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The main result of this paper concerns existence of classical solutions to the multi-layer Bernoulli
free boundary problem with nonlinear joining conditions andpHeaplacian as governing operator.

The present treatment of the two-layer case involves technical refinements of the one-layer case,
studied earlier by two of the authors. The existence treatment of the multi-layer case is largely based
on a reduction to the two-layer case, in which uniform separation of the free boundaries plays a key
role.

1. Introduction and statement of the problem
1.1 The mathematical setting

In this paper we continue the study of the free boundary problem arising in connection with potential
flow with power-law nonlinearity (see|[B=11] for background). Mathematically, our starting point is
an annular region, bounded by two convex surfacé&\n(N > 2):

K = K12\ K1 with K1, K2 convex andk1 CC Kp42.

TEmail: acker@math.wichita.edu

1The second author thanki@&n Gustafsson Foundation for several visiting appointments to RIT in Stockholm.
Email: henrot@iecn.u-nancy.fr

§The third author thanks Swedish Royal Academy of Sciences for visiting appointment to RIT. Email: michael@ysu.am
'"Supported in part by Swedish Research Council. Email: henriks@math.kth.se

© European Mathematical Society 2004



82 A.ACKER ET AL.

The aim is to show that for a given positive integeand data
rie (=11, Fi(x,p,q) KxRy xRy >R (=1,....,m)

with A; > A;11, one can find convex domai§, cc K, cC --- CC Km+1 CC K42 such that
the p-capacitary potential; for each annular convex regidty 11 \ K; satisfies a nonlinegoining
Bernoulli condition(see the main theorems, 4.1 and 6.1)

Fi(x, [Vui )], [Vuir1(x)) =0 ondKip1 (@ =1,...,m). 1)
The p-capacitary potentiatefers to the solution of the following Dirichlet problem:

Apu=0 inKi11\K;,
u=»x; onoJok;,
u=~Ajy1 ONIK;;1,

whereA,, 1 < p < o0, is thep-Laplace operatodefined by

Apu = div(|Vu|"~2Vu).

1.2 Applications

The above described problem appears in several physical situations and can be appropriately
interpreted in many industrial applications. A general way of interpreting it is to consider

the potential function of several adjacent flows in convex rings with prescribed pressure on the free
streamlines.

A more interesting application, however, is related to the so-called Stefan problem, for large
time. In this connection, the two-phase model describes crystallization (freezing) or melting of
some physical substance. Multi-phase Stefan problem refers to materials capable of assuming any
of three or more different states (solid, liquid, gaseous, in particular). We expand this in more detalil
for the two-phase case.

Let us consider a cylindrical container with the horizontal cut as the dokiainK3 \ K1 (this
is the two-dimensional case). The exterior wikl3 is kept at temperature = —1, and the interior
wall 0 K1 at temperatura = 1. The container is also filled with liquid, and the temperature of the
liquid is assumed to be known initially.

Suppose the material (liquid) solidifies at temperatufe < A < 1. For simplicity we take
A = 0. By continuity of the temperature for positive times, we know that there must be a curve
I'(x,t) (for each timer) on whichu(x, t) = 0. Hence on the subregidn > 0} the material is in
liquid form and on the subregiofx < 0} the material is in solid form. Let us also assume that the
temperature: (depending on the material) also satisfies the (nonlinear) heat equation

Apu — D=0 inK\{u=0}. (2)

On the transition phasE (x, ¢) the Stefan condition (Bernoulli condition), which follows from the
energy conservation law, gives the dynamic equation of the moving curve

[Vua| = g(x, [Vuzl, V), (3)
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whereu; andus represent the function on {# > 0} and on{u < O} respectively. Her&/ is
the normal velocity of the curve€'(x, r), and the nonlinear joining condition](3) may depend on the
density of the heat source over the inter-phase boundary (due for instance to an extra super-heating).
For large time, the heat flux tends to stabilize and becomes stationary. teaod V both
become approximately zero. Therefore the realistic model for the stationary problem is the one
given by
Apu=0 InK\{u=0}, |Vui|=_g(,|Vuz|,00 on{u =0} 4)

It is noteworthy that the-Laplace operator constitutes a subclass of a larger class of operators,
appearing in many modeling problems in industrial applications, due to non-Newtonian behavior of
fluids.

For further applications, and background in the case 2, we refer the reader tol[1, 2], and the
references therein.

1.3 Main result

We prove existence an@?! regularity of the free boundary in the two-phase case. More precisely,
the main result of this paper is the following:

THEOREM 1.1 (two phasek Let K1, K3 be two convex domains such th&y cc Kz, andg :

(K3 \ K1) x Ry — Ry a continuous positive function, nondecreasing with respect to its second
argument and satisfying some concavity property (see Defiffitign 2.3 for a precise statement). Then
there exists a convex! domainw, K1 CC w CC K3, which is a classical solution of the two-layer

free boundary problem. The latter means thatifepacitary potentials; andu, of the setso\ K 1

andK3 \ @ respectively, i.e. solutions of

Apur =0 in Kz\fl, Apup =0 inK3\®,
up =1 onokKy, up =—1 0ndkKs,
u1 =0 ondw, up =0 ondw,

with A, 1 < p < oo, the p-Laplace operator, satisfy

im Vur@)l = Iim - gy, [Vuz(n)D) - Vx € do.

zew\K1 yek3\o

Section 2 is devoted to describing the possible nonlinear joining conditions we are able to
handle. In Section 3, we give some useful auxiliary results. Section 4 is devoted to the proof of the
main theorem, Section 5 is the separation result and Section 6 describes extension to the multi-phase
case.

2. The nonlinear joining condition

In this section, we discuss what could be the nonlinear joining condition invoWingandVu; 1
at the interface;, = 0K;;1 between the two phases. We recall that this condition is written in the
general form

Fi(x, [Vui (), [Vuip1(x)) =0 (@ =1,...,m) (5)

with F; : K x Ry x Ry — R.
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We will always assume thaf; (x, p, ¢) is a continuous function oK x R4 x Ry, and that
F;(x, p, q) is strictly increasing as a function of variahjefor all x, g.

This assumption and the implicit function theorem allow us to write the joining condjtjon (5) in
the following equivalent form

[Vui ()] = gi(x, [Vuir1(x)]), (6)

whereg; : K x Ry — R, are given functions.

An important tool, used in the proof of our main theorem and due to [13]and [4], is the following
property: if y; contains a line segmertthenx +— 1/|Vu;(x)| is a convex function while: +—
1/|Vui+1(x)| is a concave function ofi (see Lemma 3.32). This in conjunction with concavity
assumption on the function — 1/g;(x, |Vu;+1(x)]) underlies one of the main techniques in the
proof of our main result. Therefore, the property thamust satisfy is the following:

x +— 1/gi(x, g(x)) is a concave function as soon gglx) is a concave functian (7)

For general functiong we cannot expect to have convexity of the level sets of the solution. In
fact the first author (se&l[3]) obtained an example of the convex two-layer problem in the plane for
which no convex solution exists corresponding to the joining condition in the fovmy;(x)|2 —
|Vur(x)|? = A2 (cf. @). Laurence and StredulinsKy |13] gave an example of the convex two-layer
problem with the same joining condition such that the natural variational minimizer is not convex.

It is also an open question whether there exist classical solutions at all, for general (regular)
functionsg. In two space dimensions this was settled by H. W. Alt and L. A. Caffai€lli [6]. So
the question to be raised is what are the “necessary and sufficient” conditions to have existence
of convex classical solutions. Our conditiqry (7) may seem somewhat artificial, but it is the only
working condition at this moment. Let us remark that a similar “convexity condition” was assumed
in [2] and [B].

ExamMpPLE The classical nonlinear joining condition (see €.¢. [1]] [13]) is given by
[Vu; (0 = [Vuipa(0)1® = a; (x)%, 8

wherea > 1 andg; (x) > 0. This joining condition satisfies the “convexity conditiop] (7) provided
that the function lg; is concave, as will follow from Lemma 2.1 below. (Regarding applicability of
other convexity conditions, we refer 10 [2, Example 2.9] and [5, Example 4.7].)

LEMMA 2.1 Leta andg be positive functions defined dR" and such that &z and 1g are
concave. Then, fax > 1, the functionx — 1/(a(x)* + g(x)*)¥® is concave.

Proof. It is sufficient to do the proof fo€! functionsa andg, since the result will follow for less
regular functions by a simple density argument just using pointwise convergence.
Let us set
1

T®) = G gy

which is aC function. We want to prove the following inequality:

Ve, y eRY (V) y —x) = f(») — fx). 9)
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Now

1

TG T e GE [a(0)*  (Valx), y = x) + q()* 1 (Vg(x), y — x)].

(10)

(Vf ),y —x) =

By concavity of Ya we have

v(2 __ 1 v _ 1 1
< <;)(x)’y_‘x)__m( a(x):)’—x)/?y)—m.

A similar inequality holds for 1g. Putting these irf (10) yields
(Vf(x),y —x)

> 1 |:a(x)a+1<i _ i) + (x)a+1<i _ i>i|
T (@) + q(x)) e a(y) a(x) 1 g  qx) )]

that is,

at+l a+l
Vfx),y—x)= - (a(x) q(x)

(a(x)® + q(x)“)1+l/a a(y) () > — fx).

So, to prove[(P), it remains to prove the following inequality:

1 a(x)ot+l q(x)ot+l ) 1
+ > . 11
(a(x)® 4 q(x)x)+1/a < a(y) q(y) (a(y)* + q(y)*)Y« D

Let us setry = a(x)/a(y), x2 = q(x)/q(y), 1 = a(x)¥, 12 = q(x)*. Inequality [I1) can be

rewritten as A
oo H+E < (t1x1+t2x2>a

X
1724 n+t
I 2

15 7}
nte  _(x +3\
tlxg + tzx% = n—+rtn ’

Now, the inequality between harmonic and arithmetic means yields

( 1+t )a < <l1xz + tle)a
h | =
T n+n

and the inequality (12) follows immediately using the convexity property of the funetienx®.

or

(12)

We present now another class of functignsvith the above-mentioned property.
LEMMA 2.2 Assume that the functign: Ri — R, satisfies the following set of hypotheses:

(H1) gisconcave,
(H2) g satisfies the following inequality:

V(£ E2,m1.m2) € RY g(61, m)g (&2, m2) = g(VE1E2, /T2 (13)
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Ifa : RN - Ry, q :RY — R, are two given functions such thatd and 1/¢ are concave, then
x — 1/g(a(x), g(x)) is concave.
Proof. Again, it suffices to prove this faf! functionsg, a andq. Let us set
1
gla(x),q(x))’

which is aC? function. We prove the following inequality (CE](Q))Z

Vi, y eRY  (Vf(),y—x) = f(») — f(x). (14)

fx) =

Now
Vfx),y —x)

__ -1 | RN 1 _
—g(a(x),q(x))z[ag(“(x)’qm)(V“(x)’y %)+ 5 (@), q(0) (V0. y x)], (15)

and by the concavity assumption ofuland 1/g (see the proof of Lemma 2.1) we have

(V) y—x) > %[a—g(am, q(x))a@)Z(i _ i)
g@). ()2 | 3¢ a0y ao)
+28 ax), () (x)z(i —iﬂ

R P TE STe)

Next, using concavity of we arrive at

g
o€

where (61, 71) = (a(x), q¢(x)) and (&2, n2) = (a(x)?/a(y), ¢(x)?/q(y)). Inequality [14) now
follows immediately from this and inequality ([L3). O

d
(1, m) (&2 — &) + ﬁ(él, n) (2 — n1) = g6, n2) — g(§1, n1),

EXAMPLES 1. The functiong (&, n) := (§% 4+ n*)Y* which corresponds to the classical nonlinear
joining condition already mentioned does not fall into the above framework wheri (becausg

is not concave), but for & o < 1. Indeed, in this case assumption (H1) is easily verified by proving
that the Hessian qf is negative oﬁRi. As for (H2), it follows immediately from the inequality

(E)® + (E2an1)® > 2(E1E2mn2)®/?,
which gives
[(E162)% 4+ (mn2)® + E)® 4+ E2n)]Y > [(E1£2)% + (1102)® + 2(E162m1n2)*/ 2] Y,

which is inequality[(IB).

2. The functiong (&, n) = &%pf witha > 0, 8 > 0 anda + 8 < 1 can also be considered.
Conditions (H1), (H2) are readily verified in this case.

3. More generally, we can consider a function Ik&, n) = Y ;. a;£% nPi (finite or infinite
sum) witha; > 0,; > 0,8 > 0 andw; + B; < 1. Assumption (H1) is elementary (s a
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combination of concave functions with positive coefficients) while inequélity (13) is obtained from
the expansion of

®ig /2, iy /2 Big /2 Biy/2 @iy /2, iy /2 Bin/2 Big/2
Zzailaiz@ll R A A R A A

i1el irel

DEFINITION 2.3 DefineG to be the family of all functiong : K x R, — R, satisfying the
following conditions:

(A1) g is continuous andcp > 0 such thag(x,0) > ¢oforallx € K,

(A2) g is nondecreasing with respect to the second argument,

(A3) g has the following concavity property: — 1/g(x, g(x)) is concave whenever is a given
function such that g is concave, and

(A4) for any given valueyg > 0, there exist constants9 C1 < Cz such thatC1 < g(x, y)/y <
C», uniformly for allx € K and ally > yo.

Henceforward we will always consider the following nonlinear joining condition:
[Vui(x)| = gi(x, [Vuip1(x)]), (16)

with &gi € g.

3. Preliminary results

In this section we will sum up some of the auxiliary results used in this paper. We remark that
the usual comparison and maximum principle for elliptic partial differential equations is one of the
basic tools here; see [17].

LEMMA 3.1 Exterior Barrier) Let D be a convex domain iiRY and suppose is a continuous
nonnegative function o®(x°, r), p-harmonic inB(x°, r) N D, with x° € 9D. Let alsou = 0 on
aD N B9, r). If 9D is notCl atxY, i.e. D has (at least) two supporting planesc8tthen

lim |Vu(x)|]=0, x e D.
x—x0
LEMMA 3.2 (nterior Barrier) Let D be a convex domain iiRN and suppose is a continuous
nonnegative function o®(x%, ), p-harmonic inB(x%, r) \ D, with x° € 3D. Let alsou = 0 on
aD N BO, r). If

|[Vu| < Co  in B2 r)\ D,

thendaD N B(x%, r/2) is 1 with a uniformC1-norm, i.e. there exists a constafit = C1(Co, N)
such that

VY (x) = VY (y)| < C1,
wherey is a map that represer® nearx® e dD.

The proofs of these lemmas follow from standard theory using barriers at conical boundary
points. The existence of such barriers is provemnln [7] (seealso [12]).

REMARK 3.3 By Lemmal ar@.z,m‘al < |Vu| < Coin D, 8D must beC® with C1-norm
depending orCo.
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DEFINITION 3.4 Blow-up For the functions:/ : B(x/, 1) — R and for a sequencg;} of non-
negative numbers:( — 0) we define the scaled functions 810, 1/r;) by

wl (rjx +x7) —ul (x7)

Tj

il (x) =

Obviously, if all functions:/ are Lipschitz-continuous iB(x/, 1) with the same constant, thé#
are uniformly Lipschitz inB(0, R) (R < 1/r;). Thus, there exists a subsequengesuch thati"
converges locally irC*(RN) to a functionu®. Moreover, ifu/ are p-harmonic, then so is® in
{(u® > 0} andu®(0) = 0.
LEMMA 3.5 LetS(Co) be the set of allc! domainsD ¢ R, x R¥~1 such thatB(0,1) N D
is convex, 0 9D and 19Dl c1(po,1/2) < Co- Then any blow-up of a sequend® < S(Co)
converges to a half space, i.e.;jf| 0 andD; e S(Co), then forD; := (1/r;)D; = {x : rjx € D;}
we have o

limsupD; =T,

whereT = {x; > 0}, and lim sup means the set of all limit points of sequerigépwith x/ ¢ Dj.
LEMMA 3.6 Letu/ be thep-capacitary potential of an annular domdin = D].Z\ Dj1 with convex
uniform C* boundaries. Suppose moreover the gradient afatisfies

|Vu/ (x)] < Ag < o0,

uniformly both inj andx € D;. Then any convergent subsequencei'ofat any boundary point
gives a linear function® = ozxf, after suitable rotation and translation. In particular, for any
boundary poink’/ € 9D;,

w (y +x7) = u () + ayy +o(r)
in B(O, ), in some rotated system.

The proof of this lemma is just the same as the proof of Lemma 2[4 in [9]. The uniformity in
norms is crucial.
Using these lemmas, we can prove the following (cfl [11, Theorem 1.3]).

LEMMA 3.7 LetD; and D; be two nested open convex domaim®, (C Dy), andu denote the
p-capacitary potential ob = D, \ D1. Then forx € dD,

lim |Vu(y)| exists
y—)x

nontangentially (with values in [@c]). In particular|Vu| can be defined (with values in,[6c]) up
to the boundary D as nontangential limit. Moreovely u| is upper semicontinuous up 8, and
lower semicontinuous up ®D.

Proof. Since the problem is local, depending on whether we are clogd®ioor d D2, we may
start with pointx® € 3 D1. In case|Vu| is bounded in a neighborhood of the proof was given in
Theorem 1.3 of [111]. So suppose there exists a sequeheeD with

imx/ =x%  |Vu@/)| = oo, colx’/ —x° < distx/, Dy),
J
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for somecp > O, where the last condition means nontangential approach tf x0. Obviously it
suffices to show that for any such sequeficg we have

IVu(y))| > o0 Vy/ € B(x/.d)),
where 8/; = dist(x/, D1). To show this, we scale the functiarby

u(djx + x7)

w o)) in Bg(0).

uj(x) ==
Since
Apuj =0, u; >0 inBg(0),

we have, by Harnack’s inequality,

supu; < Cinfu; < Cu;(0) =C.
Ba By

In particular,u; is a bounded sequence By. Hence by standard elliptic theory, a subsequence of
u; converges to a solutiarg in Ba, satisfying

Apug=0, wuog@® =1 ug>0 inBy.

Moreover, the level sets af are convex, since they are convex for:ll
Now supposeéVu(x/)| > j. Then by uniformC1® estimates

di|Vu(x?)| id;
Co > |Vu;(O)] = = u(xy) > uj(x]j).

Hence .
u(x’y > ]—j a7)
Co
Now if for some ' ' . . .
y' =d;y’ +x) € Bx',d;) (3’ € By),
we have|Vu(y/)| < C1 for someCy > 0, then

dj|\Vu(d;3 +x1)| _ dj|Vuy))| c 41 _ G1Co
u(xJ) oud) T ud)y T

IVu; (3| = ;
where in the last inequality we have usgd](17). Hence it follows [fiap(7)| = O, wherej =
lim 3/ € By, for an appropriate subsequence.

To summarize, we have a positigeharmonic functionug in B4, with convex level sets, and
with the further property tha¥uo(y) = 0 for somey € Bj. This contradicts Hopf’s boundary point
lemma (se€ [17]), and completes the proof in this case.

The second case€® € 3 D5 is treated similarly, with reversed argument. We sketch some details.
We may start as in the previous case, assuming now

\Vu(x))| < 1/j and |[Vu(y/)| > Co >0,
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with y/ as before
v =d;ij/ +x/ e B(x/,dj) (37 € By).
Again all the above arguments are in order and we have the limit funegi@md the limit pointy
in B1. Let us see what more information we can deduce. Indeed, on the one hand, by elliptic
estimates, '
d;|\Vuy)| _ d;Co
u(xl) 7 u(xd)’

C1> |Vu; (3] =
and on the other hand _
dj|Vu(x1)| < dj

u(xly 7 jud)’

Upon combining these estimates, we arrive at

|Vu; (0)] =

CoC
IVuj ()] < Ojl.

As j tends to infinity we will haveVug(0)| = 0, and again Hopf’s principle is violated.
The lower and upper semicontinuity follow in the same way as in the proof of Theorem 1.3
in [11]. O

LEMMA 3.8 Letu be a solution toA,u = 0 in a domains2, and introduce the linear elliptic
operatorL, defined everywhere, except at critical points:pby

u du 92

N
Ly = [VulP72A + (p — 2)|VulP~* Z Bxg Ox; Axpx;

k=1
ThenL,(|Vu|?) > 0in £2.

This lemma is essentially proved, though stated differently, in the papers of Payne and Philippin,
[15] and [16]; see also the discussionlin [9].

For two nested convex sef3; C Do, and forx € dDj, we denote byl , the supporting
hyperplane atc with the normala pointing away fromD1. Obviously, Ty , is not necessarily
unigue, depending on the geometryadd;. Now to eachx € 9D there corresponds a point
(not necessarily unique) anD> N {z : a - (z — x) > 0} such that - (yy — x) = maxa - (z — x),
where the maximum is taken overale 0D>N{z: a-(z —x) > O}.

LEMMA 3.9 Let D; and D, be two nested convex domain®{ C D,) and denote by the
p-capacitary potential ob, \ Dy, i.e. the solution of

Apu =0 in Dz\ﬁl,
u=cy onadDq, (18)
U =co onadDoy,

wherec1 andc; are two given constants with > ¢ > 0. Then

limsup [Vu(z)| > limsup |Vu(z)| Vx € dDq, (19)
=X > Vx
z€D2\Dy z€D2\Dy

wherey, is the point indicated in the discussion preceding this lemma.
For a proof of this lemma segl[9]. [10].
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DEFINITION 3.10 extremal points For a domainD € RY we say a poink € 3D is anextremal
pointif there exists a supporting plane fotouchingd D atx only. We denote the set of all extremal
points of D by Ep.

LEMMA 3.11 Retain the hypotheses in Lem@ 3.9 and suppose alsdhandd D, are C1.
Then

|Vu(x)| > inf |Vu(y)| forallx € Do\ Dy.
2

in
YEED.
This lemma is a consequence of Lenimg 3.9 and geometric considerations.

The next lemma was an important tool in the variational existence treatment of the multi-layer
problem by P. Laurence and E. Stredulingkyi [13]:

LEMMA 3.12 (see[13, Lemma 4.1], arid [4, Thm. 1]) Retain the hypotheses in Lgmina 3.9. Sup-
pose moreoved D; (i = 1, 2) contains a line segmeht and thaiVu| > co > 0. Then|Vu| Lis
convex on/z and it is concave ofy.

4. The two-layer problem
4.1 Main result

Let us consider two bounded convex domakisand K3 in RN such thatK3 strictly containsky
(i.e. K1 CC K3). We look for a convex domaiR; such that

K1 CC K, CCK3

and thep-capacitary potentialg; andu; of the setsk, \ K1 andK3\ K » respectively, i.e. solutions
of

Apu1 =0 in Kz\El, Apup =0 in Kg\Ez,
up =1 onokKjy, u»=—-1 o0onoikKs, (20)
u1 =0 onoko, up =0 onoko,

satisfy a nonlinear joining condition like
[Vur(x)| = g(x, [Vua(x))) ondKo. (21)

We have the following result.

THEOREM4.1 two phasek Let K1, K3 be two convex domains such thig strictly containsK,
andg € G. Then there exists a convex! domainw, K1 CC w CC Ka, which is a classical
solution of the two-layer free boundary problem. The latter means that-ttepacitary potentials
u1 anduy of the setsv \ K1 andK3 \  respectively (i.e. solutions O) witki, = w) satisfy

Im V@l = lim - g, [Vuz(y)D) - Vx € do. (22)

zeo\K1 yeK3\@

4.2 Notations, definitions

4.2.1 p-capacitary potentials. For every subdomaim such thatk; CC o CC K3, we set
w1 = w\ K1 andw; = K3\ ®. We introduce the-capacitary potentialg;’ (respectively.), or
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more simplyu1 (respectivelyus) when there is no possible confusion, which are the solutions of
the boundary value problems

Apup =0 inwy, Apuz =0 inwy,
ur=1 ondkKiq, up =—1 0ndkKs, (23)
up =0 onodw, u»=0 onow.

In what follows, we will refer tou1 as theinner potentialand tou» as theouter potentialof the
setw. We want to find a domaige satisfying a joining condition

IVui(x)| = g(x, [Vuza(x)|)

as explained in the previous subsection. For that purpose, we introduce the following classes of
domains:

4.2.2 Subsolutions, supersolutionsAn open setw (such thatk; cC o CC K3) is called a
subsolution(of the problem) if itsp-capacitary potentialg; andu; satisfy

liminf [Vu1(z)| > limsupg(y, [Vuz2(y)|) Vx € dw. (24)
=X y—=>x
ZEW] YEW2

An open setw (such thatk; cC o CC K3) is called asupersolution(of the problem) if its
p-capacitary potentialg; andu, satisfy

limsup|Vui(z)| < liminf g(y, [Vu2(y)|) Vx € dw. (25)
—>Xx —>x
;Ewl i’}EWZ

4.2.3 Theclassesl, B,C. We are going to work only with convex domains, so let us set
C = {w convex bounded open subset®Y : K1 cC w cC K3}.
We denote byA the class of convex subsolutions afidhe class of convex supersolutions:

A={w e C:liminf|Vui(z)| > limsupg(y, |Vua(y)|) Vx € dw},
;Ewl ijewz

B={weC:limsup|Vui(z)| < liminf g(y, |Vua(y)|) Vx € dw}.
7Z—>X y—>Xx

Zewq Yew

A classical solutiorof the two-phase free boundary problem is obviously a domain A N B.

4.3 Stability results for the clas8
First we show that the clag$is closed under intersection.

LEMMA 4.2 Letw!, w? beinB. Thenw! N w? € B.
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Proof. As the intersection of two convex domains is convex, we need to prove the condition on
the gradients forq := u‘fl“‘“z anduy = u‘z“lm“’z at the boundary ob! N w?. By the comparison
principle, 0< u1 < min(u‘l”l, u‘fz), which implies that forr € 8(w! N w?) C dw! U dw? we have

(for example, we choose the case where dw?)

ui(x) =u? (x) =0 and  limsup [Vui(y)| < limsup|Vu? ()],
y—x y—>x
ye(wlnw?), yew%

while, sinceus < min(ug’l, u’é)z) < 0, we have
1 . . . . 1
uz(x) =uy (x) =0 and liminf [Vua(y)| > liminf [Vug (y)|.
y—>Xx y—>x
ye(@nw?), yews

Now, by monotonicity ofg with respect to its second argument, and the factdfdielongs ta3,

. . 1 L
limsup [Vui(y)l < limsup|Vug ()| < liminf g(y, [Vua(y)])
y—>x y—>x y—>x

ye(wlnw?); yew% yew%
< liminf - g(y, [Vua(y)D. O
y—x
ye(wlnw?),

Now, the technical and more difficult point is to prove tifas stable, in some sense, for decreasing
sequences of convex domains. Indeed, our aim is to construct a solution to the free boundary
problem by taking a minimal element (for inclusion) in the cl&ssSo, we need some stability

of B under the constructing process that we are going to use.

THEOREM4.3 Letw! D w? O - - - be a decreasing sequence of convex domailfs and suppose

o

o = (" (the interior of the closure) belongsf Thenw € 5.

Proof. Since the domains involved are convex and they all conf&in they are uniformly
Lipschitz. In particular, by standard regularity up to boundary (see [K])ptleapacitary potentials
u’j, uy are C* (« depending on the uniform cone property «f) in the entire spac®" (after
appropriate extension). Since algp, u’, are decreasing sequences we have limit functiong»
which are thep-capacitary potentials a1 = o \ K1, andwy = K3 \ w, respectively. Moreover,
by local C1* regularity (see[[14]), convergence takes place also for the gradients on every compact
subset ofv1 andw; respectively.

We need to show € B. Lete > 0 be small enough and fiX® € K1. Now for eachy € dw let
us denote byr(x°, y) the ray emanating from® and traveling througly. Then, by the choice of
x0, and the convexity of the seis " we can choose unique points= x(y, n) € dw™ N R(x°, y)
andx€ e {uj = =8} N R(x%, y), wheres, > 0 is to be chosen later. It follows that

lim x(y,n) =y, limx®=x(y,n) nontangentially.
n—oo e—0

Next denote by, the solution of the following boundary value problem:

Ly (va) =0 in{0 < uj <1/2},
vp(x) = [Vui(0)”  on{uj =1/2},
Vp(x) = Gpe(x) ondw",
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where

Gne(x) = min@2MP, g(x, [Vuh(x)| +€)P), withM = sup |Vuil,
{O<u’ <1/2}

and Ly is defined in LemmE}S. Observe that the boundednegs fifllows by simple (linear)
barrier argument.
Fix a pointy € dw. Then two possibilities may arise (see Lenjmg 3.7):

Case 1l |Vua(y)| = oo nhontangentially,
Case 2 |Vua(y)| = M1 nontangentially.

In both cases we will have
[Vuy (x)| ~ [Vujy(x)].

In Case 1 we obtain
g(x, [Vuh (x| + )P > 2MP > |Vul (x)|”,

i.8.,Gpe(x) > [Vui(x)|”.
In Case 2 we have (by nontangential continuity'8f.5|)

|Vuy(x)| < [Vuz(x©)| + e,
provideds, is small enough. And by nondecreasing property afe have
gx, [Vua(x)| + e)f > g(x, |Vuz(x))? > [Vui(x)|?,

Hence
Gne(x) > [Vui(x)|?.

Therefore upon applying the comparison principle (for the operajor see Lemm@S) we can
obtain
v (x) = [Vui(0)IP in{0<u] <1/2}.

Now asn — oo,

v(x) = |irrln v (x) = [Vur(x)|?  in {0 <u1 <1/2}.

Sincex€ is compactly insidev, andVuj (x€) — Vuz(x€) in C*-norm (see[14]) we have a uniform
convergence of
Unlywt = Gn.e(x) = min2M?, g(x, |Vuy(x)| + €)P)

to
Ge(x) = min(2M?, g(x, |Vua(x€)| + €)7).

Therefore for; € B(x, re) N w1 andx € dw,
IVu1(2)|” < v(z) < Ge(x) + € < gx, [Vua(x)|[ +€)” +e,
providedr, is small enough. By Lemnja 3.7, and continuitysofase — 0), we get

limsup|Vui(z)| < liminf g(y, [Vua(y))).
=X y—>x

ZEWL YEW?2

Hencew € B. O
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4.4 Proof of Theorerp 4]1

Step 1: Existence of subsolutions and supersolutiohgt us consider the solution of the
boundary value problenptcapacitary potential)

Apu=0 inKs\ K1,
u=1 onki, (26)
u=-1 onRN\Ks.

Forany—1 < o < 1, letw, = {u(x) > «}. Also defineus o(x) = (u(x) — a)/(1 — a) in
the closure ofw1 4, = {o¢ < u(x) < 1} anduz(x) = (u(x) — @)/(1 + «) in the closure of
w24 = {—1 < u(x) < a}. Thenw, is a supersolution (resp. subsolution) if

[Vi(x)| IVu(x)|>
1-— 1+«

forall x € dw,. Buta comparison argument involving thecapacitary potential in any slab between
parallel boundary planes tangentd®, andd K3 shows thatVu(x)| > (¢« + 1)/M > (1+ «a)/R

for all x € dw,, WhereM = supdist(x, w,) : x € dK3}. Thereforew, is a supersolution (resp.
subsolution) provided that

= |Vura(x)| < (>) g(x, [Vuzo(x))) = g<x,

1+« g(x,y)
<(>)
l-«
forall x € dwy, and ally > yo = 1/R. Applying Assumption (A4), we see tha}, is a supersolution
if 1+ a)/(1—a) < C1 (true fora sufficiently close to—1), and thatw, is a subsolution if
1+ a)/(1 — a) = Cz (true fora sufficiently close to 1).

We remark thak'; andK 3 are regular, so thaVu (x)| is both uniformly bounded and uniformly
positive in K3 \ K1. Then the above argument yields supersolutions and subsolutions without
involving Assumption (A4) (one can replace it by the much weaker assumptiogthat) — oo
asy — oo uniformly overx € K).

In what follows, 2o will denote a given subsolution anf@; a given supersolution.

Step 2 Construction of a minimal element in the cld$s We introduce the clasS := {w € B :

20 C w C £21). Let I be the intersection of all domains in the cldsand set2 = I (the interior
of the closure, which is still convex). To proy¥e2 < B, we select a sequen¢e, }>° ; of domains in
S such thaﬂn>1 w, = I and we consider the sequer(e,} > ; of domains defined by21 = w1

and2,+1 = 2, Nwy41 (n > 1). By Lemmd 4.R eacke, is convex and belongs . Hence, since

11 C £2;, Theorenj 43 gives the desired result.

Step 30n Eg,, the extremal points a2, we havdim sup|Vu1(z)| = liminf g(y, |Vua(y)|). This
property can be proved in the same way as in [9], but since it is slightly more complicated and for
the sake of completeness, we give here the complete proof. Suppose the property fails. Then there
existsXg € Eg such that

limsup|Vui(z)| = liminf g(y, [Vu2(y)|)(1 — 4) with ¢ > O. (27)
z—Xo y—Xo
7€821 VES2

We define

I1 =limsup|Vui(z)|, Iz =Iliminf|Vua(y)|.
z—Xo y—>Xo
ZE21 YES2
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Note that sincg is continuous and nondecreasing, liminfy; g(y, [Vu2(y)|) = g(Xo, l2). There-
fore assumptior{ (27) can be written as

I1 = g(Xo, 12)(1 — 4a). (28)
We assume firdp < co. Hence for some small neighborhobdf Xo we have

I1(14+a) VzeVnNn§2, (29)
bl—a) VyeVnNn2s. (30)

VoA

|Vui(z)|
[Vua(y)l
Let us fix a hyperplan&;, parallel to a supporting plane &b, with dist(Xg, T;) = d and such that
T; N §2 C V. This is possible due to the extremal propertyXef
By rotation and translation, we assurkg is the origin andl; = {x1 = d}. LetTs = {x1 = 8}
and set2’ = 2 \ {x1 < 8}. Then by the comparison principle the (innprcapacitary potentiaji
of 22 satisfies
0<ul <up inss, (31)

while the (outer) potential satisfies
ud <up <0 in2y, (32)
which implies that for points belonging tod 2 N 952,

lim sup|Vud (»)| < limsup|Vui(y)| < liminf g(y, [Vua(y)]) < liminf g(y, [Vud(y)]).
y_)_x y—)x y—>x y—x

yes2d YE YES22 yes2s
Now by (29) and[(3]1),
maxul < maxuy <d sup |Vug| <11+ a)d. (33)
Ta Ta {0<x1 <d}
Define L v
11+«
V= M‘:{-f—ﬂ(d—)(l)

Since the second derivativeswandu coincide, we have
Luiv = Lui"‘al =0 in .Qf N{x1 <dj}.

Therefore inszf N {x1 < d}, v takes its maximum on the boundary. By inspection @ (33), itis
easytoseethatan(2s N{x1 <d}) C T, UTs U2 N{5 <x1 <d}),

v< i1+ a)d,
with equality onTs. Hencedv/dx1 < 0onTs,i.e.,

1 (1 d
IVud| < % onTs. (34)
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Now, it remains to estimaﬂ&ug| onTs. For that purpose, let us introduce a part of a level sméof
contained in the neighborhoddn 22 and consider, on that level set, one point, sgywhere the
supporting hyperplane is parallel Ty. By Lemmd 3.p, we have

Vy eTs  |[Vua)l = IVu(xs)l. (35)
Now, by continuity ofg, we can choose andé small enough such that
VyeTs g(Xo,l2) <g(y,l2(1—e)(l+a). (36)

Now, by uniform convergence qm@ to |Vuy| whend — 0 on the level set, we can choose
small enough such that
IVus(n)| = |Vus(xs)| = 12(1 - &).

Replacing in[(3B) and using (28), (34) and the monotonicity gields

g, IVus (ML + a)?(1 — da)d

VyeTs |Vul(y)| <
yeTs Vi) .

Now, it suffices to choos& even smaller so that
21 _
1+ a)*(1— 4a)d <1
d—3§

which in turn implies2s € B. Since$2s C §2 we have reached a contradiction.
Now, if Iz = 400, we can choose the neighborhoddin such a way that

[Vua(y)l =2 2M  Vy € VN §23,

whereM = sup,cp,, |Vui(x)|. Then we reach a contradiction in exactly the same way, by choosing
8 small enough such thaz; will be in the class5.

Step 4 The boundary of2 is CL. It suffices to show that at each boundary point there exists a
unique tangent plane. Suppose the latter fails.A%€ 952 with two supporting planesly, 1>
atxC. Then by barrier arguments (Lemnjas|8.1}1-3.2)
lim |Vui(y)|=0 and lim |Vuz(z)| = 4o00.

215y— 032NN IT>. 29357 32NM1NI>.
Let IT3 be a third plane supporting2 atx° and such thafl3 N 32 C 1y N I, i.e., I13 does not
touch any other boundary points &f than those in the intersection of the pladésandT,. Now,
move I13 towards the interior of2 so that it cuts off a small cap fro?; it may well be a tub-like
region. Then a similar argument as in the previous step will prove that this new domain is still in the
classB. This contradicts the minimal property 6f.

Step 5 The nonlinear joining condition holds oAg,. Letx € Eg be fixed. On the one hand,
we have the following chain of (in)equalities (here n.t. means nontangentially, see Llemjma 3.7 for
details):

[Vui(x)| = ZELT)” [Vui(z)| < Iim_)sxup|Vu1(z)|
z€827 €827
< limjgfg(y, [Vuz(y)]) < y_l)i[pm gy, [Vuz(y)) == g(x, [Vuz(x))),  (37)
;efzg yeﬂzn



98 A.ACKER ET AL.

where the first and last equalities are due to Leimp 3.7, the second and fourth inequalities come
from the definition of liminf and limsup (we also use the continuitygpfand the third inequality
comes from the fact tha® belongs to the clas8. On the other hand, we have the following chain

of (in)equalities:

[Vur(x)| = limsup|Vua(z)| = liminf g(y, [Vua(y)]) = g(x, [Vua(x)), (38)
=X y—=Xx
€821 YyE2Y

where the firstinequality is the upper semicontinuity. patx, the equality is step 3, and the second
inequality is the lower semicontinuity @b atx. Now, (37) and[(3B) together give the desired resullt.

Step 6 The nonlinear joining condition holds at every boundary poinAccording to step 5, it
remains to prove the equalityu1(x)| = g(x, |Vua(x)|) on maximal line segments ih= [a, b] C
8£2. For any such line segment one readily verifies thdt € E . Also at the points:, b we have
equation|(3B) verified. In view of assumpti¢A3) for the functiong in conjunction with Lemma
[3.12 we claim that the function

1 1
X —
[Vui(x)l  g(x, [Vuz(x)])

is convex, nonnegative. The latter depends on the fact2haglongs to the clas8 and it vanishes
at the extremities of any segment (by step 5 and n.t.-continuity). Therefore, this function vanishes
identically. This completes the proof.

5. Uniform separation estimate

THEOREMDb.1 (cf. [2,Lemma 4.4]) LetH denote the set of all configuration&1, w, K3) such
thatK1, w, K3 are convex,

B,(0) C K1 CC w CC K3 C Bg(0),
andw is a supersolution relative t&; and K3. Then there exists a valug> 0 such that
dist(dK1, dw) > ndistdK1, dK3) (39)

uniformly for all (K1, w, K3) € H.
This result follows directly from Lemmas 5.2 and|5.3 below.
LEMMA 5.2 Forany(K1, w, K3) € H, let

o =maxu(x) :x € dw} € (—1,1),

whereu solves the Dirichlet problenf (26). Then there exists a vatye (—1, 1) such thatr < ag
uniformly over all(K1, w, K3) € H.

Proof. It suffices to consider only configurations ki such thatx € (0, 1). Given such a con-
figuration (and the corresponding valug, let u1, u, w1, w2 be as defined i (23). Define the
p-harmonic functionsi1 (x) = (u(x) — «)/(1 — ) anduz o (x) = (x) — a)/(1 + @), both in
the closure of the se® := K3\ K1. Thenu; = u1, = 1 0ndK; anduy, < 0 = uy 0N dw.
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It follows by the comparison principle fgs-harmonic functions thati o, < u1 in w1. Similarly,
we haveuy; = upy = —1 ondkKzanduz, < 0 = uz on dw, from which it follows by the
comparison principle thaty , < u2 in wz. We choose a poiniy € dw such that(xg) = «. Clearly
the functionu is regular neaxg € 2 (and therefore so ame; , anduz ). For smalls > 0, let
x5 = xo + Svg € w1, Wherevg denotes the unit vector with direction oppos¥a (xp). Also let
ys C w1 denote the directed line segment of lengfbining xo to xs. Clearly

du1(x)/0vo < [Vua(x)| < sup|Vui(x)]
XEYs

and
|3u1,a(x)/8VO - IVul,a(xo)|| < z(6),

both onys, wherez(8) — 0 ass§ — 0. Therefore

O < ui(xs) —uralxs) = | (9/0v0)(u1(x) —ua(x))ds
Vs

< (sup|Vui(x)| — lug,a(x0)| + z(8))4,
XEYs

from which it follows that

[Vulxo)l

limsup [Vui(x)| > |Vugq(xo)| = (40)

®12X—>XxQ 1-—
For smalls > 0, letys denote a directed arc of steepest ascent,adf length s, joining a point
x5 € w2 to the pointxg. Sinceduz(x)/dv = |Vua(x)| on ys, wherev denotes the forward unit
tangent vector to the arc, we have

0> upqu(xs) —ua(xs) = /

(0/0v) (u2(x) —uz4(x))ds > / (IVua(x)| = [Vuz,q (x)) ds,
Vs

Vs

from which it follows that
JQ@ [Vuz(x)| < [Vuz,a(xo)| + 2(3),

and therefore that

\Y
fiminf Vo)l < [Vuza(eo)] = L (41)
W23Xx—>xQ 1+«
In view of the definition of an exterior solution, it follows froin {40) and](41) that
[Vu(xo)| /(1 —a) < g(xo, [Vu(xo)|/(1+ a)). (42)

A simple comparison argument involving tipecapacitary potential in a slab bounded by parallel
planes, one tangent to the surfgeéx) = «} atxg, the other tangent &K 3, shows thatVu(xg)| >

(@« +1/M > (o + 1)/R, whereM = sup,cg, dist(x, {u(x) = «}). It follows from @) and
Assumption (A4) that

1/1-a) < A+a)/(1—a) < g(xo, y)/y < Co, (43)

where we sey = |Vu(xo)|/(1+ «) > yo = 1/R, and whereC, depends only orR, yg, and the
functiong. The assertion follows, since (43) cannot be satisfied ualessxg = 1 — 1/C>.
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LEMMA 5.3 In the context of Lemn{a§.2, there is a consiart 0 such that
dist(0 K1, {u(x) = ap}) = ndist(0K1, dK3)

for any convex set&X; , K3 such thatB,(0) C K1 CC K3 C Bg(0).

Proof. For anyr e (0, 1] and unit vectow, let E(r,v) = {x € RN : dist(x, D(r,v)) < r},
wherex = p2/R and D(r, v) denotes the closure of the convex hull of the @8tU By, (—rpv).
Let u,,(x) denote thep-harmonic function in the annular domaia(r, v) = E(r,v) \ D(r,v)
whose continuous extension to the closure satigfig$d D (r, v)) = 1, u,,(0E(r, v)) = —1. Then
dist(0, {u,,(x) = ao}) = rn, wheren = dist(0, {u1,,(x) = ag}) > 0, sinceu, ,(x) = u1,,(x/r).
Forr = min{1, dist(dK1, dK3)} and any pointyg € K1, we havexg + D(r, (xo/|xo|)) C K1
andxg + E(r, (xo/|xol)) € Kz. By the comparison principle, we haw&x) > u,,(x — xp) in
£2 N (x0 + £2,,), wherev = xo/|xo|. It follows thatB,,(x0) C K1 U {u(x) < ag} for all xg € K1,
from which the assertion follows.

6. The multi-layer case

Let us recall the problem. We are given two strictly nested convex donmi&ing K2, real
numbers—1 < A; < 1@ = 1,2,...,m + 1) with A; > X;;+1, and continuous functiong; :
(Km+2\ K1) xRy — Ry (i = 2,...,m + 1). We are looking for a sequence of nested convex
domains

KiCCKyrCC:--CC K41 CC Kipg2

such that ther-capacitary potentialg; (x) of the setsk; 1 \ K;, i.e. solutions of
Apu; =0 inKiy1\ Ky,

up =X onok;, (44)
uj = Ai+1 ONAdK i1,

satisfy the following joining conditions:
IVui(x)| = gi(x, [Vuir1(x)))  ondK;y1 @@ =1,....,m).

For simplicity we sek; = 1 andx,,+1 = —1. The following is our main result in this paper.

THEOREMG6.1 (multi-layer) Let K1, K12 be two bounded convex domains such tl&gj o
strictly containsK1, A; € (—=1,1),i = 2,...,m + 1, are arbitrary real numbers with > 1,1,
andg; € G,i = 1,...,m. Then there exists a sequendé; : 1 < i < m + 2} of convexC?
domains such thak; cc K> cc --- cC K41 C€C K,2, and which is a classical solution of
the multi-layer free boundary problem. The latter means thaptbapacitary potentialg; of the

setsK; ;1\ K;,i =1,...,m,i.e. solutions 0@4) satisfy
Z!i_fpxi IVui(2)| = J@x gy, [Vuiya(W) Vx €9Kiy1, i=1...,m.  (45)
z€Ki+1\K; yeKit2\Kit1
DEFINITIONS We letB denote the family of all ordere@: — 1)-tuplesw = (w2, w3, ..., Wyn+1)
such that

K1 CCwy CC -+ CC wpms1 CC Ky,
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everyw; is a convex domain and each domains a supersolution of the two-layer problem relative

to w;—1 andw; +1. The latter means that for every= 1, ..., m, we have
limsup |Vu; ()] < liminf  giy1(y. Vi1 () Vx € dwisa, (46)
7> x y=x
€W 11\®; YEW; 42\Wj+1

where we takev; := K1, wp42 := K42 and definey; to be the solution of (44) witlk; replaced
by w; foreachi =1,...,m + 1.

Step 1 Modified two-layer existence resultin view of Theorenj 5]1, the proof of Theordm 4.1
actually yields the following result for the two-layer problem: (a) There exists a unique absolute
minimizer among all exterior solutions. (b) This absolute minimizer solves the two-layer problem
(in the same sense as in Theofenj 4.1).

Step 2 B is not empty. Under our assumptions, an oui@t — 1)-surface outer solution can be
easily obtained in the form; = {u(x) > «;},i = 2,...,m + 1, whereu denotes the solution of
(26) with K3 replaced byk,,.2, and where the values are appropriately chosen so that eagh

is a supersolution relative to its neighbass 1 andw; +1 (Same argument as in the first step in the
proof of Theorenj 4]1).

Step 3Uniform separation il3. Letw := (w2, ..., w,11) € B. Thenforeach =2,...,m+1,
w; is a supersolution of the two-layer problem relativesta 1, w;+1, and the functiory;. Thus, by
Theorenj 5.11, we have

dist(@w;—1, dw;) > ndistdw;_1, dw;11) = ndist(dw;, dw;+1)
foralli =2,...,m+ 1. It follows that
dist(dw;_1, dw;) = 77m+2_i dist(dwy 41, 0Kuq2) = 0" dist@wy, 11, 0Kny2)

foralli =2,...,m+ 1. Thus, ifo",n = 1,2, ..., is a weakly decreasing sequence of elements
of B (so that the corresponding sequence(af— 1)-st components is also weakly decreasing
and thus uniformly bounded away frofK,,.>), then there exists a value > 0 such that for

alln = 1,2, ..., the surface components of are separated from each other (and fréky and

0K ,,12) by a distance of at least Therefore the componentwise intersection has the same property.

Step 4 Pairwise intersection; minimal sequence Hm B is closed under the operation of
componentwise intersection. In fact, giveR, v? € B, letw = ! N w? be the componentwise
intersection. Thedw C dw! U dw?, and it is easy to see (using the standard comparison principle)
thatu® < u®’, j = 1,2, componentwise in the common domains of the compoper#pacitary
potentials. By repeated application of componentwise intersections, one defines a (componentwise)
weakly decreasing minimal sequence of supersolutidns: (w5, ...,  ;),n =1,2,..., where

the latter means that for any= 2,...,m — 1 and anyx € R" such thatx ¢ w; for some
supersolutiony € B, we havex ¢ ! for all sufficiently largen.

Step 5Minimal element in3. For each fixed = 2, ..., m + 1, the sequence of domaia, n =
1,2,...,is weakly decreasing under set inclusion and therefore convergent to a d@maink;
(£2; :=the interior of the infinite intersection of the domains » = 1, 2, .. .). Clearly the domains
£2; are strictly ordered by inclusion, and in fact by step 3, we haveéadiyt 9£2;1) > § for all
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i=1...,m+1(whereweseR; ;= K1 and$2,,12 := K,42). Sincef2; C o for all i, each
w!, i =2,...,m+1,is actually a supersolution of the two-layer problem relativto1, £2;,1,
andg;. Therefore £2; (the interior of the infinite intersection of the') is also a supersolution of
the same two-layer problem, due to Theofenj 4.3. Thereore B. In fact §2 is, by construction,
the minimal supersolution iB.

Step 6 2 solves the multi-layer problem.Sinces2 is a minimal element irB, each component

£2; of 2 must be the minimal supersolution of the two-layer problem relagye;, 2,11, andg;.
Therefore, by step 12; is a solution of this two-layer problem in the sense of Thedrer 4.1. Thus
Theorenj 6.1 is proved.
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