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Nonlinear diffusion and image contour enhancement
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The theory of degenerate parabolic equations of the forms
ur = (Puy))x and v = (PW))xx

is used to analyze the process of contour enhancement in image processing, based on the evolution
model of Sethian and Malladi. The problem is studied in the framework of nonlinear diffusion
equations. It turns out that the standard initial value problem solved in this theory does not fit the
present application since it does not produce image concentration. Due to the degenerate character of
the diffusivity at high gradient values, a new free boundary problem with singular boundary data can
be introduced, and it can be solved by means of a nontrivial problem transformation, thus leading to

a new type of solutions that fit the desired concentration requirements. The asymptotic convergence
to a sharp front is established and rates calculated.
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1. Introduction. A model for contour enhancement

This paper is devoted to the behaviour of the solutions of some degenerate parabolic equations with
moving boundaries which appear in describing the techniqueonfour enhancemerih image
processing. Indeed, computer vision has become in recent decades a mathematical discipline which
relies on the differential-geometric approach. More specifically, an appropriate technique of image
processing consists of formulating a partial differential equation of evolution type famthge
intensity u(x, y). This function, also called thgrey leve] takes values in the intervalQ u < 1 and

is defined on a two-dimensional image domaih, The usual evolution model leads to a nonlinear
equation of parabolic type, possibly degenerate or singular. The nonlinearity is created by the law
relating the image intensity flux to the image intensity.
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It has been observed by Perona and Malik! [44], 1990, that for a suitable choice of this
fundamental nonlinearity there appears an effect of enhancement of image edges that is of strong
interest in the application to processing, denoising and recognition of images. The Perona-Malik
Anisotropic Diffusion model has had a deep influence in the field, being at the source of many later
developments. The model proposed by Malladi and Sethign [40] leads (after proper scaling) to the
following equation for the image intensity:

ur = (L+ |Du®HY?«, (1.1)

where Du denotes the spatial gradientigfand« denotes the curvature of the surface u(x, y).
The equation represents movement by curvature (curvature flow) and can be written as

_ 1+ ui)um — 2uyuyuyxy + (14 u%)uyy

1.2
1+u? +u? (1.2

Uy
We consider here the more general flow given by the equatiea (1 + |Du|?)AP/%¢ wherep
is a constant parameter. In other words, we study the equations

B 1+ ui)u” — 2uxuylyy + (1+ ujzc)uyy
(1 +u? +u2)tte

(1.3)

Uy

with parametere = —p/2. Along with the former case = « = 0, the casep = —2,« = 1 has
also attracted the attention of researchers (Beltrami flow, cf. Sochenlet/al. [50]).

The asymptotic and numerical treatment of these models done in the papérs [40, 50] shows the
enhancement of the intensity contrasts by formation of regions of large intensity gradients, i.e., the
normal component of the image intensity gradient becomes quite large. This phenomenon allowed
[10] to suggest the existence obaundary layewhere large gradients concentrate and to focus on
this boundary layer where a further simplification of the model is possible. Arguing locally around a
sharp gradient point and choosing thaxis as the direction normal to the boundary layer or front,
we may disregard the effect ofderivatives with respect to thederivatives in[(1.B). In this way we
get thereduced equatigrwhich is just the one-dimensional version|[of {1.3),

Uxx

T A+ udyte o

U
where we have neglected,, u,,. Different dimensional constants appear in the model, but they
have been scaled to unity here without loss of generality. The mathematical problem consists in
solving this equation with suitable boundary data, namety, O on the left-hand side of the contour
andu = 1 on the right-hand side (be that a finite or an infinite distance), and initial conditions

u(x, 0) = uo(x),

satisfying 0< ug < 1 andug > 0 in an intervall = (a, b) and constant values otherwise, zero

to the left, 1 to the right. As was pointed out [n_[10], the phenomenograflient enhancement
takes place in this model (in a proper setting) foreall> O: the spatial gradient of the solutions,

uy, increases with time, and its support shrinks. Indeed, we show below that such behaviour can be
observed in the larger exponent range- —1/2. The conditions omg can be relaxed, but then
problems arise. Thus, the less stringent size restrictiah §p < 1 or the lack of monotonicity
create interesting alternatives, that will also be briefly discussed.
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Let us remark that this is not the only model which uses nonlinear diffusion equations for
image processing and enhancement. We refer for alternatives to the works of Alvarez, Lions and
Morel [1] and Caselles et al. [26], where further references are found. Let us point out that in [1] a
fundamentally different assumption is made, namely that the flux is perpendicular to the gradient,
and the basic equation is substantially different from the c[as$ (1.3) treated here. In the paper by
Osher and Rudin_[42] a model of image enhancement was considered, leading to an evolution
equation of the form (in the 1D case)

ur = —luy| Fuyy). (1-5)

The idea is that the nonlinear evolution equation acts as a shock filter (se¢_élsal [48, 33]). The
processed image is piecewise smooth and nonoscillatory. Modgl (1.5) is also substantially different
from the class of models considered in the present paper. In particular, as is shown in detail in [42],
the values of the image intensity remain constant at the points whete 0. On the other hand,

we mention that the mathematical difficulties of the original model by Perona and Malik have been

further investigated by several authors, likel|[37] &nd [59]. Summing up, the possible application of

the techniques of nonlinear diffusion to image processing is a very active concern with many issues
being discussed in the literature (cf. elg./[39, 58]).

Outline of the paper. After an introduction to the mathematical facts on enhancement contained
in [10], we revise the needed concepts of nonlinear diffusion in 1D in Section 3 and derive the
differentiated model, a porous medium type equation, in Section 4. Section 5 is devoted to the
standard theory for the two diffusion models we have introduced, which leads to so-called solutions
of Type I: they are purely diffusive and exhibit no contour enhancement.

The existence and uniqueness of solutions with contracting interfaces, the goal of the paper, is
discussed in Sections 6 and 7, and the asymptotic behaviour in Section 8. Two short sections follow:
Section 9 contains asymptotic estimates for general nonlinearities and Section 10 briefly presents
numerical experiments. A final Section 11 contains comments on different aspects of the work and
new directions.

2. Asymptotic self-similarity and enhancement

Evolution equations like[ (1}4) and many other variants have been studied and are known in the
literature under the general name of nonlinear parabolic equations of diffusion typenlorear
diffusion equationgor short. They are typically used in describing processes of mass diffusion or
thermal propagation. A quite general one-dimensional form popular among PDE experts is

up = (a(x,t,u,ux))x

with suitable conditions to make it parabolic, at least in a formal sensejdikéx, > 0. However,

many practical applications (as in the present case) involve functidos which da/du, > 0O,

but the values zero or infinity can also be taken, and then the equations are known as degenerate
parabolic or singular parabolic resp. (¢f.[28] 36]). In any case, a general feature of this wide class
of equations is their diffusive character, which roughly means the spreading of the level sets of the
solutions as time advances. This property goes squarely against the desired enhancement, therefore
an extra mechanism must be present if enhancement is to occur. We recall that in the Perona—Malik
model this mechanism was negative diffusion.
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In the range of exponents > 0, equation[(1}4) falls into the class of degenerate parabolic
equations with degeneracy at. = oo, precisely the limit value which is of concern in
contour enhancement. An investigation of the phenomenon of gradient enhancement in equation
(I.4) is performed in[[10] by relating it to the convergence toward self-similar asymptotics of
an approximate model. It goes as follows: the observed evolution of the solutions towards a
configuration with large gradients makes it plausible to further simplify the expression?lin
) intOuf, so that the relevant reduced equation becomes

U; = M;Z(HO‘) Uyy. (2.1)

It is further observed that self-similar solutions for this equation with end-levelsO andu = 1
exist for alla > 0 and exhibit the similarity form

u(x,1) = F€), &= (x—xo)(+10Y%, (2.2)

wherexg andzy are parameters to be fixed, and the profilg&) is an increasing function joining

the levelsF' = 0 at a finite distancé = —c < 0 to the levelF = 1 até = c. At these levels, which

are taken at a finite distanée= +c, the gradients are infinite (actually, the analysi< in [10] deals
with decreasingorofiles joiningu = 1 tou = 0 but these two problems are obviously equivalent
after a mirror symmetry. We have chosen the increasing option to avoid chasing around many minus
signs). The scaling implies that

ue(x, 1) = (1 + 1)V F'(€),  § = (x —x0) (¢ + 107,
which shows that the solution is concentrated in an increasingly narrower strip
S={(x,0) |x —xo| < c(t+10)" "} (2.3)

with gradients that diverge like/?* asr — oo. Let us remark that the asymptotic divergence of

the gradients is known to be exponential doe= 0, but the form is not self-similar of the same type,

as we will see below. An important feature to be remembered of these solutions, along with the
divergence as — oo, is theinfinite gradient conditiorat the endpoints of the domain of definition.

On the other hand, these self-similar solutions represent the intermediate asymptotics of the problem
with more general data. This is demonstrated numerically in [10] when infinite flux data are imposed
at moving endpoints located at finite distance.

With these preliminaries we are ready to attack the construction and analysis of solutions
with steep fronts for a general class of equations which inclyde$ (2.1)[arid (1.4) and is natural
for our application, and with the general data mentioned in the Introduction. We use the theory
of nonlinear diffusion equations which has been strongly developed in the last decades. It turns
out that the standard initial value problem solved in this theory does not suit our model, since
it leads to dispersion instead of concentration of the image. A fnegvboundary problem with
singular boundary datas then introduced and solved by means of a number of nontrivial problem
transformations available for nonlinear diffusion problems, a subject that is developed in detail in
[55]. The concentration property of these solutions is possible thanks to the degenerate character of
the diffusivity for high gradient values. This is related to work on nonlinear diffusive models with
free boundaries as described by a number of authors| like [119,121 |34, 35], but the main mathematical
feature of our study is the presence of infinite gradients at the moving boundary.

Our theory below covers existence and uniqueness of solutions of suitable problems, existence
and behaviour of the bounding interfaces, and large time behaviour. In particular, we obtain the rates
of convergence of the interfaces, an important question for image enhancement.
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3. Nonlinear diffusion equations

As we have just said, we are going to construct a mathematical theory for the one-dimensional
evolution problem with initial and boundary conditions of the type mentioned above, but replacing
the special class of equatiofis (1.4) by the wider clas®afinear diffusion equationsf the form

ur = (D (ux))x. (31)

The nonlinear functiom expresses the dependence of the image flux on the gradient of the image
intensity. It can be called tHeux lawof our process, or also the constitutive function. In this general
setting,® can be any increasing real function defined in a suitable interval of gradients. We will
assume for convenience that

(H1) @(s) is C° smooth and strictly increasing in the intervdls< s < co and—oco0 < s < 0,
allowing for a quite arbitrary behaviour as — 0 or |s| — oc.

In our opinion, this level of generality instead of obscuring the problem makes more apparent the
relation between nonlinear diffusion and contour enhancement. Slightly more general assumptions
can be made o@, but they are unessential for our present purposes (cf. Sécfion 11).

We want to characterize the class of tha@séor which we can construct solutions with gradient-
enhancement. We also want to describe the rates at which the formation of steep profiles takes place,
thus justifying and extending the results/of[10] to the actual equation$ iKe (1.4), and to general data.
The mathematical problem we pose consists in solving the nonlinear parabolic equafion (3.1) with
initial conditions

u(x,0) = ug(x) 3.2)

satisfying 0< up < 1 and other suitable conditions (see below), and boundaryudata0 on
the left-hand side of the contour and= 1 on the right-hand side. Regarding the initial data, we
remark that we are mainly interested in monotone solutionsui.e 0, for equation[(1}4), and this
condition will naturally follow from a similar monotonicity condition on the initial data. As for the
boundary conditions, it turns out that, depending on the forr? othe boundary can be chosen to
be located either at infinity or at a finite distance. This latter case will be the one of interest for us,
and then the problem must be properly posed faseaboundary problem

Let us recall the simplest examples®fand some of the difficulties we will encounter. Indeed,
a quite important and simple example is the power function, that we write(as = (1/m)s™,
defined fors > 0, so that it agrees wit@.l) with = —1 — 2« since®’(s) = s" 1. There is
in principle no reason to restrict the generality of the exponeim the mathematical treatment to
follow, and this will lead to quite different behaviour types inside this family. The ease 0 is
included in the formd (s) = log(s), i.e.,®’'(s) = 1/s. Note that in the cases with < 0 the function
@ is negative, but the important quantity for the parabolic character of the equatiod®’i&;),
is always positive. Finally, we note that equatipn [(1.4) corresponds to) = (1 + s2)~1+9; it
degenerates as — oo in the prescribed range > 0, even ifa > —1, but the equation is is
perfectly parabolic in regions of boundeg.

3.1 Nonmonotone solutions

The above statements are made on the assumption that the solutions are monote@e which
is not unjustified in our problem setting but restricts the mathematical generality. When considering
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nonmonotone solutions it is customary in the nonlinear diffusion literature to extend the power
nonlinearity to arguments= u, < 0 in the simplest symmetric way:

PD(s) = % s, (3.3)

which gives®’(s) = |s|”~1, always nonnegative. This definition poses no problem when0 and
solutions with changing sign exist corresponding to initial data with the same property. However,
we are interested in exponents < 0 (so-calledvery fast diffusiorin the literature) where’ is
singular ats = 0, and the whole functio is no more monotone. The difficulty has been studied

in [47] leading to the consequence that solutions with changing sign do not exist, even in the weak
sense whem < 0. This is a consequence of the singularity of the equation at thedewel 0 and

does not affect equatiop (1.4). Due to this obstruction, we will concentrate here on problems with
monotone solutions (but see comment in the final section).

4. Second formulation as a nonlinear diffusion equation

If we formally differentiate equatiofi (3.1) with respect¢@nd putv = u,, we obtain the equation
satisfied by the image intensity gradient:

Uy = d)(v)xxv (41)

which is usually called theonlinear filtration equationNLFE, and is the most standard class
of nonlinear diffusion equations studied in the literature. We can call it in this context the
“differentiated equation”. Conversely, we can recover theormulation from a solutiorv(x, ¢)

for (4.7)) by means of the rule

u(x,t):c—i—/(vdx—i—cb(v)x dn), 4.2)
r

integrated along any curvE in the domain of definition of which joins a fixed pointxo, #p) to
the generic pointx, y) (cf. [46,55]). The constantis the value of: at (xg, 7o) to be chosen at will
in principle. The calculation is justified for smooth solutianand smooth?, but holds in a much
wider context.

Monotone solutions for equation[(1.4) translate into nonnegative solutiofer equation[(4.11),
and conversely. In this context,is usually viewed as thmass functiorfor v, since when we take
I' to be a segment of the line= 7o, formula [4.2) becomes

X

u(x. 10) — u(xo, f0) =/ v(y. 10) dy.

X0

The phenomenon of gradient enhancement can then be translated into usual diffusion parlance as
mass concentratio'We will keep in what follows the denominatidntensityor image intensityor

the solutionu of equation [(3.]1), and we will view the solutian = u, of (4.1)) as thentensity
gradient In that context® (u,) = @(v) is theintensity flux.Finally, ®'(u;) = ®'(v) is the
diffusivity.
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5. Solutions of Type |

We now try to apply the more standard theory of nonlinear diffusion equation to solve the evolution
problem motivated by the application in the Introduction. We show next that this implementation
can be performed in a rather standard way for a wide clagg’sfbut such a process gives an
evolution with no concentration effect, hence useless for our purposes in image processing. The
reader already familiar with diffusion theory may check the contents of Theorgm 5.1 and skip the
rest of this section.

5.1 Simplest setting

Generalizing the well known properties of the heat equation (the clibieg = s), we consider
first the case where is aC* function and®’ does not vanish. We pose the Cauchy problem for
equation[(3.]l) on the whole line € R for r > 0 with bounded initial data 6 up < 1, and get a
unigue smooth solution(x, r) defined inQ = R x (0, co) and such that &< u < 1, u is smooth
forallx € R andr > t > 0. We can also work with equatioh (#.1): thenpif = uo . is locally
integrable (a Radon measure will also do) and such that

/ vo(x)dx = 1,
R

the solutionwv(x,t) is smooth in 0 and satisfies the same type of integrability condition,
Jrv(x.1)dx = 1. For solutionsy > 0 this is called conservation of mass. Using form{ila|(4.2)
we obtain a smooth solutian(x, r) in Q such that the initial condition

X

u(x,0) = ug(x) =/ vo(y) dy

holds, as well as the end conditions

lim u(x,1) =0, im u(x,t) =1,
X—>—00 X—>00

hold locally uniformly in time. On the other handy > 0 implies thatu, = v > 0, which by the
Strong Maximum Principle implies, > 0. It follows that O< u(x, ) < 1in Q. Note that, due to
the smoothness condition @n, these solutions are smooth(in, ¢) for all x € R andr > 0, even if
the initial data are not.

5.2 Dispersion of solutions with time

At first glance, the type of solution we have constructed seems to solve our image problem. However,
it lacks a basic ingredient, i.e., the eventual concentration of intensity gradients. On the contrary,
if we consider the heat equatian = u,,, the solutions, which can be expressed in terms of error
functions, spread in time and its gradients go to zero. For instaneg ~f ug . is integrable, then

v(x, 1) goes to zero as— oo at a rate of the order af%/?, and takes on a Gaussian space shape,

v(x, DtY? ~ exp(—x?/41).

And a similar result (with possibly different rates) applies to more generalddtaving definite
limits at +-00, and to all the functiong of the above class.
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5.3 Extension of Type | solutions to otheér

Even if this is not the class of solutions we are looking for, we pursue a bit further the analysis, since
it is the standard class found in studies of nonlinear diffusion or thermal propagation. The study will
also serve for comparison with the “correct” solutions of Type Il. However, the reader may choose
to skip the rest of the section and proceed with Se¢fjon 6.

The class of constitutive functior® for which there exists a class of solutionstu < 1 with
a dispersive character can be extended to include a quite general chdicerothe condition of
allowing for a suitably generalized concept of solution. Thus, it is well known followiagiBn,
Crandall and others [14,16] that we may takedagny continuous nondecreasing function and
the Cauchy problem is then well-posed in the class of so-catiigdi solutions withL1(R) data.
Actually, @ can be allowed to be discontinuous but this will be of no particular interest here; on the
contrary, we will keep the assumption of smoothness and strict monotonicity fos O< oo for
simplicity of presentation (and since it is satisfied in the application we are dealing with).

Let us comment on the main properties of the solutions for this class of equations. For the case
of power nonlinearitie® (s) = s™/m, s > 0, mentioned above, rather complete details are known,
[6,[36/52]. We can consider that is a real parameter, positive in principle but not necessarily as
we will see. The definition is extended to solutions with negative values as in formula (3.3). Thus,
for m > 0 the equation, = (v"")., (or bettery;, = (Jv|” 1v).,) generates a positive semigroup
of contractions in the spacel(R). In other words, for everyg € L1(R) there exists a unique
functionv € C ([0, c0); LY(R)), v > Owithv™ € LE (Q), such that the equation is satisfied in the
sense of distributions i® = R x (0, o0), the initial data are taken in the'(R) sense, and the map
vo — v(-, ) is anL1-contraction. Moreover, the total mass is conserved;

/'00 v(x,)dx = /OO vo(x) dx.
0 0

In our application we still have to impose the extra condition of total mass 1, and then we recover
the image intensity by means of the formula

X

u(x,1) :/ v(x’, 1) dx/,
—0o0

and the intensity level goes from = 0 at minus infinity tou = 1 at infinity. The asymptotic

behaviour of these solutions has been carefully calculated in the literature (cf.le.d![5, 31, 53]):

solutionsv(-, ¢) with finite mass go to zero uniformly as

1

—, 5.1
m+1 -1

vix, ) ~t7V, Yy =
which in the notation of the Introduction meaps= —1/2«. Actually, the asymptotic rate comes
from comparison with the source-type self-similar solutions [9] which take the form

v(x,t) =tVG(xt™?)

for a certain symmetric profile functio € C,(R) such thatG(¢§) — 0 as¢ — oo. This formula
suggests that the behaviour will be maintained as long as0, hence, as long a8 > —1, and
this turns out to be true (for the study wherd < m < 0 cf. [29]). Indeed, this exponent range is
optimal since there anmgo solutionswith finite integral form < —1.



IMAGE CONTOUR ENHANCEMENT 39

Let us look a bit closer at the kind of initial data that we want to consider in the outmost
generality. We recall that we waig to be increasing and bounded between 0 and 1. Hepee ug,
has to be defined and locally integrable, or at most be a measure, in an ieiealith possible
divergence at the endpoints, but anyway with finite integral. Existence of solutionsfeittended
all of R with value 0 otherwise) offers no problem in all the range> —1 and the solutions are
bounded for alk > 0. But large values will be the origin of the new class of solutions to discuss in
the following sections.

By integration we obtain a solution of the problem

Uy = O (uy)y in 0 =R x (0, 00),
P) u(x,0) =ug(x) forx eR,
u(x,t) =0,

whereug is any nondecreasing continuous real function joining the lewgls- 0 atx = —oo to
ug = 1 atx = oco. This is what we ternsolutions of Type.INote that integration of the self-similar
profile gives foru the form

ulx,t)=F(xt™7)

whereF is a primitive of G with F(—oco0) = 0, F(co) = M that we want to normalize t&f = 1.

THEOREM5.1 Consider the initial value problem for equatipn [3.1) pose@ir= R x (0, o0)
with power function® (s) = s™/m. If m > —1 then for every nondecreasing with ug(—o00) = 0,
up(oo) = 1, there exists a unique continuous weak solution in the sepse) > 0 such that(-, ¢)
jumps from 0 to 1 as ranges over the line € R. If m < 0 the last condition is essential to ensure
unigueness. This class of solutions has bounded gradients for strictly positive times & 0),
and spreads in space as time advances and the asymptotic decay fprmula (5.1) hotdsifor

On the contrary, ifn < —1 solutions for this initial value problem with bounded data do not
exist.

The results of the power case reflected in this theorem can be generalized to equations with more
generald. Only the behaviour o (s) ats = 0 ands = oo will determine the different behaviour
types. In order to tackle the first, we assume that the initial data (and hence the solutares)
bounded. Then it is known that the condition for existence with finite mass is

/S @’ (s)s ds < oo. (5.2)
0

The question of large arguments is similar to the power case. These issues will be discussed at length
in [57]]. For a study of these questions in the class of self-similar solutioris_¢f. [30].

5.4 Existence of sharp interfaces

There is an interesting subclass of equatifng (3.1}, of (4.1), where sharp interfaces appear. Let us
look first at power nonlinearities. Indeed, for exponent 1 solutions of the Cauchy problem for
equation[(3.]1) with initial data having compact support will keep this property for all times, while
infinite propagation occurs whenever < 1 (cf. [13/36]). In the first case, given an integrable
functionug > 0 with integral 1 the solution of the problem can be seen as a classical solution of
equation[(3.]L) in a domain

2={x,t):=lt) <x <r@))},
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with initial conditionsu (x, 0) = ug(x) and boundary conditions

u(x,t) =0, DPwy) =0 for x =1(r),
ulx,t) =1, @y =0 for x =r@).

The linesx = I(t) andx = r(¢) are calledinterfacesor moving boundariesnd are completely
determined by the above-specified conditions. They are known to be smooth (analytic) functions
of ¢ [4,18], and diverge as — oo like O(t¥), thus giving a quantitative estimate of the dispersion
effect. We remark in passing that the presence of interfaces means also that the equation is not
uniformly parabolic at those points, and consequently the solutions have limited regularity.

On the other hand, whem < 1 the same Cauchy problem leads to positive solutions with
[(t) = —o0 andr(z) = oo. The property of null flux is equivalent to imposimg = 0 at+oo, a
quite natural condition in view of the valugs= 0, 1 at+occ. This condition is automatic forn > 0.
However, form < 0 we can haveew solutions with decreasing total mass., such that

d
a/v(x,t)dx <0,

and they can be even forced to vanish identically in finite time by controlling the outgoing flux at
x = zoo. We refer to[[45,46] for a detailed analysis. In the integrated version they would lead
to solutions with a restricted grey range. For the more general clags raéntioned above the
condition to have finite interfaces is

/S P 4 < 0. (5.3)
0

N

The fact that this condition is hecessary and sufficient can be easily seen on the family of travelling
waves. The property was first pointed outlinl[41].

6. Solutions of Type Il. Conjugate formulations

We now address the main question of this paper, the construction of solutions with large gradients,
appropriate for the contour enhancement problem.

6.1 Basic Free Boundary Problem
It is formulated as follows:

Given an increasing functiong(x) defined in an intervala, b) with end valuest(a+) = 0,
u(b—) = 1, find a continuous function(x, ) and continuous curves = [(t) andx = r(¢)
such that

() 1(0) = a, r(0) = b, andi(t) < r(¢t) for some time intervad € (O, T),
(i) uis Cf:tl and solves the following problemid = {(x,#) : 0 <t < T, I(t) < x <r(®)}:

ur = D (uy)x in 2,

u(x, 0) = upg(x) fora < x <b,
u@),t) =0, u (@), t) =400 forO<it<T,
u@r@®),t)=1 u,(r(t),r) =400 forO<t <T.

(Pi)
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Such a triple(u, £, r) is called asolution of Type LI The regularity required from as a solution of

the problem will depend on the generality of the data. At leasill be continuous in the closure

of 2. Furthermore, to avoid unnecessary generality we will requite be smooth in the interior

of £2. Finally, the requirement of monotonicity is not intrinsic from the mathematical point of view,
but it suits the application and allows for the use of the powerful conjugate formulations. Here is the
existence result that we are going to prove:

THEOREM6.1 Let® be a flux function that is defined, smooth and wgths) > 0 for all s > 0.
Assume moreover thab (oco) is finite. Then for every increasing functiam(x) defined in an
interval [a, b] with u(a) = 0,u(b) = 1 andug > ¢ > 0 there exists a unique continuous function
u(x, t) which is defined in a se® as above, is smooth and strictly monotone fier 0 < u < 1, and
there exist continuous curvég) andr(¢) such that the tripley, I, r) solves problen{P,) in £27.
Moreoveru, > ¢ > 0 whenever O< u < 1.

We will also show in our construction that the boundary curves are monotgneis
nondecreasing;(t) nonincreasing. On the other hand, there is the problem of determining whether
T is finite or infinite. This depends oh as we will see below.

6.2 Conjugate formulation

When dealing with smooth monotone solutians > 0 we can invert the variables andu and
write x = X (u, t). Thenu, - x, = 1, and after some computations we get the partial differential
equation satisfied hy as a function of: andz:

X = (W (X)), (61)
whereV is theconjugate flux functiofconjugate tad), defined fors > 0 as
U(s) = —d(1/s). (6.2)

Differentiation of equatior] (6]1) with respectiaives rise to thelifferentiated conjugate equation
for w = 9x/du as a function of: ands:

w; = (Y (W)yu- (6.3)

We complete the list of related equations with the direct differentiated equation forou/dx,
already seen:

vr = (P (V)xx, (6.4)
and therw = 1/w. Itis important to point out that these relations are equivalent to the well known
Backlund transforni [23] between the main variahlesxdw of the second and fourth formulations.
Indeed, we have

v(x,t) = ﬁ, u(x,t):c-l—/r(vdx-l—fp(v)xdt).

The reader is referred tb [46,/55/56] for other applications of this technique.

6.3 Posing and solving the conjugate problems

We now show how to use the conjugate formulations to solve the original problem. We assume that
@ is a flux function defined for all > 0 and such tha® (c0) is finite, say,® (co) = 0. Then¥ (s)
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is continuous at = 0 and¥ (0) = 0. This is the class of flux functions for which the conjugate
problem looks simpler. Since we have assumedd¢hatsmooth, so i@ in its domain of definition.

(i) Since we are interested in solving the conjugate problem as an auxiliary step for P(&Qlane
will relate the initial values for the functiow (u, ¢) to ug as follows. Assuming thatg is continuous
and strictly monotone in the interval= {a < x < b}, with ug(a) = 0, ug(b) = 1, andC?! smooth
inside I with dug/dx bounded below away from zero, we define the inverse funatien i (u) =
ug () : [0, 1] — [a, b]. Then we set

1
uo.x (h(u))’
which is defined for 6< # < 1 and is positive, bounded and smooth inside, i.e.ufar(0, 1).

wo(u) = (6.5)

(ii) We then solve the conjugate problem

w; = ¥ (W) forO<u<1,t>0,
(Pe) w(u,0) =wo(m) forO<u <1,
w(u,t) =0 foru =0, 1.

As initial data we choose a nonnegative, bounded funati@rinder these conditions Problgi®,.)

has a unique solution by virtue of well known nonlinear parabolic theory described in the previous
section (cf.[[14, 16, 17]); but note that now we are dealing with the homogeneous Dirichlet problem.
The solution can be obtained as limit of the solutiensu, r) > ¢ of the nondegenerate problems
with initial datawg ; () = wo(u) + €, ¢ > 0. In the monotone limit we get

im we(u, t) = w(x, 1),
e—0

which is nonnegative, continuous and bounded. Under the additional assumptiarn ikddcally
bounded away from zero, it is easily proved that the solutim, ) is positive, hence classical, in
a strip

St ={(u,t):0<u<1 0<t<T}

(iii) We also need to know something about the large time behaviour of the solutions to this problem.
In the full generality ¢ continuous ak = 0), it can be proved rather easily thatx, t) goes to

zero in uniform norm as — oo. However, the rate depends gn as we will see in detail in the

next sections. Indeed, depending @nit may happen that the solution vanishes identically after

a finite ime7 > 0 (so-calledfinite-time extinction For power nonlinearitieg’’(s) = s4-1 this
happens iff 0< ¢ < 1 (seel[18]). On the other hand, it is well known that§or 1 the decay rate

is 0(r~1/@=D) while forg = 1 it is exponential.

(iv) Next, we pass to the integrated version using the formula
z(u, t) = f (wdu + ¥ (w), dr), (6.6)
r

whereI" is any piecewise smooth curve {n, r) space starting from a fixed point, say= 1/2,
t = 0, and arriving at a generic poirit, ). In this way we obtain a solution of the integrated
equationz; = (@ (z,))., much as we did in the case of the original pair of formulations. Note that

z(1,t) —z(0,1) = / wdu — 0 (6.7)

ast > T.
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(v) Let us examine the curvesg,(t) = z(u, t) for fixedu € [0, 1]. It is clear from the smoothness
of the solutions that these curves &% smooth for every 6< u < 1. We are interested in the limit
curves
() =1lim z(u, 1), r@) =Ilim z(u,?1). (6.8)
u—0 u—1

The limit is well defined for every @& ¢ < T by monotonicity of; as a function ofi. These curves
will show up in the next subsection as the interfaces of the original problem.

LEMMA 6.2 The curveg = [(¢t) andz = r(¢) are continuous and monotone for 8ll< ¢t < T
witha < I(t) < r(t) < b (r(¢) is nonincreasing and(z) nonincreasing). A3 — T we have
r(t) —1(t) — 0.

Proof. ForO< s <t < T and O< u1 < u2 < 1 we have

uz uz

w(u, t) du —I—/ w(u, s)du + (z(u2, 1) — z(u2, 5)).

ui

z(ua, 1) — z(ua, s) = —/
ul
Fix nows > 0 and let: be a bit larger than. Sincew is bounded uniformly for > s the two
integrals are uniformly small as long as— u2 is small. We will fix nowu, ~ 0 and letu1 € (0, u2)
go to 0. Itis clear then that(u1, ) — z(u1, s) is uniformly small and goes to 0 as— s. Hence,
[(r) is continuous at = s. The argument for () asu — 1 is the same.
For classical solutions the monotonicity of the limit curves is a consequence of the equation
0z d
— = —P(w
dt ou (w)
which must be positive at = 0 and negative at = 1 becausev > 0 and we have zero boundary
conditions. For the general case we use the dependence of the solutidnasodemonstrated in
[16]. Hence/'(r) > 0, r'(r) < 0. We will see another proof below. Note that the rest of the curves
zw) (t) need not be monotone (unless is a rearranged symmetrical function for instance).
As for the last statement, it follows immediately frm|6.7. It will mean for the original problem

that the solution concentrates into a vertical profile, thus showing the formation of the desired
front. O

6.4 Inversion. Solutions of Type Il

Thanks to the fact thaiz/du = w > 0, we can invert the dependence betweeandu in the
previous construction to get a functian= u(z, t) that is easily shown to satisfy the equation

up = (P uz))z .

Moreover,u is a monotone function of and takes the values= 0 andu = 1 respectively at the
left and right endpoints of the domain of definition

2. ={l@t) <z<r@®}, 1) =201, r@)=z171.

wherez(, r) is the function defined i (6.6). Therefore(z, 1) is a candidate to solve our original
problem if we identify the independent variaklevith x — ¢, wherec is uniquely determined by the
relation ug(c) = 1/2.
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In order to check that we have solved the original problem we still have to check some
particulars. Itis clear that = u, is related to the originab by the formula

v 1) = w(u,t)’
which simply states the derivative rule for the inverse function,;amthe second member is given
byu(z,1), z = x — ¢, as explained before. Here comes an important point: sintakes on zero
boundary valueg;(x, r) diverges at the endpoints of its domain of definiti@n,In other words, the
solutions of the original problem = u(x, t) enjoy the property of infinite gradients at the endpoints
of the strip where they are defined. Singg¢oco) = 0 this also means zero flux at these points, a
reasonable requirement, which explains why this condition has to be imposgd on

As for the initial data, we have the mass formula

u . l
x = / wo(u)du + ¢ with ug(c) = =,
1/2 2
so thatx ranges over an intervat [ /] whenu goes from0to 1, i.eq = z(0,0)+c¢, b = z(1, 0)+c.
This rule is accompanied by the rule= f,)(‘,) v(x, 1) dx.

6.5 Uniqueness

Unigueness of our class of monotone solutions works by translating any couple of solutions of
Problem(P,,) with the same initial data into the conjugate formulation. They continue to have the
same initial data. Uniqueness of weak solutions is well known for that equation. The Theorem is
proved. |

6.6 Front formation

The asymptotic formation of a vertical front is a simple consequence of the fact that there exists the
limit

lim r(t) = lim [(¢) = x € (a, ).

t—>T t—>T

The existence of the common limit follows from Lemmal6.2.

7. Uniqueness and comparison for Type Il solutions

The previous construction provides existence and uniqueness of monotone solutions. We tackle next
the property of comparison, which is stronger that uniqueness.

THEOREM7.1 Comparison applies to the solutions of Thedrerh 6.1u1ét, ¢), i = 1, 2, be two
solutions defined in a strify = R x (0, T') having initial data:o;, where the solutions and the data
have been extended by 0 to the left of the definition domain, by 1 to the righgs (f) > uo2(x),
then for allx € R we have

ur(x,t) > uz(x,t) inSy. (7.2)

Proof. The main idea is to use a contradiction argument at touching points of ordered solutions. We
proceed in several stages and need a definition, taken from the theory of viscosity solufions in [25].
We say that two solutions asgrictly separatedat a timer if uy > up at all points intermediate to

the bounding interfaces, and these are also separated.
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(1) Given two solutions:; and uo with ordered data we must obtain approximations to which
the contradiction argument can be applied. First, we separate the initial data of the solutions by
displacing the first solutiom; to the left (the problem is invariant under space displacements).
Next, assume that we have modifiegdso that it has a finite slope on the left-hand free boundary,
anduy so that it has a finite slope on the right-hand free boundary. In this situation we argue on the
first point and timgxg, fp) Where the graphs of both solutions touch, and discover that: (i) it cannot
happen with value € (0, 1) by the Strong Maximum Principle; (ii) not on the left-hand side where

u1 = up = 0, because at such a point we have the right derivative= +oo while u1 , is finite,

which contradicts the fact that we must still havg -, 10) > u2(-, ro); (iii) same argument applies

to the right-hand side whetg = us = 1. We conclude that such solutiomgs andu, cannot touch,
hence strict separation is preserved in time, and compa#isgnu, holds in the strong sense, i.e.,
with strict separation at all times.

(2) We must now prove that the original solutions can be approximated by solutions with finite
derivatives on the lateral boundaries. This can be obtained by an easy modification of the previous
construction. Thus, ift is the constructed solution, it can be approximated at the level of the
conjugate problem by putting the value = ¢ on the left-hand boundary = 0. It is a rather
standard monotonicity argument thaf — w ase — 0. Undoing the transformation this means
thatu, converges to the original constructed solutionA similar construction applies te, by
modifying w; at the border = 1. After displacement af, we getu1 .(x + 8, 1) > up(x, 1). Let

nowe — 0. O

We next derive another proof of the monotonicity of the interfaces.
COROLLARY 7.2 The interfaces are monotone in all cases.

Proof. Given a solution: with initial interfacesu andb, we may place a very steep solutidmo the

left, i.e., withu = 0forx <a—2¢,u = 1forx > a — . If &’ is symmetric then the interfaces are
monotone, hence the left interfaceibfies to the right ofu — 2¢. Thenu > u for all times, hence
[(t) > a — 2¢,and in the limit/(z) > a. The same argument applies by taking the origin of times at
anyy € (0, T), hencéd (¢) is increasing in0, T). Likewise,r(¢) is proved to be decreasing. O

8. Self-similarity and asymptotics for power nonlinearities

In the power case, wherg(s) = (1/m)s™, the asymptotic condition® (co) finite” meansn < 0.
Then¥ (s) = (1/¢)s? with ¢ = —m > 0. Reminder: we consider only monotone solutiong of| (3.1)
and nonnegative solutions ¢f (#.1), apd= 1 + 2« in the notation of the first section. Therefore,
a > —1/2 meang; > 0.

There is a unique solution of problef®.) with initial data as in Sectiop]6. The large time
behaviour depends on the exponent. &¢¢ 1 solutions are defined and nontrivial globally in time,
while for 0 < g < 1 they exist only in a finite interval & ¢+ < T andw(x, t) — 0 uniformly as
t—T.

As for the exact behaviour, if # 0 the self-similar behaviour reduces to writibg= @ (&)
with & = x /2 and integrating the ODE

?" = Zis@’)“q (8.1)
o
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to obtain in the monotone region
P'(E) = A(K? — 27V @20 A= Qu/(14a)V ™) (8.2)

and a constank > 0 determined by the end values ngii¢) = 0, max® (§) = 1. For the large-
time behaviour of general solutions we have to make a study in different cases. We starewith
which was not included before.

Casea = 0, henceg = 1. The conjugate equation is the linear heat equation. It is well known that
the solutions behave for large times like

w(u, 1) ~ CiW(u, t) = C1e ™ f1(u), (8.3)

wherer = 72 is the first eigenvalue of the Laplacian in, [, fi(x) = sin(ru) is the first
eigenfunction, and”1 > 0 is a constant that depends on the initial data. Here and in what
follows we denote by capital letters the quantities corresponding to self-similar solutions. We get
the intermediate step

x—c=z(u,t)~ Z(u,t) =—Ce ™ codru), (8.4)

with C = C41/x. This formula can be viewed as an implicit expressioruof u(x, t) defined in
the space between the interfaces. Note that 1/2 for x = ¢ and allr > 0. Puttingc = 0 we get
for the self-similar solution )

U(x,t) = F(xe™"/C), (8.5)

whereF’ behaves likel~1/2 near the end values or interfacésyeing the distance to these points.
Moreover, the interfaces are
R(t) = CR1(1), L(t) = —CRu(t), with Ry(r) = e ™. (8.6)
These estimates become the first order approximation when we consider general solutions:
u(x,t) ~ F(xe_”zt/C), r(t),l(t) ~ c £ CRy1(t). (8.7)

The gradients are given by
1 1, 1
ug(x, 1) = — ~ —e" ———
w

C  sin(ru)’ 8.8)

They blow up exponentially as— oo and like O (d~1/?) at the interfaces, wheegis the distance
to the interface.

Casea > 0, henceq > 1. This is the case treated ih_[10] by the direct self-similar method.
We recover the behaviour of general solutions from the conjugate problem. We have a self-similar
asymptotic expression in the form of separation of variables:

w, 1) ~ W, 1) =t g @), (8.9)
where f, (1) > 0 is the unique solution of the associated elliptic problem

Y +uf=0 in[0,1, pw=-1_,
qg—1
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and f = 0 at the endpoints. This problem was studied_in [7]. In this case there is no free constant,
i.e., the behaviour is universal. From it we get the intermediate asymptotic estimates

x—c=z(u,t)~ t_l/(q_l)gq(u). (8.10)

This formula defines implicitlys = u(x, ¢) in the space between the interfaces as
u~ Fy((x —o)e/a=Dy, (8.11)
Since f (1) behaves exactly lik& (11/7) near the endpoint = 0, andO((1 — u)¥/?) nearu = 1,

it follows after integration and inversion that = F behaves likeO (d49/@*D), whered is the
distance to the interfaces. These are given by

I(t) =c— Cgt V4D r(t)y=c+ Cur @D, (8.12)

The gradient is given by

e (x, 1) ~ tl/(q_l)ﬁ, (8.13)
q

and blows up likeo (112*) ast — oo and like O(d~7) at the interfaces, whene = 1/(¢ + 1) =
1/(2a + 2).

Case—1/2 < a < 0, hence0 < g < 1. This is a new casajot includedin the modelization of
[40,[10]. We get solutions from the conjugate problem which exist for a finite Tirmad behave as
t — T like the separation of variables formula:

wu, 1) ~ (T — )Y D £ (), (8.14)
wheref, (x) > 0 is the unique solution of the associated elliptic problem

(f9 +uf =0 in[0,1], p=—1—,
g-—1

and f = 0 at the endpoints, with no free constant. We get by integration
x—c=zu,t)~ (T - )Y Dg, (). (8.15)
This formula defines implicitlys = u(x, ) in the space between titenverging interfaces
I()y=c—C(T —nYID  r@)y=c+C(T — )Y/, (8.16)

The gradient is given by

uy(x, 1) ~ (T — zrlﬂl_Wﬁ, (8.17)
q

and blows up likeO (T — 1)Y/2*) ast — T and likeO(d~7) at the interfacesy as before.
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9. Asymptotic estimates for more generatp

Assumptions ord to behave like a power at infinity guarantee that the asymptotic behaviour is as
predicted in the power case. Thus, Bertsch and Peletier studylin [22] the asymptotic behaviour of
equation[(6.]1) written in the form

B(V)r = Vxx.

In our application the space variabtebecomes: and = ¥ 1. They assume thg#(0) = 0,
B'(s) > 0fors > 0 and

"
1< sB7(s) <
B'(s)
forall small 0< s < sg and somex < (0, 1). They also need the more stringent condition that the
limit
"
o(s) = lim sP_(es)
e—0 /3/(8)

exists for every > 0. This limit is necessarily of the form(s) = s for somem € [0, 1). Those
conditions cover in particular powers(s) = s? with g = 1/m > 1, as well as the exponential
W (s) = e~ 1/5, and any other function resembling such examples nea0.

Under these restrictions, they establish an asymptotic separation-of-variables result that, when
translated to our setting, means that the solutian, r) of the Cauchy problenj (§.1) behaves as
t — oo in the separate variable form ~ y(¢) f (1), more precisely,

im P

Jim S = ), ©.1)

where y(¢) is the solutiony’ = —y/4, i.e., y(t) ~ ¢t~9/4=D and f is the profile obtained as
in the previous section. This means that the analysis of the previous section is justifébohdst
power-likeflux functions if they resemble a power with expongnt 1. The caseg = 1 andg < 1
should be justified in a similar manner. We note that a similar calculation for the Cauchy problem
was done in[[43].

We point out that these restrictions on the nonlinearity are satisfied by the equation proposed in
the image processing modg¢l, ([1.4), hence the results apply to that model.

10. Numerical experiments

We have computed the solutions of the free boundary problgm Iy solving the conjugate

problem, which is a homogeneous Neumann problem, in the case$, o = 1 anda = —1/2.
The conjugate equations gpelLaplacian equations withh = 2, 4 and 32. The computations have
been done with symmetrical datg(u) = — cos(ru) and asymmetricalg(u) = 2u®* — (1/2)u® —1.

The last two examples stabilize in finite time (sirce: 0).
In Figures 1-6, the horizontal axis s vertical isu, and the curves are parametrized by time,
evolving with increasing towards the sharp front.

11. Discussion and conclusions

We have established the well-posedness of a free boundary problem that represents a one-
dimensional version of the model for image contour enhancement. We have also established the
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Figures 1 and 2. The case= 0 with symmetrical and asymmetrical data.
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asymptotic behaviour and its rates. The results apply to a large class of equations, which enlarges
the scope of the results af [10,140]. We have performed a classification of the solutions and their
properties according to the properties of the constitutive funation

We have used as a framework the 1D theory of nonlinear parabolic equations of diffusive type, or
nonlinear diffusion equations for short. These equations are typically used in describing processes
of mass diffusion or thermal propagation (with or without additional effects, like convection or
reaction). Here they appear in image processing. The types used here cover the model cases known
as p-Laplacian equations and porous medium equations or their variants.

The analysis is technically performed by means of a series of remarkable transformations that
lead to conjugate problems that are easier to analyze. These transformations are related to the
Backlund transform.

Note that in our problem setting, the equation is forward parabolic, and the backward movement
of the interface is due to the effect of the singular boundary condition, which happens to be
compatible with the equation for the appropriate class of functiie.g., for powers: < 0).

There are a number of interesting consequences of the mathematical analysis that we sum up
next.

e Mathematical generality. The first one is the observation that solutions with gradient blowup can
be obtained for the nonlinear diffusion equation with a large class of constitutive functions. Namely,
@ can beany continuous nondecreasing function defined for 0 such that® (co) is boundedWe
have made for convenience the assumption of smoothness and strict monotonicity fox0oc.
Actually, the constitutive function can be more general, even a discontinuous maximal monotone
graph as in[[14, 24]. But such a generality is not practical here, though the classification and results
go through after some heavy work. A general presentation of that generality will be the object of
the work [571].

On the other hand, the application of similar techniques to the original 2D model is still a
problem under investigation.

e Focusing in finite time. In the case of power® (s) ~ s™ the condition means < 0, and not
only m < —1 as considered before. Moreover, the new range & > —1 leads to a very fast
evolution which arrives at gertical frontin finite time. This idea might have an applied interest.

e Coexistence of types.We also have a so-called class of solutions of Type | that fall into the scope

of the standard parabolic theory. They exist under the condition that the inte@bals)/s) ds
converges at = oo, which in the case of powers means> —1. This fact leads to an interesting
observation: there is a range of co-existence of solutions of Type | and #fok m < 0, i.e.,

—1/2 < a < 0. This may be of interest from the theoretical point of viewo different problems

share the same equation and same initial data, but the solutions differ as a consequence of a further
choice: of existence or not existence of a free boundary.

e The pressure. There is a way of formally unifying the standard theory of free boundary solutions
for the porous medium equation with the present theory of free boundaries in fast diffusion. This
works by means of the new variable called pressure that for an equation of the,ferm® (v), is

defined as o
pv) = / ¢ ) ds. (11.2)

N

If the integral is convergent at = 0 then the choice = 0 is made. Otherwise, any value in the
domain of® is good. Indeed, the similarity in the behaviour of the pressure of Porous Medium case,
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@ (v) =v™, m > 1, and our case (which lies in the power ramge< 0) is seen when we write the
partial differential equation fop which reads

pr=0(p)Ap +|Vpl, (11.3)

with o (p) = @’ (v). For® (v) = cv™ we getp = emv”~1/(m —1) ando (p) = (m — 1)v. Note that

with this definitionp < 0. The papel[55] explores further the properties of free boundary solutions
for the pressure of fast diffusion equation. Note that, contrary to the porous medium case where the
support of the pressure solutions expands in time, in our case it shrinks in time.

e Grey levels as end values Another variation of the main theme is to consider solutions losing the
white or black level. This is investigated in the paper [46], where many solutions of the differentiated
equation forv are obtained in the range® m > —1 with the same initial data by assigning fluxes
at infinity:
lim " tu) = —f@),  lim " ) = g@), (11.4)
xX—>00 X—>—00

for bounded functionsf, g > 0. In terms ofu it means in particular that we can obtain a free
boundary solution with a decreasing value of highest colour level,

t
u(oo, 1) = F(t) = 1—/ fde < 1.
0

Analogously, we can impose an increasing value for the lowest colour level,

t

u(—oo,t) =G() = / g(t)dr > 0.
0

e Nonmonotone fronts. There is a gap in the theory we have developed, namely that we assumed
that the front is monotone in the space direction, in other wordsytisatondecreasing as a function

of x. The limitations of fast diffusion equations to admit nonmonotone solutions are not accidental.
In the paperi[47] it is proved that the model equatigr= u""~*u,, does not admit non-monotone
solutions ifm < 0. In terms of the equation far = u, it means that there are no solutions with
both signs. However, there is hope when using functiénbke in (1.4) that are degenerate at
infinity, i.e., ®'(co) = 0, but regular at all other values, e.@.,c C1(R). Indeed, the problem with

the monotonicity happens because of the singularity,at 0 which forbids maxima or minima,
while our main interest is in the free boundary that is governed by the large values,co. This
question leads to a quite interesting extension of the theory of singular free boundary problems that
is investigated separately in/[2] in the 1D case. In this work the relation with more classical elliptic
parabolic free boundary problems, like thoselof [21] 34, 35], is investigated.

e Nonmonotone nonlinearitieB the spirit of the Perona—Malik model, situations can be considered
where® is not monotone, hence the equation is not parabolic. A regularization is then needed so
that one faces a regularized forward-backward diffusion problem. See in this reéspect [12]land [60].
This subject is again under study.
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