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A filtration problem through a heterogeneous porous medium
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The flow of a fluid through a heterogeneous porous medium is studied, assuming it is governed
by a nonlinear Darcy law and Dirichlet boundary conditions. Under a general condition on the
permeability we prove that the free boundary is locally a continuous curve in some local coordinates.
We also prove the uniqueness of the reservoirs-connected solution.

Introduction

The dam problem has attracted the attention of many researchers over the last thirty years. However
there still exist a number of unsolved questions related to this challenging problem, including the
regularity of the free boundary and the uniqueness of the solution for flows in general heterogeneous
porous media.

To begin with we would like to say a few words about the history of the problem; for brevity,
we restrict ourselves to the steady state case with Dirichlet boundary conditions on the bottoms of
the reservoirs.

First Baiocchi solved in[[6] (see alsbl[7] and [31]) the case of rectangular dams by using
variational inequalities. For dams with general geometry a new approach was introduced by H. W.
Altin [B] for the heterogeneous case and by H. Brezis, D. Kinderlehrer, and G. Stampacchia in [12]
for the homogeneous case. The two formulations are equivalent to

Find (p, x) € HY(£2) x L>®(£2) such that:
i p=0, 0<x<1l pl-x)=0 ae.inf,
Py () p=¢ onSUSs,
(i) [oa(X)(Vp+xe)-VEAX <0, e=(0,1),
forall & € H1(£2) with £ = 0 onS3 andé > 0on Sy,

wherep is the fluid pressurey a function characterizing the wet part of the dartX) = (a;; (X))

is the permeability matrix of the medium all = (x, y). The existence of a solutiotp, x)

was proved. Concerning the regularity of the free boundary, H. W. Alt proved in [4] that in the

homogeneous case it is an analytic cuve= @ (x). Uniqueness of the so-callef3-connected

solution was proved by J. Carrillo and M. Chipotlin]14] and also by H.W. Alt and G. Gilardi in [5].
In [15], J. Carrillo and A. Lyaghfouri considered this problem, assuming the flow governed by

the following nonlinear Darcy law (see [22]):

" tv=-V(p+y), m=>D0.
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They formulated the problem in terms of the hydrostatic headp+y and were led to an extension
of (Py) corresponding to the general probl€R) given in the next section, withd (X, £) = |£|972¢
andg = 1+ 1/m. Despite the nonlinearity, the authors showed that this problem is well posed and
proved the existence of a solution, the continuity of the free boundary® (x) and the uniqueness
of the S3-connected solution in the cage= 2. Forn > max2, q), they proved existence and
unigueness of a minimal solution.

The case of a general heterogeneous dam of general geometry was formulated(first in [3] by
H. W. Alt who proved the existence of a solution and local Lipschitz continuity of the pressure.
Moreover he gave a counterexample showing shatay not be the characteristic function of the
wet set p > 0]. He also proved that

div(aiz, az2) > 0inD'(2) = Vyx-a(X)(e) <0inD'(2).

In [21] and [32], the authors showed thatdaifX) = k(x, y)I> with dk/dy > 0inD’(£2), then
the free boundary is a continuous cunve= @ (x) and theSs-connected solution is unique. These
results were generalized by the second authar ih [27] to the case where

_(anX) O dazz o
a(X)_<a21(X)a22(X)) and 5 >0inD'(2).

From the description of the heterogeneous case, the following natural question arises: Can we
always describe the free boundary globally or at least locally as the graph of a continuous function,
that is, is it necessarily of the form= @ (x) orx = ¥ (y)?

It is our purpose in this paper to address this issue in the more general case where the flow is
governed by the nonlinear law

v=—AX,V(p+y)).

Then by using a similar formulation to [15], i.e.= p + y andg = 1 — x, and by assuming that
div(A(X,e)) > 0inD'(2) and A(X,e) € CL(2),

we give a positive answer to the above question.
The main new idea is the following: we remark that under the above assumption, the fynction
is nondecreasing along the orbits of the ordinary differential equation

X'(1) = AX(1),e),

which generalizes the fact thatis nonincreasing with respect to the second varighlhenaio =
0 andaz» is nondecreasing with respect ¢dsee [27]). It follows that if the pressure is positive at
some pointXg = X (79) of the porous medium, wheté(.) is the orbit containing(g, then

p(X() >0 Vi<

This important property is then exploited to prove that the free boundary is represented locally
by continuous graphs. This is done essentially by introducing@aiffeomorphisms related to

the above ordinary differential equation. As a consequence we deduce ithtte characteristic
function of the dry partp = 0]. This helps to show the uniqueness of ff3econnected solution
which we prefer here to call the reservoirs-connected solution.
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We would like to point out that in all previous studies, the dams considered are enclosed between
two curvesy = s_(x) andy = s, (x) which represent respectively the bottom and top of the
dam. This implicitly assumes that the dam is vertically convex. In this study we do not assume
this constraint and allow a wide variety of geometrical forms for our dam. We recall that for the
existence of a solution it is only required th@tis locally Lipschitz. However for the study of the
free boundary we will assume that is locally of classC?. Finally we have chosen to introduce
various hypotheses gradually into the text as the need arises.

The paper is organized as follows: in Section 1, we give the weak formulation of the problem
and some of its properties. In Section 2, we prove a monotonicity property for the fugctlan
Section 3, we define a familgd),);, of functions representing locally the free boundary and prove
they are lower semicontinuous. In Section 4, we prove some useful lemmas. In Section 5, we prove
the continuity of the functiong;,. Finally in Section 6, we prove the uniqueness of the reservoirs-
connected solution.

1. Formulation of the problem

A porous medium that we denote 5 is supplied by several reservoirs of a fluid which infiltrates
throughs2. We assume tha® is a bounded locally Lipschitz domain Bf with boundaryd 2 =
S1U S2 U S3, wheresSs is the impervious part, is the part in contact with air angs = UlN:l S3.i
with S3; (i =1, ..., N) the partin contact with the bottom of th® reservoir. We assume that the
flow in £2 has reached a steady state and we look for the fluid pregsame the saturated regigh

of the porous medium. The bounday of S is divided into four parts (see Figure 1):

It C Sp: the impervious part,

I C £2: the free boundary,

I's C S3: the part covered by fluid,

I'y C So: the part where the fluid flows outside.

Fic. 1

The flow is governed by the following nonlinear Darcy law:
v=—AX, V(p+y) =-AX, Vu), (1.1)
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wherev is the fluid velocityu = p + y is the hydrostatic head andl: £2 x R? — R? is a mapping
that satisfies the following assumptions for some constantsl and O< A < M < oo

(i) X A(X, &) is measurable for alj € R?,
(i) &+ A(X,§€)iscontinuous for a.eX € £2,
(i) forallé € RZandfora.eX € £2,

AX,§)-€ > algld and A, §)] < MlglaY, (L2
(iv) forallg, ¢ e R2andfora.eX € £2,
(AX,8) — AX,0) - ¢E—¢) =0
Moreover we have the following boundary conditions:
p=0onS;, p=¢onsS3, v-v=0o0nI7, (1.3)
p=0andv-v=00n/y, v-v>=00nTy, )

whereg is a nonnegative Lipschitz continuous function which represents the fluid pressure at the
bottoms of the reservoirs. For convenience we assumesthiatopen relatively t@ 2.

Assuming the flow to be incompressible and taking into account (1.1) and (1.3), we are led (see
[15]) to the following problem:

Find (1, g) € WH4(2) x L>®(£2) such that:
i) u>y, 0<g<l gu—y)=0 ae.ins,
P! i) u=¢p+y onS,USs,
(i) [(AX, Vu) — gA(X, e)) - VEIX < 0
forall ¢ € Wh4(£2) with € = 0 onS3 and¢ > 0 on S».

For the existence of a solution of (P) under the assumptions (1.2), we refer the readér to [29] where
an existence result is given for more general boundary conditions. The reader can also adapt the

proof in [15] obtained for the casé(X, &) = |£]9%¢.
Arguing as in[[17] or[[27], we obtain

PrRoPOSITION1.1 For each solutiofu, g) of (P), we have
div(A(X, Vu) — gA(X,e)) =0 inD'(2). (1.4)
Moreover if diMA(X, e)) > 0inD'(£2), we obtain

div(A(X, Vu)) = div(gA(X,e)) >0  inD' (). (1.5)

2. A monotonicity property of g

From now on, we shall assume that

AG, ) = (at(), a®()) € (), (2.1)
div(A(X,e)) >0 inCo%), (2.2)
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I =082 isofclassC?, (2.3)
AX,e)-v#0 VX €0£2. (2.4)
Then we consider the following differential system:

X'(t,w, h) = AX(t,w, h),e)

(E(@, 1)) { X0, »,h) = (w, h)

whereh € ,(£2) andw € m, (2 N [y = h]) and wherer, andr, are respectively the orthogonal
projections on the andy axes.
By the classical theory of ordinary differential equations there exists a unique maximal solution
X (-, w, h) of E(w, h) which is defined ond_(w, k), a4 (w, h)] with X (a_(w, h), w, h) € 32 N
[y < h], X(ay(w, h),w, h) € 02 N[y > h] (see Figure 2).
X(a:r(w), w)

\ X0, w) = (w, h)

X (o (63), )

FiG. 2

For simplicity we will denoteX (¢, w, h), a_(w, h) and as(w, h) respectively byX (¢, w),
o_(w) andoy (w). We note that (2.4) means that the orbitsgto, ) do not meeb §2 tangentially.
Moreover under the assumptions (2.1), (2.3) and (2.4), one has

PROPOSITION2.1 «_,ay € CL(m (2 N[y = h])).

Proof. Leth € m,(£2) andwg € 7, (£2N[y = h]). By (2.3) there exists a' functions andn > 0
small enough such that one of the following situations holds:

(i) o(X1(a—(0), ) = Xa2(a_(w), w) Yo € (wo—n, wo+ 1),
(i) oXo(a—(w),w)) = X1(a—_(w),w) Yo € (wo—1n,wo+n).

Assume for example that (i) holds. This means thatw) satisfies
Fla—(w),w) =0 VYo € (wg—n,wo+mn), Wwith F=00X1— Xo.

Taking into account (2.1) there exists an opens@étcontainings2 such thatA(-, e) € C1(£2%).
Then for eachw € 7, (£2* N[y = h]), there exists a unique maximal solutiéfi (-, w) of the
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differential system& (w, ) defined on ¢* (), o’} (w)]. Obviously we hav@(f‘(ai(w)m(w)) =X
whenw € 7, (2 N[y = h)).

Let F* = 0 o X7 — X5 defined onD* = {(t, w) | w € (wo — 1, wo + 1), t € (¢ (w), & (w))}.
We haveF* e C1(D*) sinceX; e C1(D*) ando is C2. In addition F* is aC? extension ofF to
D* and by (2.1) we have

*

IF o ¥ 9X3
5 L) =0 (X1, @) (t,w) —

t at
= o/ (Xi(t, ®)) - aX(X*(t, ) — d>(X*(1, w)).

(1, w)

In particular by (2.4) we obtain
*

5~ (@ (@0), o) = o’ (X1(e(@0), o)) -a (X (a—(wo), wo)) — a®(X (a—(wp), wo)) # O.

Therefore by the implicit function theorem, we deduce that there eXists(0, n) and a unique
function f : (wo — 8, wg + 8) — R such that

F*(t,0) =0 & 1= f(w), flwo)=a_(w0), fe€Clwo—35,wo+38).

As F*(a—(w), w) = F(a—(w), w) = 0, it follows thate_ () = f(w) anda_ € Clwo—3, wo+39).
If (ii) holds, the proof is similar. Thug_ € C(7r, (22 N[y = h])). In the same way we prove
thata; € C(m, (2 N[y = h])). O

DEFINITION 2.1 For eachh € m,(£2) we define the set
Dy ={(t,0)|wen(2N[y=~h], 1t € (a—(v), at(®))}
and consider the mappinds : D, — T, (Dy) andS;, : D, — S,(Dy) defined by
Th(t, 0) = X(t, 0) = (T}, TH(1, @), it 0) = (@, Ly, ©) = (@, 1),

where
t

t
Ly(t,w) = / A(X (s, w), e)| ds = / |X'(s, w)| ds
a_(w) a—(w)

represents the arc length of the cuiXé, w) from the pointX («¢— (»), w) to X (¢, w).
Then we have

PROPOSITION2.2

2 = |_| T, (Dy), Ty andsSy, arec?t diffeomorphisms.
hemy($2)

Proof. First for each(x, y) € £2 we have(x, y) = X(0, w) = T;,(0, ) with @ = x andh = y.
Next thanks to (2.1) we havB, € C1(D;). By Proposition 2.15;, is also inC1(D;,). To see that
they are diffeomorphisms, it suffices to verify that @&¥},) and det.7 S;,) do not vanish; here we
denote by7 F the Jacobian matrix of the transformatién
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One can easily check that

det7 S, = —JAX(t, w), e)| <O,
Yit, ) = detJTTy) = a (X (1, 0) 22 — a(x (1, o)) 22,
ow w

= o) =t o) {diV(AC, eN}(X (1, w)).

Therefore .
Y, (t, w) = Y4(0, w) exp(/ {div(A(-, e }(X (s, w)) ds). (2.5)

0
SinceY;, (0, w) = —a?(X(0,w)) < 0, we getY,(r,w) < O forallr € (a_(w), ay(w)) and all
w € m (2 N[y =h]). O

The following key theorem generalizes the fact tgat> 0 in D'(£2) whenay = 0 anday is
nondecreasing with respect¥dsee [15],[[17], and [27]). It will play a major role for the definition
of the free boundary and the proof of its continuity.

THEOREM2.1 Let(u, g) be a solution of P). For eacth € m,(£2),

P — H /
G- @ (Yo, Y >0 inD(Su(Dy),

whereYj, is given by (2.5) an@ = g o Tj 0 S, .

Proof. Let¢ € D(Sy(Dy)), ¢ > 0.Theng o Sy, o T[l € Cé(Th(Dh)) and by (1.5) and (2.2), we

have

/ gAX,e)V(po S, oT, Hdx <O.
Th(Dh)

Using the change of variabl@% (¢, ) = (x, y) and the fact that

we get

a
AX(t, @), e)(V($ o Sho T, ) o Ty - (=Yi(t, w) = =Yy (t, w)5(¢ o Sh)

/ goT(t,w) - (=Yy(t, w)) - 3(¢> o Sp) dt dw < O,
Dy, ot

which becomes, after using the change of varialﬁj,'e’s

/ goTpoS Hw, 1) (Y08, Hw, 1)) (3(45 o Sh)> oS- |det 7S, Y dwdr <O.
Sn(Dp) ot

Taking into account that

we obtain

d _ ¢ _ ¢
(5@ ° Sh>> oSt = 5 MG aleTios, Yo, ) = oo et TS,

/ g(w, T)-(—YhoS,jl(a), r))-a—¢dwdr<0. O
S (Dn) ot
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REMARK 2.1 In order to avoid complicated notations we will wrfeto denote the functiorf o
T, o Sh‘1 for any function defined on7}, (D). We will also denote by7, and)), the functions

Ty o S, t and—Y; o 5, * respectively.

3. Lower semicontinuity of the free boundary

In what follows we assume that there exist nonnegative consigntsand positive constants
%o, A1 With ¢ < 1 andi; > rg such that for allX, ¥ € £2, ¢, & € R?,

9A!
> 3o X 8ty > holi + 1Z1972)E 1%, 3.1
i,j J
A
'8—<X, ;)‘ <Ml + 121772, (3.2)
g
AKX, ) — AY, O] < @+ (219" H(X — Y|°). (3.3)

REMARK 3.1 @) If A(X, ¢) = a(X)¢ with a(X) a bounded 2-by-2 matrix, then (3.1) and (3.2)
are satisfied and (3.3) is not needed. In this czaseC,oo’é’(Q U S2 U S3) for somey € (0, 1).
(i) Assumptions (3.1)—(3.3) are satisfied in the case Wb, ¢) = |¢|?~2¢. Moreover under
these assumptions, we deduce from (1.4) (see [20], [30])4tls£afl%é’ (£2U 82U S3) for some
y € (0,1). Also by (1.4) andP) (i) we have divA(X, u)) = 0inD'([u > y]). It then follows
by (3.1)—(3.3) (see [19].[25] for example) that Cﬂ)g ([u > y]) for somes € (O, 1).
The following strong maximum principle (see [18]] [1]) will be needed:

LEmMMA 3.1 (Strong maximum principle) Let; anduy be two functions defined on a domain
of R? such thatur, us € CY(D), u1 > us in D, the set{X € D | Vur(X) = Vua(X) = 0} is
empty and divA(X, Vuy) — A(X, Vuz)) < 0. Then either

ui1=uxinD oOr u1>uzinD.
The theorem below will allow us to define the free boundi&ifye > y]) N £2 locally as a curve.
THEOREM 3.1 Let(u, g) be a solution of P) andXg = 7, (wo, T0) = (x0, yo) € £2.
@) If p(Xo) = p(wo, 0) > 0, then there exists > 0 such that

P, 1) >0 VY(,1)€Cc={(w,1)€SH(Dy) | |0 —wo| <€, T <10+ €},
(i) If p(Xo) = p(wo, 10) = 0, thenp(wp, T) = 0 forallT > 10.
Proof. (i) By continuity, there exists > 0 such that

P,7) >0 V(w,7)€ (wo—€,wp+€) X (tg—€, 10+ €) = Qe.

Theng(w, 1) = 0 for a.e.(w, 7) € Q.. By Theorem 2.1 and sin¢gg, > 0,2 > 0, we getg =0
a.e.inC¢,i.e.g = 0a.e. in7,(C¢) (see Figure 3).

By (1.4) we have divA(X, Vu))=div(g A(X, ¢))=0in D' (7;(C,)). Since difA(X, Vy)) >0
iND'(£2),Vy =e #0,u > yinT,(Ce) andu > yin 7,(Q.), it follows by Lemma 3.1 that > y
in 7, (Ce).

(i) This is a consequence of (i). |
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X (Oé;u (wo), wo)

p > 0inT,(Co)
X(a- (woﬁ, o)

FIG. 3

REMARK 3.2 (i) The result of Theorem 3.1 means that if a pdiigtis in the wet region, then
the part of the curv& (-, w) passing througtx atzo remains in the wet region for all< 7.
(i) In[17] and [27] we assumed that(X, e) = k(X)e, which leads taX’ (r) = 0 for all r and
the curveX (-, w) is a vertical segment. Therefore the free boundary is represented by a curve
of the formy = & (x).
(i) Wehaveu = p+y=¢+y>yonSz; (¢p >00nS3),i =1,...,N,andu € C%(2 U S3).
Sop > 0 belowsSs in the following sense:

p(X(t,w)) >0 Vit € [a_(w), ay(w)] such thatX (o (w), w) € S3.

DEFINITION 3.1 For eachh € 7, (£2) we define the functio®, onn,(£2 N[y = h]) by

sug(t | (w, ) € Sp(Dy), p(w, ) > 0} if this set is not empty,

@ = 3.4
w(@) 0 otherwise. (34)
Thanks to Theorem 3.1, is well defined and we have
PROPOSITION3.1 @ is lower semicontinuous am, (2 N[y = h]). Moreover
[P(w, 1) > 0] =1 < §p(w)]. (3.5)

Proof. First we show the lower semicontinuity @&,. Letwg € 7, (2 N[y = h]).
If @ (wo) = 0 then for eaclr > 0, @ (w) > 0 > @y, (wg) — € for all w.
If @,(wp) > 0O then for eacls > 0, there iste = Lj(te, wg) > O witht, € (¢—(wp), @+ (wo))
such that
Dp(wo) = Te > Pp(wo) —€/2,  plwo, ) > 0.

Moreover (se€ [23, Theorem 3.4, p. 24]) one can find- 0 such thaX (¢, w) exists for all(z, w) €
[@— (w0), a4 (w0)] X (wo — N1, wo + n1) and(t, w) — X (¢, w) is continuous. Then by continuity,
there exists O< 72 < n1 such that

p(X(t,w)) >0 V(t, o) € (te — 12, te +12) X (w0 — N2, w0 + 12).
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By Theorem 3.1, we deduce that

pX(t,w) >0 V() € (a—(0), e +n2) X (w0 — N2, w0 + 12).
Using the definition ofp;, we get, forw € (wo — 12, wo + n2),

Pp(w) = sup  {Ln(t,w) | (t,w) € D) and p(X(t, w)) > O}
te(a—(w),a+(w))
2 L/’l(tev CU)
SinceLj, (te, w) = féi(w) |A(X (s, ), )] ds is continuous with respect to, there exists 0< n < 12
such that for allv € (wg — 1, wo + 1),

le

|A(X (s, wp), e)| ds — E

te
Li(te, ) =/ LA (5. @), )] ds >/ ‘

- (@) (o)
€ € € €
= Ly (te, wo) — E =Te — E > @y (wo) — E — 5

Thus®y, (w) > &y (wp) — € forall w € (wo — 1, wo + n).

Now we prove (3.5). Letwo, 10) € [t < @5 (w)]. Assume thap(wp, o) = 0. Then by Theorem
3.1, p(wo, T) = 0forall T > 19. S0P}, (wo) = supt | (wo, T) € S;(Dy) andp(wo, T) > 0} < 710,
which is a contradiction.

Now let (wo, T0) € [p(w, T) > 0]. By continuity, there exists > 0 such thafy(wo, t) > 0 for
all t € (tp — 1, 10+ n). By Theorem 3.1, we deduce thatwo, ) > 0 for all T < 79 + 1 such
that (wo, T) € Sy (Dy). Henced;, (wo) > 10 + n > 10 and(wo, t0) € [t < Pp(w)]. |

4. Some technical lemmas
The following lemma plays an important role in the proof of the continuity of the free boundary.
LEMMA 4.1 Let(u, g) be a solution ofP). Let (w1, 10), (w2, T0) € S, (Dy) with w1 < wp and
P, t) =0 V(w;, 7)€ Sp(Dy), T >10>0.
SetZ, = Ty (w1, w2) x (10, +00) N Sy(Dy)) and assume that,, N S3 = @. Let yo € R be such
thatDy, -, = [y > yo] N Z, # ¥ (see Figure 4). Then
[ (A(X,Vu) — gAX,e)) -edX <0.
Dyy.7
To prove this lemma, we need another lemma:

LEMMA 4.2 Under the assumptions of Lemma 4.1, we have

w2 -
/D (AX, Vu) — x([u = yDA(X, e)) - V¢ dX < Yi(s, @u(s)) - ¢ (s, Pp(s)) ds

Y0:70 @1

forall ¢ € WH4(Dy, -,) N CO(D,y, ) such that > 0 and¢ (x, yo) = 0 for all (x, yo) € Dyq 1
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Proof of Lemma 4.2. Fore > 0,& = x (D) Min((u — y)/€, ¢) is a test function fo(P). So
sinceg - (u — y) = 0 a.e. inf2, we have

/ A(X,Vu)-V(u_yA§>dX<0.
D

Y0:70 €

Using the monotonicity ofd, we get

€

(AX, Vu) — A(X, e)) - VZ dX < —/
D

=—I.

/ A(x,e).v(”_y/\;>dx
Dyo.rom[”_)’>€§]

Y0-T0

Moreover

I. =/ x (1 > YDAX, e) - v(”e;y A ;) dx
D

Y0:70

_ /D (> YDA, o) - Vi dX

Y0:70

u—y\" 1_ 42
—/ A(X,e)-V(g'—T> x([u>yhdx =1"—1I~.
D

Y070

Now using the change of variabl&s, we obtain

2
17 = / .
T, (Dyg.rp)

+
= —/ x([poTh(t,w) > 0] - Yy(t, w) - 3(({ — £> o Th> dr dw
T, (Dyg.r) ot €

since

+ 9 +
AKX (1, ), €) - (v(; - g) ) o Ty - |Yi(t, )| = —Yi(t, @) - &<<g — g) ° Th>.

+
x([poTh(t, ) > ODAX (1, w), €) - (V(C - g) > o Tp|Yn(t, w)| df dow
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Next using the change of variablé;l, we get

2= / X (F@.7) > 0] - ¥i o 5 Hw. 1)
ShOT;r (D}O ro)

90 AN ~1 d -1 dw d
5 {—— oTy oS, (w,7)-|det TS, )| dwdr

P

~ a P\ 7"
x([p(w,7) > 0D - Vh(w, 1) - E(( - ?) (@, 7) do dr

ﬁfh‘lw.\vg,m)
since

P + +
(at<<g—_> oTh>>oS ©,7) =~ ((g--) oThoSh_l>(a),-c)-|A(ThoSh_l(a),r),e)|.

Therefore

—_~—

2_ P\ "
Ie = x([t < Pp(w)]) - Vn - {—— dow dr.

€

/(wl,wz)x(ro,+oo)ﬂ’2711([y>yo]
Note that for every € (w1, wp) there is a unique,,(w) such that

tyo(w)
Xa(tyy (@), @) = yo.  Tyg(@) = / LMK s0). 0l d,

and one can check that
(w1, w2) X (0, +00)NT, [y > yal) = {(@, 7) € SW(Dp) | € (w1, W2), T > SUPTO, Ty (@)}

It follows by the second mean value theorem that

—_~—

w2 Pp(w) 9 p +
I _/ / Ih(w, 1’)'—<§——) (w, 7) dwdt
w1 JSUNT0. 7y, () ot €

—_—~

Dy (w) p +
/ Vo, @(w))/ ) (;——) (. 7)dr
w1 T*(yg,w) 0T

< yh (@, P () (@, Dp (o)) do,

w1

wheret* (yo, w) € [sup(to, Ty, (w)), Pr(w)]. Thus

/ (A(X, Vu) — A(X,e)) - Ve dX + / x(u > yDAX, e) - Ve dX
Dy, ron[” y2ed]

Dyg.1g

w2 -
< / Yh(w, @(w)) - ¢ (0, Pp(w)) do

w1

and the lemma follows by lettinggo to 0. O
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Proof of Lemma 4.1. Lete > Oandh, =6, 0 S, o 7,71, where

a0t _ ot
Oc (w) = min (M 1) -min <M 1>.
€ €
Sincey (Dy,,-p)he(y — yo) is a test function fofP) we have
/ (A(X, Vu) — gA(X, e)) - edX
Dyg,rg

= /D (AX, Vu) — gA(X, €)) - V(y — yo) dX

Y0:70
= fD

+/D (AX, Vu) = gA(X, €)) - V((1 = he)(y — yo)) dX

Y070

(AX, Vu) — g A(X, €)) - V(he(y — yo)) dX

Y0:70

< [ (AX, Vu) — g A(X, €)) - V((1 = he)(y — y0)) dX

DYO,T()

= / (AX, Vu) = x([u = yDAX, €)) - V((1 = he)(y — yo)) dX

DYOJ()

+/ ([ =3]) — AX, ) V(L= ho)(y — yo)) dX = J+ J2.

Dyo.1o
By Lemma 4.2, witt = (1 —he) - (y —yo) = (L — 6 0 S, o Th_l) - (y — yo), we have
[0}

2 —
JE < Vh(@, Pp(®)) - (1= 0c (@) - (¥ — yo) (@, Pp(w)) do.

w1

Moreover
2= [ e = o) - . o)
T, " (Dyg.rp)
0 —_—
(@, )2 (1= Oe(@)) - (y = yo) (@, 7)) dw T
=/ ) x([P(w, 1) =0 — g(w, 1))
77 (Dyg.19
d
Yn(w, 7)- (1 - 96(60))5(%2 0 5, Hw. 1)) dwdr.
Sinced, — 1 ase — 0, we conclude thaf! 4 J2 — 0. This completes the proof. O

LEMMA 4.3 Let(u, g) be a solution of P). LetC;, be the connected component of ¢ @, (w)]
such that7;, (C,) N S3 = @. Then forC;, = 7, (C,) we have

(A(X,Vu) — gAX,e)) -edX <0.
Ch
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Proof. Step 1. Arguing as in the proof of Lemma 4.2, we get, for all nonnegative W14 (C;,) N
coCh),

(AX, Vu) = x([u = yDA(X, ¢)) - V£ dX < / Vi(s, Bu(s)) - £ (s, Py(s)) ds.

Cp T (Ch)

Step 2. Lete > 0andA = R\ 7, (Cy). We considetr. (w) = min(1, d(w, A)/€), he = ae © 7;,*1
and we argue as in the proof of Lemma 4.1. O

LEMMA 4.4 Let(u, g) be a solution of(P). Let Xg = (x0, yo) = 7n(wo, T0) be a point ins2,
(w0, T0) € Sy(Dy). Denote byB, (wg, t0) @ ball with center(wo, 7o) and radius- contained in
Sp(Dy). If p=0in B, (wo, 10), then (see Figure 5)

p=0 inC,, g=1 ae.inC,

whereC, = {(w, 1) € Syp(Dy) | lo—wo| < r, T > 10}UB,(wp, 10), i.€. if p = 0in 7, (B, (wo, 10)),
thenp =0,g = 1 a.e.in7,(C,).

S2
Tn(Dy)

T, (B (wo, T0))
FIG. 5

Proof. Note that by Remark 3.2, we necessarily have
X(ay(w),w) € S2 Yw € (wg—1, w0+ 7).

By Theorem 3.1(ii), we havgg = 0 in C,. Applying Lemma 4.1 withZ,;, = 7;((w1, w2) %
(t0, +00) N S (Dy)) C 7;,(C,) we obtain

/ 1-gAX,e)-edX <0 VygeRsuchthat] > yg] N Z, # 9.
[y>y0]NZ,

Sog =1 a.e. inZ,. This holds for all domaing, in 7,(C,) and we geg = 1 a.e. in7,(C,). U

The following result is a sort of maximum principle.
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LEMMA 4.5 Let(u, g) be a solution of(P), Xg = (xg, yo) = 75(wo, T0) be a point off2 and
B, be an open ball irs, (D;,) with center(wo, t9) and radius-. Then the following situations are
impossible (see Figures 6, 7 and 8):

0 p(wo,7) =0 Vre(tg—r,10+7),
plw,t) >0 V(w, 7)€ B \S, S={wo} x (to—r,t0+7r),
G plw, 1) =0 V(w,7) € B N[w < wg],
P, 7) >0 VY(w,7) € B, N[w > wg],
(i) P, 1) =0 V(w,1) € B, N[w > wpl,
p(w,7) >0 VY(w,7) € B N[w < wp).

Proof. (i) Sinceu > y a.e. in7,(B,), we haveg = 0 a.e. in7,(B;) and then by (1.4)x is
A-harmonic in this domain. It follows by Lemma 3.1 that> y oru = y in 7,(B,), which
contradicts (i).

p>0
r=0

75, (B, (wo, T0))
FiG. 6

(ii) Let & € D(75,(B))), & > 0. Using the fact that¢ are test functions fofP) and applying the
changes of variableg, andsS;,, we obtain, as in the proof of Theorem 2.1,

/ A(X,Vu).vgdxzf g.A(X,e)~V§dX=/ §~yh-§dwdt.
T (By) T (By) B, ot
Now by Lemma 4.4, we havg = 1 a.e. inB, N [o < wp] and then
o€
/ A(X,Vu)~V§dX=/ YV, - —=dwdr
ThoS; (By) dt

B N[w<wo]

=/ —E%dwdwr/yh?v,:/ —E@dwdr.
B,N[w<wo] at S BrN[w<wo) at

71 (B (wo, 10))

FIGg.7
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It follows that

/ (A(X, Vu) — A(X, Vy)) - VEDX = E%da)dr—/ E%dwdr
Ty (By) B 0T By N[w<awo]

~0
= / & ﬂ dwdr > 0.
B,Nw>wg] 0T

Sinceu > yin7,(B;),u = y in 7,(B, N[w < wq]), Vy = e # 0, we deduce from Lemma 3.1
thatu = y in 7, (B,), which contradicts the fact that> y in 7, (B, N [ > wg]).
(iii) Argue as in (ii). |

71 (B (wo, 10))

FIG. 8

5. Continuity of the free boundary
In this section we assume thdtis strictly monotone in the following sense:

(AX, ) —AX,0)-(6—-¢)>0 VE#£¢, VX €. (5.1)
Then we have
THEOREMS5.1 For eachh € 7,(£2), the function®,, defined in (3.4) is continuous on, (£2 N
[y = hD.

Proof. It suffices to prove tha®,, is upper semicontinuous. L&ty = 7, (wg, T0) € 2 Nd[p > 0]
and lete > 0 be small enough. Thanks to Theorem 3.1 and Remark 3.2 we have necessarily
X (a4 (wp), wo) ¢ S3. Two cases are to be distinguished:
(i) First we assume tha (« (wo), wo) & S3, WhereS3 denotes the closure 6§ relative t0d $2.
Sincep(Xg) = p(wo, T0) = 0andp, a. are continuous, there exists a hBjl (wo, 70) (0 < €’ < ¢€)
such that
Plw,7) <€ V(w, 1) € Be(wo, 10),
X(aq(w), w) € S3 VYo € (wg — €, wp + €).

By Lemma 4.5, one of the following situations occurs:

(@ 3I(w1,11) € Ber(wo, 10) suchthat w; < wg, p(w1, 1) =0,
(b)  I(wy, 12) € Ber(wo, T9) Suchthat wy > wp, p(wz, 12) = 0.

Assume that for example (a) holds and Xet= 7, (w1, 1) andty = max(tg, t1) (see Figure 9).



FILTRATION THROUGH POROUS MEDIUM 71

T, (B¢ (wo, T0))

FIGg. 9

Then by Theorem 3.1 we have
pPlwi,t) =0 VY(w;, 1) € SK(Dy) suchthat > 7y (i =0, 1).

SetZ., = Tn((w1, wo) x (ty, +00) N Sy(Dy)) and letyo € R be such tha?, *([y = yo]) N
B/ (wo, 10) N[t > 1] # @. Note that

7, Yy = ya)

ty (®)
= {(w, Tyo(@)) € Sh(Dp) | Tyo(w) 2/ ’ lAX (s, ), e)| ds, Xa(tyy(w), w) = yo}-

—(w)

Set
Dyo,rM =[y > yg] N Zey #0,

v() =(e+y—N*+y,
é(x’ )7) = X(Dyo,rM)(u -V
Sincev > y = u ondDyy ¢, \ ([y = yo]), we havet = 0 ondDy, ,, \ ([y = yo]). Moreover

v(y0) = € + yo = u(x, yo) and therg (x, yo) = 0. It follows thatt = 0 ondD,, .,,. So+£ are test
functions for(P) and we have

)

/ (AX, Vu) — gA(X,e)) - V(u —v)TdX = 0. (5.2)
D

Y0 T™

We also have

/ (AX, Vv) — x([v = yDA(X,e)) - V(u — v)T dX = 0. (5.3)
Dygry
Subtracting (5.3) from (5.2), we obtain
/ (A(X, Vi) — A(X, Vv)) - V(u — v)T dX
Dyg,zp Nlv>y]

+/ (AX, Vi) — gAX, ) - V(u — y)dX = 0. (5.4)
Dyo,rM Nlv=y]
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By Lemma 4.1, for§ > yo + €] N Z,, = Dy 1, N[v = y] we have
/ (A(X,Vu) — gA(X,e)) -edX < 0. (5.5)
Dyo.fM Nlv=y]
Adding (5.4) and (5.5), by taking into accoui®) (i) we get

/ (AX, Vu) — A(X, Vv)) - V(u —v)T dX
D

V0 TM N[v>y]

+/ AX, Vu)-VudX+/ 1-g9)AX,e)-edX <0.
Dy, rp Nv=y]N[u>y] Dy, vy Nv=y]N[u=y]

Since the three integrals on the left hand side of the above inequality are all nonnegative, we
conclude by (5.1) tha¥ (u — v)* = 0 a.e. inDy, ;,, N [v > y] and then, sincéu — v)* = 0 on

9Dy, -, We getu < vin Dy, o, N[v > y]. This leads top(x, yo +¢€) =0forallx € mx(Dy, 7).

Now for eachw € (w1, wo), there exists a uniqug, « (w) € (a—(w), a4 (w)) such that

Xo(tyge(@), w) =yo+€,  p(X1(ty,e(®), ), yo+¢€) =0,

and if 7y, c (@) = Lyyte(ty,e(®), w), then we obtainp(w, tyy (@) = p o Th(tyye(w), w) =
P(X1(tyg.e(w), w), yo+€) = 0forallw € (w1, wo). Therefore®, (w) < 1,4 (w). But sinceX» is
increasing with respect tq and X»(ty,(w), w) = yo andXo(ty, (), @) = yo + €, it follows that
tyo(w) < tyy e (w) and then

ty ,e(fl))
€ = Xo(tyy,e (@), w) — Xo(tyy (), w) = / ° aZ(X(s, w)) ds

[yo(w)
> A(tyo,e(w) - tyo(w))
and
fyo.é(w)
e (@) = Tyo(@) + / IAX (5. ). )| ds

tyg (w)

M
< tyo(w) + M(tyo,e(a)) - tyo(w)) < fyo(w) + 76-

So
M , M M
P (w) < Typ(w) + TE <10+€ + 76 < @p(wo) + [ 1+ - € Yo € (w1, wp).

Hence®y, is u.s.c. atwg from the left. Using Lemma 4.5 and arguing as above, one can prove that
@y, is u.s.c. atwg from the right. Thusp;, is cogtinuous atvg.
(ii) Now we assume thaX (a4 (wo), wo) € S3\ S3. Then one of the following situations holds:

@ Im>0Voe(wo—nwo+1n Xai(w),w) cS3 & e (w,wo+n)
() Im>0Vowe(w—nwo+1n X(oy(w),w) €Sz & we (w—1,wn).
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Assume for example that (a) holds. Then it is easy to see that
Pp(w) = Lp(at(w), w) VYo € (wo, wo + 7). (5.6)

Arguing as in (i) one can prove thdt, is continuous atyg from the left. On the other hand, we
deduce from (5.6) that > y in a right neighborhood of the cun&(-, wg). Using the continuity
from the left and Lemma 4.5, we have necessabilf(wo) = Lj (a1 (wo), wg). Therefore we now
have

Dy (w) = Ly(ag(w), ) Yo € [wg, wo + 1),

which leads to the continuity ab;, from the right atwg.
We argue similarly if (b) holds. |

REMARK 5.1 (i) For eachXo € 2 Nd[p > 0], there existsr € 7, (£2) such thatXy €
T,(Dp) N 3[p > 0] and thenXg = 7}, (wo, t0) With 79 = @}, (wp). Therefore from Theorem
5.1, the free boundary is represented in a neighborhoaog dify the graph of the continuous
function @;,.
(i) Since the free boundary is now represented locally by graphs of continuous functions, it
follows in particular thad[p > 0] is of Lebesgue measure zero.

The following result expresses the fact tlgds the characteristic function of the dry region.

COROLLARY 5.1 Let(u, g) be a solution ofP). Then
g=x([p=0D=x([u=yD. (5.7)

Proof. First by (P)(i), we haveg = 0 in [p > 0]. Next if (xg, yo) € £ \ [p > 0], then since
£2\[p > O] is an open set there exigts > 0 small enough and € 7, (£2) such thatB.,(xo, yo) C
2\ [p > 0] NTy(Dp).

By Lemma4.4g =1a.e. in?;l_l(Beo(xo, yo)) or equivalentlyg = 1 in B¢, (xo, yo). Therefore
g=1in2\[p > 0]

Since the sed[p > 0] N £2 is of Lebesgue measure zero, we conclude ghat x ([p = 0]) =
x([u = yD. 0

6. Unigueness of reservoirs-connected solutions

DEFINITION 6.1 A solution(«, g) of (P) is areservoirs-connected solutiohfor each connected
component of [u > y], we haveC N S3 # 0.

REMARK 6.1 Thanks to Remark 3.2, @ > S3; (i =1,..., N), thenC contains the strip of2
below S3; in the following sense:

U Th(a(S5,) x RYNSi(Dy)) € €. where S5, =T, (Sz,).
hemy(£2)

THEOREM6.1 Let(u, g) be a solution ofP) andC a connected component of B y] such that
CNS3=0.Sethe =supy | (x,y) € C}. Then

u(x,y)=(hc=»NTxC+y, g=1-x(C)
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for
@y e |J @€ xRNSy(Dy)). where C, =7, (C N T;(2)).
hemy (£2)

Proof. Sincexy (C)(u — y) are test functions fofP), we have
/C(A(X, Vu) —gA(X,e))-V(u —y)dX =0. (6.1)
By Lemma 4.3, we have
/C (A(X, Vu) — gA(X, e)) - edX < 0. (6.2)
Adding (6.1) and (6.2), we obtain
/ A(X, Vu) - VudX + / 1-—2)AX,e)-edX <O0.
CNu>y]

CNlu=y]

It follows that Vu = 0 a.e. inC and sou is equal to some positive constanin C, which can be
easily verified to be equal tioc.

Using Theorem 3.1 and (5.7) we deduce that (hc — y)Tx(C) + y andg = 1 — x(C) in
Uner, @) (Tn (T (Ch) x RO Sy (D). O

DEFINITION 6.2 We define @oolin £2 to be a paiu, g) of functions defined in2 by
u=(hc—y)"x(C)+y and g=1-x(C) a.e.ing,

whereC is a subdomain of2 andh¢c = maxy | (x, y) € C}.

THEOREM®6.2 Each solution ofP) can be written as the sum of a reservoirs-connected solution
and pools.

Proof. Seel[14],[15],[1¥] and [27]. O

In order to prove the uniqueness of the reservoirs-connected solution we assusigistaftclass
cle and is covered by a finite number of sefs(Dy,), that is, there aréy, ..., h, € Ty (82)
such that

2= Th, (Dp,). (6.3)

1

n
k=
We also assume that

AKX, €) = la(X)E - £]972/24(X)e, where a(X) € C1(2)isa2-by-2 matrix  (6.4)

Then we can state our uniqueness theorem
THEOREM 6.3 Under assumptions (6.3)—(6.4), the reservoirs-connected solution is unique.

The proof of Theorem 6.3 requires three lemmas.
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LEMMA 6.1 Let(u1, g1) and(uz, g2) be two solutions ofP). Then fori = 1, 2 and; € W4(£2)
we have

Fi(¢) = /Q((A(X, Vui) — AX, Vum)) — (i — gm)A(X, €)) - V¢ dX =0,

whereu,, = min(u1, up) andgy = max(g1, g2)-
To prove Lemma 6.1 we need another lemma:

LEMMA 6.2 Let(us, g1) and(u2, g2) be two solutions ofP) andqulk (i=12andk=1,...,n)

be the corresponding free boundary functions. Theri ferl, 2 ands € W4(2) N C9($2) with
¢ > 0we have

FOY [ .0} @) 0Thy 0 5,10, 0], (@) do.
k=1"“ny

whereDj, = {o € 7,(S, (D)) | q>,9k (w) = min(q>,}k (w), ‘Dﬁk (@) < @}, (0)}.
Proof. First thanks to (6.3) there exists a partition of unity);_, corresponding to the open
covering(7y, (Dp,));_, of £2, that is,

n
6 € D(Ty, (Dp,)), 0< 6, <1 Vk=1,....n, Zekzl ing. (6.5)
k=1

Let; € Wh4(2) N CO%2), ¢ > 0and lety, = 6. SinceF;(¢) = > k1 Fi (g, it suffices to
show that

Fig) < /D  Dh@. B @) - & 0 Ty 0 8, M@, B, (@) o, (6.6)
hi
So lete > 0 and&; = min(gy, (uy — uz)™/€). Clearly+&; are test functions fofP) and we have
/ ((A(X, Vur) — A(X, Vu2)) — (g1 — g2)A(X, e)) - V& dX = 0. (6.7)
Ty (Dpy)

Since we integrate only on the seti[> u2] whereuz = u,,, (6.7) is equivalent toF1(&;) = O,
which can be written as

(AX, Vug)— AX, Vitn))- Vi dX — f (91— g3 A(X, €)-V¢ dX

/Thk (D )N[r—u2)t>eg] Thy, (D)

—ut\ T
(o1 — u)” ) dx = 1%,
€

< —/ (81— gm)AX, e) - V(Ck -
Thk (th)

Using theC?! diffeomorphismsTy,, andsSy,, for gy = g10 Tp, o S,jkl andgyx = gm o T, © Sh’kl
we obtain

. 9 [~ (u1—up)t\"
Ik = —f @ — Fute) - Vi (@, r)—(ck - g) do dr
Sny. (Dry.) ot €
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- RIS
=/ I (0, T)i<§k——(u1 uz) ) dw dt
[Pk >0=Ppmk =] dt €

0 [~ TVt
= / yhk(a), 'C)—(;k — M) da)dl’
[<Pfk(w)<r<¢>,}k(w)] at €
A 9 [~ NN
:/ a I, (o, r)—(gk - M) dow dr.
Dy, 0t €

qb,%k (@)

By the second mean value theorem there exigtan) € [@ﬁk (w), qb}}k (w)] such that

4),},{(0)) 9 [/~ (Ml—/\u/z)+ +
Ik = / Vi (@, D)) —(g——) do dr
Dhlk qalf(w) at €

< [ Yo 0} @) G, 9 @) do.
Iy
It follows that

/ (A(X, Vu1) — A(X, Vuy)) - Vi dX
Thy, (D )N[(1—u2) T >egi]

— / (81— gm)AX, ) - Vg dX < / Vi (@, P (@) - G0, P} () do.
Tiyy (Diy) Dj,
Lettinge go to 0, we get (6.6) for = 1. The proof fori = 2 is similar. |

Proof of Lemma 6.1. Let¢ € C1(£2), ¢ > 0. Fors > 0 we set

_d(@.7), An)

+
3 ) s hSZOlSOShkOTh_kl

Am - U[Emk > 0]9 aa(a)v T) - <1

k=1

and remark thaf(¢) = F1(hs¢) + F1((1 — hs)¢). By the previous lemma we have
Fihsg) <Y /D I (@, D (@)@, Bj; (@)as (@, D (@) do.

k=1 "y
Since(1 — hg)¢ is a test function fofP), we have
/Q (A(X. Vup) — g1A(X. ¢)) - V(L — hp)¢) dX < 0.
Moreover the function + «s vanishes om,, andgy = 1in 2\ A,,. So

/Q(A(X, Vi) — guAX, €)) - V(L= hs)¢)dX = 0.
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This leads taF1((1 — hs)¢) < 0and
Fi) <y /D Vi@, P @)@, B (@)as (@, D, (@) do.
k=1""n;

Lettings — 0, we deduceF1(¢) < 0. Itis then easy (see [15], [17], [27]) to show ttf&t(z) = O
forall ¢ € WL4(£2). Similarly we obtainF»(¢) = 0 for all ; € W9(£2). O

LEMMA 6.3 Let£2g be a domain oR2, Iy C 952 of classC1* and letu1, us € Wé’é’((zo) be
such that:

(i) div(A(X, Vup)) = div(A(X, Vup)) =0 inD' (o),

(i) w1 <uz in$o,

(i) w1 =usonlp, u1,use CL(2oU ),

(iv) A(X,Vui)-v=AX,Vupz)-v only,

(V) Vuir(X)#0 VX elp or VuxX)#0 VX e Ip.
Thenuy = uzin $2.

Proof. Seel[16]. O

Proof of Theorem 6.3. Wheng = 2 the proof is given in[[27]. For the general case we use
Lemma 6.3.

Let (u1, g1), (u2, g2) be two solutions ofP). By Lemma 6.1 one can see that,, gy) is also
a solution of(P). Let C,,; be the connected component of the sgf [> y] that containsSz; on
its boundary. By Lemma 6.1 we deduce easily thatindu,, satisfy the conditions (i) and (iv) of
Lemma 6.3 with2g = C,,,; andIp = S3;.

The condition (ii) is obviously satisfied and the first part of (iii) is true singe= uo = ¢ + y
on S3. The second part of (iii) is also true (s€el[19] and [26]). So if we show that (v) is satisfied we
will get u1 = u,, in Cy, ;. For this purpose, we distinguish two cases:

e If Vuy andVu,, are not identically zero oiip then by (iii) there existdly C Ip such that
Vug # 0onIyorVu, # 0 only. Therefore (v) is satisfied ofy.

o If Vuy = 0onrlpandVu, = 0 on Iy, thenuj andu,, are both constant alonfy. Since
u1 = u, onSs, it follows thatu1 = u,, = h; on Iy for some constarit;. Therefore one can extend
u1 andu,, into B \ 2 by h; whereB is a ball centered at a point 8; = I in such a way that
uj € Cl(Cm,i U B) and diMA(X, Vu;)) = 0inD’'(C,,; U B). SoVu; has nonisolated zeros and
then (see [4]}; = h; in Cp; (j = 1, m). Thusuy = uy, in Gy ;.

One can show as in[15], [17], [27] thay ; = C,,; andu1 = u,, in C1;. In the same way we

prove thatup = u,, in C2; = Cp. ;. We conclude that; = upin C1; = Co; foralli =1,..., N.
This means that1 = up in [u1 > y] = [uz > y], which leads ta:; = uz in £2. Finally, we deduce
from (5.7) thatgs = g2 in £2. |

REMARK 6.2 The assumption (6.4) is needed only to ensure the isolation of critical points of
A-harmonic functions (se&l[1]).
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