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Solutions for the Stefan problem with Gibbs—Thomson law
by a local minimisation
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A new construction scheme for a time-discrete version of the Stefan problem with Gibbs—Thomson
law is introduced. Extending a scheme due to Luckhaus [11] our approach uses a local minimisation
of certain penalised functionals instead of minimising these functionals globally. The main difference
is that local minimisation allows for surface loss of approximate phase interfaces in the limit. The
theory of varifolds is used to obtain the convergence of approximate Gibbs—Thomson equations.
A particular situation exhibits that local minimisation provides more physically appealing solutions
than those constructed by global minimisation.

1. Introduction

The Stefan problem and its variants describe phase transitions like melting or solidification of a
given material. The Gibbs—Thomson law accounts for surface tension effects and introduces a
geometric condition on the phase boundary. This generalisation of the classical Stefan problem
allows modelling phenomena like superheating or undercooling of phases. For a derivation of the
model see [9] and [22].

Let a time interval(0, ') and an open bounded regish c R2 with Lipschitz boundary be
given, and sef2y := (0, T) x £2. We are looking for a phase and a temperature function,

X:Q2r—1{0,1 and u:R2r — R.

Here the sefX(r) = 1} represents théquid phase {X' () = 0} the solid phase The common
boundary in2 describes thphase interfaceThe governing equations are terergy balance

o(u+X)— Au = f, (1.2)
and theGibbs—Thomson lawn the phase interface

Here f is a given heat source ard(z, -) denotes the mean curvature of the phase interface at time
t € (0, T). Mean curvature is taken positive for convex liquid phases. We impose an initial condition
for u+ X and boundary conditions far, namely we assume that on a sub§gbf 32 with positive
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H2-measure a Dirichlet condition is prescribed.[In/[11] (see alsb [10]) Luckhaus gives a first long
time existence result for weak solutions. He proves the existence of functions

X € L0, T; BV(£2;{0,1}), uel?0,T;H2)),

solving [1.]) in the sense of distributions apd [1.2) in the followigformulation of the Gibbs—
Thomson law

//( s—m sw)(r,-)|w|<r,~>dz=/QTV~<us>X (1.3)

for all ¢ € C°(2r; R3). In [11] an implicit time-discretisation is used and approximate phase
functions are chosen as global minimisers of appropriate functionals.gltiisl minimisation
preserves the total surface area of the phase interfaces when the time-steps approach zero. As a
consequence approximate Gibbs—Thomson laws converge within the BV-formulation and in the
limit phase functions enjoy additional minimising and regularity properties. Singularities of phase
boundaries, like cusps, which for example can arise when two parts of one phase merge, are
excluded. In this sense solutions constructed by global minimisation are too restrictivel In [13]
Plotnikov and Starovitov proved that solutions of a certain phase field model converge to weak
solutions of the Stefan problem with Gibbs—Thomson law. The authors use the same notion of weak
solutions which enjoy the same minimising and regularity properties as thdse of [11].

In the present paper, as an alternative to global minimisatidocal minimisationis used to
construct approximate phase functions. We use the same time-discrete functionals as used in [11] but
introduce a second discrete evolution. Approximate phase functions are chosen as suitable stationary
points instead of global minimisers. Our construction admits quite general phase interfaces and
provides more physically appealing solutions than those constructed by global minimisation.

From a technical point of view the main difference to global minimisation is that local
minimisation allows a loss of total surface mass for the phase interfaces when passing to the
limit with time-discrete approximations. The following time-independent example presents some
difficulties which arise. Consider approximate phase functi@tiseach consisting of two solid
parts and let the solid parts merge with— O.

e ~
e ~
xXh =1
N Y, X=1
| dist—> 00— 0 N <
e ~
X X=1
xh =1 L Py
- J

A part of the boundary, indicated by the dashed line, has ceased to separate two different phases. We
call this part thehidden boundarywhereas thehase interfaceepresents the physically relevant

part of the boundary. Cusp singularities occur due to the cancellation of phase interfaces. As
shown in [16] the BV-formulation of the Gibbs—Thomson law breaks down. Thus a more general
formulation has to be given.
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Following an idea from[[1/7] we deal with the surface measure of the phase boundaries. In the
above example the limit — 0 yields a Radon measure with double multiplicity on the hidden
boundary. To treat such objects we use the concept of integral varifolds as introduced by Almgren
[1]. In Geometric Measure Theory a notion of mean curvature for varifolds has been developed.
Schatzle [17] investigates the limit behaviour of surfaces with mean curvature given by a Sobolev
function in the ambient space. In this context it is useful to take hidden boundaries into account.
On the other hand the Gibbs—Thomson law is relevant only on the phase interface. In [Section 3 we
justify the following generalised notion of mean curvature for quite general phase interfaces.

DEFINITION 1.1 Letf2 c R" be openE C 2 andXg € BV (£2). Assume there is an integral
(n — 1)-varifold u on £2 such that

" E C spt(u),
andu has locally bounded first variation with mean curvature ve&@rsatisfying
I?,L €Lljpew), s>n—-1s5>2

Then we call
H = Hu|8*E
thegeneralised mean curvature vectufro*E.

We use this definition to extend the BV-formulation of the Gibbs—Thomson law. The main result of
this paper is the following existence theorem.

THEOREM1.2 LetT > 0 ands2 c R3 be an open bounded set with Lipschitz boundary, assume
I'p C 982 with H2(I'p) > 0 and define

Mo = {v e HY2(2) : v|, = 0}.
For given data

ug € L®(2) N HY?(2),
Xo € BV(£2; {0, 1)),

up € H2(2) NL®(R2),
[ eL>(),

there exist functions

X € L0, T; BV(£2; {0, 1})),
u e L2, T;up + Mg) NL>®(O, T; LP(2)) foralll< p < oo,

constructed by a local minimisation, such that

W+ X)drg + / (10 + Xo)p(0) — / ViV = - / fo (1.4)
2 2r 27

Qr
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forall ¢ € C([0, T) x £2) with ¢ = 0 on I'p. Moreover for almost alt € (0, T') the reduced
boundary ofE (r) = {X (¢, -) = 1} has a generalised mean curvature veéigr), which H2-almost
everywhere o* E () satisfies the Gibbs—Thomson law

H (1) = u(t)v(1), (1.5)

wherev(t) = VX (1) /IVX(t)| oOn9*E(¢).

The proof of the theorem is given in Sectidris 4 ahd 5. Se€fion 6 investigates the behaviour
of solutions. We study a particular situation where two ice balls grow monotonically. Solutions
constructed by global minimisation build a bridge-like connection at a positive distance whereas
solutions by local minimisation can touch continuously.

Acknowledgements. This paper originates from the doctoral thesis of the authar [15]. | thank my
advisers H. W. Alt and R. Séttzle for many fruitful discussions and their constant support.

2. General definitions and notation

We fix some notations and recall some basic definitions. As a general reference for Geometric
Measure Theory see the book of Simon|[19].

For functions depending on time and space variables denote’grid “V-” the spatial gradient
and spatial divergence, respectively. For a differentiable fungtioR” — R" and ak-dimensional
subspacé” of R" we define thalivergence restricted t@ by

k
divy f(x) = Zti - Df(x)t;,

i=1

where{t;};=1, .« is any orthonormal basis df.
Let wy denote the volume of thie-dimensional unit ball and define fop, 1) € R*~1 x R and
0,0 > 0the cylinder

Zoo((y, 1) = By H(y) x (t — 0,1 +0).

Let 2 c R” be open angk a Radon measure ai. We define th&-dimensional densitgf 1 at a
pointx € £2,

. (By(x))
0 (1, x) 1= lim ===
(m, x) oL
and for a subseA C £2 the density
B nA
0. A, x) = lim ABe® 0 4)
0l0  u(By(x))

if the respective limits exist. 16(u, A, x) = 1 we say that the sed hasfull densityat x (with
respect tqu).
Forx € £2 andp > 0 define thescaled measures

Hxo(A) = 07" u(x + 0A). (2.1)
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A k-dimensional subspade c R” is called thek-dimensional tangential planef 1 atx, denoted
by Ty u, if there is® > 0 such that

ftro — OH*L P as Radon measures

asp goes to zero. In this cageis themultiplicity of x in x.

We call 1 a rectifiable (n — 1)-varifold if for u-almost allx € £2 the (n — 1)-dimensional
tangential pland’, i exists, and amntegral (n — 1)-varifold if in addition 8"~ 1(, -) is u-almost
everywhere integer-valued. deneral(n — 1)-varifold is a Radon measure on the Grassmannian
G"~182, which is the product of2 and the space af: — 1)-dimensional unoriented subspaces of
R”. In the present paper we identify a rectifiale— 1)-varifold x and the related Radon measure
Vv, onG"~1$2, defined by

Vu(0) = /Q (0 T du(x) for ¢ e C2G"10).
Thefirst variationof a rectifiable § — 1)-varifold u is given by
S(E) = /9 divy,, £(x) du(x) forg e CL(2; R").
We say is of locally bounded first variatiowith mean curvature vectaf,, if H, € Like(w) and

Su(&) = / —ﬁﬂ ‘gdu  forallé e cl(2;RY).
2

A point xg € spt(w) is calledgenericwith respect tqu if the following conditions hold:

o the tangential plan&,,u exists,

o 0" L, x0) =6 e N,

o 0(u, 10" H(u, ) = 6o}, x0) = 1.
ForA C £2,x0 € £ andp : A - R™, we cally € R™ theapproximate limitof ¢ at xg if for all
e >0,

0" (2 \ {le() — ¥l < &}, x0) = 0.

In this case we write = ap-lim,_,, ¢(x).
A functiongp : A — R is twice approximately differentiablat xo € 2 if there are a vector
b € R" and a symmetric matri¥ € R"*" such that

0.

— — b (x — _ 1l T _
ap-lim lp(x) — @(x0) — b - (x — x0) 22(x x0)" S(x — xo)| _
X—>xQ |[x — xol

Then we set

Vo(xo) =b, D?p(xp) = S.

For aL"-measurable sef C 2 of finite perimeter let* E denote the reduced boundary Bf

in £2, that is, the subset dfE N 2 where a generalised inner normal exists as Radon—Nikodym
derivativeV X /|V Xx | with length one. Thefv.Xz| = H"~1L 9*E is an integral (with density 1)

(n — 1)-varifold on £2 (seel3, Section 3.5]).
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3. A notion of mean curvature for general phase interfaces

To give an extension of the Gibbs—Thomson law we justify the notion of generalised mean curvature
given in Definitio| I.].. We are concerned with phase interfaces given as boundaries of Caccioppoli
sets that can be completed to integral varifolds. If the latter have a mean curvature of sufficiently
high integrability, we prove that on the phase interface this mean curvature is independent of the
completion.

PROPOSITION3.1 Let2 c R" be open,E C 2 andXg € BV(£2). Assume that there are
integral(n — 1)-varifolds 1, u2 on £2 such that fori = 1, 2,
I*E C splui),
u; is of locally bounded first variation with mean curvature ved%g[, and
Hm eLlicui), s>n—-1s>2
Then . .
H,, = Hy,, H"‘-almost everywhere od"E.

This proposition justifies Definitiop 1.1. The proof of the proposition relies on the following
lemma, which extends arguments framl[17] and [18]. Leand H,, be as in Propositio@.l. On
any subset of the support pfthat is the graph of a measurable function, the mean curvatyre of
is already determined by the mean curvature of the graph function.

LEMMA 3.2 Letu be an integraln — 1)-varifold with locally bounded first variation and mean
curvature vectorf, € Lj,.(u),s > n — 1,5 > 2. If there is a measurable map : ¥ — R,
Y c R*1, with

P (y) = (y, ¥ (y) € sptiun)

forall y € Y then at£"1-almost ally € Y, v is twice approximately differentiable and

Vi ) y) =Vy(»),D
Virver) Y i e e

Proof. Let X = spt(u) andw : R — R indicate a generic modulus of continuity, that is,fh)
function at zero. Define the set of “good” points to be

H,(¥ () =V- ( 3.1)

G = {y € Y : y is twice approximately differentiable atand satisfieg3.1)}.
According to [7, 3.1.4] the se&F is measurable, andl[7, 2.9.11] ensures that
6" YG,y) =0 for£" l-almostally € Y \ G. (3.2)
We will show that on the other hand
6" YG,y) =1 for£" l-almostally € Y. (3.3)

Comparing[(3.p) and (3.3) we obtaitt~1(Y \ G) = 0 and the conclusion of the lemma follows.
The proof of [[3.B) splits into several steps.
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Step1 For£"~1-almost all pointsyg € ¥ we find that

xo0 = ¥ (yo) is generic with respect ta, (3.4)
Xi=|vg-&,| >0, wherevg L Ty u,|vol =1, (3.5)
Y is approximately differentiable ap. (3.6)

Proof. Observe that for the orthogonal projection R” — R”~1x {0} and an(n—1)-dimensional
hyperplanel’ = {v(T)}* of R” the Jacobian is given by

Jr = [v(T) - é,l.
Thus the coarea formulal[6, Theorem 3.4.2] guarantees that
L'y eY v(Tppm) €, =0) =0
and

LYy e Y : w(y) is not generic with respect {o})
< u({x € X : x is not generic with respect fo}) = 0,

according to the rectifiability of and [7, 2.9.11]. Moreovey is approximately continuous &t -
almost all pointsy € Y sincey is measurable (seel[7,2.9.13]).

STEP2 Fix yo € Y with (3.4)—[3.6), seko = ¥ (y0). There ispo = 0o(%) > 0 such that equation
(3.1) holds atc"~1-almost all pointsy € B, (yo) for which v coincides with theupper height
functionof  (see the definition below).

Proof. Abbreviate the height afg, the tangential plane qi atxp and the(n — 1)-dimensional
density ofu atxg by

to:= V(o). To=Twnu, 6o:=0""1(u, x0).
Denote the “slope” ofp with respect tdR”~1 x {0} by

V1—22
—

m . =m(A) =

By [19, Lemma 17.11] the existence Bf, andﬁu € Li,:(n) with s > n — 1 implies

1
IimO (sup{ dist(x, xg + Txoit) : x € Bg(xo) N 2}) =0.
o

o—
Therefore we can choogg = go(1) > 0 such thatZ,; 3,,,(x0) CC §2 and for all 0< ¢ < 0o,
2n Zg,Bon(xO) - ZQ,ZmQ(xO)' (37)
We define theipperandlower height functions

@1 Bjo t(yo) = [—00,00), ¢ Bj (o) — (—00, 0],
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by
o+ (y) := suft € (tog — 3meo, to + 3moo) : (y,t) € X},
¢ (y) :=inf{t € (to — 3moo. to + 3meo) : (y.1) € X}.

Theng. is upper ando_ is lower semicontinuous. BY [18, Theorem 6.1] the height funcgigris
twice approximately differentiabl€”~1-almost everywhere By, Y(y0), and for£"~1-almost all

y € BI1(yo) N {ey € R},

' Voy >y (=Voi(y), D
V1I+1Vei2) 7 1+ Ve, (y)2

Now ¢, andy are measurable, and byl [7,2.9.11}'~1-almost all points infg, = ¥} have
full density in this set. Thug is twice approximately differentiabl€”—1-almost everywhere in

{g+ = ¥} N By, (yo) and satisfieq (3]1).
STEP3 The set

Hy((y, 9+ () = (v

To = {(y. px(») 1y € By ' (30, 91 (0) = 9- ()}
has full density akg with respect tqu.

Proof. We follow [17] and use a version of the Lipschitz approximation theorem of Brakke (see
E in the appendix). The scaled measurgs, as defined in['(_?]l) are integral — 1)-varifolds

in B%(0) with ptxy, 0 (B7(0)) < 2w,_17" 100 for all 0 < o <« 1. We have to control theipschitz
approximation constar(see the definition in the appendix). We claim

Iipappuxoyg(o, 7,Top) > 0 (0 — 0). (3.8)

In fact the existence dfy = Ty u yields
/ dist(x, T0)% dityg.o — / dist(x, Tp)? d(BoH" 1L To)(x) = O.
B2(0) B(0)
Next we observe that Iipagpo_g (0,7, To) = lipapp, (xo, 70, To) and
(7o)t / I Tepe — Toll® du(x) — Gown—1| Txgrt — Tol|* = O.
B7,(x0)

The third term of Iipapgxoyg(o, 7, Tp) is estimated by
7o)+ /
B

Thus the assumptions of Theorgm JA.1 are fulfilled vigh= 6" (i, xo), To = Tyout, and [3.8).
Hence there are a constagtindependent op andép, and Lipschitz-continuous functions

. 2/s
|Hﬂ|fdu) 1(B, (x0)) 2/

70 (*0)

|H,, % du <<7g>—"+3( /
B, (x0)

<C((To) "By, (x0)) 172 (79)* =D/ 0,

BN O >R, i=1..., 60
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such that for the seif§ of all y e B} ~*(0) with

0" g0, 0, 1) =#i : fP(y) =1} forall —1/2 <1 < 1/2 (3.9)
and the set

Xg 1= SPllirg,0) N (¥g x (=1/2,1/2))

the following limit vanishes:

Ixo.0(Z50.1/2(0) \ X§) + L HBLHO)\ Y§) - 0 (0 — 0). (3.10)
Assuming O< &g < 1/4m, we observe that, forall & o « 1,

ZQSO,ng(So(xO) C ZQ80,Q/2(x0)7 (3-11)
Z080,0/2(x0) C Zpg,3moq (X0)- (3.12)

Forx € (xo +0X§) N{0" (1. ) = o}, x = (y, 1), we see from| (3]9) that

Yy =N y—=y
t=to+9ff( , °> =-~-=to+ef9‘;< ; 0),
{x}=2XN{y} x (to—0/2, 10+ 0/2)).
By (3.13) we obtainx € Z,, 3mgo(x0) @ande. (y), ¢—(y) € R . Moreover[3.¥) and (3.11) yield
o+ (), - () € {y} x (tlo — /2, 10+ 0/2)

and by [3.IB) we gat_(y) = ¢4 (y) andx € Zo.
Now for o« = min(§p, 1/2) and all 0< ¢ < go we have

(3.13)

(Bj,(x0) \ Zo) < (Bl (x0) \ ((x0 + 0X§) N {0" (1, ) = o))

< (B, (x0) \ (x0 + 0X§)) + (Bl (x0) \ 10" (1. ) = bo})
< 0" M ihrg.0(Zs5,1/2(0) \ X§) + (Bl (x0) \ {6" (1. -) = fo})
Qn

“Lw(0) + bown—1(x0)" 1w (0),

where we have used (3/10), the full density with respegt tof the set{0”1(u,-) = 6o} at xo
according to assumptioh (3.4), afg = 6" 1(u, x0). The above calculations yield the claim of
Step 3,

(Bl (x0) \ Zo) < 0" *w(o). (3.14)

STEP4  The sefp, = v} has full density ayo.

Proof. For (y, ¥ (¥)) € Zgy,3me,(x0) We have

- <Y () < (). (3.15)
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Thus
L e+ # ¥ 0 By (0)

< LM & Zo 3mgox0)D) + LAY € Zg 3mgo(x0)} N {94 # 90—}, (3.16)

The approximate continuity af at yg implies
LMW ¢ Zoamgo () = 0" Lo (o). (3.17)
The coarea formula anf (3.7) yield, with= 2 max2m, 1},
LW € Zoango ()} N # =) < L7 ((E N Zg 2mp(x0) \ Z0))

< / W(Tept) - 2l dH 12

(ZNZg,2me (x0))\ X0

/ 1du = 0" w(o),

By, (x0)\Zo
where we have usef (3]14). Together wfith (B.16) &nd [3.17) we end up with

0" (o4 # ¥}, yo) = 0.

N

STEP5 Steps 4 and 2 prove thét is twice approximately differentiable in a set of full'—1-
density atyg and satisfieg (3]1). Thus we arrive[at {3.3), which completes the proof of the Iémma.

Now we are in a position to prove Propositjon]3.1.

Proof of Propositiofi 3]1. SinceXr € BV (£2) and the reduced boundary Bfis (n — 1)-rectifiable,

9*E is up to a set of{”~1-measure zero covered by a countable union of Lipsohitz- 1)-

graphs (se€_[3, Proposition 2.76]). Lemfma) 3.2 ensures that for each of these Lipschitz graphs the
mean curvature vectoﬁm and HM2 on the intersection of the graph wit E are " ~-almost
everywhere determined by the graph function and therefore identical. Thus, as desired,

H,, = H,, ™" '-almosteverywhere obE. O

A generalised solutiou, X) of problem [[L.1L),[(T]2) should fulfil the Gibbs—Thomson law in the
sense that for almost alle (O, T') the phase interfac& {X (¢, -) = 1} has a mean curvature vector
according to Def|n|t|or-1 wh|ch ia("~1-almost everywhere of*{X(r,-) = 1} given by the
trace ofu asH(t 9 = ul(t, )‘ ().

In fact this is a reasonable #ormulatlon of the Gibbs—Thomson law.

PROPOSITION3.3 Letu € HL2(£2) andX € BV(£2).

(i) ForH"l-almost allx € £ the mean values

u(y)dy

lim
r—=0 | B, (x)] Jp, (x)

of u exists. In this sense for alh — 1)-rectifiable sets a trace afis given.



STEFAN PROBLEM 115

(i) If n =2, 3and(u, X) satisfies the Gibbs—Thomson law in the BV-formulation, then the phase
interfaced*{X" = 1} has a mean curvature vector according to Definftioh 1.1 and the equation
H = uVX/|VX| holdsH"~1-almost everywhere obr{X = 1}.

(i) If n = 2,3 andu = |VX]is an integral varifold with locally bounded first variation and mean
curvaturelflll eLy (u),s>n-—1, satisfyingljlu = uVX/|VX| u-almost everywhere, then

loc
(u, X) is a solution of the Gibbs—Thomson law in the BV-formulation.

Proof. (i) The existence of the mean value limits on a set of vanishing 2-capacity and in particular

H"~1-almost everywhere follows fro[[6, 4.7.2 and 4.8].
(i) For &£ € C(£2) andp = |[VX| we have

. vXx VX

Invoking [17, Theorem 1.3] we find that has locally bounded first variation with mean curvature

vectorl,, € Lioc(), s > n — 1. We obtainu € Lj,.(n) and

- VX
—/QH,L-Ed/L:/QV-(uE)X:—/QuWXl~§du.

Thusﬁﬂ = uVX/|VX| u-almost everywhere. Definiti.l afd' 1L 9*{X = 1} < u prove
the claim.
(iii) From (3.18) we deduce that

/(v g Y VX)IVXI / VY ed /v g)X

. _— e —U . I’L e (U s

o) VX |VX| e |VX] 2

which is the desired BV-formulation. O

4. Time-discretisation and local minimisation

We determine approximate solutions by an implicit time-discretisation. Compared to [11] we take
the same time-discrete functionals, but choose phase functions to be suitable stationary points and
not necessarily global minimisers.

Let a time stegh > 0 be given and look for step functions in time

u (0, T) = (up + Mg) NLX(2), X" : (0, T) — BV(£2;{0,1}).

We write u = u’(t,-), X = X"(¢,-) and denote the backward difference quotient of a time
dependent functiomw by af”w(t) = Lw(@) — w — h)). We prescribe the implicit time-discrete
energy balance equation

37w + ANy — Al = f, uM|py = up.
This turns out to be equivalent to

up = K"uf_y) — Kg (X = X)) + hK§ (f) (4.1)
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if for v € L1(£2) the functionsk 2 (v), K" (v) are defined as solutions of
K&() —hAKLE () = v, K¢l =0, VKEW) -velsevmp =0, (4.2)
K"(v) — hAK" (v) = v, K"(v)|ry = up, VK"() - velse\r = 0. (4.3)
For future use we also defiré’ (v) to be the solution of
K'"(v) = hAK"(v) =v, VK")|yo - -ve =0. (4.4)

Let us first summarise some properties of the above operators.

LEMMA 4.1 The mapk”, K2, K : L2 — H2(£2) are continuous. Far € L*°(£2) we have

||Kh(v)|||_°°(:2) < maxX(flv|lLee) + llubliLe@e)),

IKE W) L), ||Kh(v)||L°°(.(z) < vliLe()-
The operatorgv, w) > 3 [, KA(v)w and(v, w) — 3 [, K2 (v)w acting on 1°(£2) x L>(£2)
are bilinear, symmetric and continuous in each variable with respect@):convergence; the

corresponding quadratic form is uniformly boundedhin> 0 on bounded sets in°2(£2) and
continuous with respect tol{£2) convergence.

Proof. To provek’(v) > —M := min(infg v, infaq up) test [4.8) with(—K" (v) — M) Using
v, up = —M we get

0= / (K"(v) = v)(=K"(v) = M)y + hVK"(v) - V(=K"(v) — M)
22
—/ h(—K"(v) = M); VK" (v) - vg
082
< —/ (—K"(0) = MY2 + hV(—K" (v) — M), |2
2

and we obtairk” (v) > —M almost everywhere i2. The corresponding estimate from above and
L% (£2)-bounds forKg(v) andK " (v) can be derived analogously. The proofs of the other assertions
are straightforward. O

We determine the functiong’, X" iteratively. Set
ul =ug, X'=Xx forO<r<h

and define, for known!_,, X", functionalsF!" : BV (£2; {0, 1}) — R,
1
rra = [var- [ (Kl pr-pre - aloe-aly) . @s)

In [11] the functionX}" is chosen to be a global minimiser Bf, andu/ is defined by[(4]1). Let us
make a few remarks concerning this approach:

e The first variation of the area integrdl, |[V.X| is given by the mean curvature, leading to an
approximate Gibbs—Thomson law for stationary point# bf
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o Iffor h <t < 1o the X/ are stationary points of the functionafé and in additionF/ (x/") <
Fﬁ()(,h_h), then we get an energy estimate

1 1
h h\2 h2
/SZ|VXTO|+§/SZ(MIO) +§/0 /.Q|Vut| wrsc

with a constantC independent ofy, & (see[[11]).

e Theterm} [, ki (X — & ) (X — X" ,) “penalises” in some sense the distance fitifh,. As
we see from Lemmp 4.1 the penalisation is uniformly boundetl in 0 and consequently
quite mild. Thus global minimisation preserves a minimising property for the limits of the
approximate solutions. This excludes a loss of surface area of phase interfaces #&and
gives additional regularity properties.

If we consider the functionaF,h as a kind of energy of the physical system, it is not very well
justified to chooset” to be a global minimiser. A global minimiser &f* can be “far away” from
&, , with a large amount of energy “in between”. It would be more appropriate to choose a local

minimum connected witﬁ(,h_h by a path on which the energy monotonically decreases.
To implement this idea we approximate a flai(r), = > 0, satisfying
X0 =",
Fl'(X(7)) decreasing in,
X (1) - Xs, WhereX,, is a stationary point of”",
by a second discrete evoluti@®;);cy . This can be seen as an evolution on a finer scale. We call
this approactocal minimisationin contrast to thelobal minimisatiorused in[[11].
DEFINITION 4.2 Choose positive “time stepg¢,),-o and “penalisation parametersiy),-o
with
e —>0, Ap—>o00 (h—0).
To determine iterativelyt; = X/, € BV(£2, {0, 1}) set

and letX; be a global minimiser of the functiona} = F"

IR
Fi(X) = F'(X) + Ay / RH(X = Bp)(X — &), (4.6)
22

where the operatak  was defined i4).

LEMMA 4.3 ForX;_1 € BV(£2; {0,1}) there exists a global minimise¥; of F;. After changing
X; on a set of£3-measure zerd){X; = 1} is aCcL¥/2-hypersurface.

Proof. Lety; € BV(£2;{0, 1}) be a minimising sequence in B2; {0, 1}). Thus (¥),en is
uniformly bounded in BV£2). The compact embedding B¥®) < L(£2) implies the strong
Ll(fz)-convergence to a functio®’ € BV (£2; {0, 1}) for a subsequencg. — oo. With respect
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to strong L1(£2)-convergence the perimeter is lower semicontinuous and all other terfsané
continuous. This shows that is a global minimiser. To prove the regularity of the boundary we
show that a global minimiset; has a ¥2-almost-minimal boundary in the sense of Almgren.

For this letB,(x) C 2, ¥ € BV(£2;{0,1}) with X; = v in 2 \ B,(x). The inequality
F;(X;) < F;(¥) leads to the estimate

/Q|W?l-|—/g|w|

1 ~ - -~ - -
< / (—Khw?_h) + EK{;(XI- + = 2X" )+ A K (X 4 — 29«,-_1))(»4 — ),
2

where we have used the bilinearity and symmetry of the naps) — jg Ké’(v)w and(v, w) —~
Jo K (v)w. Lemm together with" , e L>(£2) ensures that

/ V& | — / VYl < (K" @) lILe @) + 1+ a)wsr.
22 2

According to [22, X1.8] the sefX; = 1} has a ¥2-almost-minimal boundary. By a regularity
theorem of Almgren [[2], se€ [22, X1.8.3]) we conclude that{X; = 1} is a two-dimensional
C11/2.surface witho*{X; = 1} = 38{X; = 1} after changing¥; on a set of measure zero (see
[8l 3.1]). O

Next we prove the convergence &f up to a subsequence to a stationary poink bf

LEMMA 4.4 There is a subsequenge— oo and a function¥s, € BV (£2; {0, 1}) such that

X, > X in LX),
X1 — Xoo  in LY(2).
Moreover,
~ oo ~ ~ ~ ~ ~
FNX) + > / Ko (X — Xi1)(X — Xip) < F(xl) 4.7)
i=1 2

and

FMNX) < FH) + )\h/ Ko (X — Xoo)(X — Xs) forall X e BV(2;{0,1})). (4.8)
2
In particular,/"?OO is a global minimiser of” : BV (£2; {0, 1}) — R, defined by
F(X) = FI(X) + 1 / REM(X — Tog) (X — Bo),
2

and{X,, = 1} has aC1-V/2-boundary after changings, on a set ofz.3-measure zero.
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Proof. ObserveF;(X;) < F;(X;_1) and sum ovey to obtain, for any € N,

FINE) + 3 / KoM(&) - X)X — Ao < FN A, (4.9)
=1 72

Thus we can estimate

i
[(2|V&|+th/(2k€"(ﬁq—2%_l><2q—Xj_l)

1

2
<X L lvea) + 1K )l 1 g)- (4.10)

j=
~ 1 ~ ~
< /Q VA, |+ /Q K"l ) (X — X)) — > /g Ko (X — &) (& — &l

therejore(??i)ieN is uniformly bounded in BVY$2) and we can choose a subsequence to get
Xeo, XLy € BV(82; {0, 1}) with

X, —» X in LX),
X,1— X, inLY®).
By (4.10) and Lemmp 41 we obtain
0= Jim i [ RGE = B0, - o)
k—o00 Q
= [ RO = B — B
2
o [ RO = T e [ VR (o = TP
2 2

and consequentlis, = /‘\?;O. Now F is lower semicontinuous with respect td-tonvergence and
by means of[(4]9) we get the estimdte [4.7).
RecallingF;, (&X;,) < F;, (X) forany X’ € BV(£2; {0, 1}), we have

Fth(‘)z‘ik) + )"h/ Ieeh (‘)Elk - ‘%k—l)(i‘ik - X‘l'k—l)
2
< FINX) + 1 / KX — X _1)(X — Xj 1)
22

Letting k — oo in this estimate gives[ (4.8). The regularity of the boundary follows as in
Lemmd4.3. O

DEFINITION 4.5 Set
xh =X, foranX, asin Lemm&4l4

and define! by (4.1).
We immediately observe thaf € L®(£2) sinceu’ , € L>(£2), and by Lemml.
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LEMMA 4.6 Forthe approximate solutions we have

Erxhy < Fhxl ), (4.11)
ul € up + Mo, Vul' -vg =00nd2 \ I,
07 Mul ) — Ault = f. (4.12)

The functionX?” is a stationary point of” and for alls € C2(£2; R%) we have

__v;c,h' VX, h_/h
/Q<V$ VAT D$|VX,,|>IVX| X'V - ((ul! = hKG(f)E). (4.13)

Proof. Inequality [4.11) follows from[(4]7). We dedude (4.12) frdm [4.[[),|(4.2) &nd (4.3). Since
X[’ X isa stationary point of and the first variation ot — A, fg K& (X — Xoo) (X — Xno)

vanishes ai’", we obtain

X" vah
0 / ( |VXth| . Dé |VXth|)|VXIh| —_ /Q thv . ((Kh(l/l?_h) _ Kg(Xth _ X[h_h))%_)
1
Now (4.7) gives the assertion. O

The following estimates are proved in[11], where ofily(4.1) @nd {4.11) are used (and not the global
minimising property of the approximate phase functions!).

LEMMA 4.7 Foranyg € (0, T), to = Mh, we have the energy estimate

M
1 h
/:z Vgl + 5 /:z(u?o)z +2.3 /Qﬂv“?h'Z +IVE" ;)P
=1

1
< Clup. f. fz>+/ IVXol—i—f/ B (4.14)
Q 2 /o

Thus we get uniform bounds for

X" in L®(0, T; BV(2)), (4.15)

u" in L2(0, T; HY2(2)), (4.16)

u in L, T; LP(2)) forall 1< p < oo, (4.17)

37" + XM in L20, T; H12(2)). (4.18)

Proof. Seel[11]. O

Moreover an estimate for time differences can be derived, which is crucial for th@l)-
compactness af” and X"

LEMMA 4.8 Forany O< r < T we have

T
/ / (ult —ul |1 X" — X" H)dedde < co3
0 2

uniformly inz > 0.

Proof. For the proof see [11]. O
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REMARK 4.9 It is this lemma which requires the assumptigh(Ip) # 0. In [11] the assertion
is also proved for a pure homogeneous Neumann condition but here the global minimising property
of the functionst" is used, in particular to exclude oscillations between the stgteand 1— X

5. Convergence to solutions

To prove Theorerp 1]2 the passage to a limit in the approximate Gibbs—Thomson eqiiatigns (4.13)
is crucial. If a loss of surface mass for the phase interfaces can be excluded as in [11], a lemma
of Reshetnyak [14] proves convergence of the Gibbs—Thomson law within the BV-formulation. In
contrast, local minimisation requires different arguments. We deal with the surface me&stifes

and apply a convergence result for surfaces with mean curvature given by a Sobolev function in the
ambient spacel([17]; see Theorem]A.2 in the appendix).

LEMMA 5.1 There are functions

X € L0, T; BV(£; {0, 1})),
u e L?0, T;up + Mo) NL®(O, T; LP(2)) forall1< p < oo,

and a subsequenée— 0, such that for all K p < oo,

X x, u > u in L?(27), (5.1)
X'ty > x@), u'(t) > u@) in LP(£2) foralmostallr € (0, T), (5.2)
ul ~u weakly in L?(0, T; HY?(2)). (5.3)

Proof. The compactness inA(27) is obtained from the theorem of &het—Kolmogorov—

M. Riesz and equationfs (4]15), (4/17). This yie[ds|(5.2) and together it [; H-?(£2)) being
reflexive and[(4.16) the asserti¢n (5.3). O

From Lemmg 5]1 and (4.12) it is straightforward to show thatY) solves the energy-balance
equation[(1.]) in the sense of distributions. To turn to the Gibbs—Thomson law, [&) be as in
Lemmd5.1 and — 0 be a subsequence for whi¢h (5.[)—5.3) hold. We set

VX(@)/IVX()| Ond*E(),

E@ ={x®) =1, v@)'= {0 otherwise

and define integral 2-varifoldg” on 2 by

W) = /Q QA" forn e o).

We complete the proof of Theorgm [L.2.

THEOREMS5.2 Foralmostali € (0, 7') there exists an integral 2-varifold with locally bounded
first variation and mean curvature vecidy, € Lit.(x,) such that

I*E(t) C Spley) N {62(11,) odd},
f]m =u(t)v(t) wu,-almosteverywhere ite.
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In particularo*E (¢) has for almost alt € (0, T) a generalised mean curvature vector according
to Definition[I.] and the Gibbs—Thomson Igw {1.5) is satisfied. The integral varifgldsn be
obtained as limit points ofi4/) 0.

Proof. We restrict ourselves to pointse (0, T) for which (5.2) holds. By[(4.16) and the Fatou
lemma we deduce
(t > liminf [l ¢, ) llpzgg) € L0, 7).

In consequence for almost alle (0, T') there exists a subsequeneg:) — 0 (i — oo) and a
functionv € H-2(£2) with
Wl v weakly in H-2(2).

The Rellich—-Kondrashov embedding theorem (sée [5, Theorem 5.7.1]] afd (5.2) give(r).
Observing thati: K¢ (f) 1.2, — O we get
ul" + hi Ky (f) = u(r)  weaklyin H-2(2). (5.4)

Moreover by ) the function&’,h" are uniformly bounded in B¥2) for almost allr € (0, T).
By the weak*-compactness of Radon measures (se€e [19, Theorem 4.4]) we can choose a further
subsequence df; — 0 to obtain for almost all € (0, 7) Radon measurel on G252 with

Vi Sv, incdG2e). (5.5)
t
Moreover the mean curvature equatipn (#.13) becomes

H iy = (' + hiKg' (f)vr". (5.6)

By (5.2), (5.4), [(5.b) and_(5]6) all assumptions of the convergence theoremlin [17] (see Theorem
in the appendix) are fulfilled and we conclude that there is an integral 2-varifabeh £2 such
that

Vi=V, S inCAR)"

Moreoverd*E(t) C spt(u,;) andu, has locally bounded first variation with mean curvature vector
Hy, € Liog(t0),

which satisfies the Gibbs—Thomson law

-

Hy, =u(t)v(t)
u:-almost everywhere. In view of [17, Theorem 1.2] and [6, 5.7 Lemma 2] we obtain
O*E(t) C {6%(s, ) 0odd,

which completes the proof. |

In Theoren 5.p the location of the hidden boundaries.spt\ *E; remains dependent on the
choice of subsequences |n (5.5), which itself depends on#im€0, T'). This fact is the cause of

bad control over the hidden boundaries and motivates the definition of mean curvature for the phase
interfaced™{ X' () = 1}.
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6. Behaviour of solutions

We compare solutions by local minimisation and solutions by global minimisation. First we state
some special properties of solutions by global minimisation.

REMARK 6.1 The time-discretisation in [L1] admits an additional penalisation term and minimises
for A > 0 the functionals

FMMX) = Fl(x) + 4 /Q Kg(X = X)X = XLy).

Solutions (u, X) of the Stefan problem with Gibbs—Thomson law, which were constructed
by a global minimisation of the functionaIEtA’h, satisfy for all comparison functiong €
L>°(0, T; BV(£2; {0, 1})) the inequality

[ oo oG fv o

Therefore for almost all € (0, T) the X'(¢) are global minimisers of

F,()E):/ |V2€|—/ (u+X—1+2A(X—1)>(r))E
Q Q 2 2

on BV(£2; {0, 1}). This leads to additional regularity properties. From (#.17) we obtain as in Remark
for aimost alk € (0, T), all B, (x) C 2 andX € BV(£2; {0, 1}) with ¥ = X (1) in £2 \ B, (x)
the estimate

/Q IVX(1)] — /Q IVA| < (lullLeo.r:Lr@) + Ca.0.p)(@ard) =P, (6.2)

This shows that*{X'(r) = 1} has aCl*-almost-minimal boundary for all & « < 1/2. After
changingX'(r) on a set of£3-measure zerd){X(t) = 1} is aCL?-surface. Moreover a theorem
of Tamanini ([21], seel[22, Theorem XI.8.5]) gives the existencegof> 0 and 0 < ¢p < 1,
independent of € (0, T), such that for all 0< r < rg and allx € 3{X (¢) = 1},

3 -
o< L2{X (1) =1} N Br(x)) <1

0)3}’3

Co. (6.3)

This regularity influences the behaviour of the solutions by global minimisation as we will see in
the following example.

6.1 Example

Consider two ice balls in a container of water. Do the balls touch continuously when they grow
monotonically in time? For solutions by global minimisation inequality](6.3) gives a first answer:
If the balls would touch as 1 19 one findss > 0 and for allz € [7g — ¢, fg] points contradicting

(6.3). Therefore solutions by global minimising create bridge-like connections at a positive distance.
To investigate this situation leR, L with 0 < R < L/2 be given, set2 = B;(0), f = 0
andI'b = ¢ (note that this impliek” = K = K”). We choose the pure Neumann condition
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for simplicity although our existence result does not comprise this case. For a Dirichlet or mixed

boundary condition we expect a similar behaviour of solutions.
Forr € (0, R) defineball-like solutionsX () by
E(r) = B, (x-) UB,(x1), X(r) = Xo\£(),

wherex_ = (0,0, —R) andx; = (0, 0, R) denote the centres of the ice balls.

(x1, x2)

—R R X3

Choose an initial radiugy € (0, R) and an initial temperaturgg € H-2(£2) N L*>(£2) such
that the ice balls have to grow monotonically (without proof we assume that this is possible).

Forr € (0,r),o € [0, r] definebridge-like solutiongy(r, o) by S¢ = Zs r(0), ¥ (r,0) =
Xo\(Er)US,)-

(x1, x2)

R X3

We expect minimisers of the functionalg’ and F; to be ball- or bridge-like, when ball-like
solutions are preferred to bridge-like solutions or vice versa. To analyse qualitatively the behaviour
of solutions we restrict ourselves to the class of functiatis) and (r, o), when minimising the
respective time-discrete functionals. For a time giep 0 we assume ball-like solutions until a
timet € (0, T), soX! = X (r!) for v < t,r" increasing inc. In [11], &, is chosen to be a global
minimiser of

1 _ ;
Fl (X)) = /Q IVX| — /Q (Kh(uﬁl)x — EKh(X — X)X - X(r,"))> )

We claim that for all radii near = R the global minimisation prefers bridge-like solutions to ball-
like solutions. The bridges must have a minimal diameter. Furthermore in case their diameters are
not large enough ball-like solutions are preferred.

PROPOSITION6.2 Using the global minimisation there afe> 0 andog > 0 such that for all
h>0,r! € (0, R) andr € (R —§, R), r > r!', we have

min F, (¥ (r,0)) < min _Fl,((r,0)) < F'L,(Xr).
oel0,r] 0€[0,00

]
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For each such there is a constamt; > 0 such that for all 0< 0 < min(o1, %(R —-r)),

Fl (X () = Fly (@, 0)) < 0. (6.4)
Proof. Consider
d(r,0) = d/'y(r,0)
= F!' (X)) = Fl (. 0))
— 4n(r? —r\/r2—o2 — (R — /12— a?)0) — /Q K"l Xs@on £

1

—5 /Q K" (Xson\Ee) X T — X (1) + XsonEw)-

For the derivative we apply the coarea formiila [6, Theorem 3.4.2] in differential form:
AJF — 0O
Jite
- [ Ko ge + R = )0 ),

r,o

with I = {y 1 [(y1. y2)| = 0, y3 € (—R+~r? —0?, R —V/r? —o?)}.

First observe that for = R a bridge-like solution is preferred:

50 = 4”( rrotte - R) - [ &b a)
do .

max d(R, 0. 6.5
UE[O’R]( o) > (6.5)

Next check that the functiod is continuous i and uniformly Hilder continuous irr. These
properties yield the existence of constahts 0 andog > 0 independent ok > 0 such that

max d(r,o) > max]d(r, o) = 0.

o€l0,r] o€[0,00
To prove (6.4) one calculates, for> r/",

d(r,0) < —H?(3(S(0) \ E(r)) + 2H* DE(r) N 5(0))
HIK" @)l a1 S(©@) \ E()[¥/.

Using K" (u!)® as a test function in the equatidff' (u") — hAK" u}') = u} and recalling[(4.17)
yields ||Kh(uﬁ)|||_4(m < C. With the isoperimetrical inequality [6, Theorem 5.6.2] we derive

—HZ((S(0) \ E(r))) + K" ]| 2, (L3(S(0) \ E(r))¥/*
< (=14 CH?(3(S(0) \ EC))YEYH? (3(S(0) \ E(r))) .

Now chooser; > 0 such that for all > r,h ando < o1,

H2 (3(S(0) \ Er)Y8 < %
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and obtain
d(r.o) < —%HZ @(S(0) \ E(r)) + 2HZ (IE(r) N S(0))
1 2 3 2

= _EH (@S(@)\ E(r)) + éH QE(r)NS(0))

= —1(R—Vr2—020 +3ar(r — Vr2 —o?)

< —n(R—r)o + 3nr <r — (r — 102)>

2r

< —%(R —r)o

f0r0<a<%(R—r). O

Restricting to special initial data we show that local minimisation prefers ball-like solutions.

PROPOSITION6.3 Let initial data 0« ro < R andug € H-2(£2) N L>(£2) with ug > —1/2 be
given. Then solutions by local minimisation do not build bridges before the ice balls touch.

To determineX[ﬁFh we have to consider the evolutiof;};cry, where X; minimises the
functional

RO = M0 + 3 | KOG = 8@ = B,
Assume agait = X (r!) andX;_1; = X (7_1), and define
di(r,0) = F;(X(r) = Fi (¥ (r, 0))
=d(r,o) —Ap /9 K (Xso0\Er) (Xs@nEr) + 2X (Fi—1) — 2X(r)).

In a first step we notice that bridge-like solutions are only competitive in a small neighbourhood of
r = R shrinking to a point witth — O:

LEMMA 6.4 There exists a functioa : (0, hg) — R with w(h) — 0 (h — 0) such that for all
Firi<r<R—-wh)andO<o < r,

Fi(X(r) < F;(y(r,0)).

Proof. By ) we assume > o1(r) := min(oy, %(R —r)). Sinced(r,o0) < C(R) forall r, o
we have

di(r,0) < C(R) — Ay / K (X501 () E) XS @1\ E(r)
2
< C(R) - )"/’l / KSh (XB(yl(r)(o))XBnl(r)(o)'
2
Considering forr > 0 and 0< m < L the fundamental solutio®,, of id — oA in R3 we observe

that V(&Xp, o) * Pu) - VaB, 0 < 0. The maximum principle theorems 8.1, 8.6(inl[20] applied to
id —aAvyield K*(X3, ) = X, 0 * P« @and

/ K¥(Xs, 0) > m® / Xpy(0) * P2.
B, (0) B1(0)
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Thus
di(r,0) < C(R) — )»hdl(i”)3/ B0 * Pepoy(r)-2 < 0
B1(0)

forr < R — w(h), if w(h) > 0is chosen with

Eh

1R —wm?

o1(R — w()® — oo,
Observing that

3 - 3 1 3
Aro1(R — w(h))” > min khdl,fkhw(h) ,

B cmax] e %
o1(R —w(h))? 02" w(h)?
we find that this can be satisfied with(h) — 0 (h — 0). O

By Lemmg 6.4 the creation of a bridge at a positive distance of the balls yields a jump of the radius.
This jump affects the first evolution and is never limited to the evolutidn$;cx -

LEMMA 6.5 Iffort € (0, T) and a subsequenée— O there are integers(#) such that
XL ion = Xl iaun)s Xliamnen is a bridge-like solution

then
’th+a<h)h - R (h—0).

Proof. Lemmg6.% ensures the existence of a sequétigesuch that

Sh > o~h ~h
Xt+a(h)h,i(h) = X(rt+a(h)h,i(h))’ Fira(ynithy > R —w(h).

Now we set
“h =k sk

i =Tirathithy: 70 = Titamh-
If the assertion is false, then for a subsequénee 0,

o sh =h

}!ILT]O(rl- —7p) > 0.
This yields . . . )

KMEG! = BF) ~ X - XG).

In additionu’ = K"(u”_, — (X" — X" ,)), the assumed monotonic growth and invoking the
maximum principle twice impliek” (u”) > infq uo (see the proof of Lemnja 4.1). Now we obtain

6w3(F')? — 6ws () — /!2 K"ty o) (X G — X (7))
+ }/ K" X G — XFh) X - 2@) > / (infug + })lf(fih) — XG>0
2 2 o 2 2

since inf; ug > —1/2. This contradicts', ,;,, (X (7)) < F/, g (X)) O
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Now we are able to prove Proposition 6.3. Notice that X is in C°0, T; L?(2)) forall 1 < p
< oo (seel[I1],[[12]), and that fofp = @, f = 0 the energies are monotone, that is,

m/ |Wc<r>|+}/ u(r)?, m/ |VX,”|+}/<M?)2
2 2Ja 2 2 /o

are decreasing i(D, T).
To sketch the idea consider a single ball jumping at a tintleat is,

r+) —r@—) = 6|i_r>no(r(t +8)—r(—268)) >0.

The continuity ofu + X forcesu to jump as well:
ut+) = u(t—) — (X@+) — Xt-)).

The maximum principle implies(r—) > info ug > —1/2 but in contradiction to the monotonicity
of energy we get

Bws(r(t+)% — r(t—)%) + % / u@+)? —u@t—)>% > 0.
2

To adapt this idea notice that by Lemfna]6.4 the radii have to jump when a bridge-like connection
appears at a positive distance of the balls. With the aid of Lena 6.5 we derive a contradiction to
the monotonicity of energy at the level of the time-discrete evolutiths

Applying the L (£2)-convergence af’, X for a subsequende— 0 and almost ali € (0, T)
and using the fact that+ X € C9(0, T; L”(£2)) we restrict ourselves to the following situation:

ASSUMPTION There are subsequendesy 0 ands N\, 0 such that
X "30 x5 in LP(),
Wl "3Pu 8 in LP(@),
X(t—8) —> X(t—), X+ — X(1+) inLP(R),
XLy =0y, X1—-8)=X0rG-8), r@—8—>ri-)<R.
(In case of-(r—) = R we are done.)
CLAIM  There exist$g > 0 with
X(t+8) = X(r(t+8)) foralls < 8o,
r(t+98) —» r(t—).
Assuming this claim to be false we obtain a subsequénee0 andhs > 0 such that either
X! 5 is a bridge-like solution for alt < ks, or

r(t+) —r@—) = gino;!@o(r’“ —rlg) > 0.
In the first case the last two lemmas imply the existenczeg'o{ 3 such that

h _ .k PR B h N e
Xt+a§_)((rt+a§) forall h < hg, é@oﬁ'%(’zwg’ rls)=R—r(@—)>0.
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So we can prove both cases analogously. We consider the first ofie. By (V134d8/ 1] + [/ ]
we obtain

N
h N h\N—j+1, ph h
Uy = (KO 5) = Z:l(K NI — X s oom)- (6.6)
J=
To estimatefn(ufw,,)2 — [oh_)? consider a B(s2)-orthonormal basigwy}ren, Of eigen-
b}
functions
—Awp = uwrwr  IN2, Vwr-vo =0 0nds,
1

2@’ uk =0,  ux — oo (k— 00).

wo

Sincek " is selfadjoint andK” (wy) = (1 + huy)~Lwy we find

2
‘ / (K" uf_s)? - / (uf_5)° S (@+hpe) —1)( / u?_awk)
2 2 2

k

2
48
o (et ([ )
2

k

2
h30 Z(l - e‘““")(/ u(t — 5)wk)
. 2

%9 (6.7)

h 2 2 .
(| [ ul_swi|” and| [, u(r — 8)wy|” are convergent majorants).
The monotonic increase of the radius and the maximum principle yield as above the estimate
(KMNwh_;) > inf ug and together with the homogeneous Neumann data we obtain

N
i i h h h\N—j+1,vh h
(!TOP!”—I]O_Z/Q(K )N(u’—‘s) ' Z(K )N " (Xt—(H—jh - X176+(j71)h)

j=1
>2(infu0)/ |X(R) — X(t—)|. (6.8)
2 Q

Similar to the calculations above we derive

N
. 2
/Q ‘ Z(Kh)N7]+l(Xth—5+jh - Xth—B-i-(j—l)h)‘ = Z
j=1

k

2
h,8
/Q g (X, — X pwil

with a functiong;® on £2,

N

1, oh h N4j—1, ph /
g (Xhy — Xl = Z(l + h) TN T s — A
=

A+ hpo ™V <g’ <L
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For a subsequenée— 0 we obtain
(X, — Xl = (X (R) — Xt —8)) weaklyin L2(£2)

with e=21c < g8 < 1and
N 2
.. W\N—j+1,vh h
Ilhm_lgf/ ’Z(K YN+ (Xz—6+jh_Xt—5+(j—l)h)’
23
>
p
=y
%

Altogether from[(6.5)+(6]9) we conclude that

2

/Q X (R) — X(1 — 8)wy

2
=/Q|2€(R>—X<r—)|. (6.9)

/ (X(R) — X(t—))wi
22

L i ho N2 b 2y s o Dopy _
g@()llhm_lgf/g((u,wg) (u;_5)%) 2 2(Igfuo)/g |X(R) — X(—)| >0
and finally forug > —1/2, using the monotonicity of energy,

1
; im i h 2 h 2 h 2 h 2
02 lim liminf {Gws(r )" = Bws(r,_5) +§/Q((u,+a§) — (u;_s) )}

h
t+ag

_ 1 _
>6w3(R2—V(l—)2)+(infuo)/ |X(R)—X(l—)|+*/ |X(R) — X(t—)]
2 Q 2 )o
> 0.

This is a contradiction.

A. Lipschitz approximation and convergence of mean curvature

First we state a version of the Lipschitz approximation theorem of Brakke [4, Theorem 5.4] (see
also [18]), which we use in Secti¢ry 3. Second we quote the convergence resultaefISER7],
which is crucial in Sectioh]5.

A.1 Lipschitz approximation

For an integrakn — 1)-varifold n in 2 C R”" open,xg € £2, ¢ > 0 with Bg (xo) C £ and an
(n — 1)-dimensional subspac® c R"” we define thdilt, tilt-excessand Lipschitz approximation
constantoy

it (0.0, 7) = 0" [ distr — x0. )2 (o)
Bl (x0)
tiltex,, (xo. . T) = ¢ ~"*! / 1T — T1% dus (o),
B} (x0)
lipapp, (xo, 0, T) = tilt,, (xo0, 0, T) + tiltex,, (xo, 0. T) + 0*™" / |Hy|? du,

Bj (x0)

where we set lipapp(xo, 0. T) = oo if H, ¢L%(ul Bl (x0)).
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We state here a simplified version of the tilted Lipschitz approximation theorem given in
[18], which itself follows from the Lipschitz approximation theorem of Brakke [4, Theorem 5.4].
Roughly speaking, an integrat — 1)-varifold, well approximated (with respect to the Lipschitz
approximation constant) by a hyperplahg is for any hyperplangd not vertical toTp given as
union of Lipschitz graphs ovef:

THEOREMA.1 Let u be an integraln — 1)-varifold in B5(0), 60 € N andTp = {vo}* be an
(n — 1)-dimensional subspace Bf* with

l€, - vo|l = A > 0.
Let Tp be the graph oveR”~ x {0} of a linear magl : R"~1 — R:

(y,Toy) € To forally e R""1.

n(B7(0) < I, w(B3(0) < (Bo+1/2)3wy,
(6o — 1/2)w, < u(B1(0)), lipapp, (0,7, To) <&,

then there exist constanég > 0 andc¢, C > 0 depending on™, A, n and6p, and a function
o R — Rwithw(s) - 0 (s — 0) anddp Lipschitz continuous maps

fiiBEHO) >R, i=1....6,
with
Llp(fl) g c, ”fl - /T()||L°C(Bl§l(;l(0)) g (,()(S),

such that the following assertions hold:
The setYy C Bg‘ofl(O) consisting of pointy € Bgofl(O) with

0" Y, (y,0) =#i: fi(y)y =t} forall—1/2 <t <1/2,
and the set
Xo = spt(un) N (Yo x (=1/2,1/2)) ={(y, fi(y)) 1 y € Yo, 1 < i < 6o}
satisfy the estimate

u((B3,H0) x (=1/2,1/2)) \ Xo) + L (B}, (0) \ Yo) < Ce.

A.2 Convergence of mean curvatures given as a trace

ASSUMPTION Let2 C R" beopenn > 2. Forj e N let E; C £2 be subsets of finite perimeter
and define

VXEI-
= Vg

i = |VXEj|, Vj Ona*E]‘.
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Suppose each integrat — 1)-varifold u; has a mean curvature vectEij given by the trace of a
functionu; € HL-?(£2),n/2 < p < n, which means that

- -
Hﬂj_ujv/ ono”E;

in the weak sense of

/ (v VAL by Y )wx | /x V- (uin)
@ IVXg| VX et

forall n € C(£2; R"). Assume

sy [ 192061 < 4

for someA > 0 and letx € HY?(2), E c £2 and a Radon measukeon G" 12 satisfy

uj —u weakly in H-P(£2),
Xg, — Xp  in LYQ),
Vi =V as varifolds.

THEOREMA.2 Under the above assumptions we h&ve- V,, for an integral(n — 1)-varifold
with locally bounded first variation and mean curvature vector

- ) n n—1
HI’L € LiSOC(l'LV)’ 1- ; = — .

N

MoreoverE is a set of finite perimeted*E C spt(i), and the mean curvature vectoroBatisfies

H, = uvg p-almost everywhere,
where

bE(x) = VXEg((x)/IVXE|(x) 0ond*E,
EX7 70 otherwise.
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