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Solutions for the Stefan problem with Gibbs–Thomson law
by a local minimisation
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A new construction scheme for a time-discrete version of the Stefan problem with Gibbs–Thomson
law is introduced. Extending a scheme due to Luckhaus [11] our approach uses a local minimisation
of certain penalised functionals instead of minimising these functionals globally. The main difference
is that local minimisation allows for surface loss of approximate phase interfaces in the limit. The
theory of varifolds is used to obtain the convergence of approximate Gibbs–Thomson equations.
A particular situation exhibits that local minimisation provides more physically appealing solutions
than those constructed by global minimisation.

1. Introduction

The Stefan problem and its variants describe phase transitions like melting or solidification of a
given material. The Gibbs–Thomson law accounts for surface tension effects and introduces a
geometric condition on the phase boundary. This generalisation of the classical Stefan problem
allows modelling phenomena like superheating or undercooling of phases. For a derivation of the
model see [9] and [22].

Let a time interval(0, T ) and an open bounded regionΩ ⊂ R3 with Lipschitz boundary be
given, and setΩT := (0, T )×Ω. We are looking for a phase and a temperature function,

X : ΩT → {0,1} and u : ΩT → R.

Here the set{X (t) = 1} represents theliquid phase, {X (t) = 0} the solid phase. The common
boundary inΩ describes thephase interface. The governing equations are theenergy balance

∂t (u+ X )−∆u = f, (1.1)

and theGibbs–Thomson lawon the phase interface

H(t, ·) = u(t, ·). (1.2)

Heref is a given heat source andH(t, ·) denotes the mean curvature of the phase interface at time
t ∈ (0, T ). Mean curvature is taken positive for convex liquid phases. We impose an initial condition
for u+X and boundary conditions foru, namely we assume that on a subsetΓD of ∂Ω with positive
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H2-measure a Dirichlet condition is prescribed. In [11] (see also [10]) Luckhaus gives a first long
time existence result for weak solutions. He proves the existence of functions

X ∈ L∞(0, T ; BV(Ω; {0,1})), u ∈ L2(0, T ; H1,2(Ω)),

solving (1.1) in the sense of distributions and (1.2) in the followingBV-formulation of the Gibbs–
Thomson law:∫ T

0

∫
Ω

(
∇ · ξ −

∇X
|∇X |

·Dξ
∇X
|∇X |

)
(t, ·)|∇X |(t, ·)dt =

∫
ΩT

∇ · (uξ)X (1.3)

for all ξ ∈ C∞
c (ΩT ; R3). In [11] an implicit time-discretisation is used and approximate phase

functions are chosen as global minimisers of appropriate functionals. Thisglobal minimisation
preserves the total surface area of the phase interfaces when the time-steps approach zero. As a
consequence approximate Gibbs–Thomson laws converge within the BV-formulation and in the
limit phase functions enjoy additional minimising and regularity properties. Singularities of phase
boundaries, like cusps, which for example can arise when two parts of one phase merge, are
excluded. In this sense solutions constructed by global minimisation are too restrictive. In [13]
Plotnikov and Starovŏıtov proved that solutions of a certain phase field model converge to weak
solutions of the Stefan problem with Gibbs–Thomson law. The authors use the same notion of weak
solutions which enjoy the same minimising and regularity properties as those of [11].

In the present paper, as an alternative to global minimisation, alocal minimisationis used to
construct approximate phase functions. We use the same time-discrete functionals as used in [11] but
introduce a second discrete evolution. Approximate phase functions are chosen as suitable stationary
points instead of global minimisers. Our construction admits quite general phase interfaces and
provides more physically appealing solutions than those constructed by global minimisation.

From a technical point of view the main difference to global minimisation is that local
minimisation allows a loss of total surface mass for the phase interfaces when passing to the
limit with time-discrete approximations. The following time-independent example presents some
difficulties which arise. Consider approximate phase functionsX h each consisting of two solid
parts and let the solid parts merge withh → 0.
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A part of the boundary, indicated by the dashed line, has ceased to separate two different phases. We
call this part thehidden boundary, whereas thephase interfacerepresents the physically relevant
part of the boundary. Cusp singularities occur due to the cancellation of phase interfaces. As
shown in [16] the BV-formulation of the Gibbs–Thomson law breaks down. Thus a more general
formulation has to be given.
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Following an idea from [17] we deal with the surface measure of the phase boundaries. In the
above example the limith → 0 yields a Radon measure with double multiplicity on the hidden
boundary. To treat such objects we use the concept of integral varifolds as introduced by Almgren
[1]. In Geometric Measure Theory a notion of mean curvature for varifolds has been developed.
Scḧatzle [17] investigates the limit behaviour of surfaces with mean curvature given by a Sobolev
function in the ambient space. In this context it is useful to take hidden boundaries into account.
On the other hand the Gibbs–Thomson law is relevant only on the phase interface. In Section 3 we
justify the following generalised notion of mean curvature for quite general phase interfaces.

DEFINITION 1.1 LetΩ ⊂ Rn be open,E ⊂ Ω andXE ∈ BV(Ω). Assume there is an integral
(n− 1)-varifoldµ onΩ such that

∂∗E ⊂ spt(µ),

andµ has locally bounded first variation with mean curvature vectorEHµ satisfying

EHµ ∈ Lsloc(µ), s > n− 1, s > 2.

Then we call
EH = EHµ|∂∗E

thegeneralised mean curvature vectorof ∂∗E.

We use this definition to extend the BV-formulation of the Gibbs–Thomson law. The main result of
this paper is the following existence theorem.

THEOREM 1.2 LetT > 0 andΩ ⊂ R3 be an open bounded set with Lipschitz boundary, assume
ΓD ⊂ ∂Ω with H2(ΓD) > 0 and define

M0 = {v ∈ H1,2(Ω) : v|ΓD = 0}.

For given data

u0 ∈ L∞(Ω) ∩ H1,2(Ω),

X0 ∈ BV(Ω; {0,1}),

uD ∈ H1,2(Ω) ∩ L∞(Ω),

f ∈ L∞(Ω),

there exist functions

X ∈ L∞(0, T ; BV(Ω; {0,1})),

u ∈ L2(0, T ; uD +M0) ∩ L∞(0, T ; Lp(Ω)) for all 1 6 p < ∞,

constructed by a local minimisation, such that∫
ΩT

(u+ X )∂tϕ +

∫
Ω

(u0 + X0)ϕ(0)−

∫
ΩT

∇u · ∇ϕ = −

∫
ΩT

f ϕ (1.4)
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for all ϕ ∈ C∞
c ([0, T ) × Ω) with ϕ = 0 onΓD. Moreover for almost allt ∈ (0, T ) the reduced

boundary ofE(t) = {X (t, ·) = 1} has a generalised mean curvature vectorEH(t), whichH2-almost
everywhere on∂∗E(t) satisfies the Gibbs–Thomson law

EH(t) = u(t)ν(t), (1.5)

whereν(t) = ∇X (t)/|∇X (t)| on ∂∗E(t).

The proof of the theorem is given in Sections 4 and 5. Section 6 investigates the behaviour
of solutions. We study a particular situation where two ice balls grow monotonically. Solutions
constructed by global minimisation build a bridge-like connection at a positive distance whereas
solutions by local minimisation can touch continuously.

Acknowledgements. This paper originates from the doctoral thesis of the author [15]. I thank my
advisers H. W. Alt and R. Schätzle for many fruitful discussions and their constant support.

2. General definitions and notation

We fix some notations and recall some basic definitions. As a general reference for Geometric
Measure Theory see the book of Simon [19].

For functions depending on time and space variables denote by “∇” and “∇·” the spatial gradient
and spatial divergence, respectively. For a differentiable functionf : Rn → Rn and ak-dimensional
subspaceT of Rn we define thedivergence restricted toT by

divT f (x) :=
k∑
i=1

ti ·Df (x)ti,

where{ti}i=1,...,k is any orthonormal basis ofT .
Let ωk denote the volume of thek-dimensional unit ball and define for(y, t) ∈ Rn−1

× R and
%, σ > 0 the cylinder

Z%,σ ((y, t)) := Bn−1
% (y)× (t − σ, t + σ).

LetΩ ⊂ Rn be open andµ a Radon measure onΩ. We define thek-dimensional densityof µ at a
pointx ∈ Ω,

θk(µ, x) := lim
%↓0

µ(B%(x))

ωk%k
,

and for a subsetA ⊂ Ω the density

θ(µ,A, x) := lim
%↓0

µ(B%(x) ∩ A)

µ(B%(x))
,

if the respective limits exist. Ifθ(µ,A, x) = 1 we say that the setA hasfull densityat x (with
respect toµ).

Forx ∈ Ω and% > 0 define thescaled measures

µx,%(A) := %−n+1µ(x + %A). (2.1)
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A k-dimensional subspaceP ⊂ Rn is called thek-dimensional tangential planeof µ at x, denoted
by Txµ, if there isθ > 0 such that

µx,% → θHk P as Radon measures

as% goes to zero. In this caseθ is themultiplicity of µ in x.
We callµ a rectifiable (n − 1)-varifold if for µ-almost allx ∈ Ω the (n− 1)-dimensional

tangential planeTxµ exists, and anintegral (n − 1)-varifold if in addition θn−1(µ, ·) is µ-almost
everywhere integer-valued. Ageneral(n − 1)-varifold is a Radon measure on the Grassmannian
Gn−1Ω, which is the product ofΩ and the space of(n − 1)-dimensional unoriented subspaces of
Rn. In the present paper we identify a rectifiable(n− 1)-varifoldµ and the related Radon measure
Vµ onGn−1Ω, defined by

Vµ(ζ ) :=
∫
Ω

ζ(x, Txµ)dµ(x) for ζ ∈ C0
c(G

n−1Ω).

Thefirst variationof a rectifiable (n− 1)-varifoldµ is given by

δµ(ξ) :=
∫
Ω

divTxµ ξ(x)dµ(x) for ξ ∈ C1
c(Ω; Rn).

We sayµ is of locally bounded first variationwith mean curvature vectorEHµ if EHµ ∈ L1
loc(µ) and

δµ(ξ) =

∫
Ω

− EHµ · ξ dµ for all ξ ∈ C1
c(Ω; Rn).

A point x0 ∈ spt(µ) is calledgenericwith respect toµ if the following conditions hold:

• the tangential planeTx0µ exists,
• θn−1(µ, x0) = θ0 ∈ N ,
• θ(µ, {θn−1(µ, ·) = θ0}, x0) = 1.

ForA ⊂ Ω, x0 ∈ Ω andϕ : A → Rm, we cally ∈ Rm theapproximate limitof ϕ at x0 if for all
ε > 0,

θn(Ω \ {|ϕ(·)− y| < ε}, x0) = 0.

In this case we writey = ap-limx→x0
ϕ(x).

A function ϕ : A → R is twice approximately differentiableat x0 ∈ Ω if there are a vector
b ∈ Rn and a symmetric matrixS ∈ Rn×n such that

ap-lim
x→x0

|ϕ(x)− ϕ(x0)− b · (x − x0)−
1
2(x − x0)

T S(x − x0)|

|x − x0|
2 = 0.

Then we set

∇ϕ(x0) = b, D2ϕ(x0) = S.

For aLn-measurable setE ⊂ Ω of finite perimeter let∂∗E denote the reduced boundary ofE
in Ω, that is, the subset of∂E ∩ Ω where a generalised inner normal exists as Radon–Nikodym
derivative∇XE/|∇XE | with length one. Then|∇XE | = Hn−1 ∂∗E is an integral (with density 1)
(n− 1)-varifold onΩ (see [3, Section 3.5]).
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3. A notion of mean curvature for general phase interfaces

To give an extension of the Gibbs–Thomson law we justify the notion of generalised mean curvature
given in Definition 1.1. We are concerned with phase interfaces given as boundaries of Caccioppoli
sets that can be completed to integral varifolds. If the latter have a mean curvature of sufficiently
high integrability, we prove that on the phase interface this mean curvature is independent of the
completion.

PROPOSITION3.1 LetΩ ⊂ Rn be open,E ⊂ Ω andXE ∈ BV(Ω). Assume that there are
integral(n− 1)-varifoldsµ1, µ2 onΩ such that fori = 1,2,

∂∗E ⊂ spt(µi),

µi is of locally bounded first variation with mean curvature vectorEHµi , and

EHµi ∈ Lsloc(µi), s > n− 1, s > 2.

Then
EHµ1 = EHµ2 Hn−1-almost everywhere on∂∗E.

This proposition justifies Definition 1.1. The proof of the proposition relies on the following
lemma, which extends arguments from [17] and [18]. Letµ and EHµ be as in Proposition 3.1. On
any subset of the support ofµ that is the graph of a measurable function, the mean curvature ofµ

is already determined by the mean curvature of the graph function.

LEMMA 3.2 Letµ be an integral(n − 1)-varifold with locally bounded first variation and mean
curvature vectorEHµ ∈ Lsloc(µ), s > n − 1, s > 2. If there is a measurable mapψ : Y → R,
Y ⊂ Rn−1, with

Ψ (y) := (y, ψ(y)) ∈ spt(µ)

for all y ∈ Y then atLn−1-almost ally ∈ Y , ψ is twice approximately differentiable and

EHµ(Ψ (y)) = ∇ ·

(
∇ψ√

1 + |∇ψ |2

)
(y)

(−∇ψ(y),1)√
1 + |∇ψ(y)|2

. (3.1)

Proof. LetΣ = spt(µ) andω : R → R indicate a generic modulus of continuity, that is, ano(1)
function at zero. Define the set of “good” points to be

G := {y ∈ Y : ψ is twice approximately differentiable aty and satisfies(3.1)}.

According to [7, 3.1.4] the setG is measurable, and [7, 2.9.11] ensures that

θn−1(G, y) = 0 forLn−1-almost ally ∈ Y \G. (3.2)

We will show that on the other hand

θn−1(G, y) = 1 forLn−1-almost ally ∈ Y. (3.3)

Comparing (3.2) and (3.3) we obtainLn−1(Y \ G) = 0 and the conclusion of the lemma follows.
The proof of (3.3) splits into several steps.
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STEP 1 ForLn−1-almost all pointsy0 ∈ Y we find that

x0 = Ψ (y0) is generic with respect toµ, (3.4)

λ := |ν0 · Een| > 0, whereν0 ⊥ Tx0µ, |ν0| = 1, (3.5)

ψ is approximately differentiable aty0. (3.6)

Proof. Observe that for the orthogonal projectionπ : Rn → Rn−1
×{0} and an(n−1)-dimensional

hyperplaneT = {ν(T )}⊥ of Rn the Jacobian is given by

JT π = |ν(T ) · Een|.

Thus the coarea formula [6, Theorem 3.4.2] guarantees that

Ln−1({y ∈ Y : ν(TΨ (y)µ) · Een = 0}) = 0

and

Ln−1({y ∈ Y : Ψ (y) is not generic with respect toµ})

6 µ({x ∈ Σ : x is not generic with respect toµ}) = 0,

according to the rectifiability ofµ and [7, 2.9.11]. Moreoverψ is approximately continuous atLn−1-
almost all pointsy ∈ Y sinceψ is measurable (see [7, 2.9.13]).

STEP 2 Fix y0 ∈ Y with (3.4)–(3.6), setx0 = Ψ (y0). There is%0 = %0(λ) > 0 such that equation
(3.1) holds atLn−1-almost all pointsy ∈ B%0(y0) for which ψ coincides with theupper height
functionof µ (see the definition below).

Proof. Abbreviate the height ofx0, the tangential plane ofµ at x0 and the(n − 1)-dimensional
density ofµ atx0 by

t0 := ψ(y0), T0 := Tx0µ, θ0 := θn−1(µ, x0).

Denote the “slope” ofT0 with respect toRn−1
× {0} by

m := m(λ) =

√
1 − λ2

λ
.

By [19, Lemma 17.11] the existence ofTx0µ and EHµ ∈ Lsloc(µ) with s > n− 1 implies

lim
%→0

(
sup

{
1

%
dist(x, x0 + Tx0µ) : x ∈ Bn% (x0) ∩Σ

})
= 0.

Therefore we can choose%0 = %0(λ) > 0 such thatZ%0,3m%0(x0) ⊂⊂ Ω and for all 0< % < %0,

Σ ∩ Z%,3m%0(x0) ⊂ Z%,2m%(x0). (3.7)

We define theupperandlower height functions

ϕ+ : Bn−1
%0

(y0) → [−∞,∞), ϕ− : Bn−1
%0

(y0) → (−∞,∞],



112 M . RÖGER

by

ϕ+(y) := sup{t ∈ (t0 − 3m%0, t0 + 3m%0) : (y, t) ∈ Σ},

ϕ−(y) := inf{t ∈ (t0 − 3m%0, t0 + 3m%0) : (y, t) ∈ Σ}.

Thenϕ+ is upper andϕ− is lower semicontinuous. By [18, Theorem 6.1] the height functionϕ+ is
twice approximately differentiableLn−1-almost everywhere inBn−1

%0
(y0), and forLn−1-almost all

y ∈ Bn−1
%0

(y0) ∩ {ϕ+ ∈ R},

EHµ((y, ϕ+(y))) =

(
∇ ·

∇ϕ+√
1 + |∇ϕ+|2

)
(y)

(−∇ϕ+(y),1)√
1 + |∇ϕ+(y)|2

.

Now ϕ+ andψ are measurable, and by [7, 2.9.11],Ln−1-almost all points in{ϕ+ = ψ} have
full density in this set. Thusψ is twice approximately differentiableLn−1-almost everywhere in
{ϕ+ = ψ} ∩ B%0(y0) and satisfies (3.1).

STEP 3 The set

Σ0 := {(y, ϕ±(y)) : y ∈ Bn−1
%0

(y0), ϕ+(y) = ϕ−(y)}

has full density atx0 with respect toµ.

Proof. We follow [17] and use a version of the Lipschitz approximation theorem of Brakke (see
A.1 in the appendix). The scaled measuresµx0,% as defined in (2.1) are integral(n − 1)-varifolds
in Bn7(0) with µx0,%(B

n
7(0)) 6 2ωn−17n−1θ0 for all 0 < % � 1. We have to control theLipschitz

approximation constant(see the definition in the appendix). We claim

lipappµx0,% (0,7, T0) → 0 (% → 0). (3.8)

In fact the existence ofT0 = Tx0µ yields∫
Bn7 (0)

dist(x, T0)
2 dµx0,% →

∫
Bn7 (0)

dist(x, T0)
2 d(θ0Hn−1 T0)(x) = 0.

Next we observe that lipappµx0,% (0,7, T0) = lipappµ(x0,7%, T0) and

(7%)−n+1
∫
Bn7%(x0)

‖Txµ− T0‖
2 dµ(x) → θ0ωn−1‖Tx0µ− T0‖

2
= 0.

The third term of lipappµx0,% (0,7, T0) is estimated by

(7%)−n+3
∫
Bn7%(x0)

| EHµ|
2 dµ 6(7%)−n+3

( ∫
Bn7%(x0)

| EHµ|
s dµ

)2/s

µ(Bn7%(x0))
1−2/s

6C((7%)−n+1µ(Bn7%(x0)))
1−2/s(7%)2(1−(n−1)/s)

→ 0.

Thus the assumptions of Theorem A.1 are fulfilled withθ0 = θn−1(µ, x0), T0 = Tx0µ, and (3.8).
Hence there are a constantδ0 independent of% andθ0, and Lipschitz-continuous functions

f
%
i : Bn−1

δ0
(0) → R, i = 1, . . . , θ0,
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such that for the setY %0 of all y ∈ Bn−1
δ0

(0) with

θn−1(µx0,%, (y, t)) = #{i : f %i (y) = t} for all −1/2< t < 1/2 (3.9)

and the set

X
%
0 := spt(µx0,%) ∩ (Y

%
0 × (−1/2,1/2))

the following limit vanishes:

µx0,%(Zδ0,1/2(0) \X
%
0)+ Ln−1(Bn−1

δ0
(0) \ Y

%
0 ) → 0 (% → 0). (3.10)

Assuming 0< δ0 < 1/4m, we observe that, for all 0< % � 1,

Z%δ0,2m%δ0(x0) ⊂ Z%δ0,%/2(x0), (3.11)

Z%δ0,%/2(x0) ⊂ Z%0,3m%0(x0). (3.12)

Forx ∈ (x0 + %X
%
0) ∩ {θn−1(µ, ·) = θ0}, x = (y, t), we see from (3.9) that

t = t0 + %f
%
1

(
y − y0

%

)
= · · · = t0 + %f

%
θ0

(
y − y0

%

)
,

{x} = Σ ∩ ({y} × (t0 − %/2, t0 + %/2)).
(3.13)

By (3.12) we obtainx ∈ Z%0,3m%0(x0) andϕ+(y), ϕ−(y) ∈ R . Moreover (3.7) and (3.11) yield

ϕ+(y), ϕ−(y) ∈ {y} × (t0 − %/2, t0 + %/2)

and by (3.13) we getϕ−(y) = ϕ+(y) andx ∈ Σ0.
Now for α = min(δ0,1/2) and all 0< % < %0 we have

µ(Bnα%(x0) \Σ0) 6 µ(Bnα%(x0) \ ((x0 + %X
%
0) ∩ {θn−1(µ, ·) = θ0}))

6 µ(Bnα%(x0) \ (x0 + %X
%
0))+ µ(Bnα%(x0) \ {θn−1(µ, ·) = θ0})

6 %n−1µx0,%(Zδ0,1/2(0) \X
%
0)+ µ(Bnα%(x0) \ {θn−1(µ, ·) = θ0})

= %n−1ω(%)+ θ0ωn−1(α%)
n−1ω(%),

where we have used (3.10), the full density with respect toµ of the set{θn−1(µ, ·) = θ0} at x0
according to assumption (3.4), andθ0 = θn−1(µ, x0). The above calculations yield the claim of
Step 3,

µ(Bnα%(x0) \Σ0) 6 %n−1ω(%). (3.14)

STEP 4 The set{ϕ+ = ψ} has full density aty0.

Proof. For (y, ψ(y)) ∈ Z%0,3m%0(x0) we have

ϕ−(y) 6 ψ(y) 6 ϕ+(y). (3.15)
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Thus

Ln−1({ϕ+ 6= ψ} ∩ Bn−1
% (y0))

6 Ln−1({Ψ 6∈ Z%,3m%0(x0)})+ Ln−1({Ψ ∈ Z%,3m%0(x0)} ∩ {ϕ+ 6= ϕ−}). (3.16)

The approximate continuity ofψ aty0 implies

Ln−1({Ψ 6∈ Z%,3m%0(x0)}) = %n−1ω(%). (3.17)

The coarea formula and (3.7) yield, withβ = 2 max{2m,1},

Ln−1({Ψ ∈ Z%,3m%0(x0)} ∩ {ϕ+ 6= ϕ−}) 6 Ln−1(π((Σ ∩ Z%,2m%(x0)) \Σ0))

6
∫

(Σ∩Z%,2m%(x0))\Σ0

|ν(Txµ) · Een| dHn−1(x)

6
∫

Bnβ%(x0)\Σ0

1 dµ = %n−1ω(%),

where we have used (3.14). Together with (3.16) and (3.17) we end up with

θn−1({ϕ+ 6= ψ}, y0) = 0.

STEP 5 Steps 4 and 2 prove thatψ is twice approximately differentiable in a set of fullLn−1-

density aty0 and satisfies (3.1). Thus we arrive at (3.3), which completes the proof of the lemma.2

Now we are in a position to prove Proposition 3.1.

Proof of Proposition 3.1. SinceXE ∈ BV(Ω) and the reduced boundary ofE is (n−1)-rectifiable,
∂∗E is up to a set ofHn−1-measure zero covered by a countable union of Lipschitz(n − 1)-
graphs (see [3, Proposition 2.76]). Lemma 3.2 ensures that for each of these Lipschitz graphs the
mean curvature vectorsEHµ1 and EHµ2 on the intersection of the graph with∂∗E areHn−1-almost
everywhere determined by the graph function and therefore identical. Thus, as desired,

EHµ1 = EHµ2 Hn−1-almost everywhere on∂∗E. 2

A generalised solution(u,X ) of problem (1.1), (1.2) should fulfil the Gibbs–Thomson law in the
sense that for almost allt ∈ (0, T ) the phase interface∂∗

{X (t, ·) = 1} has a mean curvature vector
according to Definition 1.1, which isHn−1-almost everywhere on∂∗

{X (t, ·) = 1} given by the
trace ofu as EH(t, ·) = u(t, ·) ∇X

|∇X |
(t, ·).

In fact this is a reasonable formulation of the Gibbs–Thomson law.

PROPOSITION3.3 Letu ∈ H1,2(Ω) andX ∈ BV(Ω).

(i) ForHn−1-almost allx ∈ Ω the mean values

lim
r→0

1

|Br(x)|

∫
Br (x)

u(y)dy

of u exists. In this sense for all(n− 1)-rectifiable sets a trace ofu is given.
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(ii) If n = 2,3 and(u,X ) satisfies the Gibbs–Thomson law in the BV-formulation, then the phase
interface∂∗

{X = 1} has a mean curvature vector according to Definition 1.1 and the equation
EH = u∇X /|∇X | holdsHn−1-almost everywhere on∂∗

{X = 1}.
(iii) If n = 2,3 andµ = |∇X | is an integral varifold with locally bounded first variation and mean

curvature EHµ ∈ Lsloc(µ), s > n− 1, satisfying EHµ = u∇X /|∇X | µ-almost everywhere, then
(u,X ) is a solution of the Gibbs–Thomson law in the BV-formulation.

Proof. (i) The existence of the mean value limits on a set of vanishing 2-capacity and in particular
Hn−1-almost everywhere follows from [6, 4.7.2 and 4.8].

(ii) For ξ ∈ C∞
c (Ω) andµ = |∇X | we have

δµ(ξ) =

∫
Ω

divTxµ ξ(x)dµ(x) =

∫
Ω

(
∇ · ξ −

∇X
|∇X |

·Dξ
∇X
|∇X |

)
|∇X |. (3.18)

Invoking [17, Theorem 1.3] we find thatµ has locally bounded first variation with mean curvature
vector EHµ ∈ Lsloc(µ), s > n− 1. We obtainu ∈ Lsloc(µ) and

−

∫
Ω

EHµ · ξ dµ =

∫
Ω

∇ · (uξ)X = −

∫
Ω

u
∇X
|∇X |

· ξ dµ.

Thus EHµ = u∇X /|∇X | µ-almost everywhere. Definition 1.1 andHn−1 ∂∗
{X = 1} 6 µ prove

the claim.
(iii) From (3.18) we deduce that∫

Ω

(
∇ · ξ −

∇X
|∇X |

·
∇X
|∇X |

)
|∇X | =

∫
Ω

−u
∇X
|∇X |

· ξ dµ =

∫
Ω

∇ · (uξ)X ,

which is the desired BV-formulation. 2

4. Time-discretisation and local minimisation

We determine approximate solutions by an implicit time-discretisation. Compared to [11] we take
the same time-discrete functionals, but choose phase functions to be suitable stationary points and
not necessarily global minimisers.

Let a time steph > 0 be given and look for step functions in time

uh : (0, T ) → (uD +M0) ∩ L∞(Ω), X h : (0, T ) → BV(Ω; {0,1}).

We write uht = uh(t, ·),X h
t = X h(t, ·) and denote the backward difference quotient of a time

dependent functionw by ∂−h
t w(t) := 1

h
(w(t)− w(t − h)). We prescribe the implicit time-discrete

energy balance equation

∂−h
t (uh + X h)(t)−∆uht = f, uht |ΓD = uD.

This turns out to be equivalent to

uht = Kh(uht−h)−Kh
0 (X

h
t − X h

t−h)+ hKh
0 (f ) (4.1)
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if for v ∈ L1(Ω) the functionsKh
0 (v),K

h(v) are defined as solutions of

Kh
0 (v)− h∆Kh

0 (v) = v, Kh
0 (v)|ΓD = 0, ∇Kh

0 (v) · νΩ |∂Ω\ΓD = 0, (4.2)

Kh(v)− h∆Kh(v) = v, Kh(v)|ΓD = uD, ∇Kh(v) · νΩ |∂Ω\ΓD = 0. (4.3)

For future use we also definẽKh(v) to be the solution of

K̃h(v)− h∆K̃h(v) = v, ∇K̃h(v)|∂Ω · νΩ = 0. (4.4)

Let us first summarise some properties of the above operators.

LEMMA 4.1 The mapsKh,Kh
0 , K̃

h : L2
→ H1,2(Ω) are continuous. Forv ∈ L∞(Ω) we have

‖Kh(v)‖L∞(Ω) 6 max(‖v‖L∞(Ω) + ‖uD‖L∞(∂Ω)),

‖Kh
0 (v)‖L∞(Ω), ‖K̃

h(v)‖L∞(Ω) 6 ‖v‖L∞(Ω).

The operators(v,w) 7→
1
2

∫
Ω
Kh

0 (v)w and(v,w) 7→
1
2

∫
Ω
Kh

0 (v)w acting on L∞(Ω) × L∞(Ω)

are bilinear, symmetric and continuous in each variable with respect to L1(Ω)-convergence; the
corresponding quadratic form is uniformly bounded inh > 0 on bounded sets in L∞(Ω) and
continuous with respect to L1(Ω) convergence.

Proof. To proveKh(v) > −M := min(infΩ v, inf∂Ω uD) test (4.3) with(−Kh(v)−M)+. Using
v, uD > −M we get

0 =

∫
Ω

(Kh(v)− v)(−Kh(v)−M)+ + h∇Kh(v) · ∇(−Kh(v)−M)+

−

∫
∂Ω

h(−Kh(v)−M)+∇Kh(v) · νΩ

6 −

∫
Ω

(−Kh(v)−M)2+ + h|∇(−Kh(v)−M)+|
2

and we obtainKh(v) > −M almost everywhere inΩ. The corresponding estimate from above and

L∞(Ω)-bounds forKh
0 (v) andK̃h(v) can be derived analogously. The proofs of the other assertions

are straightforward. 2

We determine the functionsuh,X h iteratively. Set

uht = u0, X h
t = X0 for 0 6 t < h

and define, for knownuht−h,X h
t−h functionalsF ht : BV(Ω; {0,1}) → R,

F ht (X ) =

∫
Ω

|∇X | −

∫
Ω

(
Kh(uht−h)X −

1

2
Kh

0 (X − X h
t−h)(X − X h

t−h)

)
. (4.5)

In [11] the functionX h
t is chosen to be a global minimiser ofF ht , anduht is defined by (4.1). Let us

make a few remarks concerning this approach:

• The first variation of the area integral
∫
Ω

|∇X | is given by the mean curvature, leading to an
approximate Gibbs–Thomson law for stationary points ofF ht .
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• If for h 6 t 6 t0 theX h
t are stationary points of the functionalsF ht and in additionF ht (X h

t ) 6
F ht (X h

t−h), then we get an energy estimate∫
Ω

|∇X h
t0
| +

1

2

∫
Ω

(uht0)
2
+

1

2

∫ t0

0

∫
Ω

|∇uht |
2 dt 6 C

with a constantC independent oft0, h (see [11]).
• The term1

2

∫
Ω
Kh

0 (X −X h
t−h)(X −X h

t−h) “penalises” in some sense the distance fromX h
t−h. As

we see from Lemma 4.1 the penalisation is uniformly bounded inh > 0 and consequently
quite mild. Thus global minimisation preserves a minimising property for the limits of the
approximate solutions. This excludes a loss of surface area of phase interfaces ash → 0 and
gives additional regularity properties.

If we consider the functionalF ht as a kind of energy of the physical system, it is not very well
justified to chooseX h

t to be a global minimiser. A global minimiser ofF ht can be “far away” from
X h
t−h, with a large amount of energy “in between”. It would be more appropriate to choose a local

minimum connected withX h
t−h by a path on which the energy monotonically decreases.

To implement this idea we approximate a flow̃X (τ ), τ > 0, satisfying

X̃ (0) = X h
t−h,

F ht (X̃ (τ )) decreasing inτ,

X̃ (τ ) → X̃∞, whereX̃∞ is a stationary point ofF ht ,

by a second discrete evolution(X̃i)i∈N . This can be seen as an evolution on a finer scale. We call
this approachlocal minimisationin contrast to theglobal minimisationused in [11].

DEFINITION 4.2 Choose positive “time steps”(εh)h>0 and “penalisation parameters”(λh)h>0
with

εh → 0, λh → ∞ (h → 0).

To determine iterativelyX̃i = X̃ h
t,i ∈ BV(Ω, {0,1}) set

X̃0 := X h
t−h

and letX̃i be a global minimiser of the functionalFi = F ht,i ,

Fi(X ) := F ht (X )+ λh

∫
Ω

K̃εh(X − X̃i−1)(X − X̃i−1), (4.6)

where the operator̃Kεh was defined in (4.4).

LEMMA 4.3 ForX̃i−1 ∈ BV(Ω; {0,1}) there exists a global minimiser̃Xi of Fi . After changing
X̃i on a set ofL3-measure zero,∂{X̃i = 1} is aC1,1/2-hypersurface.

Proof. Let ψj ∈ BV(Ω; {0,1}) be a minimising sequence in BV(Ω; {0,1}). Thus (ψj )j∈N is
uniformly bounded in BV(Ω). The compact embedding BV(Ω) ↪→ L1(Ω) implies the strong
L1(Ω)-convergence to a functionX ∈ BV(Ω; {0,1}) for a subsequencejk → ∞. With respect
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to strong L1(Ω)-convergence the perimeter is lower semicontinuous and all other terms ofF̃i are
continuous. This shows thatX is a global minimiser. To prove the regularity of the boundary we
show that a global minimiser̃Xi has a 1/2-almost-minimal boundary in the sense of Almgren.

For this letBr(x) ⊂ Ω, ψ ∈ BV(Ω; {0,1}) with X̃i = ψ in Ω \ Br(x). The inequality
F̃i(X̃i) 6 F̃i(ψ) leads to the estimate∫

Ω

|∇X̃i | −

∫
Ω

|∇ψ |

6
∫
Ω

(
−Kh(uht−h)+

1

2
Kh

0 (X̃i + ψ − 2X h
t−h)+ λhK̃

εh(X̃i + ψ − 2X̃i−1)

)
(X̃i − ψ),

where we have used the bilinearity and symmetry of the maps(v,w) 7→
∫
Ω
Kh

0 (v)w and(v,w) 7→∫
Ω
Kεh(v)w. Lemma 4.1 together withuht−h ∈ L∞(Ω) ensures that∫

Ω

|∇X̃i | −

∫
Ω

|∇ψ | 6 (‖Kh(uht−h)‖L∞(Ω) + 1 + λh)ω3r
3.

According to [22, XI.8] the set{X̃i = 1} has a 1/2-almost-minimal boundary. By a regularity

theorem of Almgren ([2], see [22, XI.8.3]) we conclude that∂∗
{X̃i = 1} is a two-dimensional

C1,1/2-surface with∂∗
{X̃i = 1} = ∂{X̃i = 1} after changingX̃i on a set of measure zero (see

[8, 3.1]). 2

Next we prove the convergence ofX̃i up to a subsequence to a stationary point ofF ht .

LEMMA 4.4 There is a subsequenceik → ∞ and a functionX̃∞ ∈ BV(Ω; {0,1}) such that

X̃ik → X̃∞ in L1(Ω),

X̃ik−1 → X̃∞ in L1(Ω).

Moreover,

F ht (X̃∞)+

∞∑
i=1

λh

∫
Ω

K̃εh(X̃i − X̃i−1)(X̃i − X̃i−1) 6 F ht (X h
t−h) (4.7)

and

F ht (X̃∞) 6 F ht (X )+ λh

∫
Ω

K̃εh(X − X̃∞)(X − X̃∞) for all X ∈ BV(Ω; {0,1}). (4.8)

In particular,X̃∞ is a global minimiser ofF̃ : BV(Ω; {0,1}) → R, defined by

F̃ (X ) := F ht (X )+ λh

∫
Ω

K̃εh(X − X̃∞)(X − X̃∞),

and{X̃∞ = 1} has aC1,1/2-boundary after changing̃X∞ on a set ofL3-measure zero.
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Proof. ObserveFj (X̃j ) 6 Fj (X̃j−1) and sum overj to obtain, for anyi ∈ N ,

F ht (X̃i)+

i∑
j=1

λh

∫
Ω

K̃εh(X̃j − X̃j−1)(X̃j − X̃j−1) 6 F ht (X h
t−h). (4.9)

Thus we can estimate∫
Ω

|∇X̃i | +

i∑
j=1

λh

∫
Ω

K̃εh(X̃j − X̃j−1)(X̃j − X̃j−1)

6
∫
Ω

|∇X h
t−h| +

∫
Ω

Kh(uht−h)(X̃i − X h
t−h)−

1

2

∫
Ω

Kh
0 (X̃i − X h

t−h)(X̃i − X h
t−h)

6 ‖X h
t−h‖BV(Ω) + ‖Kh(uht−h)‖L1(Ω). (4.10)

Therefore(X̃i)i∈N is uniformly bounded in BV(Ω) and we can choose a subsequence to get
X̃∞, X̃ ′

∞ ∈ BV(Ω; {0,1}) with

X̃ik → X̃∞ in L1(Ω),

X̃ik−1 → X̃ ′
∞ in L1(Ω).

By (4.10) and Lemma 4.1 we obtain

0 = lim
k→∞

λh

∫
Ω

K̃εh(X̃ik − X̃ik−1)(X̃ik − X̃ik−1)

= λh

∫
Ω

K̃εh(X̃∞ − X̃ ′
∞)(X̃∞ − X̃ ′

∞)

= λh

∫
Ω

K̃εh(X̃∞ − X̃ ′
∞)

2
+ εhλh

∫
Ω

|∇K̃εh(X̃∞ − X̃ ′
∞)|

2

and consequentlỹX∞ = X̃ ′
∞. NowF ht is lower semicontinuous with respect to L1-convergence and

by means of (4.9) we get the estimate (4.7).
RecallingFik (X̃ik ) 6 Fik (X ) for anyX ∈ BV(Ω; {0,1}), we have

F ht (X̃ik )+ λh

∫
Ω

K̃εh(X̃ik − X̃ik−1)(X̃ik − X̃ik−1)

6 F ht (X )+ λh

∫
Ω

K̃εh(X − X̃ik−1)(X − X̃ik−1).

Letting k → ∞ in this estimate gives (4.8). The regularity of the boundary follows as in

Lemma 4.3. 2

DEFINITION 4.5 Set

X h
t = X̃∞ for anX̃∞ as in Lemma 4.4,

and defineuht by (4.1).

We immediately observe thatuht ∈ L∞(Ω) sinceuht−h ∈ L∞(Ω), and by Lemma 4.1.
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LEMMA 4.6 For the approximate solutions we have

F ht (X h
t ) 6 F ht (X h

t−h), (4.11)

uht ∈ uD +M0, ∇uht · νΩ = 0 on∂Ω \ ΓD,

∂−h
t uh(t)−∆uht = f. (4.12)

The functionX h
t is a stationary point ofF ht and for allξ ∈ C1

c(Ω; R3) we have∫
Ω

(
∇· ξ −

∇X h
t

|∇X h
t |

·Dξ
∇X h

t

|∇X h
t |

)
|∇X h

t | =

∫
Ω

X h
t ∇ · ((uht − hKh

0 (f ))ξ). (4.13)

Proof. Inequality (4.11) follows from (4.7). We deduce (4.12) from (4.1), (4.2) and (4.3). Since
X h
t = X̃∞ is a stationary point of̃F and the first variation ofX 7→ λh

∫
Ω
K̃εh(X − X̃∞)(X − X̃∞)

vanishes atX h
t , we obtain

0 =

∫
Ω

(
∇ · ξ −

∇X h
t

|∇X h
t |

·Dξ
∇X h

t

|∇X h
t |

)
|∇X h

t | −

∫
Ω

X h
t ∇ · ((Kh(uht−h)−Kh

0 (X
h
t − X h

t−h))ξ).

Now (4.1) gives the assertion. 2

The following estimates are proved in [11], where only (4.1) and (4.11) are used (and not the global
minimising property of the approximate phase functions!).

LEMMA 4.7 For anyt0 ∈ (0, T ), t0 = Mh, we have the energy estimate∫
Ω

|∇X h
t0
| +

1

2

∫
Ω

(uht0)
2
+

M∑
j=1

h

2

∫
Ω

(|∇uhjh|
2
+ |∇Kh(uh(j−1)h)|

2)

6 C(uD, f,Ω)+

∫
Ω

|∇X0| +
1

2

∫
Ω

u2
0. (4.14)

Thus we get uniform bounds for

X h in L∞(0, T ; BV(Ω)), (4.15)

uh in L2(0, T ; H1,2(Ω)), (4.16)

uh in L∞(0, T ; Lp(Ω)) for all 1 6 p < ∞, (4.17)

∂−h
t (uh + X h) in L2(0, T ; H−1,2(Ω)). (4.18)

Proof. See [11]. 2

Moreover an estimate for time differences can be derived, which is crucial for the L1(ΩT )-
compactness ofuh andX h:

LEMMA 4.8 For any 0< τ < T we have∫ T

0

∫
Ω

(|uht − uht−τ | + |X h
t − X h

t−τ )| dL3 dt 6 Cτ1/3

uniformly in h > 0.

Proof. For the proof see [11]. 2
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REMARK 4.9 It is this lemma which requires the assumptionH2(ΓD) 6= 0. In [11] the assertion
is also proved for a pure homogeneous Neumann condition but here the global minimising property
of the functionsX h

t is used, in particular to exclude oscillations between the statesX h
t and 1−X h

t .

5. Convergence to solutions

To prove Theorem 1.2 the passage to a limit in the approximate Gibbs–Thomson equations (4.13)
is crucial. If a loss of surface mass for the phase interfaces can be excluded as in [11], a lemma
of Reshetnyak [14] proves convergence of the Gibbs–Thomson law within the BV-formulation. In
contrast, local minimisation requires different arguments. We deal with the surface measures|∇X h

t |

and apply a convergence result for surfaces with mean curvature given by a Sobolev function in the
ambient space ([17]; see Theorem A.2 in the appendix).

LEMMA 5.1 There are functions

X ∈ L∞(0, T ; BV(Ω; {0,1})),

u ∈ L2(0, T ; uD +M0) ∩ L∞(0, T ; Lp(Ω)) for all 1 6 p < ∞,

and a subsequenceh → 0, such that for all 16 p < ∞,

X h
→ X , uh → u in Lp(ΩT ), (5.1)

X h(t) → X (t), uh(t) → u(t) in Lp(Ω) for almost allt ∈ (0, T ), (5.2)

uh ⇀ u weakly in L2(0, T ; H1,2(Ω)). (5.3)

Proof. The compactness in Lp(ΩT ) is obtained from the theorem of Fréchet–Kolmogorov–

M. Riesz and equations (4.15), (4.17). This yields (5.2) and together with L2(0, T ; H1,2(Ω)) being

reflexive and (4.16) the assertion (5.3). 2

From Lemma 5.1 and (4.12) it is straightforward to show that(u,X ) solves the energy-balance
equation (1.1) in the sense of distributions. To turn to the Gibbs–Thomson law let(u,X ) be as in
Lemma 5.1 andh → 0 be a subsequence for which (5.1)–(5.3) hold. We set

E(t) := {X (t) = 1}, ν(t) :=

{
∇X (t)/|∇X (t)| on ∂∗E(t),

0 otherwise,

and define integral 2-varifoldsµht onΩ by

µht (η) =

∫
Ω

η|∇X h
t | for η ∈ C0

c(Ω).

We complete the proof of Theorem 1.2.

THEOREM 5.2 For almost allt ∈ (0, T ) there exists an integral 2-varifoldµt with locally bounded
first variation and mean curvature vectorEHµt ∈ L4

loc(µt ) such that

∂∗E(t) ⊂ spt(µt ) ∩ {θ2(µt ) odd},

EHµt = u(t)ν(t) µt -almost everywhere inΩ.
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In particular∂∗E(t) has for almost allt ∈ (0, T ) a generalised mean curvature vector according
to Definition 1.1 and the Gibbs–Thomson law (1.5) is satisfied. The integral varifoldsµt can be
obtained as limit points of(µht )h>0.

Proof. We restrict ourselves to pointst ∈ (0, T ) for which (5.2) holds. By (4.16) and the Fatou
lemma we deduce

(t 7→ lim inf
h→0

‖uh(t, ·)‖H1,2(Ω)) ∈ L2(0, T ).

In consequence for almost allt ∈ (0, T ) there exists a subsequencehi(t) → 0 (i → ∞) and a
functionv ∈ H1,2(Ω) with

u
hi
t ⇀ v weakly in H1,2(Ω).

The Rellich–Kondrashov embedding theorem (see [5, Theorem 5.7.1]) and (5.2) givev = u(t).
Observing that‖hKh

0 (f )‖H1,2(Ω) → 0 we get

u
hi
t + hiK

hi
0 (f ) ⇀ u(t) weakly in H1,2(Ω). (5.4)

Moreover by (4.15) the functionsX hi
t are uniformly bounded in BV(Ω) for almost allt ∈ (0, T ).

By the weak*-compactness of Radon measures (see [19, Theorem 4.4]) we can choose a further
subsequence ofhi → 0 to obtain for almost allt ∈ (0, T ) Radon measuresVt onG2Ω with

V
µ
hi
t

∗
⇀ Vt in C0

c(G
2Ω)∗. (5.5)

Moreover the mean curvature equation (4.13) becomes

EH
µ
hi
t

= (u
hi
t + hiK

hi
0 (f ))ν

hi
t . (5.6)

By (5.2), (5.4), (5.5) and (5.6) all assumptions of the convergence theorem in [17] (see Theorem
A.2 in the appendix) are fulfilled and we conclude that there is an integral 2-varifoldµt onΩ such
that

Vt = Vµt , µ
hi
t

∗
⇀ µt in C0

c(Ω)
∗.

Moreover∂∗E(t) ⊂ spt(µt ) andµt has locally bounded first variation with mean curvature vector

EHµt ∈ L4
loc(µt ),

which satisfies the Gibbs–Thomson law

EHµt = u(t)ν(t)

µt -almost everywhere. In view of [17, Theorem 1.2] and [6, 5.7 Lemma 2] we obtain

∂∗E(t) ⊂ {θ2(µt , ·) odd},

which completes the proof. 2

In Theorem 5.2 the location of the hidden boundaries spt(µt ) \ ∂∗Et remains dependent on the
choice of subsequences in (5.5), which itself depends on timet ∈ (0, T ). This fact is the cause of
bad control over the hidden boundaries and motivates the definition of mean curvature for the phase
interface∂∗

{X (t) = 1}.
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6. Behaviour of solutions

We compare solutions by local minimisation and solutions by global minimisation. First we state
some special properties of solutions by global minimisation.

REMARK 6.1 The time-discretisation in [11] admits an additional penalisation term and minimises
for Λ > 0 the functionals

F
Λ,h
t (X ) = F ht (X )+Λ

∫
Ω

Kh
0 (X − X h

t−h)(X − X h
t−h).

Solutions (u,X ) of the Stefan problem with Gibbs–Thomson law, which were constructed
by a global minimisation of the functionalsFΛ,ht , satisfy for all comparison functionsψ ∈

L∞(0, T ; BV(Ω; {0,1})) the inequality∫ T

0

∫
Ω

|∇X | −

∫
ΩT

uX 6
∫ T

0

∫
Ω

|∇ψ | −

∫
ΩT

uψ +

(
1

2
+Λ

) ∫
ΩT

|X − ψ |. (6.1)

Therefore for almost allt ∈ (0, T ) theX (t) are global minimisers of

Ft (X̃ ) =

∫
Ω

|∇X̃ | −

∫
Ω

(
u+ X −

1

2
+ 2Λ

(
X −

1

2

))
(t)X̃

on BV(Ω; {0,1}). This leads to additional regularity properties. From (4.17) we obtain as in Remark
4.3 for almost allt ∈ (0, T ), all Br(x) ⊂ Ω andX̃ ∈ BV(Ω; {0,1}) with X̃ = X (t) in Ω \ Br(x)

the estimate ∫
Ω

|∇X (t)| −

∫
Ω

|∇X̃ | 6 (‖u‖L∞(0,T ;Lp(Ω)) + CΛ,Ω,p)(ω3r
3)1−1/p. (6.2)

This shows that∂∗
{X (t) = 1} has aC1,α-almost-minimal boundary for all 0< α < 1/2. After

changingX (t) on a set ofL3-measure zero,∂{X (t) = 1} is aC1,α-surface. Moreover a theorem
of Tamanini ([21], see [22, Theorem XI.8.5]) gives the existence ofr0 > 0 and 0< c0 < 1,
independent oft ∈ (0, T ), such that for all 0< r < r0 and allx ∈ ∂{X (t) = 1},

c0 6
L3({X (t) = 1} ∩ Br(x))

ω3r3 6 1 − c0. (6.3)

This regularity influences the behaviour of the solutions by global minimisation as we will see in
the following example.

6.1 Example

Consider two ice balls in a container of water. Do the balls touch continuously when they grow
monotonically in time? For solutions by global minimisation inequality (6.3) gives a first answer:
If the balls would touch ast ↑ t0 one findsε > 0 and for allt ∈ [t0 − ε, t0] points contradicting
(6.3). Therefore solutions by global minimising create bridge-like connections at a positive distance.
To investigate this situation letR,L with 0 < R < L/2 be given, setΩ = BL(0), f = 0
andΓD = ∅ (note that this impliesKh

= Kh
0 = K̃h). We choose the pure Neumann condition
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for simplicity although our existence result does not comprise this case. For a Dirichlet or mixed
boundary condition we expect a similar behaviour of solutions.

For r ∈ (0, R) defineball-like solutionsX̄ (r) by

E(r) := Br(x−) ∪ Br(x+), X̄ (r) := XΩ\E(r),

wherex− = (0,0,−R) andx+ = (0,0, R) denote the centres of the ice balls.
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We expect minimisers of the functionalsF ht andFi to be ball- or bridge-like, when ball-like
solutions are preferred to bridge-like solutions or vice versa. To analyse qualitatively the behaviour
of solutions we restrict ourselves to the class of functionsX̄ (r) andψ(r, σ ), when minimising the
respective time-discrete functionals. For a time steph > 0 we assume ball-like solutions until a
time t ∈ (0, T ), soX h

τ = X̄ (rhτ ) for τ 6 t , rhτ increasing inτ . In [11],X h
t+h is chosen to be a global

minimiser of

F ht+h(X ) =

∫
Ω

|∇X | −

∫
Ω

(
Kh(uht )X −

1

2
Kh(X − X̄ (rht ))(X − X̄ (rht ))

)
.

We claim that for all radii nearr = R the global minimisation prefers bridge-like solutions to ball-
like solutions. The bridges must have a minimal diameter. Furthermore in case their diameters are
not large enough ball-like solutions are preferred.

PROPOSITION6.2 Using the global minimisation there areδ > 0 andσ0 > 0 such that for all
h > 0, rht ∈ (0, R) andr ∈ (R − δ, R), r > rht , we have

min
σ∈[0,r]

F ht+h(ψ(r, σ )) < min
σ∈[0,σ0]

F ht+h(ψ(r, σ )) 6 F ht+h(X̄ (r)).
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For each suchr there is a constantσ1 > 0 such that for all 0< σ < min(σ1,
1
3(R − r)),

F ht+h(X̄ (r))− F ht+h(ψ(r, σ )) < 0. (6.4)

Proof. Consider

d(r, σ ) = dht+h(r, σ )

= F ht+h(X̄ (r))− F ht+h(ψ(r, σ ))

= 4π(r2
− r

√
r2 − σ 2 − (R −

√
r2 − σ 2)σ )−

∫
Ω

Kh(uht )XS(σ)\E(r)

−
1

2

∫
Ω

Kh(XS(σ)\E(r))(2(X̄ (rht )− X̄ (r))+ XS(σ)\E(r)).

For the derivative we apply the coarea formula [6, Theorem 3.4.2] in differential form:

∂

∂σ
d(r, σ ) = 4π

(√
r2 − σ 2 + σ

√
r − σ

√
r + σ

− R

)
−

∫
Γr,σ

Kh(uht )(y)dH2(y)

−

∫
Γr,σ

Kh(XS(r)\E(r) + X̄ (rht )− X̄ (r))(y)dH2(y),

with Γr,σ = {y : |(y1, y2)| = σ, y3 ∈ (−R +
√
r2 − σ 2, R −

√
r2 − σ 2)}.

First observe that forr = R a bridge-like solution is preferred:

max
σ∈[0,R]

d(R, σ ) > 0. (6.5)

Next check that the functiond is continuous inr and uniformly Ḧolder continuous inσ . These
properties yield the existence of constantsδ > 0 andσ0 > 0 independent ofh > 0 such that

max
σ∈[0,r]

d(r, σ ) > max
σ∈[0,σ0]

d(r, σ ) > 0.

To prove (6.4) one calculates, forr > rht ,

d(r, σ ) 6 −H2 (∂(S(σ ) \ E(r)))+ 2H2 (∂E(r) ∩ S(σ))

+‖Kh(uht )‖L4(Ω)|S(σ) \ E(r)|3/4.

UsingKh(uht )
3 as a test function in the equationKh(uht ) − h∆Kh(uht ) = uht and recalling (4.17)

yields‖Kh(uht )‖L4(Ω) 6 C. With the isoperimetrical inequality [6, Theorem 5.6.2] we derive

−H2 (∂(S(σ ) \ E(r)))+ ‖Kh(uht )‖L4(Ω)(L
3(S(σ ) \ E(r)))3/4

6 (−1 + CH2 (∂(S(σ ) \ E(r)))1/8)H2 (∂(S(σ ) \ E(r))) .

Now chooseσ1 > 0 such that for allr > rht andσ < σ1,

H2 (∂(S(σ ) \ E(r)))1/8 6
1

2C
,
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and obtain

d(r, σ ) 6 −
1

2
H2 (∂(S(σ ) \ E(r)))+ 2H2 (∂E(r) ∩ S(σ))

= −
1

2
H2 (∂S(σ ) \ E(r))+

3

2
H2 (∂E(r) ∩ S(σ))

= −π(R −

√
r2 − σ 2)σ + 3πr(r −

√
r2 − σ 2)

6 −π(R − r)σ + 3πr

(
r −

(
r −

1

2r
σ 2

))
< −

π

2
(R − r)σ

for 0< σ < 1
3(R − r). 2

Restricting to special initial data we show that local minimisation prefers ball-like solutions.

PROPOSITION6.3 Let initial data 0� r0 < R andu0 ∈ H1,2(Ω) ∩ L∞(Ω) with u0 > −1/2 be
given. Then solutions by local minimisation do not build bridges before the ice balls touch.

To determineX h
t+h we have to consider the evolution{X̃i}i∈N , where X̃i minimises the

functional

Fi(X ) = F ht (X )+ λh

∫
Ω

Kεh(X − X̃i−1)(X − X̃i−1).

Assume againX h
t = X̄ (rht ) andX̃i−1 = X̄ (r̃i−1), and define

d̃i(r, σ ) = Fi(X̄ (r))− Fi(ψ(r, σ ))

= d(r, σ )− λh

∫
Ω

Kεh(XS(σ)\E(r))(XS(σ)\E(r) + 2X̄ (r̃i−1)− 2X̄ (r)).

In a first step we notice that bridge-like solutions are only competitive in a small neighbourhood of
r = R shrinking to a point withh → 0:

LEMMA 6.4 There exists a functionω : (0, h0) → R with ω(h) → 0 (h → 0) such that for all
r̃i−1 6 r < R − ω(h) and 0< σ 6 r,

Fi(X̄ (r)) < Fi(ψ(r, σ )).

Proof. By (6.4) we assumeσ > σ1(r) := min(σ1,
1
3(R − r)). Sinced(r, σ ) 6 C(R) for all r, σ

we have

d̃i(r, σ ) 6 C(R)− λh

∫
Ω

Kεh(XS(σ1(r))\E(r))XS(σ1(r))\E(r)

6 C(R)− λh

∫
Ω

Kεh(XBσ1(r)(0)
)XBσ1(r)(0)

.

Considering forα > 0 and 0< m < L the fundamental solutionΦα of id − α∆ in R3 we observe
that ∇(XBm(0) ∗ Φα) · ν∂Bm(0) < 0. The maximum principle theorems 8.1, 8.6 in [20] applied to
id − α∆ yieldKα(XBm(0)) > XBm(0) ∗Φα and∫

Bm(0)
Kα(XBm(0)) > m3

∫
B1(0)

XB1(0) ∗Φαm−2.
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Thus

d̃i(r, σ ) 6 C(R)− λhσ1(r)
3
∫
B1(0)

XB1(0) ∗Φεhσ1(r)
−2 6 0

for r < R − ω(h), if ω(h) > 0 is chosen with

λhσ1(R − ω(h))3 → ∞,
εh

σ1(R − ω(h))2
→ 0.

Observing that

λhσ1(R − ω(h))3 > min

{
λhσ

3
1 ,

1

27
λhω(h)

3
}
,

εh

σ1(R − ω(h))2
6 max

{
εh

σ 2
1

,
9εh
ω(h)2

}
we find that this can be satisfied withω(h) → 0 (h → 0). 2

By Lemma 6.4 the creation of a bridge at a positive distance of the balls yields a jump of the radius.
This jump affects the first evolution and is never limited to the evolutions{X̃i}i∈N .

LEMMA 6.5 If for t ∈ (0, T ) and a subsequenceh → 0 there are integersα(h) such that

X h
t+α(h)h = X̄ (rht+α(h)h), X h

t+α(h)h+h is a bridge-like solution,

then
rht+α(h)h → R (h → 0).

Proof. Lemma 6.4 ensures the existence of a sequencei(h) such that

X̃ h
t+α(h)h,i(h) = X̄ (r̃ht+α(h)h,i(h)), r̃ht+α(h)h,i(h) > R − ω(h).

Now we set

r̃hi = r̃ht+α(h)h,i(h), r̃h0 = rht+α(h)h.

If the assertion is false, then for a subsequenceh → 0,

lim
h→0

(r̃hi − r̃h0 ) > 0.

This yields
Kh(X̄ (r̃hi )− X̄ (r̃h0 )) ≈ X̄ (r̃hi )− X̄ (r̃h0 ).

In additionuhτ = Kh(uhτ−h − (X h
τ − X h

τ−h)), the assumed monotonic growth and invoking the
maximum principle twice impliesKh(uhτ ) > infΩ u0 (see the proof of Lemma 4.1). Now we obtain

6ω3(r̃
h
i )

2
− 6ω3(r̃

h
0 )

2
−

∫
Ω

Kh(uht+α(h)h)(X̄ (r̃
h
i )− X̄ (r̃h0 ))

+
1

2

∫
Ω

Kh(X̄ (r̃hi )− X̄ (r̃h0 ))(X̄ (r̃
h
i )− X̄ (r̃h0 )) >

∫
Ω

(inf
Ω
u0 +

1

2
)|X̄ (r̃hi )− X̄ (r̃h0 )| > 0

since infΩ u0 > −1/2. This contradictsF ht+α(h)h(X̄ (r̃
h
i )) 6 F ht+α(h)h(X̄ (r̃

h
0 )). 2



128 M . RÖGER

Now we are able to prove Proposition 6.3. Notice thatu + X is in C0(0, T ; Lp(Ω)) for all 1 6 p

< ∞ (see [11], [12]), and that forΓD = ∅, f = 0 the energies are monotone, that is,

t 7→

∫
Ω

|∇X (t)| +
1

2

∫
Ω

u(t)2, t 7→

∫
Ω

|∇X h
t | +

1

2

∫
Ω

(uht )
2

are decreasing in(0, T ).
To sketch the idea consider a single ball jumping at a timet , that is,

r(t+)− r(t−) = lim
δ→0

(r(t + δ)− r(t − δ)) > 0.

The continuity ofu+ X forcesu to jump as well:

u(t+) = u(t−)− (X (t+)− X (t−)).

The maximum principle impliesu(t−) > infΩ u0 > −1/2 but in contradiction to the monotonicity
of energy we get

3ω3(r(t+)
2
− r(t−)2)+

1

2

∫
Ω

(u(t+)2 − u(t−)2) > 0.

To adapt this idea notice that by Lemma 6.4 the radii have to jump when a bridge-like connection
appears at a positive distance of the balls. With the aid of Lemma 6.5 we derive a contradiction to
the monotonicity of energy at the level of the time-discrete evolutionsX h.

Applying the Lp(Ω)-convergence ofuht ,X h
t for a subsequenceh → 0 and almost allt ∈ (0, T )

and using the fact thatu+ X ∈ C0(0, T ; Lp(Ω)) we restrict ourselves to the following situation:

ASSUMPTION There are subsequencesh ↘ 0 andδ ↘ 0 such that

X h
t±δ

h→0
→ X (t ± δ) in Lp(Ω),

uht±δ
h→0
→ u(t ± δ) in Lp(Ω),

X (t − δ) → X (t−), X (t + δ) → X (t+) in Lp(Ω),

X h
t−δ = X̄ (rht−δ), X (t − δ) = X̄ (r(t − δ)), r(t − δ) → r(t−) < R.

(In case ofr(t−) = R we are done.)

CLAIM There existsδ0 > 0 with

X (t + δ) = X̄ (r(t + δ)) for all δ < δ0,

r(t + δ) → r(t−).

Assuming this claim to be false we obtain a subsequenceδ → 0 andhδ > 0 such that either

X h
t+δ is a bridge-like solution for allh < hδ, or

r(t+)− r(t−) = lim
δ→0

lim
h→0

(rht+δ − rht−δ) > 0.

In the first case the last two lemmas imply the existence ofαhδ 6 δ such that

X h

t+αhδ
= X̄ (rh

t+αhδ
) for all h < hδ, lim

δ→0
lim
h→0

(rh
t+αhδ

− rht−δ) = R − r(t−) > 0.
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So we can prove both cases analogously. We consider the first one. By (4.1) forN = [δ/h] + [αhδ /h]
we obtain

uh
t+αhδ

= (Kh)N (uht−δ)−

N∑
j=1

(Kh)N−j+1(X h
t−δ+jh − X h

t−δ+(j−1)h). (6.6)

To estimate
∫
Ω
(uh
t+αhδ

)2 −
∫
Ω
(uht−δ)

2 consider a L2(Ω)-orthonormal basis{wk}k∈N0 of eigen-

functions

−∆wk = µkwk in Ω, ∇wk · νΩ = 0 on∂Ω,

w0 =
1

|Ω|
, µk > 0, µk → ∞ (k → ∞).

SinceKh is selfadjoint andKh(wk) = (1 + hµk)
−1wk we find∣∣∣∣ ∫

Ω

(Kh)N (uht−δ)
2
−

∫
Ω

(uht−δ)
2
∣∣∣∣ =

∣∣∣∣ ∑
k

((1 + hµk)
−2N

− 1)

( ∫
Ω

uht−δwk

)2∣∣∣∣
>

∑
k

(
1 − e−

4δ
h

ln(1+hµk)

)( ∫
Ω

uht−δwk

)2

h→0
→

∑
k

(1 − e−4δµk )

( ∫
Ω

u(t − δ)wk

)2

δ→0
→ 0 (6.7)

(
∣∣∫
Ω
uht−δwk

∣∣2 and
∣∣∫
Ω
u(t − δ)wk

∣∣2 are convergent majorants).
The monotonic increase of the radius and the maximum principle yield as above the estimate

(Kh)N (uht−δ) > infΩ u0 and together with the homogeneous Neumann data we obtain

lim
δ→0

lim
h→0

−2
∫
Ω

(Kh)N (uht−δ) ·

N∑
j=1

(Kh)N−j+1(X h
t−δ+jh − X h

t−δ+(j−1)h)

> 2(inf
Ω
u0)

∫
Ω

|X̄ (R)− X (t−)|. (6.8)

Similar to the calculations above we derive∫
Ω

∣∣∣ N∑
j=1

(Kh)N−j+1(X h
t−δ+jh − X h

t−δ+(j−1)h)

∣∣∣2 =

∑
k

∣∣∣∣ ∫
Ω

g
h,δ
k (X h

t+α − X h
t−δ)wk

∣∣∣∣2,
with a functiongh,δk onΩ,

g
h,δ
k (X h

t+α − X h
t−δ) =

N∑
j=1

(1 + hµk)
−N+j−1(X h

t−δ+jh − X h
t−δ+(j−1)h),

(1 + hµk)
−N 6 g

h,δ
k 6 1.
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For a subsequenceh → 0 we obtain

g
h,δ
k (X h

t+α − X h
t−δ) ⇀ gδk(X̄ (R)− X (t − δ)) weakly in L2(Ω)

with e−2δµk 6 gδk 6 1 and

lim inf
h→0

∫
Ω

∣∣∣ N∑
j=1

(Kh)N−j+1(X h
t−δ+jh − X h

t−δ+(j−1)h)

∣∣∣2
>

∑
k

∣∣∣∣∫
Ω

gδk(X̄ (R)− X (t − δ))wk

∣∣∣∣2
δ→0
→

∑
k

∣∣∣∣ ∫
Ω

(X̄ (R)− X (t−))wk
∣∣∣∣2 =

∫
Ω

|X̄ (R)− X (t−)|. (6.9)

Altogether from (6.6)–(6.9) we conclude that

lim
δ→0

lim inf
h→0

∫
Ω

((uh
t+αhδ

)2 − (uht−δ)
2) > 2(inf

Ω
u0)

∫
Ω

|X̄ (R)− X (t−)| > 0

and finally foru0 > −1/2, using the monotonicity of energy,

0 > lim
δ→0

lim inf
h→0

[
6ω3(r

h

t+αhδ
)2 − 6ω3(r

h
t−δ)

2
+

1

2

∫
Ω

((uh
t+αhδ

)2 − (uht−δ)
2)

]
> 6ω3(R

2
− r(t−)2)+ (inf

Ω
u0)

∫
Ω

|X̄ (R)− X (t−)| +
1

2

∫
Ω

|X̄ (R)− X (t−)|

> 0.

This is a contradiction.

A. Lipschitz approximation and convergence of mean curvature

First we state a version of the Lipschitz approximation theorem of Brakke [4, Theorem 5.4] (see
also [18]), which we use in Section 3. Second we quote the convergence result of Schätzle [17],
which is crucial in Section 5.

A.1 Lipschitz approximation

For an integral(n − 1)-varifold µ in Ω ⊂ Rn open,x0 ∈ Ω, % > 0 with Bn% (x0) ⊂ Ω and an
(n − 1)-dimensional subspaceT ⊂ Rn we define thetilt , tilt-excessandLipschitz approximation
constantby

tiltµ(x0, %, T ) = %−n−1
∫
Bn% (x0)

dist(x − x0, T )
2 dµ(x),

tiltexµ(x0, %, T ) = %−n+1
∫
Bn% (x0)

‖Txµ− T ‖
2 dµ(x),

lipappµ(x0, %, T ) = tiltµ(x0, %, T )+ tiltexµ(x0, %, T )+ %3−n

∫
Bn% (x0)

| EHµ|
2 dµ,

where we set lipappµ(x0, %, T ) = ∞ if EHµ 6∈ L2(µ Bn% (x0)).
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We state here a simplified version of the tilted Lipschitz approximation theorem given in
[18], which itself follows from the Lipschitz approximation theorem of Brakke [4, Theorem 5.4].
Roughly speaking, an integral(n − 1)-varifold, well approximated (with respect to the Lipschitz
approximation constant) by a hyperplaneT0, is for any hyperplaneT not vertical toT0 given as
union of Lipschitz graphs overT :

THEOREM A.1 Let µ be an integral(n − 1)-varifold in Bn7(0), θ0 ∈ N andT0 = {ν0}
⊥ be an

(n− 1)-dimensional subspace ofRn with

|Een · ν0| > λ > 0.

Let T0 be the graph overRn−1
× {0} of a linear mapT0 : Rn−1

→ R:

(y, T0y) ∈ T0 for all y ∈ Rn−1.

If

µ(Bn7(0)) 6 Γ, µ(Bn3(0)) 6 (θ0 + 1/2)3nωn,

(θ0 − 1/2)ωn 6 µ(Bn1(0)), lipappµ(0,7, T0) 6 ε,

then there exist constantsδ0 > 0 andc, C > 0 depending onΓ , λ, n and θ0, and a function
ω : R → R with ω(s) → 0 (s → 0) andθ0 Lipschitz continuous maps

fi : Bn−1
δ0

(0) → R, i = 1, . . . , θ0,

with

Lip(fi) 6 c, ‖fi − T0‖L∞(Bn−1
δ0

(0)) 6 ω(ε),

such that the following assertions hold:
The setY0 ⊂ Bn−1

δ0
(0) consisting of pointsy ∈ Bn−1

δ0
(0) with

θn−1(µ, (y, t)) = #{i : fi(y) = t} for all −1/2< t < 1/2,

and the set

X0 := spt(µ) ∩ (Y0 × (−1/2,1/2)) = {(y, fi(y)) : y ∈ Y0, 1 6 i 6 θ0}

satisfy the estimate

µ((Bn−1
δ0

(0)× (−1/2,1/2)) \X0)+ Ln−1(Bn−1
δ0

(0) \ Y0) 6 Cε.

A.2 Convergence of mean curvatures given as a trace

ASSUMPTION LetΩ ⊂ Rn be open,n > 2. Forj ∈ N letEj ⊂ Ω be subsets of finite perimeter
and define

µj = |∇XEj |, νj =
∇XEj
|∇XEj |

on ∂∗Ej .
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Suppose each integral(n − 1)-varifold µj has a mean curvature vectorEHµj given by the trace of a
functionuj ∈ H1,p(Ω), n/2< p < n, which means that

EHµj = ujνj on ∂∗Ej

in the weak sense of∫
Ω

(
∇η −

∇XEj
|∇XEj |

·Dη
∇XEj
|∇XEj |

)
|∇XEj | =

∫
Ω

XEj∇ · (ujη)

for all η ∈ C1
c(Ω; Rn). Assume

‖uj‖H1,p(Ω),

∫
Ω

|∇XEj | 6 Λ

for someΛ > 0 and letu ∈ H1,p(Ω), E ⊂ Ω and a Radon measureV onGn−1Ω satisfy

uj ⇀ u weakly in H1,p(Ω),

XEj → XE in L1(Ω),

Vµj → V as varifolds.

THEOREM A.2 Under the above assumptions we haveV = Vµ for an integral(n− 1)-varifoldµ
with locally bounded first variation and mean curvature vector

EHµ ∈ Lsloc(µV ), 1 −
n

p
= −

n− 1

s
.

MoreoverE is a set of finite perimeter,∂∗E ⊂ spt(µ), and the mean curvature vector ofµ satisfies

EHµ = uνE µ-almost everywhere,

where

νE(x) =

{
∇XE(x)/|∇XE |(x) on ∂∗E,

0 otherwise.

REFERENCES

1. ALMGREN, F. J. The theory of varifolds. Princeton notes (1965).
2. ALMGREN, F. Existence and regularity almost everywhere of elliptic variational problems with

constraints.Mem. Amer. Math. Soc.165(1976). Zbl 0327.49043 MR 54 #842
3. AMBROSIO, L., FUSCO, N., & PALLARA , D. Functions of Bounded Variation and Free Discontinuity

Problems. Oxford Univ. Press (2000). Zbl 0957.49001 MR 2003a:49002
4. BRAKKE , K. The Motion of a Surface by its Mean Curvature. Princeton Univ. Press (1978).

Zbl 0386.53047 MR 82c:49035
5. EVANS, L. C. Partial Differential Equations. Graduate Stud. Math. 19, Amer. Math. Soc. (1998).

Zbl 0902.35002

http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0327.49043&format=complete
http://www.ams.org/mathscinet-getitem?mr=54%20%23842
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0957.49001&format=complete
http://www.ams.org/mathscinet-getitem?mr=2003a%3A49002
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0386.53047&format=complete
http://www.ams.org/mathscinet-getitem?mr=82c%3A49035
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0902.35002&format=complete


STEFAN PROBLEM 133

6. EVANS, L. C. & GARIEPY, R. F. Measure Theory and Fine Properties of Functions. CRC Press, Boca
Raton (1992). Zbl 0804.28001 MR 93f:28001

7. FEDERER, H. Geometric Measure Theory. Grundlehren Math. Wiss. 153, Springer (1969).
Zbl 0176.00801 MR 41 #1976

8. GIUSTI, E. Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston (1984).
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