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Stability in a two-dimensional combustion model
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We study the stability of a planar travelling wave in the two-dimensional NEF-combustion model
when the reduced Lewis number is equal to zero. The functional analytic setting consists of spaces
of suitably exponentially weighted dfder continuous functions. By exploiting the appearance of
the integrated Burgers equation in the equations for perturbations of the wave we avoid the usual
assumption that the perturbation must be localized in the lateral space coordinate.
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1. Introduction

In the 1980s Sivashinsky introduced and studied a two-dimensional thermo-diffusive model for
flames in gaseous mixtures. This model is based on the assumption that the diffusion coefficients
of the gas and the temperature are almost equal (Nearly Equidiffusional Flame theory), and on the
assumption that the normalized activation enefys very large. With the combustion confined

to a thin zone of ordeZ~1, this leads to the following free boundary problem for the reduced
temperature®, the reduced enthalpy, and the front:

%:A@, t>0, yeR, n<a(t,y),

e =1, >0, yeR, n=e(,y),
%:AS—AA@, t>0, yeR, n#o¢(,y), (1.2)
[©] =[S] =0, t>0, yeR,

[%]:—exp@), [g—j}zk[%i)], t>0, yeR,
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wheren denotes the outward normal to the surface- ¢ (¢, y). The differential equations fop
ands as well as the boundary conditions are coupled by a real paraimet@ch is a dimensionless
constant proportional to the reduced Lewis number. The variglasdS arise as the first relevant
terms in the NEF approach for the thermo-diffusive model for temper&tumed mass fractiofy .
This system consists of the reaction-diffusion equations

T _ A1+ Y, T) W _ 1,y (Y,T), o(Y,T)=7Yex 2
ar O S T Le @), old, 1) = 1exp( =7 ).

With the enthalpy defined a8 = T + Y, this approach is based on expandingnd H as formal
power series in the reciprocal &, coupling the Lewis number Le t8 as Lel = 1 — Z1le,
where le is the reduced Lewis number. In this expangfgris a constant (given by the limits af
andY in front of the flame front). The NEF model is then derived Tgrand H;. Here we conform
with the notation in [3], wher@® = Tp, H1 = 2S and the reduced Lewis number le is replaced by
—2). We refer the reader to the original paper by Sivashinsky [11] for more details on the physical
aspects of this model and {0 [3] for a more mathematical discussipn pf (1.1).

For anyx € R problem [(1.1) admits a unique (up to translations) planar (i.e. independeht of
travelling wave (TW) solution given by, n) > (¢ (1), @9y + 1), S2(n + 1)), with

O%(x) = explx), S°(x) = Axexplx), ifx <0,

o =, %) =1, $9(x) =0, if x > 0.

(1.2)

Stability/instability of this solution under two-dimensional perturbations is of physical relev-
ance. The formal study, made by Sivashinsky in [11], showed that there exists a critical vatu
of A such that the planar TW should be orbitally stableoe (1., 1) and orbitally unstable for
A < Acand fora > 1.

The instability of the TW was proved in|[3] with respect to small and sufficiently smooth
perturbations in the context ofditler spaces. However, the role of the Kuramoto—Sivashinsky
equation, derived in this context by Sivashinsky for the description of cellular instabilities for
A > 1, seems to remain out of reach of rigorous mathematical methods. We note that whereas
in the unstable case the Kuramoto—Sivashinsky equation is expected to play a role, in the stable case
this role is played by the integrated Burgers equation. In the context of bistable reaction-diffusion
systems both cases are discussed on a completely formal and heuristic level in [6].

Next, in [2] the first author, in a joint paper, proved stability of the TW in the case where
A = 0, assuming to perturbnly the temperaturé@. The quadratic term in the integrated Burgers
equation appearing in the leading order terms in the perturbation analysis is absorbed in the linear
terms by means of a Cole—Hopf bifurcation. Remarkably this makes the usual assumption that
perturbations are localized in the latesatlirection redundant, which may be interpreted as an a
posteriori validation of the role of the integrated Burgers equation.

More recently, in[[8, 9] the second author, in a joint paper, showed stability of the TW for
(X¢, 1) in the context of weighted &lder spaces in a slightly different model where the nonlinear
term exgS) is replaced byf(S) = 1+ S + 0O(S¥) for somek > 5. They assume that the weight
function depends both apandy and do not use any explicit form of (part of) the quadratic terms.
Here the analogy (of the = 0 case) with[[5] in the (diagonal) reaction-diffusion context should be
noted, where the localization assumption appears in a different form (in view of the use of Sobolev
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spaces). We emphasize that such results do not fully generalize the one-dimensional results which
allow perturbations converging to a translate of the wave.

Here we generalize the result of [2] to the NEF model witl 0, allowing perturbations o®
ands as well. We prove that the TW solution is stable with respect to suitable weightea(ity)
smooth perturbations.

To prove our stability results, we transform the problem (by suitable changes of coordinates and
unknowns) into an equivalent one of the form

07 b R%?
. (x.y) € (1.3)

>
Bu(z, ) (y) = Gu(, )y, 120, y€eR,

{ Du(t, x,y) = LuU(t, x, y) + FU(t, )(x,y), t
set in the fixed space domadk? := R_ xR, whereL is a second order operator alids a first order
boundary operator, both with constant coefficients. The nonlinear and nonlocal opéfatnds;
are quadratic near 0. Now, the problem of the stability of the TW for prollerm (1.1) is transformed
into the problem of the stability of the null solution to problgm[1.3).

The realizationL of the operatorC in the space of all bounded and continuous functions
generates an analytic semigroup and its spectrum consists of all theC such that Re <
—(Imw)2. Hence the spectrum df is contained in the left half-plane and 0 is an accumulation
point of eigenvalues. Hence we are in a critical case of stability and we cannot invoke the linearized
stability principle to prove our stability results.

Working with a spaceX of weighted continuous functions (corresponding in our situation to
an exponential weight function in thevariable) allows us to limit the continuous spectrum to the
half-line (—oo, 0], but hereby we remain in the critical case of stability. The key idea to overcome
this difficulty consists in determining a suitable projection, which is not a spectral projection, but
enjoys most of the typical properties of a spectral projection, namely we determine a projection
such that

ID{* DD — P)e'™ L x) < Me™, Vi >0, (1.4)

for some positive constaat and for any multindex: = (a1, a2, a3), where bye'l we denote the
(analytic) semigroup generated by the operdtoifo construct the projectio® we observe that
the operatol. can be split into the sum of two operatdrg and L, acting, respectively, on the-
and they-variable, which commute in the resolvent sense. Since 0 is a simple eigenvalye of
we can find the spectral projectighcorresponding to the eigenvalue Olof. Such a projection is
readily seen to satisfy (1.4). To carry out our construction of the projectidhis essential thaL
can be split into the sum of two operators commuting in the resolvent sense. As pointed out in the
appendix, this is the case onlyif= 0, where the system of differential equations[in{1.1) and the
operatorC in (1.3) are in diagonal form.

Splitting the solutioru to the initial value problem fof (I} 3) along(X) and (I — P)(X) we
can writeu(¢, x, y) = r(t, y)(e*, 0,0) + w(¢, x, y). This position allows us to decouple problem
(1.3) into two new problems for the pair, w). The differential equation in the first system is a
nonlinear Burgers equation. The second system is set in the stable maifel&)(X) where the
semigroup satisfief (1.4). What we expect is thand its derivatives decay at least with polynomial
rate at infinity, and this is just the case. Hence the asymptotic behaviour of the solution to problem
(1.7) is determined by the behaviour near infinity of the solution to the Cauchy problem associated
with the nonlinear Burgers equation. Such an equation contains they%enmhlich is critical for the
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stability. Performing a suitable Cole—Hopf transformation allows us to eliminate this term. We get a
new equation for the new unknowgn namely a nonlinear heat equation whose solution exhibits the
same decay estimates at infinity as the linear heat equation does. {istags bounded iR x R

while its derivatives decay polynomially whempproaches infinity.

Coming back to our original problenj (1.1) we can conclude that the solutianS, ¢),
corresponding to initial data close to the TW, exists globally in time and, in the coordinate system
attached to the frontp, S and¢ stay bounded and sufficiently close to the TW, while their space
and time derivatives decay with polynomial rate at infinity.

2. Reduction to a fixed boundary problem

In this section we transform our problem into an equivalent one of the fype (1.3). First of all we
fix the boundary by settin@(z, x, y) = O, x + ¢ (1, y), y), ST, x,y) = S(t, x + ¢ (1, y), y).
Moreover, we sep(t, y) = ¢ (z, y) + t. Easy computations show that the triplét®, 1, ¢) solves

the following problem:

O + O = A0 + (¢,)?0}, — 20,07, + (¢ — 9,,)O;, x <0, (2.1)

el=1 x>0 (2.2)

SE4 St = AST + (9,)%SL, + (0 — 03y) St — 20, SE,. x #0, (2.3)
_ 1

[0 =[s=[51=0, [Of] =—(1+¢) %" (2.4)

Here [-] denotes the jump at = 0, andA = Df + D§. To decouple the system we argue as in [3]
introducing the new unknownsandw defined by

(i) O, x,y) = 0% + O, y) + v(t, x, y);
(i) S, x,y) = wt, x, y);
here and throughout the paper we wiié instead 09 (see[(1.)).
Performing the change of unknowns .5), we get an equivalent problem for the triplet

(v, w, ). But taking the jump of both sides of (2.5i).at= 0, and recalling that§1] = [s1] = 0,
we get

(2.5)

o(t,y) =—v(t,0,y), V>0, VyeR. (2.6)
Settingu = (v, w, k), whereh(t, x, y) = w(t, —x, y) for anyt > 0 and any(x, y) € R? :=

{(x,y) € R?: x < 0}, and replacing the unknown front by its expression in terms given by
(2.8), we get the following problem which is equivalent[to [2 [[)(2.4):

{ U (1, x, y) = Lu(t, x, y) + Fo(u(, ) (x, y) — v (2,0, P (U, ))(x,y), 1t (x,y) € RZ,

2 07
Bu(z, ) () =G, ) ), t>0 yeR.
2.7
In (2.7) the second-order differential operatd; the boundary differential operatdf =

(Bo, B1, B2) andFo(u) = (f1(u), f2(u), f3(u)) are given, respectively, by

LU= (Av — vy, Aw — wy, Ah + hy); (2.8)
BOU = w('7 07 ') - h(') Ov ')7
Biu = w,(-,0,:) 4+ hy(-,0,), (2.9

BzU = v(', 0, ) + h(.v Oa ) - vx('» 07 );
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f1U) = 0y, 0, N2O —v(-,0,9O0% | + vyx) + 20y (-, 0, ) (=0 (-, 0, )00 + vyy)

+ 0y, 0, )(=v(-, 0,90%, + 1), (2.10)
f2(U) = (y (-, 0, ) wyx + 20y (-, 0, Ny + vy (-, 0, Jwy, (2.11)
faW) = 0y (-, 0, ) ?hx — 20y (-, 0, Vhgy — Vyy (-, 0, hy, (2.12)
while ¥ (u) andG(u) are defined by
W) = (—v(-, 0,)02, + vy, wy, —hy) (2.13)
and
Gu) =(0,0,gW)), gW) =1+h(-0,) = (L+ (vy(-, 0, )2 20, (2.14)

Problem [(2.]7) still contains the unknowp(z, O, y) in its right-hand side. However, evaluating
the first component of the differential equation[in {2.7)at 0, we can get,(z, 0, y) in terms of
the space derivatives af providedu, (¢, 0, y) —v(¢, 0, y) # —1. Thus, we finally get the following
problem foru:

U (t, x,y) = Lu(t, x, y) + Fu(t, )(x,y), t=0, (x,y) € R?,
>0,

(2.15)
(Bu(t, ) (y) =G, )W), t y €R,

where

AU(t, 07 ) - Ux(tv O’ ) + fl(u(tv ))(O’ )
) = ) — w(u(,-), Vr>0. (216
Fu@, ) = Fou(t, ) T 0009 01,0 u@,-), Vvr>0.(2.16)
Note that the TW solution to the original problem corresponds to the null solutipn tg (2.15) and
the solutions close to the TW correspond to small solutior|s t0](2.15).

3. The function spaces

In this section we introduce the Banach spaces we deal with throughout this paper. For notational
convenience we use bold style to denote vector-valued functions. According to the notations of
the previous sections, we sRE := {(x,y) € R%? : x < 0} and we denote bRR? its closure

in R2. Moreover, for anyf : R2 — RS, f = (f, g1, g2), we denote by? the function defined by

fECe, y) = (€2 f (x, v), e 21(x, ), €2 ga(x, y)).

DEFINITION 3.1 For anyk > 0 we define the function spacg, by
X; = {f: R? - R3: % e C}(R?)),
and we endow it with the norrfif||x, = ||fﬁ||C£(R3),f € Xy.
Moreover, for anyi, b € Ry U {400}, a < b, and anyx € (0, 1) we define the Banach spaces
Xoj2aa,b) ={u:u(, ) € Xo Vt €[a,b], sup |lu, )lx, < +oo,
a<t<b

uC,x,y) € C*2(a, b) V(x,y) € RZ,  sup U, x, M)l cerzga sy < +00),
(x,y)ERZ_

Xitaj2.2+a(@, b) = {u: D{*DP2DRU € Xyj24(a, b) for 201 + a2 + a3 < 2).
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They are normed by

IUllx, o000y = SUP UG, lIx, + sup [UC,x, W]cerzqq )
a<t<b (x,y)eR%

— ¥1 na2 Hos
”u”)ﬁﬂl/gzﬂz(a,b) - Z ”Dt Dx Dy u”Xa/Z,a(aab)'

201 +ap+az <2

DEFINITION 3.2 Forany € (0,1) and anya, b € R, U{+00}, a < b, CUt®/2ite (4, b] x R)
(j = 1, 2) denotes the usual paraboliélder space

CUrZTt ([, b] x B) = (1 (1, ) € CJTR), SUP 1Y (1, )| ey < +00,
tela,b] b
Y, y) € CUT2([a, b)), SUPIY (- Mlctrorzqan < +o0)
ye

endowed with the norm

Wl cusarziveqapxry = SUP 1Y (1, Il e gy + SUAY ( Mcu+arzqaey, J =12
tela,b] b yeR

DEFINITION 3.3 We denote byt; the Banach space of all functiogs: R; x R — R such
thats — ¢(¢, -) is continuous in [0+o00) with values inC,f(R), is continuously differentiable with
values inCj(R), bounded with values ixflf”‘(R) (@ € (0,1);t = qt,) andt > qy,(¢,-)
are Hblder continuous with exponent/2 and with values irC, (R); g, is bounded with values in
C; (R) and

lgllx, = supllg(z, )lic,m®) + SUpl + ) llg: (. Hllcg®) + gy . llcg®))
0 t2>0

(>4

+ sup(l+s)<

llgi(t, ) —qi(s, lle,® | Ngyy () — gyy(s, ‘)||Cb(]R)> < 400,
0s <t

(t — 5)2/2 (t — s5)2/2

Moreover, we denote by, the space of all functions : Ry x R2 — R3 such thatr
w(z, -) is continuous in [0+o0) with values inX 5, is continuously differentiable with values Ky,
bounded with values iX2,4; t = D,w andr — w(¢, -) are Hblder continuous with exponeat/2
and with values inXg and X », respectively, and

IWllx, = supd+ )W, ) llxa,, + W@, ) lix,)

>0

+ sup (1+5)

<||W(l, ) — WG, )llx, | I1DwW(E, ) — DW(s, ')llxo) < 400
0<s <t

(t — 5)%/2 (t — 5)%/2

We conclude this section with the following lemma.

LEMMA 3.4 Letg : R, x R — R be a continuous function such that

[[qll := S;Jpllq(t, MNe,® + S;JIO(1+ Dlgyy (@, ice®y + llg: (. )llcxw)) < +o0.
t=0 >0
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Then

(i) supl+nY2)q,(, le,® < Cllgll;

T >0 —Q2—j4a)/2) nJ J ; G.1)

(i) inp A+t =)~ |Dyq(t,-) — Dyq(s, )lc,w) < Cllqll, j=12

s <t
If w:R; x R_ x R — Ris such that
([w]] := sgp(1+ DAWGE, Hlx,,, + I1DW(E, )llx,) < +00,
=0
then .
sup (L+5)(t — )~ @72 w(r, ) —w(s, )llx, < ClwWll,  j=12 (3.2)

0<s <t
HereC denotes a positive constant independent ¢esp. ofw).

Proof. The proof is based on interpolation inequalities. Estimates$ (3.1i)and (3.1ii),#of, have
been proved in[2, Lemma 2.5]. To proye (3.1ii) with= 2 and [3.R) it suffices to argue as in the
proof of the quoted lemma, observing that, for any= (0, 1), there exists a positive constafit
such that

2 1-«a/2 2
1 lesm < CLAG @ Testh:  Vf € CFF @),
and o ieasa o
p— + — .
lullx; < CIUlE, 2l 0%, Yue Xopa, j=1,2 O

4. The fully nonlinear problem

This section, the main body of the paper, is devoted to proving that the null solution to problem
(2.15) is stable with respect 8>, -perturbations. As we are going to show, we are in a critical
case of stability, since the spectrum of the realizafiaf £ in X is contained in the left half-plane
and contains 0 as an accumulation point of eigenvalues. Hence, we cannot apply the linearized
stability principle to prove our stability results, since we cannot eliminate the eigenvalue 0 from
the spectrum of. by a spectral projection. Nevertheless we can define a suitable projgttion
which is not a spectral projection, but enjoys most of the typical properties of a spectral projection.
In particular (see Theore@:&), the restrictionetf to (I — P)(Xo) gives rise to an (analytic)
semigroup of negative type.

To get such a projection we observe that the opetiatan be split into the sum of two operators
Ly and L, commuting in the resolvent set. 0 is a simple eigenvalukjoHence, we can define a
spectral projection associated with it: this will be our projectian

4.1 The realization of in weighted Hlder spaces

In this subsection we show that the realizatiorf the differential operatof in Xg generates an
analytic semigroup, we characterize its domain and spectrum, and the interpolation spaces of order
«/2,1/2 and 14 «/2 (o € (0, 1)). Finally we provide a suitable projectian satisfying [1.4).

To begin with, let us consider the following theorem which has been already proved, in a more
general context, in [7].
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THEOREM4.1 The realizatiord of the operatoL in X generates an analytic semigroup provided
we set

D(L) = [u eXon () W2I®?):Lue Xo. Bu(O,y)=0Vye ]R}, (4.2)
l<g<+oo

where the boundary differential operatBris given by [2.9). Its spectrum is given ls(L) =
(—o0, 0]. Moreover, for every € (0, 1) the set equalities

Dy (a/2,00) = {u € X, : Bou=0atx =0},
D14 «a/2,00) = {u € X2y : Bu=0, BoLu =0 atx = 0}

hold, with equivalence of the respective norms. Finally,
{fue X1: Bou=0atx =0} C Dr(1/2, o0),

with continuous embedding.
Proof. Seel[7, Theorem A.2 & A.3]. |

As Theorenj 4]1 shows we are in a critical case of stability, since the spectrirnsantained in

the left half-plane and 0 is an accumulation point of eigenvalues. To construct a suitable projection
satisfying [1.4) we begin by splitting operatdrinto the sum of the two operatofs; : D(L1) C

Xo — XoandLy : D(L) C Xo — Xoformally defined byL1u = (vyy — vy, Wyx — Wy, hyx +hy)
andLou = (vyy, Wyy, hyy), Where

D(L1) = {u: Diue Xo for j =0,1,2, Bu=0},

, (4.2)
D(Ly) ={u: Djue Xq for j =0,1,2}.

Let us consider the following lemma.

LEMMA 4.2 Both the operatord, and Lo are infinitesimal generators of analytic semigroups
in Xo provided their domains are chosen as[in|(4a&)L1) = (—oo, —1/4] U {0} ando (L2) =
(—00, 0]. Moreover, for anff = (f, g, k) € Xop,

0

[R(w, Lf]1 = ﬁ(a(f)e“” — /x et f(x —t,y)dt —i—/ e M F(t+x, y)dt),
0 —00

X 0
[R(w, L)f]o = «/ﬁ <b(f)e“2x - / eMlg(x —t,y)dt + / e Mgt +x,y) dt>, (4.3)
0 —00

0

[R(w, L1)f]3 = e MEk(x —t,y)dt +f

—00

1 X
———| c(fle7H2* — / etk (t 4+ x, y) dt),
V144w < 0 g

wherey; = 3 + (-1)/ 3/1+ 4w for j = 1,2 and

0 0 0
a(f) = ! 1(#2/ e M F(t, y)de —i—/ e Mla(t, y)dt —i—/ e"?'k(t, y) dt), (4.4)
n2 — -0 -0 —0
0 0
b(f) = / e’ k(t, y)ydt, cf) = f e Mgt y)dt. (4.5)
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Finally, o = Ois a simple eigenvalue d@f;; the corresponding eigenspace is spanned by the function
Uo = (©9, 0, 0) and the spectral projection associated with it is the operatoKo — X defined
by Pu = M(u)Up, where

0 0 0
Mu)(y) = / v(x,y) dx +/ w(x, y)dx +/ e*h(x,y)dx, VyeR. (4.6)

- - —00

Proof. The proof, being straightforward, is left to the reader. |

We are now going to prove that, everfifis not a spectral projection associated with the operator
L, it enjoys most of the typical properties of a spectral projection. In particBlagmmutes with
e'L,and(I — P)e't decays with exponential rate agends to+oo. This property will play a crucial
role in proving our stability results.

THEOREM4.3 The operatorP defined in Lemmd_4]2 commutes with the semigratip.
Moreover, for any > 0 there exists a positive constavit:= M (¢) such that

(I — Pe'™E | Lixg) < Me Y41, (4.7)

In particular, ) holds true for any space and time derivativé af

Proof. We begin the proof by observing thef- = e'L1¢'L2 for anyr > 0. To check this property
we can limit ourselves to proving that all the assumptions of Da Prato—Grisvard’s Theorem (see [4])
are satisfied. Hence, we need to check thaand L, commute in the resolvent sense. Of course,
thanks to Lemmpa A]1, we can limit ourselves to showing thaR (w, L1)f = R(w, L1)Lof for any
w € p(L1) and anyf € D(L»), and this follows immediately if we takg (4.3)—(}.5) into account.

Now, recalling thatP is the spectral projection associated with the simple eigenval€0 of
the operatot.1 we can write

Pu= i/ R(w, L)udw, VYu e Xy, (4.8)
2rni J,

wherey is a suitable closed and smooth curve arownd 0 contained ino(L1), oriented counter-
clockwise.

Fix wo € p(L2). Applying R(wo, L>) to both sides of (4]8) and taking into account the fact that
Ly and L, commute in the resolvent sense, we can easily showRlaimmutes withR (wg, L2),
and consequently it commutes wigi-2. This is enough for our aims. Indeed! = e'L1¢!L2 for
anyr > 0. Hence,

PEtL — PetLleth — etLj_PetLg — etngtLQP — etLP,

so thatP commutes with the semigroup”. Moreover, since = 0 is an isolated simple eigenvalue
of L1 and supRew : w € o(L1), w # 0} = —1/4, it follows that for anye > 0 there exists a
positive constan¥ := M (¢) such that

1T — PYe'Et | pixg) < MeE™YH vt > 0.
Sincee'L2 is the heat semigroup, we haje'“2||, (x,) < 1 for anys > 0. Hence,

I = PyellLixgy = U = Pye ™2 P2 xo) <IN = PYe™ 1w e 2l org) < M=o
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for anys > 0, and [(4.F) follows. Now observing thate': (I — P) = Lele~DL(1 — P) for
anyt > 0, we easily deduce thdte’" (I — P) decays at least ad¢~1/4" ast tends to+oo. The
same holds foi.”e!L (I — P) for anyn e N. If we take into account the characterization of the
interpolation spaceB; («/2, oo) and Dy (1+«/2, 0o) in Theoren 4.]1, estimate (].4) immediately
follows. O

4.2 A suitable splitting of problenj (2.1.5)

In this subsection we deal with the initial value probleri®, -) = ug for the nonlinear problem
(2.15). To begin with, we split along P (Xo) and(/ — P)(Xp) asu = Pu+w :=r(z, y)Ug + W.
Then we determine the Cauchy problems satisfied by the(pain. For this purpose we begin by
observing thatu = LPu + Lw. Moreover,LPu = ry,Ug and

PLv=—(Bv)Ug, Vve(l— P)Xp2) suchthatBgv = B1v=0. (4.9)
Hence, andw turn out to solve the following coupled Cauchy problems:

Dw = Lw + (Bow)Ug + (I — P)F(u),
(i) Bw = G(u), (4.10)
w(0, -) = (I — P)uo,

i) re =ryy — Bow + M(F (W),
r(0, ) = M(uo),

where the linear operata¥ is defined in [(4.6). Straightforward computations and the fact that
Bu = Bw = (0, 0, g(u)) show that

1(0) _ 0
M(FU)) = (ry + vy(0))2 ¢ — h(0) + M ¢ h(x) dx
\/1+(Vy+vy(0))2 —v(0) + v (0) —00
0 0) — M 0 0
+ 20y + vy(O))</ e*hy(x) dx + % h(x) dx)
_ 0
_ Uyx (0) — v, (0) ¢ h(x) dr,

1-v(0) +vx(0) J_

where, to shorten the notation, we simply wr@é&v(x), D*w(x) and D*h(x) (Ja] < 2,x < 0)
instead ofD%v(-, x, -), D*w(-, x, -) andD*h(-, x, -).

Let us now consider the differential equation[in (4.10i). Since, as already pointeffout=
g(u), we can write

r(t,y) = ry(t y) + 377+ H@ (). W, ) (). Yy eR, (4.11)

whereH (r, w) is anonlinearoperator which is quadratic neéd, 0). The second order terms @n the
expression of{ are both quadratic in the derivativeswfand are given by the product Gf/ /9y/)r

(j = 0,1, 2) multiplied either byy-derivatives ofv andh or by ff’oo e*h(x)dx. Equation )
exhibits a critical growth at 0 due to the presence of the t%arfn To skip the problems given by the
nonlinearity, we perform a Cole—Hopf transformation, namely we set ¢’/?2 — 1. Straightforward
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computations show that the differential equatipn_(#.11) transforms into the differential equation
q:(t, y) = qyy(t, y) + H(g(z, -), W(t, -))(y) for the unknown(g, w), where

~ 1/ 2 2
Hg, w) = %(q iyl + vy(O))
h(0) _ 0
x ¢ 14 2O =@ T
2qy 2 1- U(O) + vx(o) —00
1+ (25 +v,0)
g+1 0 X Uy 0 - ny(o) 0 "
o o) ([ emmane 2EEsT [ en)

@+ D (0) — v (0) [°
2= v(0) +v:(0) J oo

+ q—;l(eh“’) - 1)( ! = 1) + q—"le(eh“’) — 1 h(0)
+ vy(O))

] 24’
q 1

1 1/ 2 2
+ —1+—<i+uy(0)) . (4.12)
2 ” 2\g+1
1+ (2

2
2+ vy(O))

1
q : (0y(0)2 + gyv,(0)

e h(x)dx +

Let us now observe that
K(g,wW) == Bow+ (I — P)FQ) :=2(qg, WUog+ (I — P)(F(2log(g + HUg +w)), (4.13)

where

~ eh(o)
8(q.w)=1+h(0) — ; (4.14)

\/1+ (2 + vy(O))2

(I — P)F(2log(g + DHUo +w)

2
- (2540,0) {W” OOy () OO ),

q +1 1- U(O)+Ux(o) 1- U(O)+Ux(0)
h(0) _ 0
B e — h(0) — Vxx (0) — v, (0) e h(x)dx |Ug
2qy 2 1-v(0) +vx(0) J_
1+ (24 +0,0)

2qy = 0 =00 o v (0) — vy (0 )
+2<q+1+”y(0))[w"y 1- 00 + 10 1—v(0>+vx<0)</ofh(x)dx Ho

° 0)vyy (0) — vy, (0)(1 4 vy (O
T g g

Vex (0) — 0, (0) [ 0 .
_ m[wx - (v(O) +f_ooe h(x)dx)uo}, 4.15
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andW = (v, w, —h). Hence, the paifg, w) turns out to solve the Cauchy problems

Dyw = Lw + (g, w),
(i) { Bw =G, (4.16)

(l) {QI = dqyy + ﬁ(%W),
w(0, ) = (I — P)uo,

q(0,) = exp(M(uo)/2) — 1,

where the nonlinear operataksandk are given, respectively, bly (4]12) afid (4.1B)—(k.15).

4.3 Optimal regularity for the linear problem

We devote this section to proving optimal Schauder estimates for the solutions to the linearized
problems associated with systerns (4.16), namely the problems

_ Diw = Lw +f,
i 9= Te @iy {Bw=(0.,0,v), (4.17)
q(ov ) = 40,
w(0, -) = wp.

Problem [(4.1]7i) has been partly already consideredlin [2, Theorem 2.6]. Note that the asymptotic
estimates of the solution to problefn (4.16) are crucial to proving our stability results. However,
since not all the estimates we need are contained in the quoted theorem, we give the detalils.

THEOREM4.4 Lety : Ry x R — R satisfy

< 400, (4.18)

t,:) —o(s, -
ello = SUpL+ /2) [t, sy + sup (1+ ) 120 "’(a/z)”c“m
>0 0<s <t (t—s)

for somea € (0, 1). Further, assume that < Cf*"‘(R). Then problem?i) admits a unique
bounded strict solutiog, which belongs toY, (see Definitior] 3]3) and satisfies the following
estimate:

gy ) —ay(s, Ile,®
(t — S)(l+a)/2

llgllx, + sug(l +5)

§Z

for some positive constaudt, independent ofqo, ¢).

Proof. Throughout the proof, we denote I8y (j € N) positive constantsidependentf the data
and:.

As is well known (see e.g[ [10, Theorems 4.3.1 & 4.3.8]), our assumptions guarantee that
problem i) admits a unique strict solutigre C*+/2([0, T]; C»(R)) N B([0, T]; CZH*(R)) N
C*/%([0, T]; CZ(R)) such thay, € B([0, T]; C¢(R)) foranyT > 0. The solutiory is given by the
variation-of-constants formula

t

q(t,-) =T (t)qo +/ T(t —s)p(s,-)ds, Vre[0,T],
0
whereT (t) is the Gauss—Weierstrass semigroup, i.e.

(T(g)(y) = =Pl dz,  Vi>0, yeR,

1
— [ e
\/4nt/R
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for anyg € C»(R). Moreover, there exists a positive const@atsuch that

”‘1”B<[o,1];c§+"(R)) + llg: 1l B0, 13:c2 ®)) + 191l corz (0,110, ®)) T 19y lcorzo,13: 0, R))
< Cillellsqoagcery.  (4.20)
It is also well known that for ang < [0, 1) and anyk € N there exist positive constant¥ ; such

that

IDET (Dglic,m) < Cput ™ P72 g| Vi > 0, Vg € C (R). (4.21)

cf®)y
It immediately follows thatT' (-)go belongs toB ([0, +00); C§+O‘(R)) N c,}([o, +00); Cp(R)) and
there exists a positive constati such that

S;JPHT(I)C]O”C;,(R) + S;Jltl(l T OIDyT(qollcgm) < Callqoll e - (4.22)
(0] t=0

Let us now consider the convolution tegnz, -) = fé T(t —s)p(s, -) ds and let us estimatg, for
t > 1. From [4.2]L) we immediately deduce that

+o00
||q1<r,->||c,,<R><sug(1+r1+°'/2)||w(r,-)||q,(R> /O L+sT2)"1ds,  vi>1,  (4.23)
r

=

sinceCo,0 = 1. As far as the second order space derivativg; 0§ concerned, we observe that

t/2 t
1D2q1(t, ey @) < H / DT (t — )g(s, ) ds + / DT (t — $)¢(s, ) ds
0 Cr(R) t/2 - Cp(R)
1+a/2 2 1 1
< . -
< Co,2rS;c[)11+r Me(r, )||Cb(R)/0 IS T ds
+ a,2rS;CF)X +r M@, ez ®) 2 T4 5TH2 (1 5)iap2 s

< Casupl+ r2) o, Yyt "t V> 1. (4.24)

r>=0

Moreover,

I1€2/2D3T (8) D3ga(t. i cym) = &7/

t
fD‘V‘T(t+s—s)¢(s,.)ds
e

Cp(R)
1)2 gl-e/2 ds
< Coasupd + r2)lo(r, )|l co /
a,4r>g( )”‘p( )”Cb(R) 0 (t_i_g_s)z_a/z 1+S1+a/2

L2 t 1-a/2 ds
+ CoasUpl +r=" D] fe /
Ol’zlrgcr)]( et e m 12 (t +& —5)20/2 1 4 s1te/2

+o00 ds
1+a/2 . o —(2-a/2) o
< Ca,4rS;Jcl)i1+r M@ ey w)(1/2) /0 15 sirar2

+oo ds
C. asun(l 4 ri+e/2 I ey (2/2 —(1+“/2)/ _—
+ O,,4r>cr)i +r e, e ) (1/2) o (Its)2ar2

< Cat™ TP supd + 1) lo(r Vo). VE € (0. D).
r>0
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Hence,

sup [|E17*/2D3T (£)D3ga(t, e, ®)
£€(0,1)

< Catm D supd + 1)o@, o). Vi >1 (4.25)
r>0

Sincef € C§(R)ifand onlyif f € Cp(R) and [[f]] cz(r) = SUR (0.1 IE*/2D2T (&) fllcy ) <
+o00, and the usual norm af (R) is equivalent to the norm - lic, @) + [[ - Il cg ), from )
and [4.25) we immediately deduce that

S;Jf(lwt t)IIDﬁm(I, Megm) < Cs(llqollc[gw(R) + [[ello)- (4.26)

12

Taking [4.20),[(4.22)[ (4.23), (4.6) and Lemma]A.3 into account, we can now easily show that
S;nglq(t, MNe,m®y + S;ng(l T Dllgyy @, llcg @) < Colllgoll cz+e gy + (ello)- (4.27)
[ 1>

Moreover, sinceg;(t, ) = gy,(t, ) + @(t, ), from @) and our assumptions gn we easily
deduce that

S;J(E(l+ DIDiq(t, )llcgmr) < C7(|Iqollclg+a(R) + [[ello)- (4.28)
1>

From ), »: and Lemn@A we immediately deduce Eat e C,EZ_H“)/Z([O, +00);

Cy(R)) for j = 1, 2 and there exists a positive constéiatsuch that

sup (1+s)

<|ID§Q(I, ) — Diq (s, lle,®) n IDiq(t, ) — Diq(s, ~)|ch(R)>
0s <t

(t _ s)(z—j+oz)/2 (t _ S)oc/2

< Ca(lluoll2ve g, +ello),  (4.29)

for j = 1, 2. Now, [4-19) follows from[(4.27)F(4-29). O

We now turn to problenj (4.17ii). For this purpose we prove the following lemma which provides
a suitable lifting operator mappir@§ (R) into X1 foranyk > 0.

LEMMA 4.5 There exists a lifting operatey € L(C,’J‘(R), Xy41) foranyk > 0 such that

() BNy = (0,0, v) foranyy € Cp(R);
(i) PNy =0foranyy € Cp(R);
(i) PLNY = —yUgforanyy € CE(R).

Proof. Let N be the linear operator defined by

Ny = xn(X)/pr(é)I/f(y +éx)di, VY e Gp(R),

wheren is any smooth function satisfying(x) = 1 for anyx € [—1, 0] andn(x) = 0 for anyx <
—2, while ¢ is any smooth even function compactly supported-i, 1) such that 0< ¢(x) < 1
for anyx € R and with[|¢||, 1) = 1. As is immediately seeny € L(CE(R), C,™"*(R2)) for
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anyk > 0, whereC’;H’j(EE) denotes the set of all continuous functiofs R2 — R such that
(x,y) — e */2f(x, y) is bounded. MoreovetN ) (0, -) = 0 and(D,Ny)(0, -) = v.
Define Ny by setting

Ny = — P)(—Nv,0,0), Vi € Cp(R).

It is immediate to check that/ e L(C’,j(]R), Xi+1) for anyk > 0. Moreover, by constructiony
has both properties (i) and (ii). Property (iii) easily follows from (i) and](4.9). |

The solution to problem| (4.17ii), under suitable assumptionsvenf and v, is given by the
following formula, a variant of the Balakrishnan formula:

t
w(r, ) = e lwo + / L (F(s, ) + LAY (s, ) ds
0
t
- L/ eCIEN Y (s, ) ds,  Vi>0. (4.30)
0

To be more precise, the following theorem holds.
THEOREM4.6 Letwg € (I — P)(X21q), ¥ € CIFT/214¢([0, T] x R) andf € Xy/24(0, T)
(T > 0), withf(z,-) € (I — P)(Xp) for anyt € [0, T], satisfy the compatibility conditions

Then probIem@?ii) admits a unique solutre X114/224(0, T) given by @), wherg\/ is
the lifting operator in Lemmp 4.5. Moreoven(z, ) € (I — P)(Xo) for anys € [0, T] and there
exists a positive constagi(7’) > 0, independent of the data, such that

Wl 20001 < COYAWOl X510 + Il 20 0.1) + 1¥ lcarazie o rpery)-  (4:32)

Proof. The proof can be easily obtained by adapting the techniqués of [7, Theorem 4.1]. O

Due to the particular nonlineari@ we are considering, we can assume thasplit asf = g+ vy Ug
for suitable functiong andy.
The following theorem deals with the asymptotic behaviour of the funetiam (4.30).

THEOREM4.7 Suppose tha@f € X;/2.(0, 00) (@ € (0, 1)) is such thay(z, -) € (I — P)(X) for
anyr > 0 and

< 4o0. (4.33)

llalls = SUpL+ 1) lg(r, ), + sup (14 512D —9¢: Tl
120 0<s <t (t—s)

Further, assume thaty € (I — P)(X24) andy € C1H+0/214¢ ([0, +00) x R) is such that
[[¥1]2 = sup( + DY (. )l o g)

>0
(Illﬁ(t, ) =Y )le,m n ¥y () — ¥y (s, ')||C;,(R)> < 400

+ sup (1+s) (t — )02 (t —s)2/?

o<t

(4.34)
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and
Bwo = (0,0, %(0,-), Bo(Lwo+9g(0, ) = (=v,0,0). (4.35)

Then problem[(4.77ii) witHf = g + ¥Up admits a unique solutiow € A, given by [4.30).
Moreoverw(z, -) € (I — P)(Xp) for anyr > 0 and

W, -) = W(s, )llx,
(t — S)(l+a)/2

Wl x, + sup (1+s)
0s <t

< C(Iwollxa,, + [[dl]1 + [[¥]]2). (4.36)

Before proving the theorem let us consider the following two lemmas.

LEMMA 4.8 LetZ be a Banach space, ldt: D(A) C Z — Z be the generator of an analytic
semigroup of negative type i, and letug € Z, f : [0, +00) — Z be anw/2-Hoblder continuous
function such that

103 = sup+ Dl fOllz + sup (149 L E2=TEDNz 457
120 0<s <t (t—s) /
with 0 < a < 1. Then the function
t
ut) = e"ug +./c; =94 £ (s) ds (4.38)

is the unique classical solution of(r) = Au(r) + f(¢) such that(0) = up; u'(z, -) has values in
D4(a/2, o0) foranyr > 0 and

llu' (1) — u'(s)llz
(t — S)O(/Z

< C(lluollz + [ f1l3).  (4.39)

sup(L+ ) ([lu@®) |l pcay + ' @O Dy/2,00) + SUp (1+ )

121 1<s <t

Finally, if ugo € D(A) and Aug + f(0) € Da(a/2,00), thenu e C¥%/2([0,1]; Z) N
C%2([0, 1]; D(A)) andu’ € B([0, 1]; D(«/2, c0)). Moreover, there exists a positive constént
independent of the data, such that

lull cr+arzqo 3 2) + Il carzo,13: p(ay) + 114/ 11B([0.13: DA (@/2.000)
< C(lluollpay + 1Auo + f(O)Ipya/2.00) + 1 fllcarzqo 13 z))-  (4.40)

Proof. It is well known (see e.g[[10, Theorem 4.3.8]) that, under our assumptions, fofmulh (4.38)
defines the unique classical solution of the equation= Au + f. Moreover, ifug € D(A)
and Aug + f(0) € Dy(a/2, 00), thenu e C*2([0, T]; D(A)) N C**/2([0, T]; Z) andu’ €
B([0, T]; Ds(a/2,00)) for any T > 0, and [(4.4D) is satisfied. Hence, we can limit ourselves to
dealing with the asymptotic behaviourmofsimply by checking(4.39). For this purpose we observe
that,¢’4 being a semigroup of negative type, there exist positive consiaatsl M; (k € N) such
that

flA% e A Lz < Mpe ™', Vi >0, keN. (4.41)

Taking ) into account, it is now easy to show that the functians = ¢’4ug and Au; decay
exponentially at infinity. In particular, there exists a positive constastich that
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() — uy ()l 2
SUP(L + 1) (lu1 ()| peay + 81O Data/2.00) + SUP (L4 8) —H"——==
1>1 1<s<t (t—s)

< Cluolliz.  (4.42)

Let us now consider the integral temm(r) = fé =94 £ (s) ds. As is easily seen,

t/2 t
luz(t)llz < sup(l + r>||f(r)||z< / L+ te@=ds 4 [ (L 4s5) Lm0l ds)
0 t/2

r>0
t/2
< supl+ r)llf(r)llz(e_“”/z f A+s)tds + @+ t/2)_1a)_l>
r=0 0
< CA+n"tsupd+n| f(r)llz, Vi = 0. (4.43)
r>0

Similarly, since

t
wh(t) = /0 ACTIAf(5) — fds + A f@), V=0,

we easily deduce that

_ t
o) llz < My_sup (140) DTN / (L+9)7He — )2 e ds
0<o <t (t — o)/ 0
+ Moe™ " supll f (D) z
>0

+00
< Ml((r/zwze—wf/z +@+1/27t /O s@/21gmes ds)[[ flls

+ Moe™ " supl| f (1)l z
>0

<CA+0Yflls, Vt>o0. (4.44)

Moreover, for any 0< s < ¢,
uy(t) — u(s) = / T DAY (f () = £(5)) o + (e — ) £ (5)
0

+ eI = fo) + f AN (f (o) — (1) do. (4.45)

Let us now consider the first term jn (4]45) and observe that

f ' A4 — 5T (f(0) — f(s)) do
0

— H/S do /t_a A2e™A(f(o) — f(s)) dt
Z 0 s—0

z

_ s t—o
<My sup (1+rp) I f(r2) f(rlz)llz/ (1+0)—1d0f L0220 4y
0<r1<r2 (ro —rp)®/ 0 s—o

s/2 t—o s —o
< M2[[f]]3<e“”/2 f do / /2 2dr 4 (1 45/2 71 / do / 79/2-2,—0t dT)

0 s—0 s/2 S—o
< Cll fls. (4.46
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All the other terms are easily estimated and have estimates similar td (4.46). Henc¢, frgm (4.42) and
(4.486) we deduce that there exists a positive congfasuch that

sup (1+ ) [’ (1) —u'(s)lz

1< ez < Clluollz + M) (4.47)
s<t

Finally, let us estimate the asymptotic behaviour||6f(r)|p,«/2,0). For this purpose, fi% <
(0,1),r > 1, and observe that

E1 2 A A1)l 2

< El—(x/z

t
/O AZUHEDA(f(5) — f(1)) ds
I f(x) = fo)lz / e~ @UHE=) (1 — 5)2/2
ds
0

+ 17921 41O £ (1)) 2
V4

< Mot ™2 sup (1+0)

0<o <7 (t —0)2/? (t+&—9521+s)
—w(E+1)

1-a/2€ ©

+ M1§ —I+E I f®Ollz
a/Ze—a)(é‘—i-t/Z) t/2 ds 1 t ds
< Mpgt=e? (t / + / )
3 [([f1s &+ t/2)2 o 1l+s 1+1/2 /2 (t+&— s)2—a/2

Lo @ED

+ Mg/ v M0lz (4.48)

Taking the supremum over dlle (0, 1) gives

sup 2 A5 A ub(n)llz < CA+ DY s
£€(0,1)

Sincellub ()| ps(@/2.00 = llu2(t)llz + SUR(0,1) E**/2 | A Aufy (1) z, we get

4o s @/2.000 < CA+ D[ f1]3. (4.49)

The assertion now follows fronj (4.42)—(4144), (4.47) dnd (4.49) and our assumptighssarce
u =Au—+ f. O

Next we deal with the function
t
u, ) =1L f "INy (s, ) ds, (4.50)
0
whereV is the lifting operator defined in Lemrha 4.5.

LEMMA 4.9 Suppose that € C1+®)/21+%([0, +00) x R) (a € (0, 1)) is such that

I, ) — (s, e, m®

(r — s)(l+ot)/2

[¥]la=supL+ Oy, )l p1tep, + SUP (1+5) < +00
>0 b ®

<s<t
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Then the functionu given by Ep) belongs t&114/2 24« (1, 00). Moreover, there exists a positive
constaniC, independent of/, such that

SUPL+ 01U )l + 1D, ) + Sup (L4 9l Z 0 Dl

1>1 1<s <t (t — S)a/z
UG, ) = UGs. s DG ) — DeuGs. )lixg
M AA ”( (1 — 5@l (1 5yl )
< Cl[v]a. (4.51)

Proof. Throughout the proof, we denote 6y (j € N) positive constantsndependenotf the data
andr.

By assumptionsy € C1+0/214¢([0, +00) x R). Hence, Ny € B([0, +00); Xo4a) (cf.
Lemmg 4.5). Moreover, there exists a positive constarguch that

SUPL + DINY (1, ) llxzeq < CLSURL+ DY, )l e - (4.52)
>0 >0 b

From Lemma4l we deduce that

A+ OINY (@, ) =N (s, )llx, < C2L+ )Y () = ¥(s, )lc,m)

Collyllatt — 5) /2, (4.53)

for any 0< s < r and some positive constagip. Hence Ny belongs toaC1+*)/2([0, +00); X1).

Since{f € (I — P)(X1) : Bof = 0 atx = 0} is continuously embedded in the spate—=
(I — P)(Dr(1/2, 00)) endowed with the norm ab; (1/2, co) (cf. Theorenj 4]1) and/y/ (¢, -) €
(I — P)(Xo) for anyr > 0, it follows that\'y € CA+®)/2([0, +-00); Z). Moreover, from|(4.50)
and [4.58) we deduce that there exists a positive conétastich that

INY(t, ) = N (s, )lip, 172,00

(r — s)(1+a)/2

NN

< Cal[y]la. (4.54)

SUpINY (¢, )lIp,1/2,00) + SUP (14 5)
120 0<s <t
Observe that the functioy satisfies all the assumptions of Lemmal 4.8 (see Lefnmja 4.5), and
the restriction o&’~ to Z defines an analytic semigroup of negative type (see Th 4.3) whose
generator is the part df in Z. Hence, Lemma@ 4|8 anfl (4]54) imply that the functie@, -) =
fé e"=9L Ay (s, -) ds belongs taZ for anyr > 0, and satisfies the following estimate:

S;Jﬁl-i- DLW, ) Dy /2,00 + I DW(E, ) Dy (14a/2,00) < Cal[ Y]] 4 (4.55)
=1

Let us prove thalw € C;J“"‘/Z([l, +00); Xo). For this purpose, we begin by observing that
is differentiable with respect to time ard, (Lw)(¢, -) = LD,w(¢, -) for anyt > 0. Indeed, since

B([0, +00); D1 (14 /2, 00)) C C(][0, +00); D(L)), we have
t
Lw(t, ) — LW(s, ) :/ LDW(o, ) do, Vit s> 0.

ConsequentlyLw is differentiable with respect toin [0, +00) and D;Lw = LD,w. Hence, we
can write

t
LDW(t, ) = / L2 9L Ny (s, ) — Ny (r, ) ds + Le' "Ny (¢, -). (4.56)
0
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We fix now, for the rest of the proof, a positive constant (0, 1/4). Then, by[(4.B), we know that
there exist positive constant$; (k € N) such that

supt Y2 Lt (1 — P)lL(Dy(1/2,00), X0) < Mge™".
>0

From [4.56) it immediately follows that

t
| Dy LW(t, )|l xg < /O L2~ 9L (N Y (s, ) — Ny (r, )l xo ds + ILe EN W (2, )l x,

(e, ) = ¥, lle,®) /t(1+s)_1(t gy Hras2gmol-s) g
0

<My sup (1+0) G T

0<o <t (r
+ 2Mat 32 |y (2, )l )
< Mof[ Y114 <e—wf/2 fo el 12t /0 /2o ds)
+2Mut MY (@ )o@
< Cst™ [y ]la, (4.57)
for anyt > 1. Moreover,
1D LW(t, ) — D;LW(s, )| x,
< H /O L2~ O (Y (0, — N (s, ) do

+ HL(e[L —SHNY (s, )

Xo Xo

+ 1L "L Ny (2, ) — N (s, ) llxe

t
#) [ LR N o)~ N ) do
s Xo
S (s — o)Ite)/2 /’_" e " /’ ~3/2,,~
<C —Fd — d /e d
tvlla( [T [ drs [0
1 pw(t—o) 1 1
(t—s)L _ ) @Ha)/2
+£ T X s do+1+ | Le I Z(DL(1/2,00), X0) (T = 5) )

5 gmw(s—0) e@=0)
<
\C7[[¢]]4(/0 ———do / 72-a/2 a/2 1+s/ (t— o)l “/2
efa)S . (1/2
+ (s(1+a)/2 * s+ 1>(t ) )

5/2 - ‘ _
< Cel[v]la ews/Z/Y/ da/t T dr + ! /Y da/t aLdt
0 s—0 ‘[2*01/2 1+S S/2 s—o 1—270(/2

1
+e—wS(t _ S)Ol/z + _(t _ S)O{/2>

1+s
< Col[¥lla+9) 7 = )2, (4.58)
for any 0 < s < r. Observe that = Lw; then [4.55),[(4.57) and (4.58) imply th@,u <
B([0, +00); X4) N C*/2([0, +00); Xo) and

ID:u(t, -) — Dsu(s, )l x,

r— )2 < Crol[¥1la, Vi > 1 (4.59)

(141) sup|| D:u(t, )l x,+ sup (1+s)

12>1 1<s <t (
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Sinceu+Ny = D;w € B([0, +00); D (14+a/2, 00)) (see[(4.5b)) and/yr € B([0, +00); X2+4)
(see[[4.5R)), we easily deduce thiae B([0, +00), X24,) and there exists a positive constaht
such that

sup(L + 0 flu(z, )llixp,, < Cull¥]la. (4.60)

t>1

Now, taking [4.55),[(4.59)[ (4.60) into account and applying Lerimp 3.4 to the funciiefined
byv(z,-) = u(t + 1, ) foranys > 0, we easily ge{(4.51). The proof is now complete. O

We can now prove Theoregm 4.7.

Proof of Theorer 4]7. The statement follows from Theordm 4.6 and Leminap[4.8, 4.9 arjd A.3.
Indeed, our assumptions on the tripleg, g, ), the compatibility conditions irf (4.35) and Theorem
[4.6 imply that problent (4.17ii) admits a unique solutiwhich belongs toty 14,2214 (0, T) for
anyT > 0 and satisfieg (4.82).

Let us recall that the solution to problen (4.17ii) can be splivas w1 + w», where

t
wi(t, ) = e"up + / e"IE(g(s, ) + Y (s, )Uo + LAY (s, ) ds,
0
t
Wo(t, ) = —L/ "IN Y (s, )ds, Vi >0.
0

Throughout the rest of the proof, we denote®@y(j < N) positive constantindependenbf the
data and.

Due to Lemma 4]5(iii) and (4.52), the function— g(z, ) + ¥ (¢, )Uo + LN (¢, -) belongs
to (I — P)(Xo) for anyt > 0. Moreover, it satisfies conditiof (4]37). To check it, we begin by
observing that

Iy, ) =¥ (s, Illc,m®)
sup (1+s)
ogsgr (t —5)2/?

< 2[[y]]2, (4.61)
which follows easily by observing that

(@) =¥ )llem < A+ 9 l20 — )2 < A+ o) Y Tla - )%
if0 <s <tandr <s+ 1, while

It ) =¥ (s, le,® < AW e, + VG, Hle,®)E =) < 2A+5) "yl 2(r — )%/

ifO<s <randr >s+ 1.
Now, taking [4.3%#),[(4.61) and Lemrpa }4.5 into account, we easily deduce that

INY @, ) = NY (s, )llx, < Callyr @, ) = s, Dl ey
<2C1[Y]l2A+ )7 e — )2, VO<s <t (4.62)

Hence, from[(4.52)[(4.61) and (4]62) we get
[[¥Uo + LN Y]l < Co[ Y]] (4.63)
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Applying Lemmg 4B withZ = (I — P)(Xo), A = Ly1-p), f =9+ ¥Uo + LNV, ug = Wo, and
taking into account the characterization of the interpolation sgacer/2, o) given in Theorem

(4.1, and[(4.68), we get

sup(1 + H)(lwa(t, Hlipwy + I1DW1(t, )llx,) + sup (1+s) 2
1>1 1<s <t (t—s)

< Cs(lwollx, + [[dll1 + [[¥]l2).  (4.64)
SinceD;w; = Lwy + g+ ¥Ug + LN andg + v Ug + LAY € B([0, +00); X,) with
sug(1+ g, ) + ¥, HUo + LNV (1, )llx, < Ca(lgll1+ [[¥]]2).
(>

we easily deduce that

5;1{11+ DIILw1(t, )llx, < Cs(llwollxe + [[9ll1 + [[¥]]2). (4.65)
[

From the Schauder estimate in [1] and frgm (4.64) &nd [4.65) it easily followswhhelongs to
B([0, +00); X2,4) and

S;ng + D)W1) llx,,. < CollWollxo + [l + [[V1]2). (4.66)
[

Now, applying Lemmé 3]4 to the functian(z, -) = w(r + 1, -) and taking[(4.64) and (4.56) into
account, we get

| Dyw1(z, -) — DywWa(s, -)|l x,

lwa(z, -) — wa(s, )l x,
S)a/Z

lwi(z, ) —wals, )llx,
ERCE Y7

+ sup(1+s)
1<s<t (

< Cr(lwollxo + [[dll1 + [[¥]l2).  (4.67)

sup (1+s)
1<s<t (t —

As far as the ternws is concerned, we observe that the assumptions of Lefnnha 4.9 are satisfied

by ¥. Hence, from[(4.32) (witlf' = 1), (4.51) (applied to the functiow-), (4.64), [4.6p), RTG?)
and Lemm& A.B, we deduce thatbelongs tat,, and satisfieg (4.36).

4.4  Stability results

This subsection is devoted to proving that the null solution to prollem](2.15) is stable with respect
to smooth and sufficiently small perturbations. Theofem 4.7 provides a useful tool to prove our
stablllty result. As already pointed out, we can limit ourselves to dealing with probfems (4.16i) and

(4.16ii) whereH, KC andg are given, respectively, by (4]12), (4113)-(4.15) dnd (2.14).

“We solve systenj (4.16) by a fixed point argument. Indeed, any sufficiently smooth solution to

system|[(4.16) is a fixed point of the operafofg, w) = (I'i(g, W), I'2(¢g, w)) defined by
t ~
(g, W), ) = T@)(exp(M(Up)/2) — 1) +/o T(t—s)H(gq(s,-),W(s,-))ds, >0,
(g, W)(t, ) = 'L (I — P)ug (4.68)

t
+ fo UL (K (g (s, ), W(s, ) + LNE(g(s, ), W(s, ) ds

t
- L/ e(t_S)LNg(q(sa ')7 W(S7 ')) dsa t 2 0‘
0
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Let us introduce the Banach space where we are going to solve the fixed point equatipmipr
We denote byt \, the Banach space of all paiig, w) € X, x X such thaw(z, -) € (I — P)(Xo)
for anyt > 0 (see Definitiofi 3]3), endowed with the nofity, Wllx,, = llglx, + IWlx,, and
we denote byB(0, p) its closed ball with centre &0, 0) and radiuso.

The main result of this subsection is the following theorem.

THEOREM4.10 Suppose thaf € Cf*“(R) andwg € (I — P)(X244) satisfy the compatibility
conditions

Bwgp = G(Wp + 210g(go + 1)Uop), BoL(Wg + K(go, Wo)) = 0. (4.69)
Then there are positive constaptsandp such that if
llgoll 2+ gy + IWollx210 < PO,

then problem[(4.16) admits a unique soluti@n w) € B(0, p) satisfying (¢ (0, -), wo(0, -)) =
(g0, Wp). Moreover, there exists a positive constantndependent ofg, w), such that

(”Cly(t» )= ai(s @ | W@, ) —w(s, ')||x1>

(t — 5)AH)/2 (t — 5)AHe)/2

(. W)llx,,, + SUP (1 +5)

0s <t

< C(”qOHC‘EﬂY(R) + ”WO”XZJra)- (470)
Proof. Let us prove that the operatdr defined by[(4.68) is a contraction mapping in the space

providedpg andp are sufficiently small. For this purpose let us estimate the funcﬁothNSandIC.
We begin withg (see [[4.14)). Observe that, taking Lemmd 3.4 into account, one can easily show
that there exists a positive constahtindependentf ¢, such that

fgg(l + S)j/Z(HD)jr‘Z(S’ ‘)”C;‘(]R) + ||D;*q||c(i+a)/2([x,+oo);C,,(R))) <Clgllx,, VYO<i,j<1
Sinceg is a product of functions belonging @1%)/21+* ([0, +00) x R), we easily deduce that, if
p is taken sufficiently small so that both+l; and 1—-v(0) + v, (0) never vanish fotg, w) € B(0, p)
(e.g.p < 1/2), theng(qg, w) e CAH®/21+e ([0, +00) x R). Moreover, long but straightforward
computations and the fact thaiis quadratic nead show that there exists a positive and continuous
function K1 vanishing at 0 such that

[[2(g2, w2) — g(q1, wD]l2 < K1(p)ll(g2, W2) — (g1, WD)l x, . (4.71)

for any(g;,w;) € B(0,p) (j =1, 22. N

We now consider the operatét (see )). All the terms in the definition & belong to
C ([0, +00); CE(R)) N C%/2([0, +00); Cp(R)) for any (g, w) € B(0, p) for a sufficiently smallo,
since they are products of functions belonging to such spaces. Moreover,

sup(L + 0¥2|H(ga(t, ), walt, ) — Hga(t, ), Wilt, )l czry
(>

+ sup(l + ¥ [H (g2, W2) — H(g1, WD) carz (s 100y Ry < K2(0) (G2, W2) = (q1. WD)l v, 0+
s>0
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for any(g;, w;) € B(0, p) (j = 1, 2) and some positive and continuous functionivanishing at 0.
In particular, we get

[[H(g2. W2) — H(gr, w)Tlo < K2(p) | (g2, W2) — (g1, W)l x, ., (4.72)

(see [(4.1B)). Similarly, for anyg, w) € B(0, p) the functionkK(g, w) defined by (4.13){(4.15)
belongs taC®/2([0, +00); Cp(R)) N Cp([0, +00); C¥(R)). Moreover,

[[K(g2, w2) — K(q1, wD]l1 < K3(p)ll(g2, W2) — (g1, WD)l x, (4.73)

for any (¢;, w;) € B(0, p) (j = 1,2) (see[(4.33)) and some positive and continuous fundkign
going to 0 as tends to 0. ~
Now observe that, sing0, 0) = 0, H(0, 0) = K(0, 0) = 0, from (4.71)-{(4.7B) we deduce

[[H(g. w)lo + [K(g. w)]l1 + [[3(g. W)]]2 < (K1(p) + K2(p) + K3(0))(q. Wlx,.. (4.74)

forany(q, w) € B(0, p).

Now, taking Theorems 4.£, 4.7 and all the above estimates into account, we easily deduce that,
if p is sufficiently small, thed" (¢, w) € &} v for any (¢, w) € B(0, (g0, Wo), p) (Observe that the
compatibility conditions in Theorefn 4.6 are satisfied by virtud of (4.69), siac@ -), w(0, -)) =
(g0, Wo)).

Moreover, from[(4.1P)[(4.36) (4.Y4) we immediately deduce that

I7°(q. Wl x, o < C(lIgoll c2+e gy + IWollxz:, + Ka()lI(g. Wl ),

for some constant, independenbf (qo, Wp), and some positive and continuous functifi
vanishing at zero.

Similarly, since for any(g1, W1), (g2, W2) € B(O (g0, Wo), p) the function I" (g2, w2) —
I"(q1, w1) turns out to be a solution to syste 4.16) (W{fh(q w), IC(q w), g(g, W), go, Wo)
replaced by(H (g2, W2) — H(g1, W1), K(g2, W2) — K (g1, W1), Z(g2, W2) — §(g1, W1), 0, 0)), from
(@.19), [4.36).[(4.71)E(4.73), we deduce that

117 (g2, w2) — I'(q1, WDl x,, ,, < K5(p)lI(g2, W2) — (91, W)l x, 5

for some positive and continuous functi@m vanishing at zero.
Choose now a solutiotp, o) to the system of inequalities

C(po+ Ka(p)p) < p
Ks(p) < 1/2,
<

O<po<p<l/2

ThenI" turns out to be a /[2-contraction mapping i (0, (g0, Wo), p) and, consequently, the fixed
point equationI” (¢, w) = (g, w) admits a unique solutioy, w) € B(0, (go, Wo), p) solving
system|(4.16). Estimate (4]70) now follows easily. O

5. Concluding remarks

The results in Sectiop] 4 imply that there exist two positive constagtand p such that ifug
belongs toB(0, po) C X2+, and satisfies the compatibility conditiofis (4.31), then the initial value
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problemu(0, -) = ug for problem [[2.1p) admits a unique globally defined solutioa B(0, p) C
X141a/2.214(0, 00). Moreover, there exists a positive constansuch that

(L4 "2 DI D2 DYl oo + 1D D2 DU, )l xo) < Clluoll xz, -

([t,400); X0)

foranyt > Oand any 21 + a2 + a3 < 2.

One can show that, ifpp is sufficiently small, thenu is actually theunigue solution in
X11a/2,2+a(0, 00) to the initial value problenu(0, -) = ug for problem [2.1p). To do this, the main
step is to show that for amy > 0 and any smallip € X2, satisfying the appropriate compatibility
conditions at = fg, the problem

Duu(t, ) = Lu(t, ) + F(u(, ), t € [to,to+ 8],

u(to, -) = Uo,
is uniquely solvable in a large ball 61, 4/2 244 (f0, f0 + §) for some smalb > 0 (independent
of 1p). Seel[7, Theorem 4.1] for more details.

Coming back to problenj (3.1]—(2.4) the previous results ensure that the planar TW is stable
with respect to small and sufficiently smooth perturbations. In particular, the perturbee stays
bounded and close to the frortr corresponding to the TW. Moreover, its derivatives decrease
polynomially to zero. To be more precise, there exists a positive corGtanth that

C

a1 no
I D{* D2 (1, -) +Dllcrw) < W’

for anyr > 0 and any 21 + a2 < 2. Moreover, the function®?! and S? stay close ta®° and 0,
respectively, and

1 0
IIDf‘ngzD?a(@ (t,)— O )”Cb”(]RE)
C

1 1
+ ||D;11D;0:2D;[35 (1, ')”Cl’f(Rg) + IID?ID?ZD;“?’S (1, ')”C‘bj‘(Ri) < MT%/T

for any 2 + ap + a3 < 2, whereR2 := Ry x R.

Appendix A. Additional tools

We begin this subsection with an abstract lemma which plays a crucial role in the proof of

Theoreni 4.11.

LEMMA A.1 Let X be a Banach space, add: D(A) ¢ X — X, B : D(B) C X — X be two
closed operators with nonempty resolvent sets. Thand B commute in the resolvent sense if and
only if

R(w, BY(D(A)) C D(A), AR(w, B)x = R(w, B)Ax, VYo e p(B), Vx € D(A). (A1)

Proof. Let us assume that and B commute in the resolvent sense and prove that cond[tion) (A.1)
is satisfied. Fixx € D(A), o € p(A) and lety € X be such that = R(c, A)y. Then, for any
w € p(B),
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R(w, B)Ax = R(w, B)AR(0, A)y = R(w, B)(A—0ol +0cl)R(c, A)y
= —R(w, B)y + 0 R(w, B)R(0, A)y = —R(w, B)y + o R(0, A)R(w, B)y
= (0R(0,A) — I)R(w, B)y = AR(0, A)R(w, B)y = AR(w, B)R(0, A)y
= AR(w, B)x,

so that[(A.1) is satisfied.
Conversely, let us prove that, f (A.1) holds, tharand B commute in the resolvent sense. Fix
y € X and taker € p(A), w € p(B). Applying (A]) tox = R(o, A)y we get

AR(w, B)R(0,A)y = R(w, B)AR(0, A)y = R(w, B)(A— ol +0l)R(o, A)y
= —R(w, B)y + 0 R(w, B)R(0, A)y.

Hence,(A —oI)R(w, B)R(o, A)y = —R(w, B)y. Applying R(o, A) to both sides of the previous
equation we geR(w, B)R(o, A)y = R(o, A)R(w, B)y so thatA and B commute in the resolvent
sense. O

The technique we used, in the case- 0, to transform problenj (1].1) into an equivalent one, which
is somewhat simpler to study, works as well in the case of profjlery (1.1)w#H0. We still get a
problem similar to[(2.1]5), where now the operatdrand 5 have to be replaced by the operators

LU= (Av — vy, Aw — wy — LAV, Ah + hy),
Bu = )\.U(O, ) + )"UX(Oa ) - wX(Oﬂ ) - h)C (0’ ) i
U(O, ) + h(os ) - Ux(oa )
where, as usual, we sat= (v, w, ). The pair(L, B) generates an analytic semigroupXg for

any € R with domain still given by[(4.]1) (se€][7, Theorem A.2]). We still can decoupieto the
sum of the two operators; and L2 defined by

LU = (Vxx — Ux, Wxx — Wx — AVxx, Bxx + hy), Lou = (Uyya Wyy — )\Uyyv hyy)v
with domains
D(L1) ={u: Djue Xofor j =0,1,2, Bu=0}, D(Lp) ={u:Djue Xoforj=0,1,2}.

Although these operators are generators of analytic semigrouy ey do not commute in the
resolvent sense due to the coupling betweamdw induced by the parametar

THEOREMA.2 Suppose that # 0. Then the operatoré; : D(L1) C X9 — XpandLy :
D(L2) C Xo — Xo are generators of analytic semigroupsXip not commuting in the resolvent
sense.

Proof. Showing thatl; : D(L;) C Xo — Xo (j = 1, 2) generates an analytic semigroupXip is
an easy exercise and, hence, it is left to the reader. In particular, straightforward computations show
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that for anyw € p(L) and anyx € R,

1 0 0
[R(w, LDfl1(x, y) = WiEwm / e M f(t4x,y)dr +/

—0o0 X

e’ f(x —t,y) dt)

0 0
+ aze” / e MU o s vy dr + a1/ M2 D (s, y) de

—00 —00
0 0
+ are” / te_"l(t"'x)f(t, y) dr + aze” / e_’“(H'x)f(t, y) dr,
—o0 —0oQ
1 0
[R(w, LDf]2(x, y) = \/ﬁ / e M (g — ADyx[R(w, L)t + x, y) dr
—0o0
0 0
+ age” / e_“l(H'x)g(t, y)dt + a5/ M2z, y) de
—0o0 —0Q0
0 0
+ age* / te™M0T0 £(1y) df + aze” f e MU £t y) dr,
—00 —00
1 0 0
[R(a), Ll)f]3(x, y) = ﬁ(/ efullk(x -1, y) dt + / eﬂztk(t + X, y) dt)
X —00
0 0
o [ ey dag [ e
—o0 —o0

0 0
+ a10/ ef’“(tﬂ)g(t, y) dr + a11/ el T g y) dt,
—0Q

—00

for any (x, y) € R2 and suitable coefficients; # 0 (j = 1,...,11) depending on., where

=3+ (-Divitawiorj =12 andf = (f, g k).
An immediate computation shows that

R(Cl), Ll)LZf = R(C{), Ll)(fyy - (07 )\fyya 0))9
LZR(CL), Ll)f = R((l), Ll)fyy - )"(07 Dyy[R(w, Ll)f]l5 O)a

for anyf € D(L2). Hence,R(w, L1)Lof = LoR(w, L1)f if and only if
R(w, L1)(0O, fyy,0) = (0, Dy,[R(w, L1)f]1, 0). (A.2)

Takef(x, y) = (0, e*g(y), 0) for some smooth functiog such thaf,, does not vanish identically.
Obviouslyf € D(L2). Moreover, the derivative

0
Dyy[R(w, LDfl1(x, y) = a18” () / "2 dr V(x, y) € R,
—00

does not vanish identically. Hencg, (A.2) is not satisfied and consequently, by Llem|] 1Aar1d
L» do not commute in the resolvent sense.
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LEMMA A.3 Let X be a Banach space and let [0, +00) — X be such thaif € C*([0, 1]; X)
and

sup s If0 = F&lx +00, (A.3)

1<s <t (t—s)

for somex € (0, 1). Thenf € C*([0, +00); X) and

t —
[fleeqo,+000:x) < [flce(o,a1:x) + sup s M (A.4)
1<s <t (t—s)
In particular,
sup (1+ 5) ILf@) — f)lx <2(flerqonyn + sup s ILf @) = f)llx . (A.5)
0<s <t (t —8)* 1<s <t (t —5)*
Proof. Since satisfies[(A.B), it follows that in particular,
If @) = f)lx
*([1,400) S —_—
[flce (100 12{25 —s)e
Moreover, ifs < 1 < ¢, then
1@ — fOlx < 1@ = fDlx + 1D = f&)lx
< [flewoapn@ =97+ sup LD ZICVIX G g
1<r1<rp (r2—r1)
< ([f]C"‘([O,l];X) + sup IIf(r2) — f(21)||x)(t _5)®
1<r1<r (r2—r1)
and [A.4), (A5) easily follow. O
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