:

THEOREM2 Let{(£2, pe)}. 0 be a sequence of solutions of problgm (2.11)—(2.12) in the sense
of (2.3) such that[(2]8)[ (2.9) anfl (2]14) hold, and /letbe defined by[(2.13). There exists a

subsequence such that for alk oo,

he 8 & uniformlyin [0, 7] x R; (2.15)

andh is a solution of) in the sense of Definit@n 1. In addition

/ hE,$)di =1 forallf > 0. (2.16)
]RA

ProOPOSITION1 Under the assumptions of Theorgin 2, there exists a universal coggtanth
that fore sufficiently small
C (0, €he (7, 2) + CoE(£20¢))

5 e (0. (&) € 2.4 N
{y e ( OO) ()C y) € (t)} { 5 (0’ th(t,je) — COE(QO€))

forany(f, X) € (0, 00) x R;.

The paper is devoted to the proof of Theofgm 2 and Propogition 1. We now give an outline of
the proof and its structure.
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In Sectior| B we recall the standard bounds on the méasthe energyE, its dissipationD,

and the second mome@t These will be the uniform a priori bounds we rely upon throughout
what follows.

In Sectiorﬂl we show, as a consequence of the uniform bound on energf.tipts close

to a subgraph for smadl, and that the portion of the line over which (f) is not a subgraph

is small in an appropriate sense. The results of this section in particular yield Propjgsition 1.
In Sectioj b we show that, for a subsequecesonverges uniformly to a continuous function
h.

In Sectimﬂi we prove that the horizontal veloaity= u. - (é) and the (suitably renormalized)
relative pressurg, — mear(p.) converge weakly to &, respectively a . We argue that both
limits only depend onx and pass to the limit in the kinetic conditions and Darcy’s law:

a—}f + i(ﬁﬁ) =0 and o= —8—7 distributionally in(0, o0) x R;. (2.17)

or  0x ax
We are forced to consider thelative pressurep. — mear{p.) since we do not know how
to control its mean medp.). Since we control the relative pressure through its gradient, we
have to stay safely inside a connected componemfzoi 0}, so that the Poincérestimate
does not deteriorate.

e Sectior] T is the core of our proof. We encode the dynamic conditions by testing the original
problem with two different types of infinitesimal variations, as described by a velacitie
first type arevertical variations of the fornit = (0, w(x)). Using the convexity of the energy
functional over the portion wherk, is a graph, we encode this variation as an inequality.
This makes it more robust for the passage to the limit. This first type of variation is already
sufficient (cf. Sectiofi[9) to identify = (3/0%)3h in the interior of{A > 0}. On the other
hand, Young's law cannot be captured by variations which are necessarily confined inside the
positivity set: We need a second type of variations, which are esseimmalontali = (v, 0)
and mimic shifts of connected components;fof> 0}. Unfortunately, the construction of both
test fieldsi is technically involved since the portions over whi€h is not a subgraph have
to be avoided.

e In Sectior| 8 we pass to the limit in the two aforementioned variational formulations. To do
s0, we have to combine both formulations in such a way that the combination is oblivious to
the absolute value of the pressure (we call this “pressure neutrality”).

o In Sectior ® we recover the thin-film equation, ite= (3/0£)3 on (i > 0}, from the
variational formulation of Sectidn 8.

e In Sectio we recover the zero contact-angle conditiondkgds = 0 ata{i > 0}, from
the variational formulation of Sectidn 8.

e In Sectior| IlL we recover the “Neumann-type” formulatipn](2.2), which encompasses both
the equation and the zero contact-angle condition.

We believe that this method can also be applied to the surface-tension driven Stokes flow with slip in
the complete wetting regime. The higher-dimensional version of our result, save the many regularity
issues (some of them yet open and fairly difficult), should in principle also be achievable by similar
arguments. On the other hand, we doubt that our technique can be extended to the case of non-zero
contact angle. Indeed, our “horizontal” variations (cf. Secfipn 7), are not able to encode a non-
zero contact angle. This reflects the higher degree of non-convexity of the non-zero contact-angle
problem (cf. [15]).
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Notations. From now on we will be working with solutions of the rescaled flpw (2.1)—(2.12), and
therefore for notational convenience we remove hats and checks, letting) = (7, X, ), h = h.
The superscriptwill denote differentiation with respect to the variahble

3. Basic uniform bounds

We start by collecting the basic estimates for solutiG@s, p.) of the rescaled Darcy flow in terms
of area, momentum, energy and dissipation rate. Accordirjg tp (£.8), (2.9) and (2.14), we introduce

Mc(1) = g.cz(sze(t)),
1 1

Qc(t) = —/ (% +yH dxdy,
€Jo.n 2

1
Ec(1) := E—Z[H%arzg(o N{y > 0) — H @R2:() N {y =0))],

1 2
D.(t) = —/ e ()]
€ Ja.n

LEMMA 3.1
M.(t) =1 forallr € (0, 00), (3.2)
sup {€'0.(t)} isbounded foe | O, (3.2)
te(0,00)
sup Ec(t) < Ec(0) isbounded for | O, (3.3)
te(0,00)
o0
/ De(t)dt < Ec(0)  is bounded foe | O. (3.4)
0
Proof. We rewrite for better readability and further reference the dynamic boundary conditions
1
—Kk = pe(t) ona(r)N{y > 0}, (3.5)
€
t=(})  atd@2.mn{y > o), (3.6)
Darcy’s law
ue(r) = —Vpe(t) in £2:(1), (37)
and the kinetic conditions
Vouct)=0 in2.(1), (3.8)
ue®)-(°) =0 0onde(t)N{y =0}, (3.9)
uct) - v=V o0noa2.(r)N{y > 0}. (3.10)

Lemm& 3.1 is an immediate consequence of the initial bounds and the following estimates for time
derivatives:

dM. 1) =0, dQ.

dr dr

dE.
() =—De(0).

1
(< Qe([)+§De(t)v d



RIGOROUS LUBRICATION APPROXIMATION 495

The first one and the last one are the rescaled versiofis ¢f (1.3), respegiively (1.6). For the middle
one we use the Cauchy-Schwarz and Young inequalities:

) = —/ Va2 ty?)
dr € Jag.ony=0; 2

12 2
ue(t) - v (x4 y9)
€ Jag.)n(y>0) 2

1
/ V-[§<x2+y2>ue<r>}
(1)

X
/ ( )-ue(t)
Q) \Y

1 1 1
/ (24 ydHdedy + —/ Zluc ()% O
2.4 2 € Ja.n 2

IE @

g
=L W SN N SN

4. Q2.(¢) is almost a subgraph

Since the property of being a subgraph is not necessarily preserved by the evolution, we did not want
to assume it. The goal of this section is to show, for bounBlgd) ande « 1, that nevertheless

(1) is closeto the subgraph ofh.(¢), and that itcoincideswith the subgraph of%. over a set

with a small complement. More precisely, we have the following:

PROPOSITION4.1 There exists a universal constaitsuch that fok sufficiently small

C (0, €he(t, x) + Coe2Ec (1))

4.1
O (0, €he(t, x) — Coe2E, (1)) @

{y €(0,00) : (x,y) € 2c(1)} {

for any (¢, x) € (0, 00) x R. Furthermore, for any & § < 1 and anyr € (0, co) there exists an
open sets (r) with

[y €(0,00) : (x,y) € (1)} = (0, ehe(t,x)) forallx € Us.(r), (4.2)
f }(h/e(t))z <V1+482EL(), (4.3)
User) 2

such thaiR — Us ((¢) is small in the sense of

2
LYR - Use(r) < COZ—ZEe(rL (4.4)

€
[dhe (DR — Us (1)) < COEEe(I)« (4.5)
REMARK 4.2 Here|dh.(r)| denotes the total variation measureifr). Propositior] 4.]L implies
in particular Propositiop]1.

Proof. By the assumptio.l), the boundary of the @(r) is connected and continuously
differentiable. Let(—oo0, 00) 3 s > (x(t, 5), ye (¢, s)) be a parametrization of this curve by arc
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length, oriented so that lim, 1 x. (¢, s) = +o00. Then the energ¥. () can be expressed in terms

of this curve:
5 o0 dx,
€“E.(t) = / (1 - —(t, s)) ds. (4.6)
o0 ds

We start by identifying the maximal subgét () of the x-axis over which2.(z) can be written as
a subgraph. Consider
dx
R — Ue(t) = {xm, )5 (9 < o} :
A
Pe(1) = {s € (—00,00) ! xe(t,5) € Ue (1)},

and observe that both. (r) andU, () are open sets. Also, far e U, (¢) there exists a uniquewith
xe(t, ) = x. Therefore, by definition of the curve and(),

{y € (0,00) : (xc(2,5),y) € 2:@)} = (0, ye(t,5)) foralls € P.(t), 4.7)
Ve(t,s) = e€he(t,xe(t,s)) foralls € P(¢). (4.8)

In particular,h.(¢) is continuously differentiable o, (z) with

%(Z, s) >0
d dx
k(I,S) = €hl(t, xe(t, ) ——(t, 5) forall s € P.(1),
ds ds
(%)2 . (%)2 _1
ds ds

which implies that

% 1+ (eh()2=1 forallse P(r). (4.9)
A}

We also note for further reference the inequality

dye 2 -1 dxe 2
ds B ds
Another way to characteriz€. (¢) uses the marginal. () of the Hausdorff measure along the
curve with respect to the-variable:

N

2(1— %). (4.10)

f C(xe(t,8))ds = f Cdre (). (4.11)
—00 R

Indeed, we will show thak. () has density/1 + (eh.(t))? with respect to the Lebesgue measure
onUc(t):

Ae(f, B) = / V1+ (ehl(t,x))%dx for all Borel setsB C U (r), (4.12)
B
and that on the other hant, (¢) is large with respect to the Lebesgue measure on its complement:

Ae(t, B) > 3C£Y(B) forall Borel setsB € R — U (1). (4.13)
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For (4.12), letz be a continuous function with support i (r). Then, by definition otU, (),
C(xe(t,s)) =0forx € (—o0, 00) — Pc(1), so that

/ (dhe(t) = / £(xe(t, 5)) ds
R Pe(1)

= )K(xe(l,S))\/l-i—(éh’e(l‘,xe(f,S)))z%(LS).S-

Pc(t

Sincex, mapsP.(t) strictly monotonically ontdJ, (t), we have

/ §(xe(l,s))\/1+(éhé(lsxe(f,s)))zdﬁ(t,s)ds=/
Pe(t) ds

Ue(t

¢(x)/1+ (eh.(t, x))%dx.
)

This string of identities implieg (4.12).

For (4.13), it is enough to show that for amy € R — U, (¢) and all sufficiently smalf > 0 we
have

Ae(t, (xo — 8, x0+ 8)) = 3LY((x0 — 8, x0 + 8)).

By definition of U (¢), there exists agg € (—o0, 0o) with x¢ (¢, so) = xo and%(t, s0) < 0. We
distinguish two cases. First, assume t%?’(t, s0) < 0. Since lim_, 10 xc (2, s) = *00, there exist
s_ < 50 < s+ With xc(¢,5_) = x¢(¢,s4) = xo and %(t,s,), %(l,s+) > 0. Provided§ « 1,
there exist open and disjoint intervats. > s_, Py > so and Py > s; such thatte maps each of
them strictly monotonically ont@xg — 8, xo + §). Therefore

Ae(t,(xo—S,xo+8))>/ 1d9+/ 1ds+/ 1ds
_ Py Py

dx dx dx
>/ —Gds+/ —eds—i—/ —<|ds
| ds Py | ds p, | ds
= 3L ((xo — 8, x0+ 8)).
Case 2is Whe%(t, s0) = 0. In this case, fo8 « 1 we have
'xE(tﬂ (SO - 385 S0 + 38)) C (xO - 87 X0 + 8)7
so that
At (x0 — 8. 0 + ) >/ Lds = 65 = 3CY((xo — 8. 10+ ).
(s0—38,50+38)

This completes the proof df (4.]13).
According to [[4.1P) and (4.13). (1) dominates the Lebesgue measure:

re(t, B) > L£Y(B) for all Borel setsB.

On the other hand,

s, B) B0 / ds = £X(B) +/ (1— %(z, s)> ds
Xxe(t,8)EB Xxe(t,5)EB s
@9

< LYB)+ €%E.(r) forall Borel setsB. (4.14)
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Together with[(4.1B3), this implies

LYR — U (1)) @ %ut, R — Uc(1)) @ %wl(ﬂ% — Ue(1)) + €2Ec (0],

so that
2

LR = Ue(0) < SE0). (4.15)
We first prove[(4.]1). Obviously, it is enough to show that

Iye(t, s1) — ye(t, s2)| < Coe?Ec(t)  forall s3 < s such thate, (7, s1) = xc(z, 52). (4.16)

@19 52
dﬁ(x,s)‘ ds < ﬁ/ ,/1—%(t,s)ds
ds 51 ds

(2(s2 — s1)€®Ec (1) Y2, (4.17)

According to [(4.5), we have

52

yelts1) — yelt, 52)| < /
51

<

X

Let nowb1 = infye(sy.50) Xe (£, 8), b2 = SUR (57,55 Xe(t5 8)- Since(by, bp) C R — U(¢), we see that

. @1
=51 = / Kb (e (60 s < hets (b1, b))

s1

@ LYR = U (1)) + €2Ec (1) @ gezEe (t). (4.18)

Inserting [4.1B) intd (4.17) we obtain (4]16).

For 0 < § < 1, we introduce the open set
Use(t) = {x € Uc(t) : eh.(1,x)| < 8). (4.19)
SinceUs (1) C Uc(r), (3.7)4-8) imply[(4.R). According t¢ (4.].2),
Ae(t, B) < mﬁl(B) for all Borel setsB C Us ((¢) (4.20)

and
re(t, B) = v 1+682L£Y(B) forall Borel setsB C U, (1) — Us.c(1). (4.21)

Together with)4), and the fact thét + 62 < 3, this implies

Cl(R —Us (1)) @<@ %)ws(t’ R —Uc@)) +

@
DV

1
mke(l‘v Ué(t) - Uﬁ,e(t))

[LYR — Us c (1) + €2Ec(1)],

so that we obtair{ (4]4):

2
LYR - Use (1) < E (1) < co;Eea). (4.22)

1
J14+82-1
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We will now estimaté:. (¢) in terms ofi¢ (1) and E¢ (¢) by the crucial inequality

1/2
f he(H)E' < (ZEe(t) / gdee(z)> forall &€ € C°(R). (4.23)
R R

Indeed, since—%(t), %(r)) is the outer normal of2, (1),

/ dg f
he = = = 0.
f]RE % /rzemdx arzem(é )

—/ st ) 2 (1, 5 ds
o0 ds

o0 1/2 © /d 2 1/2
( / s<x€(t,s>)2ds) ( / <ﬁ(t,s>) ds)
—0o0 —00 ds
s 1/2 o 1/2
e ( / gf(xe(t,s))st) (2 f (1— %(i,s)) ds) .

According to definition[(4.1]1), the first factor on the right hand side is just

/oo E(xe(t,5))%ds = f £2dr (1),
—00 R

whereas according tp (4.6), the second factor is

2/(><> (1— dre (t,s)) ds = 2¢%E.(1).
ds

—00

/N

This implies [4.2B). The first consequence[of (4.23) and [4.2() i$ (4.3). A second consequence of
(@.23) and[(4.14) is

/|dh€(t)| < [REc(t)(LYB) + €?E.(1))]Y? for all setsB, (4.24)
B

where d.(¢) is the measure-valued derivative iof(r). Together with[(4.22) we obtaifi (4.5), and
the proof is complete. O

5. Convergence ofi,
We introduce the renormalized versioh of £2.,

Ge ={(t,x,y) € (0,00) x R x (0,00) : (t, x,€y) € §2},
and the renormalized versid@n,, w,) of u.,

uc(t, x,ey) for(x,y) € Ge(v),

(vf(taxay)’ewf(ta-xay)) Z{(O,O) elsewhere (5.1)
The bound[(3}4) then translates into
/ {(v2 + ¢2w?} is bounded fok | O. (5.2)
Ge

The goal of this section is the convergence: of
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ProOPOSITIONS.1 There exists a non-negative functior C(]J0, co) x R) such that

he 1 uniformlyin [0, T] x Rforall T < oo (5.3)

for a subsequence. Furthermore

/ h(t,x)dx =1 forallz € (0, 00), (5.4)
R
h' € L*®((0, 00); L*(R)) (5.5)
and forall 0< § < 1,
he(t) iInUse(t) |40, o . 2
{ 0 elsewhere} h'(t) in L“(R) forall r € (0, 00). (5.6)

REMARK 5.2 Propositioti 5]1 already provgs (J.15) and (2.16) of Theflem 2, and shows that
satisfies (i) of Definitiof ]L.

The above stated convergence results rely on the boundedness of the following quantities in the limit
€ | 0, as stated in Lemnja’3.1:

/ he(t,x)dx = M. (t) =1 forallz € (0, 00), (5.7)
R
sup e"/ x%he(r, x)dx < sup €'Q.(r) isbounded foe | 0, (5.8)
1€(0,00) R te(0,00)
sup E<(t) < E<(0) isbounded foe | O, (5.9)
te(0,00)
o
/ D.(t)dt < E-(0) is bounded foe | O. (5.10)
0

Proof. We fix aT < oo and use the convention th@y < oo denotes a generic universal constant,
andC < oo denotes a generic constant only depending ongip; Q< (1), Ec(0) andT. The first
goal is to derive uniform a priori estimates irdlder norms for:., which will entail (5.3).

The bound orE, (¢) translates into a bound dn via a combination of the estimatgs (4.3) and

@3
/ & |dhe (1) </ $(x)|hé(t,X)|dX+/ § |dhe (1)
R Ute(t) R-U1,e(1)

1/2
< ( / £(x)%dx (hL(t, x))zdx> + max|& (x)| |dhe ()R — Uy (1))
R Uz (1) xeR

1/2
< Co ((Ee(t)f é(x)zdx) + m%ﬂé(ﬂlé&@)) (5.11)
R xe

for all non-negative Borel functions
The control of E¢ () and M (¢) ensures thak. is uniformly bounded:

he(t,x) < C forall (¢, x) € [0, 00) x R. (5.12)
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Indeed, for allx < xg we have
he(t, x0) < he(t, x) + [dhe (1) [((x, x0)),

and integrating inx over(xg — 1, xg) we obtain

X0 X0

he (2. x0) </ he(t,X)der/

X0—

. |dAe ()| ((x, x0)) dx

0—1
< / he(t, x) dx + [dhe (5] ((xo — 1. x0))
R

@ M (1) 4+ Co(Ec(1)Y? 4+ €Ec(1)) < C.

The control ofE. (r) and Q. () ensures thdi, is uniformly small for|x| > 1:

1+elx|V/?

he(t, x) < C|x|—1/2’

[x] > 1. (5.13)

In order to se€ (5.13), by symmetry we fix &n> 1 and consider the intervél= (xo, xo + 1/x0).
By a standard interpolation result, for any functiowe have

sup|a| < (L/|h|+f|dh|>
Ip S \ckn Jy I '

he(t, x0) < SUPhe(r, x) < C<|x0|/h5(t,x)dx+/|dh€(t)|)
1 1

xel
EID 1 1
< C(—/he(t,x)xzdx—l———{—e),
1

|xol |xol /2

and using[(58) we obtaifi (5.13). No (5/12) and (b.13) combine into
1+ e|x|Y?
1+ |x|V/2

The control of E.(¢) enables us to show that satisfies the following uniform continuity
property inx:

This yields

he(t,x) <C forall (z,x) € [0, T] x R. (5.14)

|he(t0, x1) — he (10, x2)| < C(lx1 — x2|Y% + €) (5.15)
for all (zg, x1), (t0, x2) € [0, 00) x R. Indeed, we have

lhe(to, x1) — he(to, x2)| < |dhe(10)]((x1, x2))

©.13) 12
< Co((Ix1 — x2| Ec(t))Y2 + €E.(1))
< C(lxg — x2lY? + o).

The control of D.(r) and [5.1P) enable us to show that spatial averagées afre uniformly
continuous iry:

12
’ / he (11, )p(x) dr — / he(tz,xw(x)dx‘ < C<|t1—t2I / (qo’(x))zdx) (5.16)
R R R
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forall 11, 2 € [0, 00) andy € C3°(R). Indeed, since

d d 1 1
—/ he(t,\)p(x)dx = —/ —w(x)dxdy=/ -V -p(x)dxdy
dr Jr dr Jo.) € 392:(1) €

&3 u-V(p(x)dxdyzf ve(t, x, y)¢' (x) dx dy,
(1) Ge(t)

we obtain

/ he (11, )p(x) dr — / he(rz,x)gomdx'
R R

1/2 1/2
< (/ ve(t, x, y)? dr dx dy) (/ (p’(x)zdtdxdy>
Ge GeN((t1,12) xRx (0,00))

E10 12
< C(Itl—tzl max hefw’(x)zdx) ,
(t1,12) xR R

and [5.12) implieq (5.16).

Interpolating the strong uniform control of continuity ingiven through[(5.7]5) and the weak
uniform control of continuity irr given through[(5.16), we obtain the following uniform continuity
property int:

|he (11, x0) — he (12, x0)| < C(J11 — 128 + €) (5.17)

for all (¢1, xp), (2, x0) € [0, 00) x R. Indeed, fix a smootlp with support in(—1, 1) and unit
integral. We rescale by as > 0 to be chosen later:

1 /x
@s(x) = 3¢ (g) .
We have
|he (11, x0) — he (22, x0)|

< /Rws(x — x0)|he(t1, x) — he(t1, x0)| dx
+ ‘/pra(x — x0)he(ty, x) dx — /]R%(x — x0)he (22, x) dX‘
+/R<Pa(x — x0)|he(t2, X) — he(t2, x0)| dx
E15.519 , 172
< C (fR s (x — xo)|x — xo|*Z dx +e> +C <|r1 — 1] fR(ws(x — xo))de>
1 1/2
< C<8+8—3|l‘1—t2|> + Ce.

This turns into|(5.117) fob = |1y — 2| Y/4.
By a slight generalization of the ArzetAscoli argument][(5.12), (5.15) arid (3.17) imply the
existence of a continuous functi@non [0, co) x R such that

he P locally uniformly in [0, c0) x R
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for a subsequence. Taking ndw (5.14) into account, we see that this improves to the global uniform
convergence stated i ($.3). Thanks to the bolind (4.8), (5.7) is preserved under the convergence

(5.3). This yields[(54).
The last task is to establigh (5.5) apd {5.6). Fixa[0, 7] and as € (0, 1]. For any test function
& € C°(R), we may write

- / heE = / B0 + / Edhe (1)
R U5,5(t) R*Ué,e([)
1/2
@é@ (2¢1+52Ee<r> / sz> +Co§Ee(t) max|é|, (5.18)
R

which (sinceEc(t) < E<(0)) in the limite | O turns into

1/2
—/ h(1)E < <c\/1+52/ $2> .
R R

Since¢ ands were arbitrary, this implie$ (5.5). Therefore, we gather from the representatioh (5.18)

and [4.5) that
/h’(z)s =Iim/ RL()E. (5.19)
R 0 JUs (1)

According to [(4.B) we have
/ hL(1)% < C. (5.20)
Us.e ()

Now the distributional convergende (5/19) together with the unifafbound in [(5.2D) imply the
weak L2-convergencd (5]6), and the proof is complete. O

6. Convergence ob, and 7,

The renormalized pressure
we(t,x,y) = pe(t, x,ey) for(t,x,y) € Ge (6.1)
is such that Darcy’s law (3.7) turns into

!/
€

a .
ve = —7/ and *w, = — aﬂe in Ge. (6.2)
y

Therefore, the boundl (3.2) translates into

2
/ {(n;)z n iz (3”5> } is bounded fo | 0. (6.3)
Ge €<\ dy

We also observe that the weak formulation of the kinetic condition$ (8.8)4(3.10) is

/{3;§+ME~V§'}=0 forall¢ € C5°((0, 00) x R x R).

€
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For test functiong independent of, this translates on the renormalized level into the continuity
equation

/ he(t, )32 (1. x) +/ vt ) drdrdy =0 (6.4)
(0,00) xR (0,00) xR x (0,00)

forall ¢ € C3°((0, 00) x R). Let
G ={(t,x,y):t>00<y<h(t,x)}

In view of (6.3), one expects that the pressure—and hence the velocity—begeméspendent
in the limit ¢ | 0. But the convergence af, is delicate: We only control its gradient on the
dependent domai@ . which may pinch off in the limit. Hence, in order to apply a Poirgcestimate,
we have to consider connected components of the limit doiaand stay safely in the interior of
{h > 0} x (0, 00). More precisely, let andI be open bounded intervals withx I c {h > 0}.
According to [(5.8) and (4]1), there exists/an> 0 such that

Ge D J x1x(0,hg] fore<1.
Furthermore, we have to cut away the “overhanging” paris oby introducing
Ge:={@t,x,y): (t,x,y) € GForall0 < § < y}. (6.5)

With Ge N (J x I x (0, 00)), we now have a domain on which the Poiricastimate does not
deteriorate foe | 0. Hence we expect to control a “relative” pressure

Ae(t, x,y)
— 1) for (¢ e
) LGN ][,X(O,ho)”f() F6x0€Ge (o xy) el xIx(0.00 (66
0 elsewhere

in L2 and hence obtain a weak limit, as stated in Propositi.l(i). It is immediate thadoes
not depend ory (see Proposition 6]1(ii)). Ultimately, we will need the convergence of the trace of
7e on the horizontal plane and on vertical slices (Proposftioh 6.1(iii) and (iv)):

PrROPOSITIONG.1 LetJ x I C (0, 00) x R be an open bounded rectangle such that 0 in its
closure, and let. be defined by (66). Then:

() There exists & e L?(J x I x (0, 00)) such that for a subsequence
fe =7 inL3(J x I x (0, 00)).
(ii) There exists & € L?(J x I) (we use the same notation) such that

a@,x) forO<y<h(@,x)

7t x,y) = {0 elsewhere e

(i) Ae(-,-,0) = 7 in L2(J x I).
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(iv) Foranyp €[1,2) anda.ec € I,

a(t,c) forO<y <h(,c)

T (- ) — i P
(v 6,0) {0 elsewhere in LP(J x (0, 00)).

As opposed tar, the weak convergence of comes almost for free frori (3.2). Having established
the weak convergence @t in Propositior] 6.11, from{ (6]4) anfi (§.2) we easily recover the limiting
continuity equation and Darcy’s law, respectively.

PROPOSITIONG.2 (i) There exists a € L2((0, o0) x R x (0, 00)) such that for a subsequence
ve = v in L2((0, 00) x R x (0, 00)). (6.7)

(i) There exists a measurahde (0, c0) x R — R such that

_Jv@,x) forO<y <h(t,x)
vit, x,y) = {0 elsewhere ae (6.8)
In particular

f hv? < . (6.9)

(0,00) xR

(iii)

d:h + (hv) =0 distributionally in(0, c0) x R. (6.10)

(iv) LetJ, I, # be as in Proposition 6.1. Then
-7’ =v distributionally inJ x I. (6.11)

REMARK 6.3 In view of [6.9) and[(6.11), in fact e L2(J; HL(I)). As a consequencé,(r) €
Cloc({h(¢) > 0}) for almost every € (0, c0).

Proof of Propositior] 6]1. Let C < oo denote a generic constant independent.ofVe start by

showing that
/ 7% < C. (6.12)
Jx1Ix(0,00)

Since by definition] (6]6) the averagesf(r) vanishes o x (0, ho) for all + € J, we obtain by the
Poincaé estimate on the bounded square (0, k),
2}

L2 fro2 ) |07
|Te ()] < C |7 (D + | — @)
Ix(0,ho) 1x(0,ho) dy
}. (6.13)

Integrating over € J, we get

/ |fr€|2<c/ l|n;|2+
JxIx(0,hg) Ge

We now use the Poincaestimate on

07T 2
dy

Ge(t,x) :={ye€(0,00) :(t,x,y) € Ge},
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which thanks to[(6]5) are intervals (and uniformly bounded by (5.3)[anf (4.1)), and thus obtain

N 2 N 2 07 ?
|7Te(t, )| < C |7Te(t, x)|° + @, x)| ¢-
Ge(t,x) (0,ho) Ge(t,x) | Oy

Integrating ovel, x) € J x I and recalling that. = 0 outside ofG, we get

/ mkc{/ 2+ [
JxIx(0,00) JxIx(0,hg) Ge

Combining [(6.1B) and (6.14), we gather
2
/ a<c [ !|n;|2+ }
J xIx(0,00) Ge
7 =0 outside of(J x I x (0, 00)) N Ge,

This establishe$ (6.112) and thus part (i) of Propos]tioh 6.1.
which because of (53) and (4.1), and the convergence stated in part (i), yields

a7
dy

2
} . (6.14)

07
dy

63
< C.

By definition

7 =0 outsideof(J x I x (0,00))NG.

On the other hand, (§.3) implies in particular

97 |2
/ Tel 00, (6.15)
Ge | 9y
Once again, because pf (5.3) ahd[4.1), this translates into
o7 o .
8—” —0 distributionally in(J x I x (0, 00)) N G (6.16)
y

under the convergence stated in part (i). Now part (i) and [6.16) yield part (ii).
In order to improve the weak convergence stated in part (i) to the weak convergence of the
{y = O}-trace stated in part (iii), it is sufficient to show the following uniform continuity property:

lim lim sup |7 (t, X, y) — Re(t, x, 0)[?dr dx = O. (6.17)
WO ej0 Jixi

This easily follows from the fact that for € (0, ko),

a7, |> ®3
Te| L cehol.

ay

f et %, ) — e, x, O dr dr < |y
JxI

JxIx(0,y)

In order to improve the weak convergence stated in part (i) to the weak convergence of almost
every {x = c}-trace stated in part (iv), it is sufficient to show strong convergence oftthe-
averages:

f Fe(t - e, y) di dy — (- ey didy in LE(1)
J x(0,00) J x(0,00)
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for an arbitrary; € L?'(J x (0, 00)), with p € [1,2) andp’ = p/(p — 1). This follows from a
uniform continuity property similar t¢ (6.17), namely

lim lim sup |Te(t, x —T,y) —(t,x,y)|Pdedxdy =0
=0 10 JIxKx(0,00)

for any compacKk c I. In fact, we will show for|t| « 1,

limsup 178 — 7 |P < Cle|@ P4, (6.18)
€l0 J x K x(0,00)
here and in what followg is a generic constant independenteadind r, and the superscrigt)
stands for translation in-direction.
In order to prove[(6.18) it is enough to consider the case0, as the case < 0 is analogous.
We start by observing that

h(t,x1) — h(t, &9
sup ) (12x2)| <c sup | W02 < c. (6.19)
t€(0,00), x1#£x2 |x1 — x2| / te(0,00) JR

We introduce the notation
G = {(t,x,y) € (0,00) x R x (0,00) : 0 < y < h(t, x) — &}
for a downward shift, and
G = {(t.x,y) € (0,00) x R x (0,00) : (t,x —0,y) e G™P Vo € (0,7)}  (6.20)
for simultaneous sidewards reduction. According t0](5.3) (4.1), we thus obtain for-aiy
H' :=GCVoD) c GECVD c G, providede « 1. (6.21)
On the other hand, in view df (6.]19),
GV c g, (6.22)
We now split the integra[ (6.18) into two parts:

/ A0 —ar < [ 30—+ [ 70— el
J x K x(0,00) (Jx K x(0,00))NHT (JxK x(0,00))—HT

On the first part, because of definitio.ZO) 6.21), we may represent the diftéfEneet,
via/; providedr is so small thak,; := K + B(0, t) C I, we obtain

2O AP < r"/ P
(I x K, x(0,00))NHT

©20 (2-p)/2
7P </ h€> </ |7'[€/|2
JxR Ge

p/2
oy ([ )

Ge

~/(J x K x(0,00))NHT

N

CtP.

N}
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For the second term, we observe that, with' ™ = K — 7,
/ 2 — )P < / el + / 2P
(JxK x(0,00))—HT (JxK x(0,00))—HT (JxK x(0,00))—HT

, 2-p)/2 p/2
€5 62 ( / (he — (h — 2cﬁ>)) ( / |fu|2>
JxK GN(J xIx(0,00))

(2—p)/2 r/2
+ ( / (he — (h — zcﬁ») ( / |z%e|2>
Jx KD GeN(J x1Ix(0,00))

(2-p)/2
([%) 2C <f (he — (h — 2Cﬁ))> .
Jx K¢

Hence
(2-p)/2
lim sup 178 — 7P < C (f ﬁ) < cT@E /A
€l0 (JxK x(0,00))—HT IxK;
and the proof is complete. O

7. Horizontal and vertical variations

This section is the core of our argument. We testtiegjuation with two distinct classes of fields
Velocity fieldsii of the first class are vertical and turn into variations of the dependent argument, i.e.
h, in the limite | O (see Fig[ R). We use the convexity of the total length of géapm terms of

h to transform the identity into an inequality, which is more robust under the passage to the limit.
This inequality is stated in Lemnia 7.1.

FIG. 2. Typical vertical and horizontal variations.

The zero contact-angle condition is a local equilibrium condition under (horizontal) translations
of the contact point. The vertical variations are limited to the interioffof- 0} and hence are
oblivious to the zero contact-angle condition. Velocity fieldsf the second class are horizontal
and turn into translations of a contact pointi.e.b € 3{h > 0}, in the limit (see Fig[ ). Itis this
class of variations which encodes the zero contact-angle condition in a way sufficiently robust for
the passage to the limit. The relevant inequality is stated in Lefmma 7.2.

In the first lemma, we wish to take test field®f the form

u(x, y) = (0, w(x)),

with supgw) c {# > 0}. Unfortunately, a technical difficulty arises: The boundary curve is not
a graph over the entire-axis. Hence, in order to use convexity,has to be constant over the bad
portions of thex-axis.
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LEMMA 7.1 LetJ x 1 C (0, o) x R be an open bounded rectangle such that 0 in its closure.
Then

/ SWir e - - [ L WIT @ -1
Us.N(JxI) € Us

D) €2

2/ —ezweﬁ)e—i—/ rewe (7.1)
GeN(JI xI) JxIx{0}

forall 0 < § < 1 and for alli. € L2(J; HX(R)) with

hie = he + e, (7.2)
we(t) =0 outside off fora.e.t € J, (7.3)
w. (1) =0 outside ofUs ((¢) for a.e.t € J. (7.4)

In the second lemma, we wish to take test fields of the form

(1,0) forc <x < b,
(0,0) elsewhere,

i(x,y) = {

wherec € {h > 0} andb € 3{h > 0} (evoking symmetry, we will hereafter only consider right
end-points of connected components{bf> 0}). Unfortunately, a technical difficulty arises with
these test fields: There is not necessarilyearontact pointb. near a contact poirit of the limit.

But there is always a poirit_, y.) on the boundary curve (cf. Fi 3) with horizontal tangent and
yo = o(1), such that therea betwee andx_ is o(1). This will be sufficient for our purpose.

c l“c_(t c)

FiG.3. The seG#(t, ¢) in Lemmg 7.2

LEMMA 7.2 LetJ x I C (0, 00) x R be an open rectangle such tthat- 0 in its closure¢ € I,
and let

b(t,c) :=supx > c:h(t, &) > 0VE € (c, x)}, (7.5)
GO1) == Ge(t) N {c < x < b(1, ).

There exist a safr} (¢, c) C G¢(t) which is close thEC) (t) in the sense that

Iiirg) L2GEt,e) AGO(1) =0 Vrel, (7.6)
€
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and an intervaly. (t, ¢), y (¢, ¢)) which is close ta0, h(z, ¢)) in the sense that

limy-(t,c) =0, limy*(t, c)=h(t,c) uniformlyfors e J, (7.7)
€l0 €l0
such that
v (t,0)
/ f ve(t)dt > / / e (t, ¢, y) dydt. (7.8)
J *(t,0) J Jye (t,0)
Furthermore
{c} x 0,y (1, 0)) € Ge(0). (7.9)

Proof of Lemm& 7]1. The basic ingredient is the following integral identity: For any test velocity
field z we have

1
J— T- D"’.’: _ / 1 . D~ 1 }
€2 {farze(m{yw} T Jaeon=o (0)-Di o)

1
== {/ (—ue(®) -+ pe(DV - it) —/ P (%) -ft} . (110
€ g 32:(NN{y=0)

We obtain[(7.ID) as follows: Becausexof = —d, t, an integration by parts alorég2. (r) N {y > 0}
yields

[ Kv-ft:/ r~Dﬂr—/ T-U.
982 (1)N{y>0} 002 (1)N{y>0} 9(092¢ (1)N{y>0})

On the other hand, an integration by parts alési2; (z) N {y = 0} gives

/ CRICEY -
982 (N{y=0} 0(382¢ (N{y=0}

According to ) we have = (é) onddR:(t) N{y > 0}) = 3(32:() N {y = 0}), so that

/ Icv~12=/ r~DIZI—/ () - Di (3)- (7.11)
382 (1)N{y>0} 382 (NN{y>0} 382 (N{y=0}

By the divergence theorem, we obtain

/ pe(t)v'ﬁZ/ Pe(t)V'lz_/ pe(t)(_ol)’ﬁ
982 ()N{y>0} 082 (1) 082 (1N{y=0}

:/Q()(Vpe(t).aere(t)v.ﬁ)—/ pe(t)(_ol)-ft. (7.12)
(1

982 (1)N{y=0}

Obviously, (7.ID) follows from{ (7.11) anfl (7]12) via the identit[es](3.5) (3.7).

We make use of the renormalized version[of (¥.10) for test fields of the simple form

ﬁe(t7x7 )’) = (O,ng(t,x)),
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with w, satisfying [7.)4(7]4). For the right hand side[of (7.10) we obtain

1 - ~ 0y =~
_{/ (_”e(t)‘ue+pe(t)v‘“e)_/ pe(t)(_l)‘“e}
€ e 092 (1)N{y=0}

:/ —ezwe(t)ﬁ)e(t)-i-/ Te () We (1).
Ge()

1x{0}

For the left hand side, we fix & § < 1 and letr = (1, 12); in view of (7.4), we may us¢ (4.2) to
write

1

2 T'D~T—/ l_D~l}
€2 {/age(z)n{y>0} " 92 (1N {y=0} (0) u (0)

1

= / W.T1T2 =/ — W
€ Jag.()n{y>0} Us.enl /1+ (eh.(1))?

By convexity ofz — eiz(\/l + (e2)2 — 1) we see that

1 = 1
fU . = 14 (ehl(1)*—1) — /U Z(\/1+ (eh.(1)? - 1)
8.,e(t) 8

h/
) DL(1).

NI

/
g / Li}é ().
Usennl /1+ (eh;(t))Z
Reassembling the different parts [pf (4.10) and integrating oeey we obtain[(7.]L). 0

Proof of Lemma 7]2. Our construction is based on the assumption that the boundary of the set
.Q?(t) = () U{y < 0} is, according tl), a connected and continuously differentiable curve.
We may then introduce a parametrization of this curve by arc length

(—OO, OO) ER N y€(t5s) = (xe(tvs)’ YE(LS)),

oriented so that liqL, 10 xc (2, s) = £o0. FOr notational convenience we neglect dependence on
whenever no ambiguity arises. We would like to construct ax&t) which is “close” to

2L0) 1= (1) N{e < x < b))

and which has tanger(%) at its “lower right corner”. With this in mind, we introduce the arc
coordinatecé(l) () (cf. Fig.@) such that

xe(t,sP @) =c and {c} x (0, ye(t, s (1)) C 2e(), (7.13)

and we split/ into three subintervalsiy, whereb(t) = oo; Jo, whereh(r) = 0 in [b(z), 00); and
J3=J —(JLU Jo).

We first treat the easiest cab@) = oo, which already allows outlining the main ideas. In this
case we introduce the set

27 (t) := portion of 2 (r) bounded by the curves
y (. [s{ (1), 00)) and{c} x [0, ye(t. s (1)) (7.14)
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FIG.4. The arc coordinate((l) (1) and the sef2(r) for r € Jq.

and its renormalized version
Gi(t) ={(x,y) e R x (0,00) : (x,€y) € 27 (1)}.

The set2}(¢) is constructed in such a way that we can apply the divergence theorem: using the fact
thatkv = —d,t we obtain

f uet) - (3 =—f V. (pe().0)
() X))

velt,s& (1)) L
/ pe(t,c, y)dy —/ , pe(HV(®) -+ (5)
v, [s (6),00))

0

@y [ (1,58 )
2
0

1
ptendy=2 [ v ()
€ Jy(t,[se’ (1),00))

yet,sd (1))

1
pe(t.c.y)dy + —f o denT(®) - (o)
€ Jy(t.[se (1).00))

)
@ Ye (t,s¢” (1))
> /O pe(t.c. v)dy. (7.15)

where in the last line we used the fact that(é) =1 at infinity. We let

1
yo(t,e):=0,  yF(t o= ¥, s ()).

Rescaling[(7.15) and integrating in time, we obt&in|(7.8) restrictedtd:

e (t,0)
/ / ve(t)dr > / f e (t, c,y)dydr. (7.16)
J1JGE@) J1dye (1,0
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Since [[7.¥) follows from[(4]1) andl (§.3), ar{d (7.9) holds by construction, it remains to show that
Q7(t) is close to2.” (¢) in the sense that

252(95@ 0 a2k 2o (7.17)

To this end, we write for the symmetric difference
291 A 2F(1) = (29(1) — 2F(1) U (K1) — 2 () = 2" (1) U 2°%).

We claim that bothQL”(t) and 2°U) are small because, roughly speaking, they consist of
“appendices”, i.e. connected subsets{r) which are not subgraphs and are therefore doomed to
vanish in the limit. Let us conside?!"(¢) in detail. By definition‘(7.1|4),

32N (1) C ye(t, (=00, s O] U {x = c}.

On the other hand, in view Of.Z)QS(I) coincides with the subgraph of the curve
Ve (t, [sé’)(t), 00)) on [c, 00) N Us ((t): therefore the projection prof Qi”(t) onto thex-axis is
such that for any € (0, 1], _

pr.(28(1)) C [¢, 00) — Us ¢ (1).

In addition, in view of[(4.]1)21"() is close to the subgraph bf (1):
Q16 C{(x.y) 1 x €[c.00) = Us.e(t), 0 < y < €helt, x) + Coe®Ec (1)}
In view of (5.3), this implies that

1, 3 2
ZLAR1 1) < CLYR = Use(1) < C—;Ee(r) Lo
€

By the same argument we obtain
1
=L@ < CLAR — Us. (1) <30
€

and [7.1Y) follows. The renormalized version[of (7.17) coincides (7.6) &v.
Fort € J, we choose the sam@}(¢), and the proof proceeds as before. The only difference is
that now2°U%(¢) consists of two portions:

22M(1) = (1) N {x <P U R2M() N {x > b)) =1 274U 29

The first set consists of “appendices”, and its estimating proceeds as before. The second one is small
becauséi (¢) is uniformly small:

1

1
1 r208%0) < /
€ ' € J.(N{x>b}

© €l0
dedy < / (he(t, %) + CoeEc (1)) dx <2 0.
b

Forr € J3, we have

b1(t) :=sup{x > b(t) : he(t,&) = 0VE € [b, x]} < oo. (7.18)
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FiG.5. The arc coordinates”, s¥,5¢ ands? fort € Js.

In this case both the choice 6f (¢) and its estimation are more subtle. For notational convenience
we neglect time dependence. Let

sér) =inf{s : xc(s) = b}
(cf. Fig.[5). We observe for later reference that
1
o ve (s) @ he(b) + CoeEc(t) Do, (7.19)
Let now

s; = inf {E > sél) D ye(8) < ye(s) Vs € [se(l), max{sér), R

dx B » - —
T =1 w0 < o) € 2. (7.20
(cf. Fig.[3). We will show that the set ip (720) is not emptydaufficiently small, and that moreover
lim supxe(s)) < b1. (7.21)
€l0

To see this, take any > b1 such that:(b) > 0, and let
Se = inf{s : xc(s) = b}. (7.22)

Sinces2. coincides with the subgraph af over a set with small complement (in the sens¢ of (4.2)
and [4.4)) andi. is close toh (in the sense of (53)), far sufficiently small we must have

Ve(Se) > Ye (sg(r))1 Ye (sél)) > yG(Se(r))a 55(1) < Sg(r) < Se. (7-23)
Henceye([sél), 5¢]) attains its absolute minimum at a poliitin the interior:

57 e (59, 50). (7.24)
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By (7.19) and[(7.29)
1 1 el0
@) < Sxe!) <50, (7.25)
which together with[(7.72) implies that
lim supx, (5%) < b. (7.26)
€l0
Again by [4.2)-{(4.4) and (5.3), the limit i (725) implies that
liminf x.7) > c. (7.27)
€l0

Of course% (5%) = 0. A simple topological argument rules out ﬂ%ﬁ(Eﬁ) = —1: Indeed, in view
of ) angO), the curve ((s%, oo)) would then be “trapped” strictly to the left &f contrary
to x¢(5¢) = b. Therefore

dr. _,
S GH=1 (7.28)

Another simple topological argument shows that
Ac =]c, xe(fi)] X {)’E(E:)} C 56 (7.29)

(A¢ is not empty because @27)). If this were not true, then siipceinimizeSye([sg), se]) and
Ve (—00, se(l))) N ({c} x (0, ye(sé )))) = J, the only way fory, to reachA. would be to gdrom b
to the left ofx, (57). Therefores2. would not be a subgraph over the entire intenval (x(s7), D),
which in view of [7.26) has uniformly positive measure with respeet fbhis contradictd (4]2) and

proves|(7.2P). Properties (7{23), (7.28) and ([7.29) imply Zhdtelongs to the set in (7.20), which
therefore is not empty. Sindee (b1, 00) N {k > 0} is arbitrary, [(7.25) and definitiof (7.118) imply

(7.27). In addition,[(7.79) yields

1 1 - 10
yels?) < 2y o (7.30)

Definition (7.20) ofs} allows us to introduce the desired $2t:

£2F = portion of 2 bounded by the curves
y([s, 52D, Aed X [ye(s2), ye(s)) and k, xe(s2)] x {ye(s2)}.

Sincev = (f’l) on the additional segment of the boundary curve, the proof of the integral inequality
is identical to the casee J; with

_ 1 1
Ve (6,0 = Syet, 521, 0)), Yo (t,¢) = Sy, s, ¢)),
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ajn

| €
c b ze(s¥)

FIG. 6. The splitting of the symmetric differenc’éc) A QF fort € J3. Herexe(s¥) > b, thus.&?izr.‘e is empty.

and [7.7).[(7.B) foIIow as before if we also take (7.30) into account. Our last task is to show that
£2X(r) is close to2' (t) To this end, we split the symmetric difference as follows (cf. Hg 6):

2" = (2" 0 (e, minfxe(s7), b}] x [0, ye(s}))))
U (RN {xe(s)) < x < bY)
U (2" N (e, min{xe (s7), b} x [ye(s7), 00)))
= el ueh ueld.,
and
Qout _QOUtU Qoutu ‘Q??lit’

whereQour QFN{x <c} 520‘“ is the (possibly empty) connected componentx$fn {x > b}

whose boundary contains, (s*) Ve (s5)), and()OUt is the remaining part of2] N {x > b}. We are
going to argue that each of these sets is smaII |n the sense that

. 1
limsup=£2(2!",) = limsup=> Ez(ﬂf’gt) =0, j=123 (7.31)
el0 € €l0 o

It is easy to check thaTZ3 ., Q°“t and.Q"“t consist of “appendices”, hence for these sets the proof
of (7.31 -) proceeds as before. The it is small in view of (73] .)

1 .
“LH@R) < b - o ye(s)e—“io

ForQiZ”G, we use the fact thai, (s}) is at least as large a@sin the limit:

liminf > b.
€¢O -xE(Se)

This follows easily from[(7.21) andl (7.B0)—which imply that the limit of any subsequence must lie
in (—oo, c] U [b, b1)—and from the fact tha@, is almost a subgraph. Therefore a1@§‘ consists
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of appendices. Finally, we splﬁg};t into two sets:
294 = (294N {x < xe(SHP U (259N {x > xe ().

The second set consists of appendices. The first one is smallsiadein [b, b1]: Indeed, for each
8 > 0 ande sufficiently small

Q80 (x < xe(s)} C {0, ) b <x <h1+8, 0< y < ehe(x) + Coe?Ec(1)))

so that

1
ZLXQ8MN {x < xe (DN < (b —b+8)( SUP  he(x) + Coe Ec(0)),
€ x€(b,b1+9)

and taking the limik | 0 ands | O (in this order) yields
Ecz(szggtm < xesH) Lo,
c ,

Therefore[(7.31) holds and the proof is complete. O

8. Pressure neutrality and passage to the limit

In this section, we pass to the limit in the variational formulations of Lenjmgs 7.1 ahd 7.2. Both
formulations involve the pressure within one connected component @f > 0}. Unfortunately,

in the limite | 0, we only controlr, up to an additive constant within the connected component of
{h > 0} (see Sectiop|6). Hence we havectimbineboth test fields in such a way that the outcome is
oblivious to the absolute pressure, i.e. that it just depends on the well-controlled relative pfigssure
introduced in[(6.6). We call this “pressure neutrality”. In view of the pressure’s role as a Lagrange
multiplier enforcing the incompressibility constraint, it is not surprising that “pressure neutrality”
amounts to the requiremeit (B.4) that the combined variation preserves the total area.

PrRoOPOSITION8.1 For almost every > 0, let/ C R be such thak(¢) > 0 in its closurepg > 0,
c € 1, andb(t, c) defined by[(7.). Then

b(t,c)
/ {%(ﬁ%r))z—%(h/(r»z} + v / () > / 20D+ w0h(t, VR () (8.1)
1 c 1

for all w € H1(R) with

h(t) = h(t) + W, (8.2)

w =0 outside off, (8.3)

/J} = —voh(t,c). (8.4)
1

Note that all terms in(8]1) are well defined for almost every 0 in view of (5.5), [6.9) and
Remark 6.B. In view of the continuity in time @z, ¢) on the right hand side df (§.4), Proposition
[.7 follows via a density argument from the following time integrated version:
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LEMMA 8.2 LetJ x1 C (0, o) x R be an open rectangle such that> 0} in its closurepg > 0,
c € 1, andb(t, ¢) defined by[(7.p). Then

1 TIN2 1 N2 bt A o
/1{EM)—§M)}+W//‘ hmwnw>f nw+mfh@mo (8.5)
JxI J Je JxI J

forall w € L2(J; HL(R)) with

h:=h+b, (8.6)

w(t) =0 outside off fora.e.t € J, (8.7)

/ﬁ)(t) = —uvoh(t,c) fora.er e J. (8.8)
1

Proof. The basic ingredients arfe (V.8),

Y& (t,0)
/f wmw>// 7ot . y) dy . (8.9)
J JG¥(t,c) J Jye (t,0)
and [7.1),
1 = 1
/ SWIHEP -y [ S(ITE? -
Us..N(IxI) € Us..N(JxI) €

>f —2Webe +/ Tee,  (8.10)
GeN(JI xI) J x I x{0}

which holds for test functions satisfying

he = he + e, (8.11)
we (1) = 0 outside ofl fora.e.r € J, (8.12)
w. (1) =0 outside ofUs . (¢) for a.e.t € J. (8.13)

If we multiply (8.9) by a non-negative constantand sum it with[(8.10), we get

1 = 1
| L@ [ SWIF@P -+ [ [ wod
Us Us NI xT) € J

NIxI) € (t,¢)

yd (t,0)
2/ —€2We e —i—/ T We +vo// we(t,c,y)dyd:. (8.14)
GeN(IxI) JxIx{0} J Jy(t0)

We now introduce the-counterpart of the “neutrality” conditiof (§.8) fa.:

/i}e(t) = —vo(yl (t,¢) =y (t,¢)) = —Ae(t) foraerelJ. (8.15)
1

In view of (7.9) and the definition$ (6.5, (6.6) 6%, 7., we have

]Té(tvcvy):ﬁe(tvcay)+f nG(t) foraete*]aye(ye_(tvc)sy:_(tsc))v
Ix(0,ho)
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whence

y&(@t,0)
vo// e (t, c,y) dydt+/ TTeWe
JJyZ (0 JxIx{0}

N ON v (t.0) 3
= UO/f ne(t,ch)dydt"i‘UO// ][ 7Te+f TTeWe
J Jye (1,0) J Jyc(t,e) JIx(0,ho) JxIx{0}

@ y;"(t,c)
= vo/ / 7e(t, c, y)dydt +/ TeWe. (8.16)
JJy

e (t,0) J x I x{0}
Substituting[(8.16) intd (8.14) we conclude that the inequality

1 - 1 /
fUa —2(\/1+(eh€)2—1)—/ua —2(,/1+(eh6)2—1)+v0/1/ ve (1) dt

NI € NIxI) € (t,0)

Y& (.0
2/ _ezweﬁ}e‘i‘/ ﬁea)e‘l‘UO// Te(t,c,y)dydr (8.17)
G.N(JIxT) TxIx{0} )

holds for anyvg > 0 and any functionb. € L?(J; HY(R)) such that|(8.11)] (8.12), (8.13) and
(8:13) are satisfied.

From this, we hope to recovér (8.5) in the lirait, 0,5 | O (in this order). More precisely, we
think of 7. andw, as approximations th andw € L2(J; H1(R)), and will now infer which type
of convergence is required. Then we will construct these approximations in such a way that (8.11),
(8:13), [8:18) and (8.15) are satisfied. Let us first treat the terms on the left hand $ideof (8.17). We

recall the result stated in ($.3), (b.€), (6.7) and](7.6):

he X n uniformlyin [0, T] x Rforall T < oo, (8.18)
B, inUsenN( xD]elo,, 5
{0 elsewhere } hoinLe(J x I), (8.19)
€l0 X 2
ve — v In L4((0, 00) x R x (0, 00)), (8.20)
Iiir(w) L2GHt,c) AGO() =0 Vrel. (8.21)
€

For the last term on the left hand side [of (8.17) we have, usidigét’s inequality,

1/2 1/2
f/ ve(t)dt—// ve () dr| < </ cZ(Gj(t,c)AGg°'>(r))dt> </ |v6|2) .
7 JGx(t,0) VR0 J G

According to [(8.2D),[(8.91) and by dominated convergence)(ithe right hand side converges to
zero fore | 0, and on the other hand Hy (8]1§), (8.20),

b(t,c)
f/ ve(t)dte—w>f/ h(t)v(t) dt.
JJGE @) JJe
L0 b(t,c)
// ve(t)dt—>// h(®)v(r) de.
J o) J Je

Therefore
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For the middle term on the left hand side [of (§.17) we observe that

1 1
W1+ (€2)2-1 > CSEZZ for lez| < 8
€

where 5

so that, recalling the definitiop (4.]19) o .,

1 1
/ SO+ (h)?—1) > ¢ f S,
Us Us N(J x1)

NUIxI) € A
Since, as is well-known| (8.119) implies
1 1
Z(W)? < Iiminff Z(h))?,
/Jxl 2 40 Jusenuxn 27

we obtain for the middle term on the left hand side[of (8.17)

1 1
/ E(h/)z < liminf liminf S(/1+ (eh)?—1).
JxI

840 €l0 Jys;.nxr) €

For the first term on the left hand side pf (8.17) we observe that
1 5 elo 1, 1 3 1,
z(\/1+(6Z) —1)—>§z, Oéz(v1+(61) —1)<§z.

Assume that. is an approximation té such that

{fl; iNUseN(J x 1)

el0 ~, . 2
0 elsewhere } —> i InLJ x ). (8.22)

Then, by dominated convergence, for the first term on the left hand sife of (8.17) we obtain
1. 1 =
/ ~(h)? = lim / S/ 1+ (eh))? - 1).
Ixi 2 el0 Jus .nux1) €

Now consider the terms on the right hand sidg of (8.17). We recall, as stated in Progos]tion 6.1(iii),
(iv), and in [7.7), that

0
200 L s inL2y x D), (8.23)

(-, ¢, ) =~ (t, )Xonraeny) InLP(J x (0,00)) fora.e.c e, (8.24)
"%(ye_(t’ o), yj(t, ¢)) = (0,h(t,c)) uniformlyforr € J, (8.25)

with p € [1, 2). Let us assume that

Be 29 % in L2((0, 00) x R). (8.26)
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Sincew, (1) = 0 outside off for a.e.r € J, (8.23) and[(8.26) yield

/ W = Iim/ TeWe.
Jx1x{0} €10 J 7 x1x{0}

As a consequence df (5.2),
ewe is bounded inL2((0, 00) x R x (0, 00)).

Hence|[(8.2B) is also sufficient to ensure that the first term on the right hand side of (8.17) vanishes

in the limit:
lim 6/ (ewe)we = 0.
el0  Jg.n{tery

For the last term on the right hand side of (8.17), we just need to (8.24) and (8.25):

y (.o
Iim// Te(t,c,y) dydt:/h(t,c)fr(t,c)dt fora.e.c e I.
V0Jr Iy (1,0 J

Combining the limits above, we see that the desired inequlity (8.5) holds for almostcegery
and for anyi andw satisfying )), provided there exigtandw, satisfying I(STIL)-I—(S_.J]S)
and 8.15) for almost everye J, which converge té andub in the sense of (8.22) arld (8]26). Since
RemarK 6.8 guarantees thais continuous for almost every in fact (8.5) holds for alt € 7, and
the last task is to construct these approximatiansb.. Seting! = (a, b), we first let

. / (ﬁ/(t,é)—h;(t,é)—i—,ue(t))dy fora < x < b,
We(t, x) = 1 J@.x)NUs. (1)

forx <aorx > b,
wherepu (¢) is to ensure thab. (¢, b)) = 0. We can also writev, as
We (t, x) = (h(t, x) — he(t, x)) — (h(t, @) — he(t, a))

+ LM(a, x) N Us.e () e (t) — / d(h — he)(@). (8.27)
(a,x)=Us (1)

From this we see that. is given by

LY@, b) N Us e (1)) e (1)
= (h(t, a) — he(t, a)) — (h(t,b) — he(t, b)) + / d(h — he)(@).

(a,b)—Us,e(1)
Since, as established [n (p.3), (4.4) gnd](4.5),

he e_¢0) h locally uniformly in [0, c0) x R,
LYR — Us (1)) Y uniformly inz € [0, 00), (8.28)

|dhc(1)] E—w> 0 uniformlyint € [0, c0),

R*U(S,e(t)
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we obtain 1
pe 23 m[(ﬁu, a) — h(t,a)) — (h(t,b) — h(t,b))] =0 (8.29)

locally uniformly inz € [0, co). From [8.2T)4(8.29), we infer
We (2, X) 9 (h(t,x) — h(t, x)) — (h(t, a) — h(t,a)) = W(t, x) (8.30)

uniformly in (¢, x) € J x I. We also observe for further reference thigtis uniformly bounded in
L2(J x I):

/ @) < f )2 + / / ()% + L3I / e’ <cC.  (831)
IxI IxI 7 J1nUs @) J

In order to guarantee exact neutrality we need to introduce weights, B.(¢) so that
Acw) [T = Be) i )] - = =30, 8.3
Aé(t) +Be(t) =2

Observing that, due t¢ (8.R5),

he(t) = v (1, ©) — v (1)) 22 voh(t, ¢) = — / i,
1

in view of (8.30) we have
Ac(t), Be(1) €—w> 1 uniformlyinJ. (8.33)
Our Ansatz is
We (1, x) 1= Ac()[We (t, x)]+ — Be(®)[we (2, x)]—. (8.34)

By (8.33), eachi. is neutral, i.e. satisfief (8 15). In addition, by constructigne L2((0, 00) x R)

and
w.(t) =0 a.e.outsid&/s (1),
we(t) =0 outsidel,

for almost every € J. Finally, in view of [8.30) and (8.33) we obtain

- 0 . . .
We(t, x) ki w(t,x) uniformlyin(,x) e J x I,

and thereforev, satisfy all the desired properties.
We are poised to define via

he i= he + We.
By (8.27) and[(8.34)
he(t,x) = h(t,x) — (h(t,a) — he(t, a))
+ LM(a, x) N Us e (D) pe(t) — / d(i — he)(t)
(a,x)=Us (1)

+ (Ac(t) — l)[lbe(t’ x)]+ — (Be(t) — 1)[11)e(tv x)],_
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From this representation a.31) we irﬁ@re LZ(U(;,G) and
ﬁ; = ﬁ/ + te + [(AE - 1)X{1I)€>0} — (Be — 1)X{IZ)€<O}]II)2 a.e. inUﬁ,e-

Hence, by[(8.29)[(8.31) and (8]33) we obtain as desired

h. inUs. €0 = oo
{O elsewherd —~ "1 N LTU D).

and the proof is complete. O

9. Recovering the equation

Propositior} 8.]L withig = 0 is already sufficient to make the identificatior= 2"’ on the positivity
set. Indeed, we have the following:

PrROPOSITION9.1 For almost every > 0 and for every connected componegat, b) of
{h(r) > 0}, we have
v(r) =h"(t) inLZ.((a,b)). (9.1)

In addition
/h(t)h’”(t)ﬁ:/ P(k/(r))zﬁ/+h(r)h’(;)5”} 9.2)
R R (2

forall o € H?((a, b)) .

REMARK 9.2 The identification in[(9]1), together with (5.9) afd (6.10), establishes part (ii) in
Definition[], and already implies thatsolves the thin-film equation in the weak sensg of|(2.3):

oo o
f /hgt +/ / hh"'¢" =0 forall¢ e C°(RT x R). (9-3)
0 0 {h(t)>0}

Proof. Identity (9.2) follows immediately fronj (9}1) after two integrations by parts. To pffové (9.1),
we fix a timer > 0 such that, in view of (5]5)[ (6.9) and (6]11),

/(h’(z))2 <00, —7'(t)=v(@) inLi.((a,b)). (9.4)
R

For anys € C°((a, b)) and anyr > 0, we letw = v’ as test function ir (8]1):

b b b
%/ (W (1) + T0")2 — (W (1))?] >/ frf/@/ vo.

Sendingr to zero yields
b b
/ Wy > / .
a a

Exchanging with —v we see that equality holds, and the proof is complete. O
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10. Post-processing |: Regularity and zero contact-angle
In this section we recover the free boundary condition:

h(t) is continuously differentiable ofh(¢) > 0} with
W) =0 atd{h(r) >0} fora.e.r e (0,00).

PrROPOSITION10.1 For almost every > 0 and for every connected compone@t b) of
{h(t) > 0}, we have

h/ t _ h/ b b
sup ) 2(3”)' < cf TLOLES C/ h(t)(R" (1))? < o0 (10.1)
x#ye(a,b) |x — ¥ / a a

with C a universal constant, ardt, -) is continuously differentiable or[ 5] with
h'(t,-)=0 at{a,b}. (10.2)

REMARK 10.2 The combination o .1) and (I0.2) immediately gives the regularity property
., € L3((0, 00) x R) stated in Definitiof [L(iii).

By reasons of symmetry, we only consider the right end-gaifihe proof is split into three lemmas.
First we show that test functioriswhich do not vanish a are in fact admissible ifi (9.2), provided
they correspond to a “stretching” of the film:

LEMMA 10.3 For almost every > 0 and for every connected componémtb) of {h(t) > 0}, we
have

b b
/ {g(h’(t))zf/ + h(t)h’(t)ﬁ”} < / h(t)h" ()
o (&)
for anyco € (a, b) such that
Bz, co) =0 (10.3)
and everyi € H2(R) such that
Suppv) C (co, 00),
supf’) C (co. b), (10.4)
v(b) = 0.

This, by a suitable choice af, allows us to infer the zero contact-angle condition in the following
weak sense:

LEMMA 10.4 For almost every > 0 and for every connected componéntb) of {h(z) > 0},
there exists a sequenbg 1 b such that

lim #'(t,b,) =0.
n—00

Such weak notion is however sufficient to infer the aforementioned regularity properties for the
solution. This is a consequence of the following extension of Bernis’ estimates [4]:
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LEMMA 10.5 Let—oo < a < b < oo. There exists a universal constdry such that

b b
f P dx < Co / h(h")? dx, (10.5)

b ‘ ab
/ =38 dx < Co / h(h")? dx (10.6)

for any functioni satisfying:

(A) he H3.((a,b)) N C(a,b]), h > 0in(a,b), k' € L?((a, b));

(B) there exist sequences, | a, b, 1 b such thati'(a,) — 0,4/ (b,) — O;

©) [P (") dx < oo.
This result is stated and proved in [12] for more general non-linearities (the additional assumption
h € C3((a, b)) in that statement is harmless). Bernis’s estimates i 10.1) at once (the first
inequality is in fact a standard embedding), and combiring [10.1) with L§mm}a 10.4 one obtains the
strong form of zero contact-angle condition stated in Propoditiorj 10.1.

The rest of the section is concerned with the proof of Lenjmag 10.B"and 10.4, during which we
shall consider a fixed > 0 such thaf{(8]1) holds and, in view ¢f (5.5), (6.9), (6.11) (9.1),

b b
/ (h ())? < o0, / h(t)(h" (1))? < 00, —7'(t) = h"(t)in L2 ((a, b)), (10.7)

omitting ther variable for notational convenience.

Proof of Lemma@ 10]3. According to [10.}4), the function

B(x) 1= v(b) — B (x)

is such that
Supp) C (—o0, b), (10.8)
suppv’) C (co, b), (10.9)
v(co) = v(b) = 0. (10.10)
Fort > 0 we define
. 0, x < co, - .
Wy (x) = hy '=h+ w;.

N t(h(x)v(x)), x> co,

We wish to choosé., W, as test functions i.1). We havie € H'((co, o0)) since, by (10.B),
resp.[(9.1), sup@i) C [co. b) andh € HZ ((a. b)). In addition, in view of [(10.8) and (1d.9),

lim W, (x) = th'(co)v(co) + Th(co)v (co) = 0.

X—)CO

Therefore
W; € Hl(]R), Supfw;) C [co, b) C (a, b). (10.112)
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The “neutrality” condition[(8.]4) is guaranteed by an appropriate choice of the comgtanto, :

A{l])r = —1h(cg)v(co) = —vorh(co), (10.12)

where
vor 1= 17(co) T2 £5(h). (10.13)
In view of ) andzﬁt andw, are admissible tests i@.l) withh = vg; andI such
that supgw,) C I C (a, b), co € 1. Dividing the inequality byr and integrating by parts yields

1 b b b
—/ ()2 — () > —Uﬁ/ hv +/ 7 (hv) + vﬂh(Co)ﬁ(co)
2t Je T Je o T

b b
@13 _ / hoi(b) + [#hv]L, — / h#'T + B(co)h(co)? (o)
co c

0

b b
{2 / hh'" (U—ﬁ(b)):—/ hh'"5,

0 0

Passing to the limit with respect togives

b b
/ W (hv) > — / hh"'.
co co

An integration by parts on the left hand side yields

b b 1 /
/ h'(hv)" = f ”E(h’)z} v+2(h’)zv’+hh/w}

0 0

b(3
:_/ {é(h/)zf)/—i-/’lh/f)”},

0
and the proof is complete. O

Proof of Lemma 10]4. For fixedx € (co, b), we choose in Lemnfa 10.3 a test functibsuch that
SUpP[®D) C (co, 00),  SUPAD’) C (co,x), V() =1foré > x. (10.14)

Integrating by parts (all integrations are admissible silce Hl?‘;c((a, b))), with this choice we

obtain
b x (3
/hh”’f))/ {—(h’)25’+hh’ﬁ”}
co co 2

3 X
= E(h’(x))2 —~ / (3RS + (W)?0 + hh"v')
co

= %(h/(X))2 — h(x)h" (x) + /X hh"'%
o
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and therefore, by (10.14) ar[d (10.7),

b
%(h’(x))z < h(0)h" (x) +/ R = h(x)R" (x) + opp—x| (1) Vx € (co, b). (10.15)

X

We now reason by contradiction and assume that there exist pasiiveC with
W)?>>C%?>0 onp—3,b). (10.16)
Then [10.1p) yields the differential inequality

Cc? _0|b7x\(l)> c?
2h(x) h(x) = 4h(x)

K (x) > forallx € [b— 6, b) (10.17)

for § < § sufficiently small. Because @f(b) = 0, (10.16) in particular implies’ < 0 on [b — 8, b).
Multiplying (10.17) withx’, we obtain

2
[(W)2] < %(m h) onl[b—8,b).

We integrate this inequality ovéb — 3, x) for somex € (b — 8, b) and obtain

2
—(h'(b—8)%< %(In h(x) —Inh(b —§)).

From this inequality, fox — b we obtain a contradiction te(b) = 0. Thus[(10.16) is false and the
proof is complete. O

11. Post-processing Il: The “Neumann-type” formulation

The aim of this last section is to complete the proof of Theor¢m 2, recovering the “Neumann-
type” formulation [(2.2) for the thin-film evolution which encompasses both the PDE and the free-
boundary condition. Namely, we have the following:

PrROPOSITION11.1 For almost every > 0 and every connected componémtb) of {h(¢) > 0},
we have

b b
/ {g(h’(z))zf/+h(z)h’(z)6”}:/ h(OR" (1) (11.1)

a

forall v € H>(R).

REMARK 11.2 Combining[(I1]1) witt (9]3) we immediately obtain Definifipn 1(iv), and the proof
of Theorenj R is complete.

Proof. We neglect time dependence, and work for a fixedch that for every connected component
(a, b) of {h > 0} (cf. Propositiorj 10]1)

W (a) = h'(b) = 0, /(h’)2 < (11.2)
R
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and ) ) , .
h —h
sup M < cf ") < C/ h(h"")? < o. (11.3)
x#ye(a,b) Ix — y|%/ a a
Giveni € H2(R), we let
Us = Vs,

wheregs; is such that

suppps) = [a+48,b — 4],

ws=1 in(a+28,b—26),

o1 < Cod™l, j=1.2
The functionsi; are admissible tests ip (9.2):

/{ (h")20} 4+ hh'v ”} :/hh/”f)g. (11.4)
R R

We wish to recover (11]1) by passing to the limitsa$ 0 in (I1.4). The right hand side is trivially
convergent. For the first term on the left hand side we write

/ (h")?v = / (5 / (W2 (95 — 1) + [ (h)?5g}.
R R

It follows from (I1.2) and[{11]3) that there exigIs< oo such that

sup  |h'(x)| < sup I (x)] < C8%3, (11.5)
xesuppys) xe(a,a+28)U(b—28,b)

sup  |h(x)| < sup |h(x)] < C8%/3. (11.6)
xesupfes) xe(a,a+28)U(b—28,b)

Thus we obtain at once

b
‘ / ()25 (g —1)‘ < 5%3 f 71 28 o,
R

/(h’) )] < 51/3/ 129 o
R

For the second term on the left hand side we write

/hh/ﬁg/=/ W' + /hh’v"(gm—l)—i—Z/ hi' §05 /hh/6§0(§/~
R R R

By (I1.8) and[(11}6),

‘/ hA'T (05 — 1)‘ < ca7/3/ 15 28 o,

- 0
/ |hh'Bgf| < c51/3/ 151 28 o,
R a

and the proof is complete. O
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