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The main result of this paper concerns existence of classical solutions to the multi-layer Bernoulli
free boundary problem with nonlinear joining conditions and thep-Laplacian as governing operator.
The present treatment of the two-layer case involves technical refinements of the one-layer case,
studied earlier by two of the authors. The existence treatment of the multi-layer case is largely based
on a reduction to the two-layer case, in which uniform separation of the free boundaries plays a key
role.

1. Introduction and statement of the problem

1.1 The mathematical setting

In this paper we continue the study of the free boundary problem arising in connection with potential
flow with power-law nonlinearity (see [8–11] for background). Mathematically, our starting point is
an annular region, bounded by two convex surfaces inRN (N > 2):

K = Km+2 \K1 with K1,Km+2 convex andK1 ⊂⊂ Km+2.
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The aim is to show that for a given positive integerm and data

λi ∈ (−1,1), Fi(x, p, q) : K × R+ × R+ → R (i = 1, . . . , m)

with λi > λi+1, one can find convex domainsK1 ⊂⊂ K2 ⊂⊂ · · · ⊂⊂ Km+1 ⊂⊂ Km+2 such that
thep-capacitary potentialui for each annular convex regionKi+1 \K i satisfies a nonlinearjoining
Bernoulli condition(see the main theorems, 4.1 and 6.1)

Fi(x, |∇ui(x)|, |∇ui+1(x)|) = 0 on∂Ki+1 (i = 1, . . . , m). (1)

Thep-capacitary potentialrefers to the solution of the following Dirichlet problem:∆pu = 0 inKi+1 \K i,

u = λi on ∂Ki,
u = λi+1 on ∂Ki+1,

where∆p, 1< p < ∞, is thep-Laplace operatordefined by

∆pu := div(|∇u|p−2
∇u).

1.2 Applications

The above described problem appears in several physical situations and can be appropriately
interpreted in many industrial applications. A general way of interpreting it is to consideru as
the potential function of several adjacent flows in convex rings with prescribed pressure on the free
streamlines.

A more interesting application, however, is related to the so-called Stefan problem, for large
time. In this connection, the two-phase model describes crystallization (freezing) or melting of
some physical substance. Multi-phase Stefan problem refers to materials capable of assuming any
of three or more different states (solid, liquid, gaseous, in particular). We expand this in more detail
for the two-phase case.

Let us consider a cylindrical container with the horizontal cut as the domainK = K3 \K1 (this
is the two-dimensional case). The exterior wall∂K3 is kept at temperatureu = −1, and the interior
wall ∂K1 at temperatureu = 1. The container is also filled with liquid, and the temperature of the
liquid is assumed to be known initially.

Suppose the material (liquid) solidifies at temperature−1 < λ < 1. For simplicity we take
λ = 0. By continuity of the temperature for positive times, we know that there must be a curve
Γ (x, t) (for each timet) on whichu(x, t) = 0. Hence on the subregion{u > 0} the material is in
liquid form and on the subregion{u < 0} the material is in solid form. Let us also assume that the
temperatureu (depending on the material) also satisfies the (nonlinear) heat equation

∆pu−Dtu = 0 inK \ {u = 0}. (2)

On the transition phaseΓ (x, t) the Stefan condition (Bernoulli condition), which follows from the
energy conservation law, gives the dynamic equation of the moving curve

|∇u1| = g(x, |∇u2|, V ), (3)
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whereu1 andu2 represent the functionu on {u > 0} and on{u < 0} respectively. HereV is
the normal velocity of the curveΓ (x, t), and the nonlinear joining condition (3) may depend on the
density of the heat source over the inter-phase boundary (due for instance to an extra super-heating).

For large time, the heat flux tends to stabilize and becomes stationary. Henceut andV both
become approximately zero. Therefore the realistic model for the stationary problem is the one
given by

∆pu = 0 inK \ {u = 0}, |∇u1| = g(x, |∇u2|,0) on {u = 0}. (4)

It is noteworthy that thep-Laplace operator constitutes a subclass of a larger class of operators,
appearing in many modeling problems in industrial applications, due to non-Newtonian behavior of
fluids.

For further applications, and background in the casep = 2, we refer the reader to [1, 2], and the
references therein.

1.3 Main result

We prove existence andC1 regularity of the free boundary in the two-phase case. More precisely,
the main result of this paper is the following:

THEOREM 1.1 (two phases) Let K1,K3 be two convex domains such thatK1 ⊂⊂ K3, andg :
(K3 \ K1) × R+ → R+ a continuous positive function, nondecreasing with respect to its second
argument and satisfying some concavity property (see Definition 2.3 for a precise statement). Then
there exists a convexC1 domainω,K1 ⊂⊂ ω ⊂⊂ K3, which is a classical solution of the two-layer
free boundary problem. The latter means that thep-capacitary potentialsu1 andu2 of the setsω\K1
andK3 \ ω respectively, i.e. solutions of∆pu1 = 0 inK2 \K1,

u1 = 1 on∂K1,

u1 = 0 on∂ω,

∆pu2 = 0 inK3 \ ω,

u2 = −1 on∂K3,

u2 = 0 on∂ω,

with ∆p, 1< p < ∞, thep-Laplace operator, satisfy

lim
z→x

z∈ω\K1

|∇u1(z)| = lim
y→x
y∈K3\ω

g(y, |∇u2(y)|) ∀x ∈ ∂ω.

Section 2 is devoted to describing the possible nonlinear joining conditions we are able to
handle. In Section 3, we give some useful auxiliary results. Section 4 is devoted to the proof of the
main theorem, Section 5 is the separation result and Section 6 describes extension to the multi-phase
case.

2. The nonlinear joining condition

In this section, we discuss what could be the nonlinear joining condition involving∇ui and∇ui+1
at the interfaceγi = ∂Ki+1 between the two phases. We recall that this condition is written in the
general form

Fi(x, |∇ui(x)|, |∇ui+1(x)|) = 0 (i = 1, . . . , m) (5)

with Fi : K × R+ × R+ → R.
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We will always assume thatFi(x, p, q) is a continuous function onK × R+ × R+, and that
Fi(x, p, q) is strictly increasing as a function of variablep for all x, q.

This assumption and the implicit function theorem allow us to write the joining condition (5) in
the following equivalent form

|∇ui(x)| = gi(x, |∇ui+1(x)|), (6)

wheregi : K × R+ → R+ are given functions.
An important tool, used in the proof of our main theorem and due to [13] and [4], is the following

property: if γi contains a line segmentI thenx 7→ 1/|∇ui(x)| is a convex function whilex 7→

1/|∇ui+1(x)| is a concave function onI (see Lemma 3.12). This in conjunction with concavity
assumption on the functionx 7→ 1/gi(x, |∇ui+1(x)|) underlies one of the main techniques in the
proof of our main result. Therefore, the property thatgi must satisfy is the following:

x 7→ 1/gi(x, q(x)) is a concave function as soon as 1/q(x) is a concave function. (7)

For general functionsg we cannot expect to have convexity of the level sets of the solution. In
fact the first author (see [3]) obtained an example of the convex two-layer problem in the plane for
which no convex solution exists corresponding to the joining condition in the form:|∇u2(x)|

2
−

|∇u1(x)|
2

= λ2 (cf. (8)). Laurence and Stredulinsky [13] gave an example of the convex two-layer
problem with the same joining condition such that the natural variational minimizer is not convex.

It is also an open question whether there exist classical solutions at all, for general (regular)
functionsg. In two space dimensions this was settled by H. W. Alt and L. A. Caffarelli [6]. So
the question to be raised is what are the “necessary and sufficient” conditions to have existence
of convex classical solutions. Our condition (7) may seem somewhat artificial, but it is the only
working condition at this moment. Let us remark that a similar “convexity condition” was assumed
in [2] and [5].

EXAMPLE The classical nonlinear joining condition (see e.g. [1], [13]) is given by

|∇ui(x)|
α

− |∇ui+1(x)|
α

= ai(x)
α, (8)

whereα > 1 andai(x) > 0. This joining condition satisfies the “convexity condition” (7) provided
that the function 1/ai is concave, as will follow from Lemma 2.1 below. (Regarding applicability of
other convexity conditions, we refer to [2, Example 2.9] and [5, Example 4.7].)

LEMMA 2.1 Let a and q be positive functions defined onRN and such that 1/a and 1/q are
concave. Then, forα > 1, the functionx 7→ 1/(a(x)α + q(x)α)1/α is concave.

Proof. It is sufficient to do the proof forC1 functionsa andq, since the result will follow for less
regular functions by a simple density argument just using pointwise convergence.

Let us set

f (x) :=
1

(a(x)α + q(x)α)1/α
,

which is aC1 function. We want to prove the following inequality:

∀x, y ∈ RN (∇f (x), y − x) > f (y)− f (x). (9)
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Now

(∇f (x), y − x) = −
1

(a(x)α + q(x)α)1+1/α
[a(x)α−1(∇a(x), y − x)+ q(x)α−1(∇q(x), y − x)].

(10)
By concavity of 1/a we have(

∇

(
1

a

)
(x), y − x

)
= −

1

a(x)2
(∇a(x), y − x) >

1

a(y)
−

1

a(x)
.

A similar inequality holds for 1/q. Putting these in (10) yields

(∇f (x), y − x)

>
1

(a(x)α + q(x)α)1+1/α

[
a(x)α+1

(
1

a(y)
−

1

a(x)

)
+ q(x)α+1

(
1

q(y)
−

1

q(x)

)]
,

that is,

(∇f (x), y − x) >
1

(a(x)α + q(x)α)1+1/α

(
a(x)α+1

a(y)
+
q(x)α+1

q(y)

)
− f (x).

So, to prove (9), it remains to prove the following inequality:

1

(a(x)α + q(x)α)1+1/α

(
a(x)α+1

a(y)
+
q(x)α+1

q(y)

)
>

1

(a(y)α + q(y)α)1/α
. (11)

Let us setx1 = a(x)/a(y), x2 = q(x)/q(y), t1 = a(x)α, t2 = q(x)α. Inequality (11) can be
rewritten as

xα1 x
α
2

1
t1

+
1
t2

xα1
t1

+
xα2
t2

6

(
t1x1 + t2x2

t1 + t2

)α
or

t1 + t2

t1x
α
2 + t2x

α
1

6

( t1
x2

+
t2
x1

t1 + t2

)α
. (12)

Now, the inequality between harmonic and arithmetic means yields(
t1 + t2
t1
x2

+
t2
x1

)α
6

(
t1x2 + t2x1

t1 + t2

)α
and the inequality (12) follows immediately using the convexity property of the functionx 7→ xα. 2

We present now another class of functionsgi with the above-mentioned property.

LEMMA 2.2 Assume that the functiong : R2
+ → R+ satisfies the following set of hypotheses:

(H1) g is concave,
(H2) g satisfies the following inequality:

∀(ξ1, ξ2, η1, η2) ∈ R4
+ g(ξ1, η1)g(ξ2, η2) > g(

√
ξ1ξ2,

√
η1η2)

2. (13)
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If a : RN → R+, q : RN → R+ are two given functions such that 1/a and 1/q are concave, then
x 7→ 1/g(a(x), q(x)) is concave.

Proof. Again, it suffices to prove this forC1 functionsg, a andq. Let us set

f (x) :=
1

g(a(x), q(x))
,

which is aC1 function. We prove the following inequality (cf. (9)):

∀x, y ∈ RN (∇f (x), y − x) > f (y)− f (x). (14)

Now

(∇f (x), y − x)

=
−1

g(a(x), q(x))2

[
∂g

∂ξ
(a(x), q(x)) (∇a(x), y − x)+

∂g

∂η
(a(x), q(x)) (∇q(x), y − x)

]
, (15)

and by the concavity assumption on 1/a and 1/q (see the proof of Lemma 2.1) we have

(∇f (x), y − x) >
1

g(a(x), q(x))2

[
∂g

∂ξ
(a(x), q(x)) a(x)2

(
1

a(y)
−

1

a(x)

)
+
∂g

∂η
(a(x), q(x))q(x)2

(
1

q(y)
−

1

q(x)

)]
Next, using concavity ofg we arrive at

∂g

∂ξ
(ξ1, η1)(ξ2 − ξ1)+

∂g

∂η
(ξ1, η1)(η2 − η1) > g(ξ2, η2)− g(ξ1, η1),

where (ξ1, η1) = (a(x), q(x)) and (ξ2, η2) = (a(x)2/a(y), q(x)2/q(y) ). Inequality (14) now
follows immediately from this and inequality (13). 2

EXAMPLES 1. The functiong(ξ, η) := (ξα + ηα)1/α which corresponds to the classical nonlinear
joining condition already mentioned does not fall into the above framework whenα > 1 (becauseg
is not concave), but for 06 α < 1. Indeed, in this case assumption (H1) is easily verified by proving
that the Hessian ofg is negative onR2

+. As for (H2), it follows immediately from the inequality

(ξ1η2)
α

+ (ξ2η1)
α > 2(ξ1ξ2η1η2)

α/2,

which gives

[(ξ1ξ2)
α

+ (η1η2)
α

+ (ξ1η2)
α

+ (ξ2η1)
α]1/α > [(ξ1ξ2)

α
+ (η1η2)

α
+ 2(ξ1ξ2η1η2)

α/2]1/α,

which is inequality (13).

2. The functiong(ξ, η) := ξαηβ with α > 0, β > 0 andα + β 6 1 can also be considered.
Conditions (H1), (H2) are readily verified in this case.

3. More generally, we can consider a function likeg(ξ, η) :=
∑
i∈I aiξ

αiηβi (finite or infinite
sum) withai > 0, αi > 0, βi > 0 andαi + βi 6 1. Assumption (H1) is elementary (g is a
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combination of concave functions with positive coefficients) while inequality (13) is obtained from
the expansion of∑

i1∈I

∑
i2∈I

ai1ai2(ξ
αi1/2
1 ξ

αi2/2
2 η

βi1/2
1 η

βi2/2
2 − ξ

αi2/2
1 ξ

αi1/2
2 η

βi2/2
1 η

βi1/2
2 )2 > 0.

DEFINITION 2.3 DefineG to be the family of all functionsg : K × R+ → R+ satisfying the
following conditions:

(A1) g is continuous and∃c0 > 0 such thatg(x,0) > c0 for all x ∈ K,
(A2) g is nondecreasing with respect to the second argument,
(A3) g has the following concavity property:x 7→ 1/g(x, q(x)) is concave wheneverq is a given

function such that 1/q is concave, and
(A4) for any given valuey0 > 0, there exist constants 0< C1 < C2 such thatC1 6 g(x, y)/y 6

C2, uniformly for all x ∈ K and ally > y0.

Henceforward we will always consider the following nonlinear joining condition:

|∇ui(x)| = gi(x, |∇ui+1(x)|), (16)

with gi ∈ G.

3. Preliminary results

In this section we will sum up some of the auxiliary results used in this paper. We remark that
the usual comparison and maximum principle for elliptic partial differential equations is one of the
basic tools here; see [17].

LEMMA 3.1 (Exterior Barrier) Let D be a convex domain inRN and supposeu is a continuous
nonnegative function onB(x0, r), p-harmonic inB(x0, r) ∩ D, with x0

∈ ∂D. Let alsou = 0 on
∂D ∩ B(x0, r). If ∂D is notC1 atx0, i.e.D has (at least) two supporting planes atx0, then

lim
x→x0

|∇u(x)| = 0, x ∈ D.

LEMMA 3.2 (Interior Barrier) Let D be a convex domain inRN and supposeu is a continuous
nonnegative function onB(x0, r), p-harmonic inB(x0, r) \ D, with x0

∈ ∂D. Let alsou = 0 on
∂D ∩ B(x0, r). If

|∇u| 6 C0 in B(x0, r) \D,

then∂D ∩ B(x0, r/2) is C1 with a uniformC1-norm, i.e. there exists a constantC1 = C1(C0, N)

such that
|∇ψ(x)− ∇ψ(y)| 6 C1,

whereψ is a map that represents∂D nearx0
∈ ∂D.

The proofs of these lemmas follow from standard theory using barriers at conical boundary
points. The existence of such barriers is proven in [7] (see also [12]).

REMARK 3.3 By Lemmas 3.1 and 3.2, ifC−1
0 6 |∇u| 6 C0 in D, ∂D must beC1 with C1-norm

depending onC0.
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DEFINITION 3.4 (Blow-up) For the functionsuj : B(xj ,1) → R and for a sequence{rj } of non-
negative numbers (rj → 0) we define the scaled functions onB(0,1/rj ) by

ũj (x) =
uj (rjx + xj )− uj (xj )

rj
.

Obviously, if all functionsuj are Lipschitz-continuous inB(xj ,1) with the same constant, thenũj

are uniformly Lipschitz inB(0, R) (R < 1/rj ). Thus, there exists a subsequencenk such thatũnk

converges locally inCα(RN ) to a functionu0. Moreover, ifuj arep-harmonic, then so isu0 in
{u0 > 0} andu0(0) = 0.

LEMMA 3.5 LetS(C0) be the set of allC1 domainsD ⊂ R+ × RN−1 such thatB(0,1) ∩ D

is convex, 0∈ ∂D and‖∂D‖C1(B(0,1/2)) 6 C0. Then any blow-up of a sequenceDj ∈ S(C0)

converges to a half space, i.e., ifrj ↓ 0 andDj ∈ S(C0), then forD̃j := (1/rj )Dj = {x : rjx ∈ Dj }

we have
lim supD̃j = T,

whereT = {x1 > 0}, and lim sup means the set of all limit points of sequences{xj } with xj ∈ D̃j .

LEMMA 3.6 Letuj be thep-capacitary potential of an annular domainDj = D2
j \D1

j with convex

uniformC1 boundaries. Suppose moreover the gradient ofuj satisfies

|∇uj (x)| 6 Λ0 < ∞,

uniformly both inj andx ∈ Dj . Then any convergent subsequence ofũrj at any boundary point
gives a linear functionu0

= αx+

1 , after suitable rotation and translation. In particular, for any
boundary pointxj ∈ ∂Dj ,

uj (y + xj ) = uj (xj )+ αy+

1 + o(rj )

in B(0, rj ), in some rotated system.

The proof of this lemma is just the same as the proof of Lemma 2.4 in [9]. The uniformity in
norms is crucial.

Using these lemmas, we can prove the following (cf. [11, Theorem 1.3]).

LEMMA 3.7 LetD1 andD2 be two nested open convex domains (D1 ⊂ D2), andu denote the
p-capacitary potential ofD = D2 \D1. Then forx ∈ ∂D,

lim
y→x

|∇u(y)| exists

nontangentially (with values in [0,∞]). In particular|∇u| can be defined (with values in [0,∞]) up
to the boundary∂D as nontangential limit. Moreover,|∇u| is upper semicontinuous up to∂D2 and
lower semicontinuous up to∂D1.

Proof. Since the problem is local, depending on whether we are close to∂D1 or ∂D2, we may
start with pointx0

∈ ∂D1. In case|∇u| is bounded in a neighborhood ofx0 the proof was given in
Theorem 1.3 of [11]. So suppose there exists a sequencexj ∈ D with

lim
j
xj = x0, |∇u(xj )| → ∞, c0|x

j
− x0

| 6 dist(xj ,D1),
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for somec0 > 0, where the last condition means nontangential approach ofxj to x0. Obviously it
suffices to show that for any such sequence{xj } we have

|∇u(yj )| → ∞ ∀yj ∈ B(xj , dj ),

where 8dj = dist(xj ,D1). To show this, we scale the functionu by

uj (x) :=
u(djx + xj )

u(xj )
in B8(0).

Since
∆puj = 0, uj > 0 inB8(0),

we have, by Harnack’s inequality,

sup
B4

uj 6 C inf
B4
uj 6 Cuj (0) = C.

In particular,uj is a bounded sequence inB4. Hence by standard elliptic theory, a subsequence of
uj converges to a solutionu0 in B4, satisfying

∆pu0 = 0, u0(0) = 1, u0 > 0 inB4.

Moreover, the level sets ofu0 are convex, since they are convex for alluj .
Now suppose|∇u(xj )| > j . Then by uniformC1,α estimates

C0 > |∇uj (0)| =
dj |∇u(x

j )|

u(xj )
>

jdj

u(xj )
.

Hence

u(xj ) >
jdj

C0
. (17)

Now if for some
yj = dj ỹ

j
+ xj ∈ B(xj , dj ) (ỹj ∈ B1),

we have|∇u(yj )| 6 C1 for someC1 > 0, then

|∇uj (ỹ
j )| =

dj |∇u(dj ỹ
j

+ xj )|

u(xj )
=
dj |∇u(y

j )|

u(xj )
6
djC1

u(xj )
6
C1C0

j
,

where in the last inequality we have used (17). Hence it follows that|∇u0(ỹ)| = 0, whereỹ =

lim ỹj ∈ B1, for an appropriate subsequence.
To summarize, we have a positivep-harmonic functionu0 in B4, with convex level sets, and

with the further property that∇u0(ỹ) = 0 for someỹ ∈ B1. This contradicts Hopf’s boundary point
lemma (see [17]), and completes the proof in this case.

The second casex0
∈ ∂D2 is treated similarly, with reversed argument. We sketch some details.

We may start as in the previous case, assuming now

|∇u(xj )| < 1/j and |∇u(yj )| > C0 > 0,
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with yj as before
yj = dj ỹ

j
+ xj ∈ B(xj , dj ) (ỹj ∈ B1).

Again all the above arguments are in order and we have the limit functionu0 and the limit pointỹ
in B1. Let us see what more information we can deduce. Indeed, on the one hand, by elliptic
estimates,

C1 > |∇uj (ỹ
j )| =

dj |∇u(y
j )|

u(xj )
>
djC0

u(xj )
,

and on the other hand

|∇uj (0)| =
dj |∇u(x

j )|

u(xj )
6

dj

ju(xj )
.

Upon combining these estimates, we arrive at

|∇uj (0)| 6
C0C1

j
.

As j tends to infinity we will have|∇u0(0)| = 0, and again Hopf’s principle is violated.
The lower and upper semicontinuity follow in the same way as in the proof of Theorem 1.3

in [11]. 2

LEMMA 3.8 Let u be a solution to∆pu = 0 in a domainΩ, and introduce the linear elliptic
operatorLu defined everywhere, except at critical points ofu, by

Lu := |∇u|p−2∆+ (p − 2)|∇u|p−4
N∑

k,l=1

∂u

∂xk

∂u

∂xl

∂2

∂xk∂xl
.

ThenLu(|∇u|p) > 0 inΩ.

This lemma is essentially proved, though stated differently, in the papers of Payne and Philippin,
[15] and [16]; see also the discussion in [9].

For two nested convex setsD1 ⊂ D2, and forx ∈ ∂D1, we denote byTx,a the supporting
hyperplane atx with the normala pointing away fromD1. Obviously,Tx,a is not necessarily
unique, depending on the geometry of∂D1. Now to eachx ∈ ∂D1 there corresponds a pointyx
(not necessarily unique) on∂D2 ∩ {z : a · (z − x) > 0} such thata · (yx − x) = maxa · (z − x),
where the maximum is taken over allz ∈ ∂D2 ∩ {z : a · (z− x) > 0}.

LEMMA 3.9 LetD1 andD2 be two nested convex domains (D1 ⊂ D2) and denote byu the
p-capacitary potential ofD2 \D1, i.e. the solution of∆pu = 0 inD2\D1,

u = c1 on ∂D1,

u = c2 on ∂D2,

(18)

wherec1 andc2 are two given constants withc1 > c2 > 0. Then

lim sup
z→x

z∈D2\D1

|∇u(z)| > lim sup
z→yx

z∈D2\D1

|∇u(z)| ∀x ∈ ∂D1, (19)

whereyx is the point indicated in the discussion preceding this lemma.

For a proof of this lemma see [9], [10].
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DEFINITION 3.10 (extremal points) For a domainD ∈ RN we say a pointx ∈ ∂D is anextremal
point if there exists a supporting plane toD touching∂D atx only. We denote the set of all extremal
points ofD byED.

LEMMA 3.11 Retain the hypotheses in Lemma 3.9 and suppose also that∂D1 and∂D2 areC1.
Then

|∇u(x)| > inf
y∈ED2

|∇u(y)| for all x ∈ D2 \D1.

This lemma is a consequence of Lemma 3.9 and geometric considerations.
The next lemma was an important tool in the variational existence treatment of the multi-layer

problem by P. Laurence and E. Stredulinsky [13]:

LEMMA 3.12 (see [13, Lemma 4.1], and [4, Thm. 1]) Retain the hypotheses in Lemma 3.9. Sup-
pose moreover∂Di (i = 1,2) contains a line segmentli , and that|∇u| > c0 > 0. Then|∇u|−1 is
convex onl2 and it is concave onl1.

4. The two-layer problem

4.1 Main result

Let us consider two bounded convex domainsK1 andK3 in RN such thatK3 strictly containsK1
(i.e.K1 ⊂⊂ K3). We look for a convex domainK2 such that

K1 ⊂⊂ K2 ⊂⊂ K3

and thep-capacitary potentialsu1 andu2 of the setsK2\K1 andK3\K2 respectively, i.e. solutions
of ∆pu1 = 0 inK2 \K1,

u1 = 1 on∂K1,

u1 = 0 on∂K2,

∆pu2 = 0 inK3 \K2,

u2 = −1 on∂K3,

u2 = 0 on∂K2,

(20)

satisfy a nonlinear joining condition like

|∇u1(x)| = g(x, |∇u2(x)|) on ∂K2. (21)

We have the following result.

THEOREM 4.1 (two phases) LetK1,K3 be two convex domains such thatK3 strictly containsK1,
andg ∈ G. Then there exists a convexC1 domainω, K1 ⊂⊂ ω ⊂⊂ K3, which is a classical
solution of the two-layer free boundary problem. The latter means that thep-capacitary potentials
u1 andu2 of the setsω \K1 andK3 \ ω respectively (i.e. solutions of (20) withK2 = ω) satisfy

lim
z→x

z∈ω\K1

|∇u1(z)| = lim
y→x
y∈K3\ω

g(y, |∇u2(y)|) ∀x ∈ ∂ω. (22)

4.2 Notations, definitions

4.2.1 p-capacitary potentials. For every subdomainω such thatK1 ⊂⊂ ω ⊂⊂ K3, we set
ω1 = ω \ K1 andω2 = K3 \ ω. We introduce thep-capacitary potentialsuω1 (respectivelyuω2 ), or
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more simplyu1 (respectivelyu2) when there is no possible confusion, which are the solutions of
the boundary value problems∆pu1 = 0 inω1,

u1 = 1 on∂K1,

u1 = 0 on∂ω,

∆pu2 = 0 inω2,

u2 = −1 on∂K3,

u2 = 0 on∂ω.
(23)

In what follows, we will refer tou1 as theinner potentialand tou2 as theouter potentialof the
setω. We want to find a domainΩ satisfying a joining condition

|∇u1(x)| = g(x, |∇u2(x)|)

as explained in the previous subsection. For that purpose, we introduce the following classes of
domains:

4.2.2 Subsolutions, supersolutions.An open setω (such thatK1 ⊂⊂ ω ⊂⊂ K3) is called a
subsolution(of the problem) if itsp-capacitary potentialsu1 andu2 satisfy

lim inf
z→x
z∈ω1

|∇u1(z)| > lim sup
y→x
y∈ω2

g(y, |∇u2(y)|) ∀x ∈ ∂ω. (24)

An open setω (such thatK1 ⊂⊂ ω ⊂⊂ K3) is called asupersolution(of the problem) if its
p-capacitary potentialsu1 andu2 satisfy

lim sup
z→x
z∈ω1

|∇u1(z)| 6 lim inf
y→x
y∈ω2

g(y, |∇u2(y)|) ∀x ∈ ∂ω. (25)

4.2.3 The classesA,B, C. We are going to work only with convex domains, so let us set

C = {ω convex bounded open subset ofRN : K1 ⊂⊂ ω ⊂⊂ K3}.

We denote byA the class of convex subsolutions andB the class of convex supersolutions:

A = {ω ∈ C : lim inf
z→x
z∈ω1

|∇u1(z)| > lim sup
y→x
y∈ω2

g(y, |∇u2(y)|) ∀x ∈ ∂ω},

B = {ω ∈ C : lim sup
z→x
z∈ω1

|∇u1(z)| 6 lim inf
y→x
y∈ω2

g(y, |∇u2(y)|) ∀x ∈ ∂ω}.

A classical solutionof the two-phase free boundary problem is obviously a domainΩ ∈ A ∩ B.

4.3 Stability results for the classB

First we show that the classB is closed under intersection.

LEMMA 4.2 Letω1, ω2 be inB. Thenω1
∩ ω2

∈ B.
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Proof. As the intersection of two convex domains is convex, we need to prove the condition on
the gradients foru1 := uω

1
∩ω2

1 andu2 := uω
1
∩ω2

2 at the boundary ofω1
∩ ω2. By the comparison

principle, 06 u1 6 min(uω
1

1 , u
ω2

1 ), which implies that forx ∈ ∂(ω1
∩ ω2) ⊂ ∂ω1

∪ ∂ω2 we have
(for example, we choose the case wherex ∈ ∂ω1)

u1(x) = uω
1

1 (x) = 0 and lim sup
y→x

y∈(ω1∩ω2)1

|∇u1(y)| 6 lim sup
y→x

y∈ω1
1

|∇uω
1

1 (y)|,

while, sinceu2 6 min(uω
1

2 , u
ω2

2 ) 6 0, we have

u2(x) = uω
1

2 (x) = 0 and lim inf
y→x

y∈(ω1∩ω2)2

|∇u2(y)| > lim inf
y→x

y∈ω1
2

|∇uω
1

2 (y)|.

Now, by monotonicity ofg with respect to its second argument, and the fact thatω1 belongs toB,

lim sup
y→x

y∈(ω1∩ω2)1

|∇u1(y)| 6 lim sup
y→x

y∈ω1
1

|∇uω
1

1 (y)| 6 lim inf
y→x

y∈ω1
2

g(y, |∇u2(y)|)

6 lim inf
y→x

y∈(ω1∩ω2)2

g(y, |∇u2(y)|). 2

Now, the technical and more difficult point is to prove thatB is stable, in some sense, for decreasing
sequences of convex domains. Indeed, our aim is to construct a solution to the free boundary
problem by taking a minimal element (for inclusion) in the classB. So, we need some stability
of B under the constructing process that we are going to use.

THEOREM 4.3 Letω1
⊃ ω2

⊃ · · · be a decreasing sequence of convex domains inB, and suppose

ω =

◦⋂
ωn (the interior of the closure) belongs toC. Thenω ∈ B.

Proof. Since the domains involved are convex and they all containK1, they are uniformly
Lipschitz. In particular, by standard regularity up to boundary (see [K]), thep-capacitary potentials
un1, u

n
2 areCα (α depending on the uniform cone property ofωn) in the entire spaceRN (after

appropriate extension). Since alsoun1, u
n
2 are decreasing sequences we have limit functionsu1, u2

which are thep-capacitary potentials ofω1 = ω \ K1, andω2 = K3 \ ω, respectively. Moreover,
by localC1,α regularity (see [14]), convergence takes place also for the gradients on every compact
subset ofω1 andω2 respectively.

We need to showω ∈ B. Let ε > 0 be small enough and fixx0
∈ K1. Now for eachy ∈ ∂ω let

us denote byR(x0, y) the ray emanating fromx0 and traveling throughy. Then, by the choice of
x0, and the convexity of the setsω,ωn we can choose unique pointsx = x(y, n) ∈ ∂ωn ∩R(x0, y)

andxε ∈ {un2 = −δε} ∩ R(x0, y), whereδε > 0 is to be chosen later. It follows that

lim
n→∞

x(y, n) = y, lim
ε→0

xε = x(y, n) nontangentially.

Next denote byvn the solution of the following boundary value problem:
Lun1

(vn) = 0 in {0< un1 < 1/2},

vn(x) = |∇un1(x)|
p on {un1 = 1/2},

vn(x) = Gn,ε(x) on ∂ωn,
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where

Gn,ε(x) = min(2Mp, g(x, |∇un2(x
ε)| + ε)p), with M = sup

{0<un1<1/2}

|∇un1|,

andLun1 is defined in Lemma 3.8. Observe that the boundedness ofM follows by simple (linear)
barrier argument.

Fix a pointy ∈ ∂ω. Then two possibilities may arise (see Lemma 3.7):

Case 1: |∇u2(y)| = ∞ nontangentially,
Case 2: |∇u2(y)| = M1 nontangentially.

In both cases we will have
|∇un2(x

ε)| ≈ |∇un2(x)|.

In Case 1 we obtain
g(x, |∇un2(x

ε)| + ε)p > 2Mp > |∇un1(x)|
p,

i.e.,Gn,ε(x) > |∇un1(x)|
p.

In Case 2 we have (by nontangential continuity of|∇un2|)

|∇un2(x)| 6 |∇un2(x
ε)| + ε,

providedδε is small enough. And by nondecreasing property ofg we have

g(x, |∇un2(x
ε)| + ε)p > g(x, |∇un2(x)|)

p > |∇un1(x)|
p,

Hence
Gn,ε(x) > |∇un1(x)|

p.

Therefore upon applying the comparison principle (for the operatorLun1
; see Lemma 3.8) we can

obtain
vn(x) > |∇un1(x)|

p in {0< un1 < 1/2}.

Now asn → ∞,

v(x) := lim
n
vn(x) > |∇u1(x)|

p in {0< u1 < 1/2}.

Sincexε is compactly insideω2 and∇un2(x
ε) → ∇u2(x

ε) in Cα-norm (see [14]) we have a uniform
convergence of

vn|∂ωn1
= Gn,ε(x) = min(2Mp, g(x, |∇un2(x

ε)| + ε)p)

to
Gε(x) = min(2Mp, g(x, |∇u2(x

ε)| + ε)p).

Therefore forz ∈ B(x, rε) ∩ ω1 andx ∈ ∂ω,

|∇u1(z)|
p 6 v(z) 6 Gε(x)+ ε 6 g(x, |∇u2(x

ε)| + ε)p + ε,

providedrε is small enough. By Lemma 3.7, and continuity ofg (asε → 0), we get

lim sup
z→x
z∈ω1

|∇u1(z)| 6 lim inf
y→x
y∈ω2

g(y, |∇u2(y)|).

Henceω ∈ B. 2
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4.4 Proof of Theorem 4.1

Step 1: Existence of subsolutions and supersolutions.Let us consider the solutionu of the
boundary value problem (p-capacitary potential)

∆pu = 0 inK3 \K1,

u = 1 onK1,

u = −1 onRN \K3.

(26)

For any−1 < α < 1, let ωα = {u(x) > α}. Also defineu1,α(x) = (u(x) − α)/(1 − α) in
the closure ofω1,α = {α < u(x) < 1} andu2,α(x) = (u(x) − α)/(1 + α) in the closure of
ω2,α = {−1< u(x) < α}. Thenωα is a supersolution (resp. subsolution) if

|∇u(x)|

1 − α
= |∇u1,α(x)| < (>) g(x, |∇u2,α(x)|) = g

(
x,

|∇u(x)|

1 + α

)
for all x ∈ ∂ωα. But a comparison argument involving thep-capacitary potential in any slab between
parallel boundary planes tangent to∂ωα and∂K3 shows that|∇u(x)| > (α + 1)/M > (1 + α)/R

for all x ∈ ∂ωα, whereM = sup{dist(x, ωα) : x ∈ ∂K3}. Therefore,ωα is a supersolution (resp.
subsolution) provided that

1 + α

1 − α
< (>)

g(x, y)

y

for all x ∈ ∂ωα and ally > y0 = 1/R. Applying Assumption (A4), we see thatωα is a supersolution
if (1 + α)/(1 − α) 6 C1 (true for α sufficiently close to−1), and thatωα is a subsolution if
(1 + α)/(1 − α) > C2 (true forα sufficiently close to 1).

We remark thatK1 andK3 are regular, so that|∇u(x)| is both uniformly bounded and uniformly
positive inK3 \ K1. Then the above argument yields supersolutions and subsolutions without
involving Assumption (A4) (one can replace it by the much weaker assumption thatg(x, y) → ∞

asy → ∞ uniformly overx ∈ K).
In what follows,Ω0 will denote a given subsolution andΩ1 a given supersolution.

Step 2: Construction of a minimal element in the classB. We introduce the classS := {ω ∈ B :

Ω0 ⊂ ω ⊂ Ω1}. Let I be the intersection of all domains in the classS and setΩ =

◦

I (the interior
of the closure, which is still convex). To proveΩ ∈ B, we select a sequence{ωn}∞n=1 of domains in
S such that

⋂
n>1 ωn = I and we consider the sequence{Ωn}

∞

n=1 of domains defined byΩ1 = ω1
andΩn+1 = Ωn ∩ωn+1 (n > 1). By Lemma 4.2 eachΩn is convex and belongs toB. Hence, since
Ωi+1 ⊂ Ωi , Theorem 4.3 gives the desired result.

Step 3: OnEΩ , the extremal points ofΩ, we havelim sup|∇u1(z)| = lim inf g(y, |∇u2(y)|). This
property can be proved in the same way as in [9], but since it is slightly more complicated and for
the sake of completeness, we give here the complete proof. Suppose the property fails. Then there
existsX0 ∈ EΩ such that

lim sup
z→X0
z∈Ω1

|∇u1(z)| = lim inf
y→X0
y∈Ω2

g(y, |∇u2(y)|)(1 − 4α) with α > 0. (27)

We define
l1 = lim sup

z→X0
z∈Ω1

|∇u1(z)|, l2 = lim inf
y→X0
y∈Ω2

|∇u2(y)|.
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Note that sinceg is continuous and nondecreasing, lim infy→X0
g(y, |∇u2(y)|) = g(X0, l2). There-

fore assumption (27) can be written as

l1 = g(X0, l2)(1 − 4α). (28)

We assume firstl2 < ∞. Hence for some small neighborhoodV of X0 we have

|∇u1(z)| 6 l1(1 + α) ∀z ∈ V ∩Ω1, (29)

|∇u2(y)| > l2(1 − α) ∀y ∈ V ∩Ω2. (30)

Let us fix a hyperplaneTd , parallel to a supporting plane atX0, with dist(X0, Td) = d and such that
Td ∩Ω ⊂ V. This is possible due to the extremal property ofX0.

By rotation and translation, we assumeX0 is the origin andTd = {x1 = d}. Let Tδ = {x1 = δ}

and setΩδ
= Ω \ {x1 6 δ}. Then by the comparison principle the (inner)p-capacitary potentialuδ1

of Ωδ
1 satisfies

0 6 uδ1 6 u1 in Ωδ
1, (31)

while the (outer) potential satisfies

uδ2 6 u2 6 0 inΩ2, (32)

which implies that for pointsx belonging to∂Ω ∩ ∂Ωδ,

lim sup
y→x

y∈Ωδ
1

|∇uδ1(y)| 6 lim sup
y→x
y∈Ω1

|∇u1(y)| 6 lim inf
y→x
y∈Ω2

g(y, |∇u2(y)|) 6 lim inf
y→x

y∈Ωδ
2

g(y, |∇uδ2(y)|).

Now by (29) and (31),

max
Td

uδ1 6 max
Td

u1 6 d sup
{06x16d}

|∇u1| 6 l1(1 + α)d. (33)

Define

v := uδ1 +
l1(1 + α)d

d − δ
(d − x1).

Since the second derivatives ofv anduδ1 coincide, we have

Luδ1
v = Luδ1

uδ1 = 0 inΩδ
1 ∩ {x1 < d}.

Therefore inΩδ
1 ∩ {x1 < d}, v takes its maximum on the boundary. By inspection and (33), it is

easy to see that on∂(Ωδ ∩ {x1 < d}) ⊂ Td ∪ Tδ ∪ (∂Ω ∩ {δ < x1 < d}),

v 6 l1(1 + α)d,

with equality onTδ. Hence∂v/∂x1 6 0 onTδ, i.e.,

|∇uδ1| 6
l1(1 + α)d

d − δ
onTδ. (34)
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Now, it remains to estimate|∇uδ2| onTδ. For that purpose, let us introduce a part of a level set ofuδ2
contained in the neighborhoodV ∩Ω2 and consider, on that level set, one point, sayxδ, where the
supporting hyperplane is parallel toTδ. By Lemma 3.9, we have

∀y ∈ Tδ |∇uδ2(y)| > |∇uδ2(xδ)|. (35)

Now, by continuity ofg, we can chooseε andδ small enough such that

∀y ∈ Tδ g(X0, l2) 6 g(y, l2(1 − ε))(1 + α). (36)

Now, by uniform convergence of|∇uδ2| to |∇u2| whenδ → 0 on the level set, we can chooseδ
small enough such that

|∇uδ2(y)| > |∇uδ2(xδ)| > l2(1 − ε).

Replacing in (36) and using (28), (34) and the monotonicity ofg yields

∀y ∈ Tδ |∇uδ1(y)| 6
g(y, |∇uδ2(y)|)(1 + α)2(1 − 4α)d

d − δ
.

Now, it suffices to chooseδ even smaller so that

(1 + α)2(1 − 4α)d

d − δ
6 1,

which in turn impliesΩδ ∈ B. SinceΩδ ⊂ Ω we have reached a contradiction.
Now, if l2 = +∞, we can choose the neighborhoodV in such a way that

|∇u2(y)| > 2M ∀y ∈ V ∩Ω2,

whereM = supx∈Ω1
|∇u1(x)|. Then we reach a contradiction in exactly the same way, by choosing

δ small enough such thatΩδ will be in the classB.

Step 4: The boundary ofΩ is C1. It suffices to show that at each boundary point there exists a
unique tangent plane. Suppose the latter fails. Letx0

∈ ∂Ω with two supporting planesΠ1, Π2
atx0. Then by barrier arguments (Lemmas 3.1–3.2)

lim
Ω13y→∂Ω∩Π1∩Π2.

|∇u1(y)| = 0 and lim
Ω23z→∂Ω∩Π1∩Π2.

|∇u2(z)| = +∞.

LetΠ3 be a third plane supporting∂Ω atx0 and such thatΠ3 ∩ ∂Ω ⊂ Π1 ∩Π2, i.e.,Π3 does not
touch any other boundary points ofΩ than those in the intersection of the planesΠ1 andΠ2. Now,
moveΠ3 towards the interior ofΩ so that it cuts off a small cap fromΩ; it may well be a tub-like
region. Then a similar argument as in the previous step will prove that this new domain is still in the
classB. This contradicts the minimal property ofΩ.

Step 5: The nonlinear joining condition holds onEΩ . Let x ∈ EΩ be fixed. On the one hand,
we have the following chain of (in)equalities (here n.t. means nontangentially, see Lemma 3.7 for
details):

|∇u1(x)| := lim
z→x n.t.
z∈Ω1

|∇u1(z)| 6 lim sup
z→x
z∈Ω1

|∇u1(z)|

6 lim inf
y→x
y∈Ω2

g(y, |∇u2(y)|) 6 lim
y→x n.t.
y∈Ω2

g(y, |∇u2(y)|) := g(x, |∇u2(x)|), (37)
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where the first and last equalities are due to Lemma 3.7, the second and fourth inequalities come
from the definition of liminf and limsup (we also use the continuity ofg) and the third inequality
comes from the fact thatΩ belongs to the classB. On the other hand, we have the following chain
of (in)equalities:

|∇u1(x)| > lim sup
z→x
z∈Ω1

|∇u1(z)| = lim inf
y→x
y∈Ω2

g(y, |∇u2(y)|) > g(x, |∇u2(x)|), (38)

where the first inequality is the upper semicontinuity ofu1 atx, the equality is step 3, and the second
inequality is the lower semicontinuity ofu2 atx. Now, (37) and (38) together give the desired result.

Step 6: The nonlinear joining condition holds at every boundary point.According to step 5, it
remains to prove the equality|∇u1(x)| = g(x, |∇u2(x)|) on maximal line segments inI = [a, b] ⊂

∂Ω. For any such line segment one readily verifies thata, b ∈ EΩ . Also at the pointsa, b we have
equation (38) verified. In view of assumption(A3) for the functiong in conjunction with Lemma
3.12 we claim that the function

x 7→
1

|∇u1(x)|
−

1

g(x, |∇u2(x)|)

is convex, nonnegative. The latter depends on the fact thatΩ belongs to the classB and it vanishes
at the extremities of any segment (by step 5 and n.t.-continuity). Therefore, this function vanishes
identically. This completes the proof.

5. Uniform separation estimate

THEOREM 5.1 (cf. [2, Lemma 4.4]) LetH denote the set of all configurations(K1, ω,K3) such
thatK1, ω,K3 are convex,

Bρ(0) ⊂ K1 ⊂⊂ ω ⊂⊂ K3 ⊂ BR(0),

andω is a supersolution relative toK1 andK3. Then there exists a valueη > 0 such that

dist(∂K1, ∂ω) > η dist(∂K1, ∂K3) (39)

uniformly for all (K1, ω,K3) ∈ H .

This result follows directly from Lemmas 5.2 and 5.3 below.

LEMMA 5.2 For any(K1, ω,K3) ∈ H , let

α = max{u(x) : x ∈ ∂ω} ∈ (−1,1),

whereu solves the Dirichlet problem (26). Then there exists a valueα0 ∈ (−1,1) such thatα 6 α0
uniformly over all(K1, ω,K3) ∈ H .

Proof. It suffices to consider only configurations inH such thatα ∈ (0,1). Given such a con-
figuration (and the corresponding valueα), let u1, u2, ω1, ω2 be as defined in (23). Define the
p-harmonic functionsu1,α(x) = (u(x) − α)/(1 − α) andu2,α(x) = (u(x) − α)/(1 + α), both in
the closure of the setΩ := K3 \ K1. Thenu1 = u1,α = 1 on ∂K1 andu1,α 6 0 = u1 on ∂ω.
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It follows by the comparison principle forp-harmonic functions thatu1,α 6 u1 in ω1. Similarly,
we haveu2 = u2,α = −1 on ∂K3 andu2,α 6 0 = u2 on ∂ω, from which it follows by the
comparison principle thatu2,α 6 u2 in ω2. We choose a pointx0 ∈ ∂ω such thatu(x0) = α. Clearly
the functionu is regular nearx0 ∈ Ω (and therefore so areu1,α andu2,α). For smallδ > 0, let
xδ = x0 + δν0 ∈ ω1, whereν0 denotes the unit vector with direction opposite∇u(x0). Also let
γδ ⊂ ω1 denote the directed line segment of lengthδ joining x0 to xδ. Clearly

∂u1(x)/∂ν0 6 |∇u1(x)| 6 sup
x∈γδ

|∇u1(x)|

and ∣∣∂u1,α(x)/∂ν0 − |∇u1,α(x0)|
∣∣ 6 z(δ),

both onγδ, wherez(δ) → 0 asδ → 0. Therefore

0 6 u1(xδ)− u1,α(xδ) =

∫
γδ

(∂/∂ν0)(u1(x)− u1,α(x)) ds

6 (sup
x∈γδ

|∇u1(x)| − |u1,α(x0)| + z(δ))δ,

from which it follows that

lim sup
ω13x→x0

|∇u1(x)| > |∇u1,α(x0)| =
|∇u(x0)|

1 − α
. (40)

For smallδ > 0, let γδ denote a directed arc of steepest ascent ofu2 of lengthδ, joining a point
xδ ∈ ω2 to the pointx0. Since∂u2(x)/∂ν = |∇u2(x)| on γδ, whereν denotes the forward unit
tangent vector to the arc, we have

0 > u2,α(xδ)− u2(xδ) =

∫
γδ

(∂/∂ν)(u2(x)− u2,α(x)) ds >
∫
γδ

(|∇u2(x)| − |∇u2,α(x)|) ds,

from which it follows that
inf
x∈γδ

|∇u2(x)| 6 |∇u2,α(x0)| + z(δ),

and therefore that

lim inf
ω23x→x0

|∇u2(x)| 6 |∇u2,α(x0)| =
|∇u(x0)|

1 + α
. (41)

In view of the definition of an exterior solution, it follows from (40) and (41) that

|∇u(x0)|/(1 − α) 6 g(x0, |∇u(x0)|/(1 + α)). (42)

A simple comparison argument involving thep-capacitary potential in a slab bounded by parallel
planes, one tangent to the surface{u(x) = α} atx0, the other tangent to∂K3, shows that|∇u(x0)| >
(α + 1)/M > (α + 1)/R, whereM = supx∈∂K3

dist(x, {u(x) = α}). It follows from (42) and
Assumption (A4) that

1/(1 − α) 6 (1 + α)/(1 − α) 6 g(x0, y)/y 6 C2, (43)

where we sety = |∇u(x0)|/(1 + α) > y0 = 1/R, and whereC2 depends only onR, y0, and the
functiong. The assertion follows, since (43) cannot be satisfied unlessα 6 α0 = 1 − 1/C2.
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LEMMA 5.3 In the context of Lemma 5.2, there is a constantη > 0 such that

dist(∂K1, {u(x) = α0}) > η dist(∂K1, ∂K3)

for any convex setsK1 ,K3 such thatBρ(0) ⊂ K1 ⊂⊂ K3 ⊂ BR(0).

Proof. For anyr ∈ (0,1] and unit vectorν, let E(r, ν) = {x ∈ RN : dist(x,D(r, ν)) < r},
whereλ = ρ2/R andD(r, ν) denotes the closure of the convex hull of the set{0} ∪ Bλr(−rρν).
Let ur,ν(x) denote thep-harmonic function in the annular domainΩ(r, ν) = E(r, ν) \ D(r, ν)

whose continuous extension to the closure satisfiesur,ν(∂D(r, ν)) = 1, ur,ν(∂E(r, ν)) = −1. Then
dist(0, {ur,ν(x) = α0}) = rη, whereη = dist(0, {u1,ν(x) = α0}) > 0, sinceur,ν(x) = u1,ν(x/r).
For r = min{1,dist(∂K1, ∂K3)} and any pointx0 ∈ ∂K1, we havex0 + D(r, (x0/|x0|)) ⊂ K1
andx0 + E(r, (x0/|x0|)) ⊂ K3. By the comparison principle, we haveu(x) > ur,ν(x − x0) in
Ω ∩ (x0 +Ωr,ν), whereν = x0/|x0|. It follows thatBrη(x0) ⊂ K1 ∪ {u(x) < α0} for all x0 ∈ K1,
from which the assertion follows.

6. The multi-layer case

Let us recall the problem. We are given two strictly nested convex domainsK1 ⊂ Km+2, real
numbers−1 6 λi 6 1 (i = 1,2, . . . , m + 1) with λi > λi+1, and continuous functionsgi :
(Km+2 \ K1) × R+ → R+ (i = 2, . . . , m + 1). We are looking for a sequence of nested convex
domains

K1 ⊂⊂ K2 ⊂⊂ · · · ⊂⊂ Km+1 ⊂⊂ Km+2

such that thep-capacitary potentialsui(x) of the setsKi+1 \K i , i.e. solutions of∆pui = 0 inKi+1 \K i,

ui = λi on ∂Ki,
ui = λi+1 on ∂Ki+1,

(44)

satisfy the following joining conditions:

|∇ui(x)| = gi(x, |∇ui+1(x)|) on ∂Ki+1 (i = 1, . . . , m).

For simplicity we setλ1 = 1 andλm+1 = −1. The following is our main result in this paper.

THEOREM 6.1 (multi-layer) Let K1,Km+2 be two bounded convex domains such thatKm+2
strictly containsK1, λi ∈ (−1,1), i = 2, . . . , m + 1, are arbitrary real numbers withλi > λi+1,
andgi ∈ G, i = 1, . . . , m. Then there exists a sequence{Ki : 1 < i < m + 2} of convexC1

domains such thatK1 ⊂⊂ K2 ⊂⊂ · · · ⊂⊂ Km+1 ⊂⊂ Km+2, and which is a classical solution of
the multi-layer free boundary problem. The latter means that thep-capacitary potentialsui of the
setsKi+1 \K i , i = 1, . . . , m, i.e. solutions of (44) satisfy

lim
z→x

z∈Ki+1\K i

|∇ui(z)| = lim
y→x

y∈Ki+2\K i+1

g(y, |∇ui+1(y)|) ∀x ∈ ∂Ki+1, i = 1, . . . , m. (45)

DEFINITIONS We letB denote the family of all ordered(m− 1)-tuplesω := (ω2, ω3, . . . , ωm+1)

such that
K1 ⊂⊂ ω2 ⊂⊂ · · · ⊂⊂ ωm+1 ⊂⊂ Km+2,
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everyωi is a convex domain and each domainωi is a supersolution of the two-layer problem relative
toωi−1 andωi+1. The latter means that for everyi = 1, . . . , m, we have

limsup
z→x

z∈ωi+1\ωi

|∇ui(z)| 6 liminf
y→x

y∈ωi+2\ωi+1

gi+1(y, |∇ui+1(y)|) ∀x ∈ ∂ωi+1, (46)

where we takeω1 := K1, ωm+2 := Km+2 and defineui to be the solution of (44) withKi replaced
byωi for eachi = 1, . . . , m+ 1.

Step 1: Modified two-layer existence result.In view of Theorem 5.1, the proof of Theorem 4.1
actually yields the following result for the two-layer problem: (a) There exists a unique absolute
minimizer among all exterior solutions. (b) This absolute minimizer solves the two-layer problem
(in the same sense as in Theorem 4.1).

Step 2: B is not empty. Under our assumptions, an outer(m − 1)-surface outer solution can be
easily obtained in the formωi = {u(x) > αi}, i = 2, . . . , m + 1, whereu denotes the solution of
(26) withK3 replaced byKm+2, and where the valuesαi are appropriately chosen so that eachωi
is a supersolution relative to its neighborsωi−1 andωi+1 (same argument as in the first step in the
proof of Theorem 4.1).

Step 3: Uniform separation inB. Letω := (ω2, . . . , ωm+1) ∈ B. Then for eachi = 2, . . . , m+ 1,
ωi is a supersolution of the two-layer problem relative toωi−1, ωi+1, and the functiongi . Thus, by
Theorem 5.1, we have

dist(∂ωi−1, ∂ωi) > η dist(∂ωi−1, ∂ωi+1) > η dist(∂ωi, ∂ωi+1)

for all i = 2, . . . , m+ 1. It follows that

dist(∂ωi−1, ∂ωi) > ηm+2−i dist(∂ωm+1, ∂Km+2) > ηm dist(∂ωm+1, ∂Km+2)

for all i = 2, . . . , m + 1. Thus, ifωn, n = 1,2, . . . , is a weakly decreasing sequence of elements
of B (so that the corresponding sequence of(m − 1)-st components is also weakly decreasing
and thus uniformly bounded away from∂Km+2), then there exists a valueδ > 0 such that for
all n = 1,2, . . . , the surface components ofωn are separated from each other (and from∂K1 and
∂Km+2) by a distance of at leastδ. Therefore the componentwise intersection has the same property.

Step 4: Pairwise intersection; minimal sequence inB. B is closed under the operation of
componentwise intersection. In fact, givenω1, ω2

∈ B, let ω = ω1
∩ ω2 be the componentwise

intersection. Then∂ω ⊂ ∂ω1
∪ ∂ω2, and it is easy to see (using the standard comparison principle)

thatuω 6 uω
j
, j = 1,2, componentwise in the common domains of the componentp-capacitary

potentials. By repeated application of componentwise intersections, one defines a (componentwise)
weakly decreasing minimal sequence of supersolutionsωn = (ωn2, . . . , ω

n
m+1), n = 1,2, . . . ,where

the latter means that for anyi = 2, . . . , m − 1 and anyx ∈ RN such thatx 6∈ ωi for some
supersolutionω ∈ B, we havex 6∈ ωni for all sufficiently largen.

Step 5: Minimal element inB. For each fixedi = 2, . . . , m+ 1, the sequence of domainsωni , n =

1,2, . . . , is weakly decreasing under set inclusion and therefore convergent to a domainΩi ⊃ K1
(Ωi := the interior of the infinite intersection of the domainsωni , n = 1,2, . . .). Clearly the domains
Ωi are strictly ordered by inclusion, and in fact by step 3, we have dist(∂Ωi, ∂Ωi+1) > δ for all
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i = 1, . . . , m + 1 (where we setΩ1 := K1 andΩm+2 := Km+2). SinceΩi ⊂ ωni for all i, each
ωni , i = 2, . . . , m + 1, is actually a supersolution of the two-layer problem relative toΩi−1,Ωi+1,
andgi . Therefore,Ωi (the interior of the infinite intersection of theωni ) is also a supersolution of
the same two-layer problem, due to Theorem 4.3. ThereforeΩ ∈ B. In factΩ is, by construction,
the minimal supersolution inB.

Step 6: Ω solves the multi-layer problem.SinceΩ is a minimal element inB, each component
Ωi of Ω must be the minimal supersolution of the two-layer problem relativeΩi−1, Ωi+1, andgi .
Therefore, by step 1,Ωi is a solution of this two-layer problem in the sense of Theorem 4.1. Thus
Theorem 6.1 is proved.
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