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Stability in a two-dimensional combustion model†
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We study the stability of a planar travelling wave in the two-dimensional NEF-combustion model
when the reduced Lewis number is equal to zero. The functional analytic setting consists of spaces
of suitably exponentially weighted Ḧolder continuous functions. By exploiting the appearance of
the integrated Burgers equation in the equations for perturbations of the wave we avoid the usual
assumption that the perturbation must be localized in the lateral space coordinate.
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1. Introduction

In the 1980s Sivashinsky introduced and studied a two-dimensional thermo-diffusive model for
flames in gaseous mixtures. This model is based on the assumption that the diffusion coefficients
of the gas and the temperature are almost equal (Nearly Equidiffusional Flame theory), and on the
assumption that the normalized activation energyZ is very large. With the combustion confined
to a thin zone of orderZ−1, this leads to the following free boundary problem for the reduced
temperatureΘ, the reduced enthalpyS, and the frontφ:

∂Θ

∂t
= ∆Θ, t > 0, y ∈ R, η < φ(t, y),

Θ = 1, t > 0, y ∈ R, η > φ(t, y),

∂S

∂t
= ∆S − λ∆Θ, t > 0, y ∈ R, η 6= φ(t, y),

[Θ] = [S] = 0, t > 0, y ∈ R,[
∂Θ

∂n

]
= − exp(S),

[
∂S

∂n

]
= λ

[
∂Θ

∂n

]
, t > 0, y ∈ R,

(1.1)
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wheren denotes the outward normal to the surfaceη = φ(t, y). The differential equations forΘ
andS as well as the boundary conditions are coupled by a real parameterλ which is a dimensionless
constant proportional to the reduced Lewis number. The variablesΘ andS arise as the first relevant
terms in the NEF approach for the thermo-diffusive model for temperatureT and mass fractionY .
This system consists of the reaction-diffusion equations

∂T

∂t
= ∆T + ω(Y, T ),

∂Y

∂t
=

1

Le
∆Y − ω(Y, T ), ω(Y, T ) = Y exp

(
−
Z
T

)
.

With the enthalpy defined asH = T + Y , this approach is based on expandingT andH as formal
power series in the reciprocal ofZ, coupling the Lewis number Le toZ as Le−1

= 1 − Z−1le,
where le is the reduced Lewis number. In this expansionH0 is a constant (given by the limits ofT
andY in front of the flame front). The NEF model is then derived forT0 andH1. Here we conform
with the notation in [3], whereΘ = T0, H1 = 2S and the reduced Lewis number le is replaced by
−2λ. We refer the reader to the original paper by Sivashinsky [11] for more details on the physical
aspects of this model and to [3] for a more mathematical discussion of (1.1).

For anyλ ∈ R problem (1.1) admits a unique (up to translations) planar (i.e. independent ofy)
travelling wave (TW) solution given by(t, η) 7→ (φ(t),Θ0

λ(η + t), S0
λ(η + t)), with

φ(t) = −t,

{
Θ0
λ(x) = exp(x), S0

λ(x) = λx exp(x), if x < 0,

Θ0
λ(x) = 1, S0

λ(x) = 0, if x > 0.
(1.2)

Stability/instability of this solution under two-dimensional perturbations is of physical relev-
ance. The formal study, made by Sivashinsky in [11], showed that there exists a critical valueλc < 0
of λ such that the planar TW should be orbitally stable forλ ∈ (λc,1) and orbitally unstable for
λ < λc and forλ > 1.

The instability of the TW was proved in [3] with respect to small and sufficiently smooth
perturbations in the context of Ḧolder spaces. However, the role of the Kuramoto–Sivashinsky
equation, derived in this context by Sivashinsky for the description of cellular instabilities for
λ > 1, seems to remain out of reach of rigorous mathematical methods. We note that whereas
in the unstable case the Kuramoto–Sivashinsky equation is expected to play a role, in the stable case
this role is played by the integrated Burgers equation. In the context of bistable reaction-diffusion
systems both cases are discussed on a completely formal and heuristic level in [6].

Next, in [2] the first author, in a joint paper, proved stability of the TW in the case where
λ = 0, assuming to perturbonly the temperatureΘ. The quadratic term in the integrated Burgers
equation appearing in the leading order terms in the perturbation analysis is absorbed in the linear
terms by means of a Cole–Hopf bifurcation. Remarkably this makes the usual assumption that
perturbations are localized in the lateraly-direction redundant, which may be interpreted as an a
posteriori validation of the role of the integrated Burgers equation.

More recently, in [8, 9] the second author, in a joint paper, showed stability of the TW forλ ∈

(λc,1) in the context of weighted Ḧolder spaces in a slightly different model where the nonlinear
term exp(S) is replaced byf (S) = 1 + S + O(Sk) for somek > 5. They assume that the weight
function depends both onη andy and do not use any explicit form of (part of) the quadratic terms.
Here the analogy (of theλ = 0 case) with [5] in the (diagonal) reaction-diffusion context should be
noted, where the localization assumption appears in a different form (in view of the use of Sobolev
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spaces). We emphasize that such results do not fully generalize the one-dimensional results which
allow perturbations converging to a translate of the wave.

Here we generalize the result of [2] to the NEF model withλ = 0, allowing perturbations onΘ
andS as well. We prove that the TW solution is stable with respect to suitable weighted (inx only)
smooth perturbations.

To prove our stability results, we transform the problem (by suitable changes of coordinates and
unknowns) into an equivalent one of the form{

Dtu(t, x, y) = Lu(t, x, y)+ F(u(t, ·))(x, y), t > 0, (x, y) ∈ R2
−,

Bu(t, ·)(y) = G(u(t, ·))(y), t > 0, y ∈ R,
(1.3)

set in the fixed space domainR2
− := R−×R, whereL is a second order operator andB is a first order

boundary operator, both with constant coefficients. The nonlinear and nonlocal operatorsF andG
are quadratic near 0. Now, the problem of the stability of the TW for problem (1.1) is transformed
into the problem of the stability of the null solution to problem (1.3).

The realizationL of the operatorL in the space of all bounded and continuous functions
generates an analytic semigroup and its spectrum consists of all theω ∈ C such that Reω 6
−(Imω)2. Hence the spectrum ofL is contained in the left half-plane and 0 is an accumulation
point of eigenvalues. Hence we are in a critical case of stability and we cannot invoke the linearized
stability principle to prove our stability results.

Working with a spaceX of weighted continuous functions (corresponding in our situation to
an exponential weight function in thex-variable) allows us to limit the continuous spectrum to the
half-line (−∞,0], but hereby we remain in the critical case of stability. The key idea to overcome
this difficulty consists in determining a suitable projection, which is not a spectral projection, but
enjoys most of the typical properties of a spectral projection, namely we determine a projectionP

such that

‖D
α1
t D

α2
x D

α3
y (I − P)etL‖L(X) 6 Me−ωt , ∀t > 0, (1.4)

for some positive constantω and for any multindexα = (α1, α2, α3), where byetL we denote the
(analytic) semigroup generated by the operatorL. To construct the projectionP we observe that
the operatorL can be split into the sum of two operatorsL1 andL2 acting, respectively, on thex-
and they-variable, which commute in the resolvent sense. Since 0 is a simple eigenvalue ofL1,
we can find the spectral projectionP corresponding to the eigenvalue 0 ofL1. Such a projection is
readily seen to satisfy (1.4). To carry out our construction of the projectionP , it is essential thatL
can be split into the sum of two operators commuting in the resolvent sense. As pointed out in the
appendix, this is the case only ifλ = 0, where the system of differential equations in (1.1) and the
operatorL in (1.3) are in diagonal form.

Splitting the solutionu to the initial value problem for (1.3) alongP(X) and(I − P)(X) we
can writeu(t, x, y) = r(t, y)(ex,0,0) + w(t, x, y). This position allows us to decouple problem
(1.3) into two new problems for the pair(r,w). The differential equation in the first system is a
nonlinear Burgers equation. The second system is set in the stable manifold(I − P)(X) where the
semigroup satisfies (1.4). What we expect is thatw and its derivatives decay at least with polynomial
rate at infinity, and this is just the case. Hence the asymptotic behaviour of the solution to problem
(1.1) is determined by the behaviour near infinity of the solution to the Cauchy problem associated
with the nonlinear Burgers equation. Such an equation contains the termr2

y which is critical for the
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stability. Performing a suitable Cole–Hopf transformation allows us to eliminate this term. We get a
new equation for the new unknownq, namely a nonlinear heat equation whose solution exhibits the
same decay estimates at infinity as the linear heat equation does. Henceq stays bounded inR+ × R
while its derivatives decay polynomially whent approaches infinity.

Coming back to our original problem (1.1) we can conclude that the solution(Θ, S, φ),
corresponding to initial data close to the TW, exists globally in time and, in the coordinate system
attached to the front,Θ, S andφ stay bounded and sufficiently close to the TW, while their space
and time derivatives decay with polynomial rate at infinity.

2. Reduction to a fixed boundary problem

In this section we transform our problem into an equivalent one of the type (1.3). First of all we
fix the boundary by settingΘ1(t, x, y) = Θ(t, x + φ(t, y), y), S1(t, x, y) = S(t, x + φ(t, y), y).
Moreover, we setϕ(t, y) = φ(t, y)+ t . Easy computations show that the triplet(Θ1, S1, ϕ) solves
the following problem:

Θ1
t +Θ1

x = ∆Θ1
+ (ϕy)

2Θ1
xx − 2ϕyΘ

1
xy + (ϕt − ϕyy)Θ

1
x , x < 0, (2.1)

Θ1
= 1, x > 0, (2.2)

S1
t + S1

x = ∆S1
+ (ϕy)

2S1
xx + (ϕt − ϕyy)S

1
x − 2ϕyS

1
xy, x 6= 0, (2.3)

[Θ1] = [S1] = [S1
x ] = 0, [Θ1

x ] = −(1 + ϕ2
y)

−1/2eS
1
. (2.4)

Here [· ] denotes the jump atx = 0, and∆ = D2
x +D2

y . To decouple the system we argue as in [3]
introducing the new unknownsv andw defined by

(i) Θ1(t, x, y) = Θ0(x)+Θ0
x (x)ϕ(t, y)+ v(t, x, y);

(ii) S1(t, x, y) = w(t, x, y);
(2.5)

here and throughout the paper we writeΘ0 instead ofΘ0
0 (see (1.2)).

Performing the change of unknowns in (2.5), we get an equivalent problem for the triplet
(v,w, ϕ). But taking the jump of both sides of (2.5i) atx = 0, and recalling that [Θ1] = [S1] = 0,
we get

ϕ(t, y) = −v(t,0, y), ∀t > 0, ∀y ∈ R. (2.6)

Settingu = (v,w, h), whereh(t, x, y) = w(t,−x, y) for any t > 0 and any(x, y) ∈ R2
− :=

{(x, y) ∈ R2 : x 6 0}, and replacing the unknown front by its expression in terms ofu given by
(2.6), we get the following problem which is equivalent to (2.1)–(2.4):{

ut (t,x,y) = Lu(t,x,y)+ F0(u(t, ·))(x,y)− vt (t,0,y)Ψ (u(t, ·))(x,y), t > 0, (x, y) ∈ R2
−,

(Bu(t, ·))(y) = G(u(t, ·))(y), t > 0, y ∈ R.
(2.7)

In (2.7) the second-order differential operatorL, the boundary differential operatorB =

(B0, B1, B2) andF0(u) = (f1(u), f2(u), f3(u)) are given, respectively, by

Lu = (∆v − vx,∆w − wx,∆h+ hx); (2.8)
B0u = w(·,0, ·)− h(·,0, ·),

B1u = wx(·,0, ·)+ hx(·,0, ·),

B2u = v(·,0, ·)+ h(·,0, ·)− vx(·,0, ·);

(2.9)
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f1(u) = (vy(·,0, ·))
2(Θ0

xx − v(·,0, ·)Θ0
xxx + vxx)+ 2vy(·,0, ·)(−vy(·,0, ·)Θ

0
xx + vxy)

+ vyy(·,0, ·)(−v(·,0, ·)Θ
0
xx + vx), (2.10)

f2(u) = (vy(·,0, ·))
2wxx + 2vy(·,0, ·)wxy + vyy(·,0, ·)wx, (2.11)

f3(u) = (vy(·,0, ·))
2hxx − 2vy(·,0, ·)hxy − vyy(·,0, ·)hx, (2.12)

whileΨ (u) andG(u) are defined by

Ψ (u) = (−v(·,0, ·)Θ0
xx + vx, wx,−hx) (2.13)

and

G(u) = (0,0, g(u)), g(u) = 1 + h(·,0, ·)− (1 + (vy(·,0, ·))
2)−1/2eh(·,0,·). (2.14)

Problem (2.7) still contains the unknownvt (t,0, y) in its right-hand side. However, evaluating
the first component of the differential equation in (2.7) atx = 0, we can getvt (t,0, y) in terms of
the space derivatives ofu, providedvx(t,0, y)−v(t,0, y) 6= −1. Thus, we finally get the following
problem foru:{

ut (t, x, y) = Lu(t, x, y)+ F(u(t, ·))(x, y), t > 0, (x, y) ∈ R2
−,

(Bu(t, ·))(y) = G(u(t, ·))(y), t > 0, y ∈ R,
(2.15)

where

F(u(t, ·)) = F0(u(t, ·))−
∆v(t,0, ·)− vx(t,0, ·)+ f1(u(t, ·))(0, ·)

1 − v(t,0, ·)+ vx(t,0, ·)
Ψ (u(t, ·)), ∀t > 0. (2.16)

Note that the TW solution to the original problem corresponds to the null solution to (2.15) and
the solutions close to the TW correspond to small solutions to (2.15).

3. The function spaces

In this section we introduce the Banach spaces we deal with throughout this paper. For notational
convenience we use bold style to denote vector-valued functions. According to the notations of
the previous sections, we setR2

− := {(x, y) ∈ R2 : x < 0} and we denote byR2
− its closure

in R2. Moreover, for anyf : R2
− → R3, f = (f, g1, g2), we denote byf] the function defined by

f](x, y) = (e−x/2f (x, y), e−x/2g1(x, y), e
x/2g2(x, y)).

DEFINITION 3.1 For anyk > 0 we define the function spaceXk by

Xk = {f : R2
− → R3 : f] ∈ Ckb (R

2
−)},

and we endow it with the norm‖f‖Xk = ‖f]‖Ckb (R2
−)

, f ∈ Xk.
Moreover, for anya, b ∈ R+ ∪ {+∞}, a < b, and anyα ∈ (0,1) we define the Banach spaces

Xα/2,α(a, b) = {u : u(t, ·) ∈ Xα ∀t ∈ [a, b], sup
a<t<b

‖u(t, ·)‖Xα < +∞,

u(·, x, y) ∈ Cα/2([a, b]) ∀(x, y) ∈ R2
−, sup

(x,y)∈R2
−

‖u(·, x, y)‖Cα/2([a,b]) < +∞},

X1+α/2,2+α(a, b) = {u : Dα1
t D

α2
x D

α3
y u ∈ Xα/2,α(a, b) for 2α1 + α2 + α3 6 2}.
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They are normed by

‖u‖Xα/2,α(a,b) = sup
a<t<b

‖u(t, ·)‖Xα + sup
(x,y)∈R2

−

[u(·, x, y)]Cα/2([a,b]),

‖u‖X1+α/2,2+α(a,b) =

∑
2α1+α2+α362

‖D
α1
t D

α2
x D

α3
y u‖Xα/2,α(a,b).

DEFINITION 3.2 For anyα ∈ (0,1) and anya, b ∈ R+ ∪ {+∞}, a < b, C(j+α)/2,j+α([a, b] × R)
(j = 1,2) denotes the usual parabolic Hölder space

C(j+α)/2,j+α([a, b] × R) = {ψ : ψ(t, ·) ∈ C
j+α
b (R), sup

t∈[a,b]
‖ψ(t, ·)‖

C
j+α
b (R) < +∞,

ψ(·, y) ∈ C(j+α)/2([a, b]), sup
y∈R

‖ψ(·, y)‖C(j+α)/2([a,b]) < +∞},

endowed with the norm

‖ψ‖C(j+α)/2,j+α([a,b]×R) = sup
t∈[a,b]

‖ψ(t, ·)‖
C
j+α
b (R) + sup

y∈R
[ψ(·, y)]C(j+α)/2([a,b]), j = 1,2.

DEFINITION 3.3 We denote byXq the Banach space of all functionsq : R+ × R → R such
that t 7→ q(t, ·) is continuous in [0,+∞) with values inC2

b(R), is continuously differentiable with
values inCb(R), bounded with values inC2+α

b (R) (α ∈ (0,1)); t 7→ qt (t, ·) and t 7→ qyy(t, ·)

are Ḧolder continuous with exponentα/2 and with values inCb(R); qt is bounded with values in
Cαb (R) and

‖q‖Xq = sup
t>0

‖q(t, ·)‖Cb(R) + sup
t>0
(1 + t)(‖qt (t, ·)‖Cαb (R) + ‖qyy(t, ·)‖Cαb (R))

+ sup
06s<t

(1 + s)

(
‖qt (t, ·)− qt (s, ·)‖Cb(R)

(t − s)α/2
+

‖qyy(t, ·)− qyy(s, ·)‖Cb(R)
(t − s)α/2

)
< +∞.

Moreover, we denote byXw the space of all functionsw : R+ × R2
− → R3 such thatt 7→

w(t, ·) is continuous in [0,+∞) with values inX2, is continuously differentiable with values inX0,
bounded with values inX2+α; t 7→ Dtw andt 7→ w(t, ·) are Ḧolder continuous with exponentα/2
and with values inX0 andX2, respectively, and

‖w‖Xw = sup
t>0
(1 + t)(‖w(t, ·)‖X2+α

+ ‖wt (t, ·)‖Xα )

+ sup
06s<t

(1 + s)

(
‖w(t, ·)− w(s, ·)‖X2

(t − s)α/2
+

‖Dtw(t, ·)−Dtw(s, ·)‖X0

(t − s)α/2

)
< +∞.

We conclude this section with the following lemma.

LEMMA 3.4 Letq : R+ × R → R be a continuous function such that

[[q]] := sup
t>0

‖q(t, ·)‖Cb(R) + sup
t>0
(1 + t)(‖qyy(t, ·)‖Cαb (R) + ‖qt (t, ·)‖Cαb (R)) < +∞.
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Then
(i) sup

t>0
(1 + t)1/2‖qy(t, ·)‖Cb(R) 6 C[[q]] ;

(ii) sup
06s<t

(1 + s)(t − s)−(2−j+α)/2
‖D

j
yq(t, ·)−D

j
yq(s, ·)‖Cb(R) 6 C[[q]] , j = 1,2.

(3.1)

If w : R+ × R− × R → R is such that

[[w]] := sup
t>0
(1 + t)(‖w(t, ·)‖X2+α

+ ‖Dtw(t, ·)‖Xα ) < +∞,

then
sup

06s<t
(1 + s)(t − s)−(2−j+α)/2

‖w(t, ·)− w(s, ·)‖Xj 6 C[[w]] , j = 1,2. (3.2)

HereC denotes a positive constant independent ofq (resp. ofw).

Proof.The proof is based on interpolation inequalities. Estimates (3.1i) and (3.1ii), forj = 1, have
been proved in [2, Lemma 2.5]. To prove (3.1ii) withj = 2 and (3.2) it suffices to argue as in the
proof of the quoted lemma, observing that, for anyα ∈ (0,1), there exists a positive constantC
such that

‖f ′′
‖Cb(R) 6 C[f ]α/2

Cαb (R)
[f ′′]1−α/2

Cαb (R)
, ∀f ∈ C2+α

b (R),

and
‖u‖Xj 6 C‖u‖

(2−j+α)/2
Xα

‖u‖
(j−α)/2
X2+α

, ∀u ∈ X2+α, j = 1,2. 2

4. The fully nonlinear problem

This section, the main body of the paper, is devoted to proving that the null solution to problem
(2.15) is stable with respect toX2+α-perturbations. As we are going to show, we are in a critical
case of stability, since the spectrum of the realizationL of L inX0 is contained in the left half-plane
and contains 0 as an accumulation point of eigenvalues. Hence, we cannot apply the linearized
stability principle to prove our stability results, since we cannot eliminate the eigenvalue 0 from
the spectrum ofL by a spectral projection. Nevertheless we can define a suitable projectionP

which is not a spectral projection, but enjoys most of the typical properties of a spectral projection.
In particular (see Theorem 4.3), the restriction ofetL to (I − P)(X0) gives rise to an (analytic)
semigroup of negative type.

To get such a projection we observe that the operatorL can be split into the sum of two operators
L1 andL2 commuting in the resolvent set. 0 is a simple eigenvalue ofL1. Hence, we can define a
spectral projection associated with it: this will be our projectionP .

4.1 The realization ofL in weighted Ḧolder spaces

In this subsection we show that the realizationL of the differential operatorL in X0 generates an
analytic semigroup, we characterize its domain and spectrum, and the interpolation spaces of order
α/2, 1/2 and 1+ α/2 (α ∈ (0,1)). Finally we provide a suitable projectionP satisfying (1.4).

To begin with, let us consider the following theorem which has been already proved, in a more
general context, in [7].
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THEOREM 4.1 The realizationL of the operatorL inX0 generates an analytic semigroup provided
we set

D(L) =

{
u ∈ X0 ∩

⋂
1<q<+∞

W
2,q
loc (R

2
−) : Lu ∈ X0, Bu(0, y) = 0 ∀y ∈ R

}
, (4.1)

where the boundary differential operatorB is given by (2.9). Its spectrum is given byσ(L) =

(−∞,0]. Moreover, for everyα ∈ (0,1) the set equalities

DL(α/2,∞) = {u ∈ Xα : B0u = 0 atx = 0},

DL(1 + α/2,∞) = {u ∈ X2+α : Bu = 0, B0Lu = 0 atx = 0}

hold, with equivalence of the respective norms. Finally,

{u ∈ X1 : B0u = 0 atx = 0} ⊂ DL(1/2,∞),

with continuous embedding.

Proof. See [7, Theorem A.2 & A.3]. 2

As Theorem 4.1 shows we are in a critical case of stability, since the spectrum ofL is contained in
the left half-plane and 0 is an accumulation point of eigenvalues. To construct a suitable projection
satisfying (1.4) we begin by splitting operatorL into the sum of the two operatorsL1 : D(L1) ⊂

X0 → X0 andL2 : D(L2) ⊂ X0 → X0 formally defined byL1u = (vxx−vx, wxx−wx, hxx+hx)

andL2u = (vyy, wyy, hyy), where

D(L1) = {u : Djxu ∈ X0 for j = 0,1,2, Bu = 0},

D(L2) = {u : Djyu ∈ X0 for j = 0,1,2}.
(4.2)

Let us consider the following lemma.

LEMMA 4.2 Both the operatorsL1 andL2 are infinitesimal generators of analytic semigroups
in X0 provided their domains are chosen as in (4.2);σ(L1) = (−∞,−1/4] ∪ {0} andσ(L2) =

(−∞,0]. Moreover, for anyf = (f, g, k) ∈ X0,

[R(ω,L1)f]1 =
1

√
1 + 4ω

(
a(f)eµ2x −

∫ x

0
eµ2tf (x − t, y)dt +

∫ 0

−∞

e−µ1tf (t + x, y)dt

)
,

[R(ω,L1)f]2 =
1

√
1 + 4ω

(
b(f)eµ2x −

∫ x

0
eµ2tg(x − t, y)dt +

∫ 0

−∞

e−µ1tg(t + x, y)dt

)
, (4.3)

[R(ω,L1)f]3 =
1

√
1 + 4ω

(
c(f)e−µ1x −

∫ x

0
e−µ1tk(x − t, y)dt +

∫ 0

−∞

eµ2tk(t + x, y)dt

)
,

whereµj =
1
2 + (−1)j 1

2

√
1 + 4ω for j = 1,2 and

a(f) =
1

µ2 − 1

(
µ2

∫ 0

−∞

e−µ1tf (t, y)dt +
∫ 0

−∞

e−µ1tg(t, y)dt +
∫ 0

−∞

eµ2tk(t, y)dt

)
, (4.4)

b(f) =

∫ 0

−∞

eµ2tk(t, y)dt, c(f) =

∫ 0

−∞

e−µ1tg(t, y)dt. (4.5)
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Finally,ω = 0 is a simple eigenvalue ofL1; the corresponding eigenspace is spanned by the function
U0 = (Θ0,0,0) and the spectral projection associated with it is the operatorP : X0 → X0 defined
by Pu = M(u)U0, where

M(u)(y) =

∫ 0

−∞

v(x, y)dx +

∫ 0

−∞

w(x, y)dx +

∫ 0

−∞

exh(x, y)dx, ∀y ∈ R. (4.6)

Proof. The proof, being straightforward, is left to the reader. 2

We are now going to prove that, even ifP is not a spectral projection associated with the operator
L, it enjoys most of the typical properties of a spectral projection. In particular,P commutes with
etL, and(I −P)etL decays with exponential rate ast tends to+∞. This property will play a crucial
role in proving our stability results.

THEOREM 4.3 The operatorP defined in Lemma 4.2 commutes with the semigroupetL.
Moreover, for anyε > 0 there exists a positive constantM := M(ε) such that

‖(I − P)etL‖L(X0) 6 Me(−1/4+ε)t . (4.7)

In particular, (1.4) holds true for any space and time derivative ofetL.

Proof. We begin the proof by observing thatetL = etL1etL2 for any t > 0. To check this property
we can limit ourselves to proving that all the assumptions of Da Prato–Grisvard’s Theorem (see [4])
are satisfied. Hence, we need to check thatL1 andL2 commute in the resolvent sense. Of course,
thanks to Lemma A.1, we can limit ourselves to showing thatL2R(ω,L1)f = R(ω,L1)L2f for any
ω ∈ ρ(L1) and anyf ∈ D(L2), and this follows immediately if we take (4.3)–(4.5) into account.

Now, recalling thatP is the spectral projection associated with the simple eigenvalueω = 0 of
the operatorL1 we can write

Pu =
1

2πi

∫
γ

R(ω,L1)u dω, ∀u ∈ X0, (4.8)

whereγ is a suitable closed and smooth curve aroundω = 0 contained inρ(L1), oriented counter-
clockwise.

Fix ω0 ∈ ρ(L2). ApplyingR(ω0, L2) to both sides of (4.8) and taking into account the fact that
L1 andL2 commute in the resolvent sense, we can easily show thatP commutes withR(ω0, L2),
and consequently it commutes withetL2. This is enough for our aims. Indeed,etL = etL1etL2 for
anyt > 0. Hence,

PetL = PetL1etL2 = etL1PetL2 = etL1etL2P = etLP,

so thatP commutes with the semigroupetL. Moreover, sinceω = 0 is an isolated simple eigenvalue
of L1 and sup{Reω : ω ∈ σ(L1), ω 6= 0} = −1/4, it follows that for anyε > 0 there exists a
positive constantM := M(ε) such that

‖(I − P)etL1‖L(X0) 6 Me(ε−1/4)t , ∀t > 0.

SinceetL2 is the heat semigroup, we have‖etL2‖L(X0) 6 1 for anyt > 0. Hence,

‖(I − P)etL‖L(X0) = ‖(I − P)etL1etL2‖L(X0) 6 ‖(I − P)etL1‖L(X0)‖e
tL2‖L(X0) 6 Me(ε−1/4)t
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for any t > 0, and (4.7) follows. Now observing thatLetL(I − P) = LeLe(t−1)L(I − P) for
any t > 0, we easily deduce thatLetL(I − P) decays at least ase(ε−1/4)t ast tends to+∞. The
same holds forLnetL(I − P) for anyn ∈ N. If we take into account the characterization of the
interpolation spacesDL(α/2,∞) andDL(1+α/2,∞) in Theorem 4.1, estimate (1.4) immediately
follows. 2

4.2 A suitable splitting of problem (2.15)

In this subsection we deal with the initial value problemu(0, ·) = u0 for the nonlinear problem
(2.15). To begin with, we splitu alongP(X0) and(I − P)(X0) asu = Pu + w := r(t, y)U0 + w.
Then we determine the Cauchy problems satisfied by the pair(r,w). For this purpose we begin by
observing thatLu = LPu + Lw. Moreover,LPu = ryyU0 and

PLv = −(B2v)U0, ∀v ∈ (I − P)(X2) such thatB0v = B1v = 0. (4.9)

Hence,r andw turn out to solve the following coupled Cauchy problems:

(i)

{
rt = ryy − B2w +M(F(u)),
r(0, ·) = M(u0),

(ii)


Dtw = Lw + (B2w)U0 + (I − P)F(u),

Bw = G(u),

w(0, ·) = (I − P)u0,

(4.10)

where the linear operatorM is defined in (4.6). Straightforward computations and the fact that
Bu = Bw = (0,0, g(u)) show that

M(F(u)) = (ry + vy(0))
2

 eh(0)√
1 + (ry + vy(0))2

− h(0)+
vx(0)− vxx(0)

1 − v(0)+ vx(0)

∫ 0

−∞

exh(x)dx


+ 2(ry + vy(0))

(∫ 0

−∞

exhy(x)dx +
vy(0)− vxy(0)

1 − v(0)+ vx(0)

∫ 0

−∞

exh(x)dx

)
−

vxx(0)− vx(0)

1 − v(0)+ vx(0)

∫ 0

−∞

exh(x)dx,

where, to shorten the notation, we simply wroteDαv(x), Dαw(x) andDαh(x) (|α| 6 2, x 6 0)
instead ofDαv(·, x, ·),Dαw(·, x, ·) andDαh(·, x, ·).

Let us now consider the differential equation in (4.10i). Since, as already pointed out,B2w =

g(u), we can write

rt (t, y) = ryy(t, y)+
1
2r

2
y +H(r(t, ·),w(t, ·))(y), ∀y ∈ R, (4.11)

whereH(r,w) is anonlinearoperator which is quadratic near(0,0). The second order terms in the
expression ofH are both quadratic in the derivatives ofw, and are given by the product of(∂j/∂yj )r
(j = 0,1,2) multiplied either byy-derivatives ofv andh or by

∫ 0
−∞

exh(x)dx. Equation (4.11)

exhibits a critical growth at 0 due to the presence of the term1
2r

2
y . To skip the problems given by the

nonlinearity, we perform a Cole–Hopf transformation, namely we setq := er/2−1. Straightforward
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computations show that the differential equation (4.11) transforms into the differential equation
qt (t, y) = qyy(t, y)+ H̃(q(t, ·),w(t, ·))(y) for the unknown(q,w), where

H̃(q,w) =
q + 1

2

(
2qy
q + 1

+ vy(0)

)2

×

 eh(0)√
1 +

(
2qy
q+1 + vy(0)

)2
− h(0)− 1 +

vx(0)− vxx(0)

1 − v(0)+ vx(0)

∫ 0

−∞

exh(x)dx


+ 2

(
qy +

q + 1

2
vy(0)

)(∫ 0

−∞

exhy(x)dx +
vy(0)− vxy(0)

1 − v(0)+ vx(0)

∫ 0

−∞

exh(x)dx

)
−
(q + 1)(vxx(0)− vx(0))

2(1 − v(0)+ vx(0))

∫ 0

−∞

exh(x)dx +
q + 1

4
(vy(0))

2
+ qyvy(0)

+
q + 1

2
(eh(0) − 1)

 1√
1 +

(
2qy
q+1 + vy(0)

)2
− 1

+
q + 1

2
(eh(0) − 1 − h(0))

+
q + 1

2

 1√
1 +

(
2qy
q+1 + vy(0)

)2
− 1 +

1

2

(
2qy
q + 1

+ vy(0)

)2
. (4.12)

Let us now observe that

K(q,w) := B2w + (I − P)F(u) := g̃(q,w)U0 + (I − P)(F(2 log(q + 1)U0 + w)), (4.13)

where

g̃(q,w) = 1 + h(0)−
eh(0)√

1 +

(
2qy
q+1 + vy(0)

)2
; (4.14)

(I − P)F(2 log(q + 1)U0 + w)

=

(
2qy
q + 1

+ vy(0)

)2
wxx −

vxx(0)− v(0)+ 1

1 − v(0)+ vx(0)
w̃x +

(
1 +

vxx(0)− vx(0)

1 − v(0)+ vx(0)
v(0)

)
U0

−

 eh(0)√
1 +

(
2qy
q+1 + vy(0)

)2
− h(0)−

vxx(0)− vx(0)

1 − v(0)+ vx(0)

∫ 0

−∞

exh(x)dx

U0


+ 2

(
2qy
q + 1

+ vy(0)

)[
w̃xy −

vxy(0)− vy(0)

1 − v(0)+ vx(0)
w̃x −

vy(0)− vxy(0)

1 − v(0)+ vx(0)

(∫ 0

−∞

exh(x)dx

)
U0

−

(∫ 0

−∞

exhy(x)dx

)
U0 +

v(0)vxy(0)− vy(0)(1 + vx(0))

1 − v(0)+ vx(0)
U0

]
−

vxx(0)− vx(0)

1 − v(0)+ vx(0)

[
w̃x −

(
v(0)+

∫ 0

−∞

exh(x)dx

)
U0

]
, (4.15)
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andw̃ = (v,w,−h). Hence, the pair(q,w) turns out to solve the Cauchy problems

(i)

{
qt = qyy + H̃(q,w),
q(0, ·) = exp(M(u0)/2)− 1,

(ii)


Dtw = Lw +K(q,w),

Bw = G(u),

w(0, ·) = (I − P)u0,

(4.16)

where the nonlinear operators̃H andK are given, respectively, by (4.12) and (4.13)–(4.15).

4.3 Optimal regularity for the linear problem

We devote this section to proving optimal Schauder estimates for the solutions to the linearized
problems associated with systems (4.16), namely the problems

(i)

{
qt = qyy + ϕ,

q(0, ·) = q0,
(ii)


Dtw = Lw + f,

Bw = (0,0, ψ),

w(0, ·) = w0.

(4.17)

Problem (4.17i) has been partly already considered in [2, Theorem 2.6]. Note that the asymptotic
estimates of the solution to problem (4.16) are crucial to proving our stability results. However,
since not all the estimates we need are contained in the quoted theorem, we give the details.

THEOREM 4.4 Letϕ : R+ × R → R satisfy

[[ϕ]]0 = sup
t>0
(1 + t1+α/2)‖ϕ(t, ·)‖Cαb (R) + sup

06s<t
(1 + s)

‖ϕ(t, ·)− ϕ(s, ·)‖Cb(R)
(t − s)α/2

< +∞, (4.18)

for someα ∈ (0,1). Further, assume thatq0 ∈ C2+α
b (R). Then problem (4.17i) admits a unique

bounded strict solutionq, which belongs toXq (see Definition 3.3) and satisfies the following
estimate:

‖q‖Xq + sup
s>0
(1 + s)

‖qy(t, ·)− qy(s, ·)‖Cb(R)
(t − s)(1+α)/2

6 C(‖q0‖C2+α
b (R) + [[ϕ]]0), (4.19)

for some positive constantC, independent of(q0, ϕ).

Proof. Throughout the proof, we denote byCj (j ∈ N) positive constantsindependentof the data
andt .

As is well known (see e.g. [10, Theorems 4.3.1 & 4.3.8]), our assumptions guarantee that
problem (4.17i) admits a unique strict solutionq ∈ C1+α/2([0, T ];Cb(R))∩B([0, T ];C2+α

b (R))∩
Cα/2([0, T ];C2

b(R)) such thatqt ∈ B([0, T ];Cαb (R)) for anyT > 0. The solutionq is given by the
variation-of-constants formula

q(t, ·) = T (t)q0 +

∫ t

0
T (t − s)ϕ(s, ·)ds, ∀t ∈ [0, T ],

whereT (t) is the Gauss–Weierstrass semigroup, i.e.

(T (t)g)(y) =
1

√
4πt

∫
R
e−|y−z|2/4tg(z)dz, ∀t > 0, y ∈ R,
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for anyg ∈ Cb(R). Moreover, there exists a positive constantC1 such that

‖q‖
B([0,1];C2+α

b (R)) + ‖qt‖B([0,1];Cαb (R)) + ‖qt‖Cα/2([0,1];Cb(R)) + ‖qyy‖Cα/2([0,1];Cb(R))

6 C1‖ϕ‖B([0,1];Cαb (R)). (4.20)

It is also well known that for anyβ ∈ [0,1) and anyk ∈ N there exist positive constantsCβ,k such
that

‖DkyT (t)g‖Cb(R) 6 Cβ,kt
−(k−β)/2

‖g‖
C
β
b (R)

, ∀t > 0, ∀g ∈ C
β
b (R). (4.21)

It immediately follows thatT (·)q0 belongs toB([0,+∞);C2+α
b (R)) ∩ C1

b([0,+∞);Cb(R)) and
there exists a positive constantC2 such that

sup
t>0

‖T (t)q0‖Cb(R) + sup
t>0
(1 + t)‖DyyT (t)q0‖Cαb (R) 6 C2‖q0‖C2+α

b (R). (4.22)

Let us now consider the convolution termq1(t, ·) =
∫ t

0 T (t − s)ϕ(s, ·)ds and let us estimateq1 for
t > 1. From (4.21) we immediately deduce that

‖q1(t, ·)‖Cb(R) 6 sup
r>0
(1 + r1+α/2)‖ϕ(r, ·)‖Cb(R)

∫
+∞

0
(1 + s1+α/2)−1 ds, ∀t > 1, (4.23)

sinceC0,0 = 1. As far as the second order space derivative ofq1 is concerned, we observe that

‖D2
yq1(t, ·)‖Cb(R) 6

∥∥∥∥∫ t/2

0
D2
yT (t − s)ϕ(s, ·)ds

∥∥∥∥
Cb(R)

+

∥∥∥∥∫ t

t/2
D2
yT (t − s)ϕ(s, ·)ds

∥∥∥∥
Cb(R)

6 C0,2 sup
r>0
(1 + r1+α/2)‖ϕ(r, ·)‖Cb(R)

∫ t/2

0

1

1 + s1+α/2

1

t − s
ds

+ Cα,2 sup
r>0
(1 + r1+α/2)‖ϕ(r, ·)‖Cαb (R)

∫ t

t/2

1

1 + s1+α/2

1

(t − s)1−α/2
ds

6 C3 sup
r>0
(1 + r1+α/2)‖ϕ(r, ·)‖Cb(R)t

−1, ∀t > 1. (4.24)

Moreover,

‖ξ1−α/2D2
yT (ξ)D

2
yq1(t, ·)‖Cb(R) = ξ1−α/2

∥∥∥∥∫ t

0
D4
yT (t + ξ − s)ϕ(s, ·)ds

∥∥∥∥
Cb(R)

6 Cα,4 sup
r>0
(1 + r1+α/2)‖ϕ(r, ·)‖Cαb (R)

∫ t/2

0

ξ1−α/2

(t + ξ − s)2−α/2

ds

1 + s1+α/2

+ Cα,4 sup
r>0
(1 + r1+α/2)‖ϕ(r, ·)‖Cαb (R)

∫ t

t/2

ξ1−α/2

(t + ξ − s)2−α/2

ds

1 + s1+α/2

6 Cα,4 sup
r>0
(1 + r1+α/2)‖ϕ(r, ·)‖Cαb (R)(t/2)

−(2−α/2)
∫

+∞

0

ds

1 + s1+α/2

+ Cα,4 sup
r>0
(1 + r1+α/2)‖ϕ(r, ·)‖Cαb (R)(t/2)

−(1+α/2)
∫

+∞

0

ds

(1 + s)2−α/2

6 C4t
−(1+α/2) sup

r>0
(1 + r1+α/2)‖ϕ(r, ·)‖Cαb (R), ∀ξ ∈ (0,1).
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Hence,

sup
ξ∈(0,1)

‖ξ1−α/2D2
yT (ξ)D

2
yq1(t, ·)‖Cb(R)

6 C4t
−(1+α/2) sup

r>0
(1 + r1+α/2)‖ϕ(r, ·)‖Cαb (R), ∀t > 1. (4.25)

Sincef ∈ Cαb (R) if and only iff ∈ Cb(R) and [[f ]]Cαb (R) := supξ∈(0,1) ‖ξ
1−α/2D2

yT (ξ)f ‖Cb(R) <
+∞, and the usual norm ofCαb (R) is equivalent to the norm‖ · ‖Cb(R) + [[ · ]]Cαb (R), from (4.24)
and (4.25) we immediately deduce that

sup
t>1
(1 + t)‖D2

yq1(t, ·)‖Cαb (R) 6 C5(‖q0‖C2+α
b (R) + [[ϕ]]0). (4.26)

Taking (4.20), (4.22), (4.23), (4.26) and Lemma A.3 into account, we can now easily show that

sup
t>0

‖q(t, ·)‖Cb(R) + sup
t>0
(1 + t)‖qyy(t, ·)‖Cαb (R) 6 C6(‖q0‖C2+α

b (R) + [[ϕ]]0). (4.27)

Moreover, sinceqt (t, ·) = qyy(t, ·) + ϕ(t, ·), from (4.27) and our assumptions onϕ, we easily
deduce that

sup
t>0
(1 + t)‖Dtq(t, ·)‖Cαb (R) 6 C7(‖q0‖C2+α

b (R) + [[ϕ]]0). (4.28)

From (4.27), (4.28) and Lemma 3.4 we immediately deduce thatD
j
yq ∈ C

(2−j+α)/2
b ([0,+∞);

Cb(R)) for j = 1,2 and there exists a positive constantC8 such that

sup
06s<t

(1 + s)

(
‖D

j
yq(t, ·)−D

j
yq(s, ·)‖Cb(R)

(t − s)(2−j+α)/2
+

‖Dtq(t, ·)−Dtq(s, ·)‖Cb(R)
(t − s)α/2

)
6 C8(‖u0‖C2+α

b (R) + [[ϕ]]0), (4.29)

for j = 1,2. Now, (4.19) follows from (4.27)–(4.29). 2

We now turn to problem (4.17ii). For this purpose we prove the following lemma which provides
a suitable lifting operator mappingCkb (R) intoXk+1 for anyk > 0.

LEMMA 4.5 There exists a lifting operatorN ∈ L(Ckb (R), Xk+1) for anyk > 0 such that

(i) BNψ = (0,0, ψ) for anyψ ∈ Cb(R);
(ii) PNψ = 0 for anyψ ∈ Cb(R);

(iii) PLNψ = −ψU0 for anyψ ∈ C1
b(R).

Proof. LetN be the linear operator defined by

Nψ = xη(x)

∫
R
ϕ(ξ)ψ(y + ξx)dξ, ∀ψ ∈ Cb(R),

whereη is any smooth function satisfyingη(x) = 1 for anyx ∈ [−1,0] andη(x) = 0 for anyx 6
−2, whileϕ is any smooth even function compactly supported in(−1,1) such that 06 ϕ(x) 6 1
for anyx ∈ R and with‖ϕ‖L1(R) = 1. As is immediately seen,N ∈ L(Ckb (R), C

k+1,]
b (R2

−)) for
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anyk > 0, whereCk+1,]
b (R2

−) denotes the set of all continuous functionsf : R2
− → R such that

(x, y) 7→ e−x/2f (x, y) is bounded. Moreover,(Nψ)(0, ·) = 0 and(DxNψ)(0, ·) = ψ .
DefineN0 by setting

Nψ = (I − P)(−Nψ,0,0), ∀ψ ∈ Cb(R).

It is immediate to check thatN ∈ L(Ckb (R), Xk+1) for anyk > 0. Moreover, by construction,N
has both properties (i) and (ii). Property (iii) easily follows from (i) and (4.9). 2

The solution to problem (4.17ii), under suitable assumptions onw0, f andψ , is given by the
following formula, a variant of the Balakrishnan formula:

w(t, ·) = etLw0 +

∫ t

0
e(t−s)L(f(s, ·)+ LNψ(s, ·))ds

− L

∫ t

0
e(t−s)LNψ(s, ·)ds, ∀t > 0. (4.30)

To be more precise, the following theorem holds.

THEOREM 4.6 Letw0 ∈ (I − P)(X2+α), ψ ∈ C(1+α)/2,1+α([0, T ] × R) and f ∈ Xα/2,α(0, T )
(T > 0), with f(t, ·) ∈ (I − P)(X0) for anyt ∈ [0, T ], satisfy the compatibility conditions

Bw0(0, ·) = (0,0, ψ(0, ·)), B0(Lw0(0, ·)+ f(0, ·)) = 0. (4.31)

Then problem (4.17ii) admits a unique solutionw ∈ X1+α/2,2+α(0, T ) given by (4.30), whereN is
the lifting operator in Lemma 4.5. Moreover,w(t, ·) ∈ (I − P)(X0) for any t ∈ [0, T ] and there
exists a positive constantC(T ) > 0, independent of the data, such that

‖w‖X1+α/2,2+α(0,T ) 6 C(T )(‖w0‖X2+α
+ ‖f‖Xα/2,α(0,T ) + ‖ψ‖C(1+α)/2,1+α([0,T ]×R)). (4.32)

Proof. The proof can be easily obtained by adapting the techniques of [7, Theorem 4.1]. 2

Due to the particular nonlinearitỹH we are considering, we can assume thatf is split asf = g+ψU0
for suitable functionsg andψ .

The following theorem deals with the asymptotic behaviour of the functionw in (4.30).

THEOREM 4.7 Suppose thatg ∈ Xα/2,α(0,∞) (α ∈ (0,1)) is such thatg(t, ·) ∈ (I − P)(Xα) for
anyt > 0 and

[[g]]1 := sup
t>0
(1 + t)‖g(t, ·)‖Xα + sup

06s<t
(1 + s)

‖g(t, ·)− g(s, ·)‖X0

(t − s)α/2
< +∞. (4.33)

Further, assume thatw0 ∈ (I − P)(X2+α) andψ ∈ C(1+α)/2,1+α([0,+∞)× R) is such that

[[ψ ]]2 = sup
t>0

(1 + t)‖ψ(t, ·)‖
C1+α
b (R)

+ sup
06s<t

(1 + s)

(
‖ψ(t, ·)− ψ(s, ·)‖Cb(R)

(t − s)(1+α)/2
+

‖ψy(t, ·)− ψy(s, ·)‖Cb(R)
(t − s)α/2

)
< +∞

(4.34)
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and
Bw0 = (0,0, ψ(0, ·)), B0(Lw0 + g(0, ·)) = (−ψ,0,0). (4.35)

Then problem (4.17ii) withf = g + ψU0 admits a unique solutionw ∈ Xw given by (4.30).
Moreover,w(t, ·) ∈ (I − P)(X0) for anyt > 0 and

‖w‖Xw + sup
06s<t

(1 + s)
‖w(t, ·)− w(s, ·)‖X1

(t − s)(1+α)/2
6 C(‖w0‖X2+α

+ [[g]]1 + [[ψ ]]2). (4.36)

Before proving the theorem let us consider the following two lemmas.

LEMMA 4.8 LetZ be a Banach space, letA : D(A) ⊂ Z → Z be the generator of an analytic
semigroup of negative type inZ, and letu0 ∈ Z, f : [0,+∞) → Z be anα/2-Hölder continuous
function such that

[[f ]]3 := sup
t>0
(1 + t)‖f (t)‖Z + sup

06s<t
(1 + s)

‖f (t, ·)− f (s, ·)‖Z

(t − s)α/2
< +∞, (4.37)

with 0< α < 1. Then the function

u(t) = etAu0 +

∫ t

0
e(t−s)Af (s)ds (4.38)

is the unique classical solution ofu′(t) = Au(t) + f (t) such thatu(0) = u0; u′(t, ·) has values in
DA(α/2,∞) for anyt > 0 and

sup
t>1
(1 + t)(‖u(t)‖D(A) + ‖u′(t)‖DA(α/2,∞))+ sup

16s<t
(1 + s)

‖u′(t)− u′(s)‖Z

(t − s)α/2

6 C(‖u0‖Z + [[f ]]3). (4.39)

Finally, if u0 ∈ D(A) and Au0 + f (0) ∈ DA(α/2,∞), then u ∈ C1+α/2([0,1];Z) ∩

Cα/2([0,1];D(A)) andu′
∈ B([0,1];DA(α/2,∞)). Moreover, there exists a positive constantC,

independent of the data, such that

‖u‖C1+α/2([0,1];Z) + ‖u‖Cα/2([0,1];D(A)) + ‖u′
‖B([0,1];DA(α/2,∞))

6 C(‖u0‖D(A) + ‖Au0 + f (0)‖DA(α/2,∞) + ‖f ‖Cα/2([0,1];Z)). (4.40)

Proof. It is well known (see e.g. [10, Theorem 4.3.8]) that, under our assumptions, formula (4.38)
defines the unique classical solution of the equationu′

= Au + f . Moreover, if u0 ∈ D(A)

andAu0 + f (0) ∈ DA(α/2,∞), thenu ∈ Cα/2([0, T ];D(A)) ∩ C1+α/2([0, T ];Z) andu′
∈

B([0, T ];DA(α/2,∞)) for any T > 0, and (4.40) is satisfied. Hence, we can limit ourselves to
dealing with the asymptotic behaviour ofu, simply by checking (4.39). For this purpose we observe
that,etA being a semigroup of negative type, there exist positive constantsω andMk (k ∈ N) such
that

tk‖AketA‖L(Z) 6 Mke
−ωt , ∀t > 0, k ∈ N. (4.41)

Taking (4.41) into account, it is now easy to show that the functionsu1(t) = etAu0 andAu1 decay
exponentially at infinity. In particular, there exists a positive constantC such that
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sup
t>1
(1 + t)(‖u1(t)‖D(A) + ‖u′

1(t)‖DA(α/2,∞))+ sup
16s<t

(1 + s)
‖u′

1(t)− u′

1(s)‖Z

(t − s)α/2

6 C‖u0‖Z. (4.42)

Let us now consider the integral termu2(t) =
∫ t

0 e
(t−s)Af (s)ds. As is easily seen,

‖u2(t)‖Z 6 sup
r>0
(1 + r)‖f (r)‖Z

(∫ t/2

0
(1 + s)−1e−ω(t−s) ds +

∫ t

t/2
(1 + s)−1e−ω(t−s) ds

)
6 sup

r>0
(1 + r)‖f (r)‖Z

(
e−ωt/2

∫ t/2

0
(1 + s)−1 ds + (1 + t/2)−1ω−1

)
6 C(1 + t)−1 sup

r>0
(1 + r)‖f (r)‖Z, ∀t > 0. (4.43)

Similarly, since

u′

2(t) =

∫ t

0
Ae(t−s)A(f (s)− f (t))ds + etAf (t), ∀t > 0,

we easily deduce that

‖u′

2(t)‖Z 6 M1 sup
06σ<τ

(1 + σ)
‖f (τ)− f (σ)‖Z

(τ − σ)α/2

∫ t

0
(1 + s)−1(t − s)α/2−1e−ω(t−s) ds

+M0e
−ωt sup

t>0
‖f (t)‖Z

6 M1

(
(t/2)α/2e−ωt/2 + (1 + t/2)−1

∫
+∞

0
sα/2−1e−ωs ds

)
[[f ]]3

+M0e
−ωt sup

t>0
‖f (t)‖Z

6 C(1 + t)−1[[f ]]3, ∀t > 0. (4.44)

Moreover, for any 06 s < t ,

u′

2(t)− u′

2(s) =

∫ s

0
A(e(t−σ)A − e(s−σ)A)(f (σ )− f (s))dσ + (etA − esA)f (s)

+ e(t−s)A(f (t)− f (s))+

∫ t

s

Ae(t−σ)A(f (σ )− f (t))dσ. (4.45)

Let us now consider the first term in (4.45) and observe that∥∥∥∥∫ s

0
A(e(t−σ)A − e(s−σ)A)(f (σ )− f (s))dσ

∥∥∥∥
Z

=

∥∥∥∥∫ s

0
dσ
∫ t−σ

s−σ

A2eτA(f (σ )− f (s))dτ

∥∥∥∥
Z

6 M2 sup
06r1<r2

(1 + r1)
‖f (r2)− f (r1)‖Z

(r2 − r1)α/2

∫ s

0
(1 + σ)−1 dσ

∫ t−σ

s−σ

τα/2−2e−ωτ dτ

6 M2[[f ]]3

(
e−ωs/2

∫ s/2

0
dσ
∫ t−σ

s−σ

τα/2−2 dτ + (1 + s/2)−1
∫ s

s/2
dσ
∫ t−σ

s−σ

τα/2−2e−ωτ dτ

)
6 C[[f ]]3. (4.46)
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All the other terms are easily estimated and have estimates similar to (4.46). Hence, from (4.42) and
(4.46) we deduce that there exists a positive constantC such that

sup
16s<t

(1 + s)
‖u′(t)− u′(s)‖Z

(t − s)α/2
6 C(‖u0‖Z + [[f ]]3). (4.47)

Finally, let us estimate the asymptotic behaviour of‖u′(t)‖DA(α/2,∞). For this purpose, fixξ ∈

(0,1), t > 1, and observe that

ξ1−α/2
‖AeξAu′

2(t)‖Z

6 ξ1−α/2
∥∥∥∥∫ t

0
A2e(t+ξ−s)A(f (s)− f (t))ds

∥∥∥∥
Z

+ ξ1−α/2
‖Ae(t+ξ)Af (t)‖Z

6 M2ξ
1−α/2 sup

06σ<τ
(1 + σ)

‖f (τ)− f (σ)‖Z

(τ − σ)α/2

∫ t

0

e−ω(t+ξ−s)(t − s)α/2

(t + ξ − s)2(1 + s)
ds

+M1ξ
1−α/2e

−ω(ξ+t)

t + ξ
‖f (t)‖Z

6 M2ξ
1−α/2[[f ]]3

(
tα/2e−ω(ξ+t/2)

(ξ + t/2)2

∫ t/2

0

ds

1 + s
+

1

1 + t/2

∫ t

t/2

ds

(t + ξ − s)2−α/2

)
+M1ξ

1−α/2e
−ω(ξ+t)

t + ξ
‖f (t)‖Z. (4.48)

Taking the supremum over allξ ∈ (0,1) gives

sup
ξ∈(0,1)

ξ1−α/2
‖AeξAu′

2(t)‖Z 6 C(1 + t)−1[[f ]]3.

Since‖u′

2(t)‖DA(α/2,∞) = ‖u2(t)‖Z + supξ∈(0,1) ξ
1−α/2

‖AeξAu′

2(t)‖Z, we get

‖u′

2(t)‖DA(α/2,∞) 6 C(1 + t)−1[[f ]]3. (4.49)

The assertion now follows from (4.42)–(4.44), (4.47) and (4.49) and our assumptions onf , since
u′

= Au+ f . 2

Next we deal with the function

u(t, ·) = L

∫ t

0
e(t−s)LNψ(s, ·)ds, (4.50)

whereN is the lifting operator defined in Lemma 4.5.

LEMMA 4.9 Suppose thatψ ∈ C(1+α)/2,1+α([0,+∞)× R) (α ∈ (0,1)) is such that

[[ψ ]]4 = sup
t>0

(1 + t)‖ψ(t, ·)‖
C1+α
b (R) + sup

06s<t
(1 + s)

‖ψ(t, ·)− ψ(s, ·)‖Cb(R)
(t − s)(1+α)/2

< +∞.
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Then the functionu given by (4.50) belongs toX1+α/2,2+α(1,∞). Moreover, there exists a positive
constantC, independent ofψ , such that

sup
t>1
(1 + t)(‖u(t, ·)‖X2+α

+ ‖Dtu(t, ·)‖Xα )+ sup
16s<t

(1 + s)
‖u(t, ·)− u(s, ·)‖X2

(t − s)α/2

+ sup
16s<t

(1 + s)

(
‖u(t, ·)− u(s, ·)‖X1

(t − s)(1+α)/2
+

‖Dtu(t, ·)−Dtu(s, ·)‖X0

(t − s)α/2

)
6 C[[ψ ]]4. (4.51)

Proof. Throughout the proof, we denote byCj (j ∈ N) positive constants,independentof the data
andt .

By assumptionsψ ∈ C(1+α)/2,1+α([0,+∞) × R). Hence,Nψ ∈ B([0,+∞);X2+α) (cf.
Lemma 4.5). Moreover, there exists a positive constantC1 such that

sup
t>0
(1 + t)‖Nψ(t, ·)‖X2+α

6 C1 sup
t>0
(1 + t)‖ψ(t, ·)‖

C1+α
b (R). (4.52)

From Lemma 4.5 we deduce that

(1 + s)‖Nψ(t, ·)−Nψ(s, ·)‖X1 6 C2(1 + s)‖ψ(t, ·)− ψ(s, ·)‖Cb(R)

6 C2[[ψ ]]4(t − s)(1+α)/2, (4.53)

for any 06 s < t and some positive constantC2. Hence,Nψ belongs toC(1+α)/2([0,+∞);X1).
Since{f ∈ (I − P)(X1) : B0f = 0 at x = 0} is continuously embedded in the spaceZ :=

(I − P)(DL(1/2,∞)) endowed with the norm ofDL(1/2,∞) (cf. Theorem 4.1) andNψ(t, ·) ∈

(I − P)(X0) for any t > 0, it follows thatNψ ∈ C(1+α)/2([0,+∞);Z). Moreover, from (4.52)
and (4.53) we deduce that there exists a positive constantC3 such that

sup
t>0

‖Nψ(t, ·)‖DL(1/2,∞) + sup
06s<t

(1 + s)
‖Nψ(t, ·)−Nψ(s, ·)‖DL(1/2,∞)

(t − s)(1+α)/2
6 C3[[ψ ]]4. (4.54)

Observe that the functionNψ satisfies all the assumptions of Lemma 4.8 (see Lemma 4.5), and
the restriction ofetL to Z defines an analytic semigroup of negative type (see Theorem 4.3) whose
generator is the part ofL in Z. Hence, Lemma 4.8 and (4.54) imply that the functionw(t, ·) =∫ t

0 e
(t−s)LNψ(s, ·)ds belongs toZ for anyt > 0, and satisfies the following estimate:

sup
t>1
(1 + t)(‖Lw(t, ·)‖DL(1/2,∞) + ‖Dtw(t, ·)‖DL(1+α/2,∞)) 6 C4[[ψ ]]4. (4.55)

Let us prove thatLw ∈ C
1+α/2
b ([1,+∞);X0). For this purpose, we begin by observing thatLw

is differentiable with respect to time andDt (Lw)(t, ·) = LDtw(t, ·) for any t > 0. Indeed, since
B([0,+∞);DL(1 + α/2,∞)) ⊂ C([0,+∞);D(L)), we have

Lw(t, ·)− Lw(s, ·) =

∫ t

s

LDtw(σ, ·)dσ, ∀t, s > 0.

Consequently,Lw is differentiable with respect tot in [0,+∞) andDtLw = LDtw. Hence, we
can write

LDtw(t, ·) =

∫ t

0
L2e(t−s)L(Nψ(s, ·)−Nψ(t, ·))ds + LetLNψ(t, ·). (4.56)
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We fix now, for the rest of the proof, a positive constantω ∈ (0,1/4). Then, by (4.3), we know that
there exist positive constantsMk (k ∈ N) such that

sup
t>0

tk−1/2
‖LketL(I − P)‖L(DL(1/2,∞),X0) 6 Mke

−ωt .

From (4.56) it immediately follows that

‖DtLw(t, ·)‖X0 6
∫ t

0
‖L2e(t−s)L(Nψ(s, ·)−Nψ(t, ·))‖X0 ds + ‖LetLNψ(t, ·)‖X0

6 M2 sup
06σ<τ

(1 + σ)
‖ψ(τ, ·)− ψ(σ, ·)‖Cb(R)

(τ − σ)(1+α)/2

∫ t

0
(1 + s)−1(t − s)−1+α/2e−ω(t−s) ds

+ 2M1t
−3/2e−ωt‖ψ(t, ·)‖Cb(R)

6 M2[[ψ ]]4

(
e−ωt/2

∫ t

0
sα/2−1 ds + (t/2)−1

∫ t

0
sα/2−1e−ωs ds

)
+ 2M1t

−1
‖ψ(t, ·)‖Cb(R)

6 C5t
−1[[ψ ]]4, (4.57)

for anyt > 1. Moreover,

‖DtLw(t, ·)−DtLw(s, ·)‖X0

6

∥∥∥∥∫ s

0
L2(e(t−σ)L − e(s−σ)L)(Nψ(σ, ·)−Nψ(s, ·))dσ

∥∥∥∥
X0

+

∥∥∥∥L(etL − esL)Nψ(s, ·)
∥∥∥∥
X0

+

∥∥∥∥∫ t

s

L2e(t−σ)L(Nψ(σ, ·)−Nψ(t, ·))dσ

∥∥∥∥
X0

+ ‖Le(t−s)L(Nψ(t, ·)−Nψ(s, ·))‖X0

6 C6[[ψ ]]4

(∫ s

0

(s − σ)(1+α)/2

1 + σ
dσ
∫ t−σ

s−σ

e−ωτ

τ5/2
dτ +

∫ t

s

σ−3/2e−ωσ dσ

+

∫ t

s

e−ω(t−σ)

(t − σ)1−α/2

1

1 + σ
dσ +

1

1 + s
‖Le(t−s)L‖L(DL(1/2,∞),X0)(t − s)(1+α)/2

)
6 C7[[ψ ]]4

(∫ s

0

e−ω(s−σ)

1 + σ
dσ
∫ t−σ

s−σ

1

τ2−α/2
dτ +

1

1 + s

∫ t

s

e−ω(t−σ)

(t − σ)1−α/2
dσ

+

(
e−ωs

s(1+α)/2
+

1

s + 1

)
(t − s)α/2

)
6 C8[[ψ ]]4

(
e−ωs/2

∫ s/2

0
dσ
∫ t−σ

s−σ

1

τ2−α/2
dτ +

1

1 + s

∫ s

s/2
dσ
∫ t−σ

s−σ

1

τ2−α/2
dτ

+e−ωs(t − s)α/2 +
1

1 + s
(t − s)α/2

)
6 C9[[ψ ]]4(1 + s)−1(t − s)α/2, (4.58)

for any 0 6 s < t . Observe thatu = Lw; then (4.55), (4.57) and (4.58) imply thatDtu ∈

B([0,+∞);Xα) ∩ Cα/2([0,+∞);X0) and

(1+t) sup
t>1

‖Dtu(t, ·)‖Xα+ sup
16s<t

(1+s)
‖Dtu(t, ·)−Dtu(s, ·)‖X0

(t − s)α/2
6 C10[[ψ ]]4, ∀t > 1. (4.59)
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Sinceu+Nψ = Dtw ∈ B([0,+∞);DL(1+α/2,∞)) (see (4.55)) andNψ ∈ B([0,+∞);X2+α)

(see (4.52)), we easily deduce thatu ∈ B([0,+∞), X2+α) and there exists a positive constantC11
such that

sup
t>1
(1 + t)‖u(t, ·)‖X2+α

6 C11[[ψ ]]4. (4.60)

Now, taking (4.55), (4.59), (4.60) into account and applying Lemma 3.4 to the functionv defined
by v(t, ·) = u(t + 1, ·) for anyt > 0, we easily get (4.51). The proof is now complete. 2

We can now prove Theorem 4.7.

Proof of Theorem 4.7. The statement follows from Theorem 4.6 and Lemmas 4.8, 4.9 and A.3.
Indeed, our assumptions on the triplet(u0,g, ψ), the compatibility conditions in (4.35) and Theorem
4.6 imply that problem (4.17ii) admits a unique solutionw which belongs toX1+α/2,2+α(0, T ) for
anyT > 0 and satisfies (4.32).

Let us recall that the solution to problem (4.17ii) can be split asw = w1 + w2, where

w1(t, ·) := etLu0 +

∫ t

0
e(t−s)L(g(s, ·)+ ψ(s, ·)U0 + LNψ(s, ·))ds,

w2(t, ·) := −L

∫ t

0
e(t−s)LNψ(s, ·)ds, ∀t > 0.

Throughout the rest of the proof, we denote byCj (j ∈ N) positive constants,independentof the
data andt .

Due to Lemma 4.5(iii) and (4.52), the functiont 7→ g(t, ·) + ψ(t, ·)U0 + LNψ(t, ·) belongs
to (I − P)(X0) for any t > 0. Moreover, it satisfies condition (4.37). To check it, we begin by
observing that

sup
06s<t

(1 + s)
‖ψ(t, ·)− ψ(s, ·)‖Cb(R)

(t − s)α/2
< 2[[ψ ]]2, (4.61)

which follows easily by observing that

‖ψ(t, ·)− ψ(s, ·)‖Cb(R) 6 (1 + s)−1[[ψ ]]2(t − s)(1+α)/2 6 (1 + s)−1[[ψ ]]2(t − s)α/2

if 0 6 s < t andt 6 s + 1, while

‖ψ(t, ·)−ψ(s, ·)‖Cb(R) 6 (‖ψ(t, ·)‖Cb(R)+‖ψ(s, ·)‖Cb(R))(t−s)
α/2 6 2(1+s)−1[[ψ ]]2(t−s)

α/2

if 0 6 s < t andt > s + 1.
Now, taking (4.34), (4.61) and Lemma 4.5 into account, we easily deduce that

‖Nψ(t, ·)−Nψ(s, ·)‖X2 6 C1‖ψ(t, ·)− ψ(s, ·)‖C1
b (R)

6 2C1[[ψ ]]2(1 + s)−1(t − s)α/2, ∀0 6 s < t. (4.62)

Hence, from (4.52), (4.61) and (4.62) we get

[[ψU0 + LNψ ]]3 6 C2[[ψ ]]2. (4.63)
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Applying Lemma 4.8 withZ = (I − P)(X0), A = L|(I−P), f = g + ψU0 + LNψ , u0 = w0, and
taking into account the characterization of the interpolation spaceDL(α/2,∞) given in Theorem
4.1, and (4.63), we get

sup
t>1
(1 + t)(‖w1(t, ·)‖D(L) + ‖Dtw1(t, ·)‖Xα )+ sup

16s<t
(1 + s)

‖Dtw1(t, ·)−Dtw1(s, ·)‖X0

(t − s)α/2

6 C3(‖w0‖X0 + [[g]]1 + [[ψ ]]2). (4.64)

SinceDtw1 = Lw1 + g + ψU0 + LNψ andg + ψU0 + LNψ ∈ B([0,+∞);Xα) with

sup
t>0
(1 + t)‖g(t, ·)+ ψ(t, ·)U0 + LNψ(t, ·)‖Xα 6 C4([[g]]1 + [[ψ ]]2),

we easily deduce that

sup
t>1
(1 + t)‖Lw1(t, ·)‖Xα 6 C5(‖w0‖X0 + [[g]]1 + [[ψ ]]2). (4.65)

From the Schauder estimate in [1] and from (4.64) and (4.65) it easily follows thatw1 belongs to
B([0,+∞);X2+α) and

sup
t>1
(1 + t)‖w1(t, ·)‖X2+α

6 C6(‖w0‖X0 + [[g]]1 + [[ψ ]]2). (4.66)

Now, applying Lemma 3.4 to the functionu(t, ·) = w(t + 1, ·) and taking (4.64) and (4.66) into
account, we get

sup
16s<t

(1 + s)
‖w1(t, ·)− w1(s, ·)‖X2

(t − s)α/2
+ sup

16s<t
(1 + s)

‖w1(t, ·)− w1(s, ·)‖X1

(t − s)(1+α)/2

6 C7(‖w0‖X0 + [[g]]1 + [[ψ ]]2). (4.67)

As far as the termw2 is concerned, we observe that the assumptions of Lemma 4.9 are satisfied
by ψ . Hence, from (4.32) (withT = 1), (4.51) (applied to the functionw2), (4.64), (4.66), (4.67)
and Lemma A.3, we deduce thatw belongs toXw and satisfies (4.36). 2

4.4 Stability results

This subsection is devoted to proving that the null solution to problem (2.15) is stable with respect
to smooth and sufficiently small perturbations. Theorem 4.7 provides a useful tool to prove our
stability result. As already pointed out, we can limit ourselves to dealing with problems (4.16i) and
(4.16ii) whereH̃,K andG are given, respectively, by (4.12), (4.13)–(4.15) and (2.14).

We solve system (4.16) by a fixed point argument. Indeed, any sufficiently smooth solution to
system (4.16) is a fixed point of the operatorΓ (q,w) = (Γ1(q,w), Γ2(q,w)) defined by

Γ1(q,w)(t, ·) = T (t)(exp(M(u0)/2)− 1)+

∫ t

0
T (t − s)H̃(q(s, ·),w(s, ·))ds, t > 0,

Γ2(q,w)(t, ·) = etL(I − P)u0 (4.68)

+

∫ t

0
e(t−s)L(K(q(s, ·),w(s, ·))+ LN g̃(q(s, ·),w(s, ·))ds

− L

∫ t

0
e(t−s)LN g̃(q(s, ·),w(s, ·))ds, t > 0.
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Let us introduce the Banach space where we are going to solve the fixed point equation for(q,w).
We denote byXq,w the Banach space of all pairs(q,w) ∈ Xq ×Xw such thatw(t, ·) ∈ (I −P)(X0)

for any t > 0 (see Definition 3.3), endowed with the norm‖(q,w)‖Xq,w = ‖q‖Xq + ‖w‖Xw , and
we denote byB(0, ρ) its closed ball with centre at(0,0) and radiusρ.

The main result of this subsection is the following theorem.

THEOREM 4.10 Suppose thatq0 ∈ C2+α
b (R) andw0 ∈ (I − P)(X2+α) satisfy the compatibility

conditions

Bw0 = G(w0 + 2 log(q0 + 1)U0), B0L(w0 +K(q0,w0)) = 0. (4.69)

Then there are positive constantsρ0 andρ such that if

‖q0‖C2+α
b (R) + ‖w0‖X2+α

6 ρ0,

then problem (4.16) admits a unique solution(q,w) ∈ B(0, ρ) satisfying (q(0, ·),w0(0, ·)) =

(q0,w0). Moreover, there exists a positive constantC, independent of(q,w), such that

‖(q,w)‖Xq,w + sup
06s<t

(1 + s)

(
‖qy(t, ·)− qt (s, ·)‖Cb(R)

(t − s)(1+α)/2
+

‖w(t, ·)− w(s, ·)‖X1

(t − s)(1+α)/2

)
6 C(‖q0‖C2+α

b (R) + ‖w0‖X2+α
). (4.70)

Proof. Let us prove that the operatorΓ defined by (4.68) is a contraction mapping in the space

B(0, (q0,w0), ρ) := {(q,w) ∈ B(0, ρ) : (q(0, ·),w(0, ·)) = (q0,w0)} ,

providedρ0 andρ are sufficiently small. For this purpose let us estimate the functionsg̃, H̃ andK.
We begin withg̃ (see (4.14)). Observe that, taking Lemma 3.4 into account, one can easily show
that there exists a positive constantC, independentof q, such that

sup
s>0

(1 + s)j/2(‖D
j
yq(s, ·)‖Cαb (R) + ‖D

j
yq‖C(i+α)/2([s,+∞);Cb(R))) 6 C‖q‖Xq , ∀0 6 i, j 6 1.

Sincẽg is a product of functions belonging toC(1+α)/2,1+α([0,+∞)×R), we easily deduce that, if
ρ is taken sufficiently small so that both 1+q and 1−v(0)+vx(0) never vanish for(q,w) ∈ B(0, ρ)
(e.g.ρ 6 1/2), theng̃(q,w) ∈ C(1+α)/2,1+α([0,+∞) × R). Moreover, long but straightforward
computations and the fact thatg̃ is quadratic near0 show that there exists a positive and continuous
functionK1 vanishing at 0 such that

[[ g̃(q2,w2)− g̃(q1,w1)]]2 6 K1(ρ)‖(q2,w2)− (q1,w1)‖Xq,w , (4.71)

for any(qj ,wj ) ∈ B(0, ρ) (j = 1,2).
We now consider the operator̃H (see (4.12)). All the terms in the definition of̃H belong to

C([0,+∞);Cαb (R)) ∩ Cα/2([0,+∞);Cb(R)) for any(q,w) ∈ B(0, ρ) for a sufficiently smallρ,
since they are products of functions belonging to such spaces. Moreover,

sup
t>0
(1 + t)3/2‖H̃(q2(t, ·),w2(t, ·))− H̃(q1(t, ·),w1(t, ·))‖Cαb (R)

+ sup
s>0
(1 + s)3/2[H̃(q2,w2)− H̃(q1,w1)]Cα/2([s,+∞);Cb(R)) 6 K2(ρ)‖(q2,w2)− (q1,w1)‖Xq,w ,
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for any(qj ,wj ) ∈ B(0, ρ) (j = 1,2) and some positive and continuous functionK2 vanishing at 0.
In particular, we get

[[H̃(q2,w2)− H̃(q1,w1)]]0 6 K2(ρ)‖(q2,w2)− (q1,w1)‖Xq,w (4.72)

(see (4.18)). Similarly, for any(q,w) ∈ B(0, ρ) the functionK(q,w) defined by (4.13)–(4.15)
belongs toCα/2([0,+∞);Cb(R)) ∩ Cb([0,+∞);Cαb (R)). Moreover,

[[K(q2,w2)−K(q1,w1)]]1 6 K3(ρ)‖(q2,w2)− (q1,w1)‖Xq,w , (4.73)

for any (qj ,wj ) ∈ B(0, ρ) (j = 1,2) (see (4.33)) and some positive and continuous functionK3
going to 0 asρ tends to 0.

Now observe that, sincẽg(0,0) = 0, H̃(0,0) = K̃(0,0) = 0, from (4.71)–(4.73) we deduce

[[H̃(q,w)]]0 + [[K̃(q,w)]]1 + [[ g̃(q,w)]]2 6 (K1(ρ)+K2(ρ)+K3(ρ))‖(q,w)‖Xq,w , (4.74)

for any(q,w) ∈ B(0, ρ).
Now, taking Theorems 4.4, 4.7 and all the above estimates into account, we easily deduce that,

if ρ is sufficiently small, thenΓ (q,w) ∈ Xq,w for any(q,w) ∈ B(0, (q0,w0), ρ) (observe that the
compatibility conditions in Theorem 4.6 are satisfied by virtue of (4.69), since(q(0, ·),w(0, ·)) =

(q0,w0)).
Moreover, from (4.19), (4.36), (4.74) we immediately deduce that

‖Γ (q,w)‖Xq,w 6 C(‖q0‖C2+α
b (R) + ‖w0‖X2+α

+K4(ρ)‖(q,w)‖Xq,w),

for some constantC, independentof (q0,w0), and some positive and continuous functionK4
vanishing at zero.

Similarly, since for any(q1,w1), (q2,w2) ∈ B(0, (q0,w0), ρ) the functionΓ (q2,w2) −

Γ (q1,w1) turns out to be a solution to system (4.16) (with(H̃(q,w), K̃(q,w), g̃(q,w), q0,w0)

replaced by(H̃(q2,w2) − H̃(q1,w1), K̃(q2,w2) − K̃(q1,w1), g̃(q2,w2) − g̃(q1,w1),0,0)), from
(4.19), (4.36), (4.71)–(4.73), we deduce that

‖Γ (q2,w2)− Γ (q1,w1)‖Xq,w 6 K5(ρ)‖(q2,w2)− (q1,w1)‖Xq,w ,

for some positive and continuous functionK5 vanishing at zero.
Choose now a solution(ρ, ρ0) to the system of inequalities

C(ρ0 +K4(ρ)ρ) 6 ρ,

K5(ρ) 6 1/2,

0< ρ0 6 ρ 6 1/2.

ThenΓ turns out to be a 1/2-contraction mapping inB(0, (q0,w0), ρ) and, consequently, the fixed
point equationΓ (q,w) = (q,w) admits a unique solution(q,w) ∈ B(0, (q0,w0), ρ) solving
system (4.16). Estimate (4.70) now follows easily. 2

5. Concluding remarks

The results in Section 4 imply that there exist two positive constantsρ0 and ρ such that ifu0
belongs toB(0, ρ0) ⊂ X2+α and satisfies the compatibility conditions (4.31), then the initial value
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problemu(0, ·) = u0 for problem (2.15) admits a unique globally defined solutionu ∈ B(0, ρ) ⊂

X1+α/2,2+α(0,∞). Moreover, there exists a positive constantC such that

(1 + t)α1+α3/2(‖D
α1
t D

α2
x D

α3
y u‖

C
α/2
b ([t,+∞);X0)

+ ‖D
α1
t D

α2
x D

α3
y u(t, ·)‖X0) 6 C‖u0‖X2+α

,

for anyt > 0 and any 2α1 + α2 + α3 6 2.
One can show that, ifρ0 is sufficiently small, thenu is actually theunique solution in

X1+α/2,2+α(0,∞) to the initial value problemu(0, ·) = u0 for problem (2.15). To do this, the main
step is to show that for anyt0 > 0 and any smallu0 ∈ X2+α satisfying the appropriate compatibility
conditions att = t0, the problem

Dtu(t, ·) = Lu(t, ·)+ F(u(t, ·)), t ∈ [t0, t0 + δ],

Bu(t, ·) = G(u(t, ·)), t ∈ [t0, t0 + δ],

u(t0, ·) = u0,

is uniquely solvable in a large ball ofX1+α/2,2+α(t0, t0 + δ) for some smallδ > 0 (independent
of t0). See [7, Theorem 4.1] for more details.

Coming back to problem (2.1)–(2.4) the previous results ensure that the planar TW is stable
with respect to small and sufficiently smooth perturbations. In particular, the perturbed frontφ stays
bounded and close to the front−t corresponding to the TW. Moreover, its derivatives decrease
polynomially to zero. To be more precise, there exists a positive constantC such that

‖D
α1
t D

α2
y (φ(t, ·)+ t)‖Cαb (R) 6

C

(1 + t)α1+α2/2
,

for any t > 0 and any 2α1 + α2 6 2. Moreover, the functionsΘ1 andS1 stay close toΘ0 and 0,
respectively, and

‖D
α1
t D

α2
x D

α3
y (Θ

1(t, ·)−Θ0)‖Cαb (R2
−)

+ ‖D
α1
t D

α2
x D

α3
y S

1(t, ·)‖Cαb (R2
−)

+ ‖D
α1
t D

α2
x D

α3
y S

1(t, ·)‖Cαb (R2
+)

6
C

(1 + t)α1+α3/2
,

for any 2α1 + α2 + α3 6 2, whereR2
+ := R+ × R.

Appendix A. Additional tools

We begin this subsection with an abstract lemma which plays a crucial role in the proof of
Theorem 4.1.

LEMMA A.1 LetX be a Banach space, andA : D(A) ⊂ X → X, B : D(B) ⊂ X → X be two
closed operators with nonempty resolvent sets. ThenA andB commute in the resolvent sense if and
only if

R(ω,B)(D(A)) ⊂ D(A), AR(ω,B)x = R(ω,B)Ax, ∀ω ∈ ρ(B), ∀x ∈ D(A). (A.1)

Proof. Let us assume thatA andB commute in the resolvent sense and prove that condition (A.1)
is satisfied. Fixx ∈ D(A), σ ∈ ρ(A) and lety ∈ X be such thatx = R(σ,A)y. Then, for any
ω ∈ ρ(B),
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R(ω,B)Ax = R(ω,B)AR(σ,A)y = R(ω,B)(A− σI + σI)R(σ,A)y

= −R(ω,B)y + σR(ω,B)R(σ,A)y = −R(ω,B)y + σR(σ,A)R(ω,B)y

= (σR(σ,A)− I )R(ω,B)y = AR(σ,A)R(ω,B)y = AR(ω,B)R(σ,A)y

= AR(ω,B)x,

so that (A.1) is satisfied.
Conversely, let us prove that, if (A.1) holds, thenA andB commute in the resolvent sense. Fix

y ∈ X and takeσ ∈ ρ(A), ω ∈ ρ(B). Applying (A.1) tox = R(σ,A)y we get

AR(ω,B)R(σ,A)y = R(ω,B)AR(σ,A)y = R(ω,B)(A− σI + σI)R(σ,A)y

= −R(ω,B)y + σR(ω,B)R(σ,A)y.

Hence,(A− σI)R(ω,B)R(σ,A)y = −R(ω,B)y. ApplyingR(σ,A) to both sides of the previous
equation we getR(ω,B)R(σ,A)y = R(σ,A)R(ω,B)y so thatA andB commute in the resolvent
sense. 2

The technique we used, in the caseλ = 0, to transform problem (1.1) into an equivalent one, which
is somewhat simpler to study, works as well in the case of problem (1.1) withλ 6= 0. We still get a
problem similar to (2.15), where now the operatorsL andB have to be replaced by the operators

Lu = (∆v − vx,∆w − wx − λ∆v,∆h+ hx),

Bu =

 λv(0, ·)− w(0, ·)+ h(0, ·)

λv(0, ·)+ λvx(0, ·)− wx(0, ·)− hx(0, ·)

v(0, ·)+ h(0, ·)− vx(0, ·)

 ,
where, as usual, we setu = (v,w, h). The pair(L,B) generates an analytic semigroup inX0 for
anyλ ∈ R with domain still given by (4.1) (see [7, Theorem A.2]). We still can decoupleL into the
sum of the two operatorsL1 andL2 defined by

L1u = (vxx − vx, wxx − wx − λvxx, hxx + hx), L2u = (vyy, wyy − λvyy, hyy),

with domains

D(L1) = {u : Djxu ∈ X0 for j = 0,1,2, Bu = 0}, D(L2) = {u : Djyu ∈ X0 for j = 0,1,2}.

Although these operators are generators of analytic semigroups inX0, they do not commute in the
resolvent sense due to the coupling betweenv andw induced by the parameterλ.

THEOREM A.2 Suppose thatλ 6= 0. Then the operatorsL1 : D(L1) ⊂ X0 → X0 andL2 :
D(L2) ⊂ X0 → X0 are generators of analytic semigroups inX0 not commuting in the resolvent
sense.

Proof. Showing thatLj : D(Lj ) ⊂ X0 → X0 (j = 1,2) generates an analytic semigroup inX0 is
an easy exercise and, hence, it is left to the reader. In particular, straightforward computations show
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that for anyω ∈ ρ(L) and anyλ ∈ R,

[R(ω,L1)f]1(x, y) =
1

√
1 + 4ω

(∫ 0

−∞

e−µ1tf (t + x, y)dt +
∫ 0

x

eµ2tf (x − t, y)dt

)
+ a1e

x

∫ 0

−∞

e−µ1(t+x)g(t, y)dt + a1

∫ 0

−∞

eµ2(t+x)k(t, y)dt

+ a2e
x

∫ 0

−∞

te−µ1(t+x)f (t, y)dt + a3e
x

∫ 0

−∞

e−µ1(t+x)f (t, y)dt,

[R(ω,L1)f]2(x, y) =
1

√
1 + 4ω

∫ 0

−∞

e−µ1t (g − λDxx [R(ω,L1)f]1)(t + x, y)dt

+
1

√
1 + 4ω

∫ 0

x

eµ2t (g − λDxx [R(ω,L1)f]1)(x − t, y)dt

+ a4e
x

∫ 0

−∞

e−µ1(t+x)g(t, y)dt + a5

∫ 0

−∞

eµ2(t+x)k(t, y)dt

+ a6e
x

∫ 0

−∞

te−µ1(t+x)f (t, y)dt + a7e
x

∫ 0

−∞

e−µ1(t+x)f (t, y)dt,

[R(ω,L1)f]3(x, y) =
1

√
1 + 4ω

(∫ 0

x

e−µ1tk(x − t, y)dt +
∫ 0

−∞

eµ2tk(t + x, y)dt

)
+ a8

∫ 0

−∞

e−µ1(t+x)f (t, y)dt + a9

∫ 0

−∞

te−µ1(t+x)f (t, y)dt

+ a10

∫ 0

−∞

e−µ1(t+x)g(t, y)dt + a11

∫ 0

−∞

et−µ1(t+x)k(t, y)dt,

for any (x, y) ∈ R2
− and suitable coefficientsaj 6= 0 (j = 1, . . . ,11) depending onλ, where

µj =
1
2 + (−1)1

2

√
1 + 4ω for j = 1,2, andf = (f, g, k).

An immediate computation shows that

R(ω,L1)L2f = R(ω,L1)(fyy − (0, λfyy,0)),

L2R(ω,L1)f = R(ω,L1)fyy − λ(0,Dyy [R(ω,L1)f]1,0),

for anyf ∈ D(L2). Hence,R(ω,L1)L2f = L2R(ω,L1)f if and only if

R(ω,L1)(0, fyy,0) = (0,Dyy [R(ω,L1)f]1,0). (A.2)

Takef(x, y) = (0, ex g̃(y),0) for some smooth functiong such that̃gyy does not vanish identically.
Obviouslyf ∈ D(L2). Moreover, the derivative

Dyy [R(ω,L1)f]1(x, y) = a1g̃
′′(y)

∫ 0

−∞

eµ2(t+x) dt, ∀(x, y) ∈ R2
−,

does not vanish identically. Hence, (A.2) is not satisfied and consequently, by Lemma A.1,L1 and
L2 do not commute in the resolvent sense. 2
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LEMMA A.3 LetX be a Banach space and letf : [0,+∞) → X be such thatf ∈ Cα([0,1];X)
and

sup
16s<t

s
‖f (t)− f (s)‖X

(t − s)α
< +∞, (A.3)

for someα ∈ (0,1). Thenf ∈ Cα([0,+∞);X) and

[f ]Cα([0,+∞);X) 6 [f ]Cα([0,1];X) + sup
16s<t

s
‖f (t)− f (s)‖X

(t − s)α
. (A.4)

In particular,

sup
06s<t

(1 + s)
‖f (t)− f (s)‖X

(t − s)α
6 2

(
[f ]Cα([0,1];X) + sup

16s<t
s

‖f (t)− f (s)‖X

(t − s)α

)
. (A.5)

Proof. Sincef satisfies (A.3), it follows that in particular,

[f ]Cα([1,+∞)) 6 sup
16s<t

s
‖f (t)− f (s)‖X

(t − s)α
.

Moreover, ifs < 1< t , then

‖f (t)− f (s)‖X 6 ‖f (t)− f (1)‖X + ‖f (1)− f (s)‖X

6 [f ]Cα([0,1];X)(1 − s)α + sup
16r1<r2

r1
‖f (r2)− f (r1)‖X

(r2 − r1)α
(t − 1)α

6

(
[f ]Cα([0,1];X) + sup

16r1<r2
r1

‖f (r2)− f (r1)‖X

(r2 − r1)α

)
(t − s)α

and (A.4), (A.5) easily follow. 2
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